
Digital Technical Journal
Digital Equipment Corporation

Cover Design

The helix of the DNA molecule depicted on our cover is a
visual metaphor for software productivity tools, the theme of
this issue. Just as the encoded DNA molecule serves as a tem-
plate for the synthesis of new forms, so software productivity
languages and procedures serve as tools for the development
of new software programs. The image was created using the
Lightspeed System.

The cover was designed by Barbara Grzeslo and David Carroll
of the Graphic Design Department.

Managing Editor
Richard W. Beane

Editorial Staff
Editor -Jane C. Blake

Production Staff
Production Editor - Helen L. Patterson
Designer - Charlotte Bell
Interactive Page Makeup -Jonathan M. Bohy

Advisory Board
Samuel H. Fuller, Chairman
Robert M. Glorioso
John W. McCredie
Mahendra R. Patel
F. Grant Saviers
William D. Strecker
Victor A. Vyssotsky

The Digital Technical Journal is published by
Digital Equipment Corporation, 77 Reed Road,
Hudson, Massachusetts 0 1749.

Changes of address should be sent to Digital
Equipment Corporation, attention: List Maintenance,
10 Forbes Road, Northboro, MA 0 1532. Please include
the address label with changes marked.

Comments on the content of any paper are welcomed.
Write to the editor at Mail Stop HL02-3/K11 at the
published-by address. Comments can also be sent on
the ENET to RDVAX::BIAKE or on the ARPANET to
BW(E%RDVAX.DEC@DECWRL.

Copyright @ 1988 Digital Equipment Corporation.
Copying without fee is permitted provided that such
copies are made for use in educational institutions by
faculty members and are not distributed for
commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is
permitted. Requests for other copies for a fee may be
made to the Digital Press of Digital Equipment
Corporation. All rights reserved.
The information in this journal is subject to change
without notice and should not be construed as a
commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

ISBN 1-55558-005-X
Documentation Number N-8259E-DP

The following are trademarks of Digital Equipment
Corporation: DATATRIEVE, DEC, DEC/CMS, DEC/MMS,
DECnet, the Digital logo, EDT, EMS, P/OS, RALLY, Rdb,
ReGIS, RMS, RSTS/E, RSX, TEAMDATA, VAX, VAX CDD,
VAX COBOL GENERATOR, VAX DECITest Manager,
VAX GKS, VAX NOTES, VAX PHIGS, VAX SCAN, VAXset,
VAX SOlTW.ARE PROJECT MANAGER, VAXstation,
VAXstation II/GPX, VAXTPU, VAX VALU, VAX VTX,
VMS, VT, VT52, VT100, VT200

BASIC is a trademark of Dartmouth College.
BASIS is a registered trademark of Battelle
Development Corporation.
HPGL is a trademark of Hewlett-Packard Company.
IBM is a registered trademark of International Business
Machines Corporation.
Lightspeed is a trademark of Lightspeed Computers, Inc.
Macintosh is a trademark of Apple Computer, Inc.
Postscript is a trademark of Adobe Systems, Inc.
PowerHouse is a registered trademark of Cognos, Inc.
UNIX is a registered trademark of American Telephone 81
Telegraph Company's Bell Laboratories.
Xerox is a registered trademark of Xerox Corporation.
X Window System is a trademark of the Massachusetts
Institute of Technology.
Book production was done by Digital's Educational
Services Media Communications Group in Bedford. MA.

Contents

9 Foreword
William J. Heffner

Software Productivity Tools
1 0 VAX/VMS Somare Development Environment

Bert Beander

2 0 Somare Productivity Measurements
Anne Smith Duncan and Thomas J. Harris

2 8 Language-Sensitive Editor
Glenn Lupton

4 0 VAX SCAN: Rub- based Text Processing Somare
Stephen R. Greenwood

5 1 Somare Productivity Features Provided by the Ada Language and the
VAX Ada Compiler
Robert A. Conti

6 2 Programmer Productivity Aspects of the VAX GKS and VAX PHIGS
Products
Brian A. Axtell, William H. Clifford, Jr., and Jeffrey S. Saltz

7 1 The VAX RALLY System - A Relational Fourth-Generation Language
Lewis Lasher

80 VTX and VALU - Somare Productivity Tool. for Distributed
Applications D e v e l o m t
Linda E . Benson, Michael Gianatassio, Jr., and Karen L. McKeen

9 1 Pragmatics in the Development of VAX Ada
Ronald F . Brender, Bevin R. Brett, and Charles Z. Mitchell

10 1 Developnzent of a Graphical Program Generator
Steven J. Grass

1 10 Project Management of the VAX DEC/Test Manager Somare
Version 2.0
Linda Ziman and Martin Dickau

1 1 7 Development of tbe VAX NOTES System
Peter D Gilbert

1 2 5 Somare Usability Engineering
Michael D. Good

Editor's Introduction

Jane C. Blake
Editor

This issue of the Digital TechnicalJournal features
papers on software productivity tools that assist pro-
grammers in the development of high-quality, reli-
able software. In addition to papers about these
tools, we also present several papers that examine
innovative project practices developed by Digital
engineers to improve productivity.

Our first paper looks at the set of tools developed
to support all stages of the software life cycle, from
the requirements and specification stages through
the maintenance stage. Bert Beander gives an
overview of each of the tools and describes how their
strong integration provides for a rich development
environment.

Our second paper is not about a software tool, but
rather about a study to determine to what degree
software tools and new development methods are
contributing to reductions in project cost and to
increases in product quality. Anne Smith Duncan and
Tom Harris discuss the influences on software pro-
ductivity and present findings for three productivity
metrics.

The subject of the next paper is the VAX Language-
Sensitive Editor, a n important component of the
VAX/VMS software development environment. Glenn
Lupton reviews the research on which the require-
ments for this advanced text editor were founded and
then describes the design of various LSE features.

The next two papers are about languages that have
been integrated with the VMS environment and
provide programmers increased efficiency in the cre-
ation of programs. First, Steve Greenwood describes
the VAX SCAN product and gives examples of how
this rule-based text processing language simplifies
the building of software, thereby reducing program
development time. Next, Bob Conti presents an infor-
mative discussion of the inherent productivity fea-

tures of the Ada language and the additional features
provided by Digital's implementation.

High-level, functional interfaces for graphics pro-
gramming, specifically the VAX GKS and VAX PHlGS
implementations, are the topics of our next paper.
Brian Axtell, Bill Clifford, and Jeff Saltz relate how
these interfaces have made graphics programming
easier and describe the common architecture on
which both products are based.

The designer of a software tool is sometimes faced
with the dilemma of choosing between flexibility
and ease of use. Lew Lasher discusses how the
designers of VAX RALLY, a forms-based fourth-genera-
tion language, resolved this issue through the design
of RALLY'S application definition system and run-time
environment.

Also designed for application development, the
VAX VTX and VAX VALU tool set allows the develop-
ment and integration of applicatons in distributed,
heterogeneous environments. Linda Benson, Mike
Gianatassio, and Karen McKeen describe the VTX and
VALU features and how these serve to enhance pro-
ductivity.

The next four papers offer insights into some of
the tools and techniques used by Digital software
engineers to reduce project development time In
the first paper, Ron Brender, Bevin Brett, and Charlie
Mitchell describe how their use of automation,
instrumentation, self-checking, and self-description
not only saved development time but also con-
tributed to the VAX Ada compiler's performance.
Next, Steve Grass discusses a new approach devised
to manage the development of a then unprecedented
graphical interface, the VAX COBOL GENERATOR
software. In the third paper, Linda Ziman and Martin
Dickau attribute significant time savings and product
improvements to an iterative approach and the soft-
ware tools used to develop the VAX DEC/Test Man-
ager software. One of these tools was the VAX NOTES
computer conferencing system, which is the topic of
the fourth paper. Peter Gilbert reviews the innova-
tive design and development strategies that led to the
success of NOTES and describes several key product
features.

In our final paper, Michael Good discusses the
three principal activities of software usability engi-
neering. He also gives examples of how this user-ori-
ented approach has contributed to software product
design at Digital.

We thank John Henning for his help in preparing
this issue.

Biographies

Brian A. Axtell A principal software engineer in the Core Applications
Group, Brian Axtell is the project leader and supervisor for the VAX PHIGS
product. Joining Digital in 1980, Brian co-designed the Base Graphics Archi-
tecture, the VAX PHIGS and VAX GKS products, and was also the project
leader in the development of VAX GKS. He earned a B.S. in meteorology
(1978) and a B.S. in computer science (1980) from the Pennsylvania State
University. Brian is a member of the ACM, the SIGGRAPH Special Interest
Group, and the American Meteorological Society.

Bert Beander Bert Beander, a consulting software engineer, joined
Digital after receiving his Ph.D. and M.S. degrees in computer sciences
from the University of Wisconsin in Madison. Prior to his current work in
the area of programming environments with the Technical Languages and
Environments Group, he supervised the VAX Debugger and the VAX Perfor-
mance and Coverage Analyzer (PCA) projects and also served as project
leader in the development of PCA version 1 and the Debugger versions 3
and 4 . Bert is a member of the ACM, SIGPLAN, and SIGSOFT.

Linda E. Benson Linda Benson, a principal engineer, is the project leader
and supervisor for the VAX VTX and VAX VALU products. Previously, she
was development engineer and project leader for the VAX Run-time Library
and has also been involved in a project to produce terminal front-ends.
Prior to joining Digital in 1979, Linda was a software engineer at Grumman
Aerospace Corporation where she contributed to the development of com-
munication and navigation software systems. She received her B.S.C.S. in
1977 from Rochester Institilte of Technology, Rochester, N.Y., and is cur-
rently working toward an M.B.A. degree.

Ronald F. B r e n d e r As a senior consultant software engineer, Ron is
responsible for most static semantics processing in the VAX Ada compiler.
Prior to this work, he supervised development of the first optimizing com-
piler on the PDP- 1 1 and the development of the current generation of BLISS
language and implementations. He has been appointed by the Ada Joint Pro-
gram Office to the Ada Board and was a member of X3J3, the ANSI commit-
tee that developed the current FORTRAN '77 standard. Ron received his
B.S.E. in engineering science, M.S. in applied mathematics, and Ph.D. in
computer and communication sciences from the University of Michigan.

- Biographies

Bevin R. Brett Bevin Brett is a principal software engineer in the Techni-
cal Languages and Environments Group, currently working on the VAX Ada
project. Most recently, he has been involved in the Integrated Programming 1 Support Environment rask force and in the design and implementation of
shared generic instantiations in VAX Ada compiler code. Before joining

" (Digital in 1982, Bevin received an M.Sc. in computer science (1982) from
the University of Adelaide, a B.Sc. (Honors, 1977) in mathematics from the
University of Canterbury, and graduated as valedictorian from the Nelson
Boys College (1 974). New Zealand.

William H. Clifford Jr. Bill Clifford, a principal software engineer, is a
co-designer of Digital's Base Graphics Architecture and the VAX PHIGS
product, and of the proposed three-dimensional extension of XI 1 . Bill is a
representative from Digital to the ANSI X3H3.1 (PHIGS) committee and to
the ad hoc PHIGS+ committee. Before joining Digital in 1984, he developed
real-time, distributed control systems at Stable Technology, Inc. He received
a B.S. (1968) and an M.S. (1970) in systems engineering from Case Western
Reserve University and pursued doctoral work as an NDEA Fellow at the uni-
versity.

Robert A. Conti A consulting software engineer, Bob Conti has con-
tributed to the VAX Ada project in the area of tasking and debugging support.
He is currently pursuing advanced development work related to future
enhancements to \'AX Ada. Before joining Digital in 1981, Bob developed
software for several radar systems, including AWACS, at Westinghouse. He
received a B.S. in engineering (1 968) from Case Western Reserve University,
an M.S.E.E. (1 9 7 1) from Johns Hopkins, and an M.S.C.S (1 981) from the Uni-
versity of Maryland. Bob is a member of Tau Beta Pi, Eta Kappa Nu, IEEE, and
ACM.

Martin Dickau Martin Dickau is a Senior Software Engineer in the Com-
mercial Languages and Tools development group. Currently a developer with
the VAX Software Project Manager project, he worked on the VAX DEC/Test
Manager versions 2.0 and 2.1 and was acting project leader on the DEC/CMS
project. Martin was a coop student at Digital for two years and joined the
company after receiving a B.S. in computer science from the Massachusetts
Institute of Technology in 1985.

Anne Smith Duncan Anne Smith Duncan, a software engineering manager
in the Commercial Languages and Tools Development Group, is working in
the area of measuring and improving the software development process. She
has also held various technical and managerial positions in the Distributed
Information Systems Group and the Software Standards Group. Prior to join-
ing Digital in 1978, Anne worked at the Department of the Navy as a Com-
puter Specialist in application systems development and technical support.
She earned a Certificate of Management from the Smith College Management
Program (1984) and a B.A. from George Washington University (1 969) .

Michael Gianatass io Jr. Mike Gianat;~ssio joined the VTX and VALU engi-
neering team in 1983 and with that team has had responsibilities in the areas
of development, consulting, and product architecture. As part of the Video-
tex Technical Pdrtnership program, he worked with financial institutions on
the design of home banking systems. Mike is currently a principal engineer
and project leader in the IBM Interconnect Group. Prior to joining Digital in
1982, he worked at Polaroid Corporation. He earned a B.S. degree (1982) in
computer science from Northeastern University of Boston.

Michael D. Good As a principal software engineer in the Software Usabil-
ity Engineering group, Michael Good is developing software usability
engineering methodologies and contributing to the user-interface design
of several products. He has conductcd usability research since joining Digital
in 1981 and has published a number of papers on usability engineering
and text editing. He designed and implemented the Eve text editor for the
VAX/VMS operating system version 4.2. Michael received a B.S. (1979) and
an M.S. (1981) in computcr science from the Massachusetts Institute of
Technology.

Pe te r D Gilber t After earning a B.S. in computer science (1976) and an
M.S. in computcr engineering (1 979) from the University of Illinois, Peter
Gilbert joined Digital in January 1979. He is a member of the Commer-
cial Languages and Tools Group and has been a developer on the \/AX
COBOL, VAX and PDP-I I sort/merge, and VAX NOTES projects, and was a
developer responsible for the collating sequences, parallel processing, and
mathematics software for the VAX Run-time Library project. Currently work-
ing on the design of a configuration management tool, Peter is a principal
software engineer.

Steven J. Grass Steve Grass, a principal software engineer in the Commer-
cial Languages and Tools Group, is the project leader of a group respon-
sible for the development of common components for window-based applica-
tions. Previously, he worked on the VAX COBOL GENERATOR project, first
as a member of the advanced developnlent team and then as the project
leader for implementations of versions 1.0 and 1 .1 . Steve was also a devel-
opcr on the PDP-I 1 COUOL and COBOL-81 compiler projects. He joincd
Digital in 1978 after earning a B.S.E. in colnpilter engineering from the IJni-
versity of Michigan.

S t e p h e n R. G r e e n w o o d A consulting software engineer, Steve Green-
wood is currently responsible for a tool for specifying the end-user interface
to window-based applications. Previously, he has been involved with the
design of run-time libraries for future architectures and the design and devel-
opment of the VAX SCAN language. Before joining Digital in 1981, Steve
worked at Sperry Univac Corporation as a member of the compiler develop-
ment group. He received his B.S. in physics (cum laude, 197.3) from Buck-
nell University ant1 an M.S. in computer science (1975) from the University
of Wisconsin. He is a member of the ACM.

- Biographies

T h o m a s J. H a r r i s Since joining Digital in 1978, Tom Harris has been a
manager of the Commercial Languages and Tools Development Group and is
currently the group's senior manager. He chairs Digital's Sponsored Research
Board and is responsible for advanced development planning across the Sys-
tems Software Development Group. Prior to joining Digital, he worked for
Sperry Univac Corporation in software and hardware product development.
Tom is a member of the CODASIT Executive Committee. He participated in
and chaired the CODASYL Command Language Committee and was a member
of the FORTRAN Data Manipi~lation Committee. Tom earned a B.S. in engi-
neering at Case Western Reserve llniversity in 1967.

Lewis Lasher Lew Lasher is a scnior software engineer in the Software
Development Technologies Group. Since joining Digital in 1985, he has
worked on the VAX M L Y project, primarily in the area of user interface. He
earned an A.B. degree in applied mathematics in 1978 at Harvard College,
where he served as a teaching fellow in undergraduate courses in computer
science. While at Harvard he also worked on PPL, an interpreted language
used there in the introductory programming course. Lew earned a J .D.
degree at Harvard in 198 1 before returning to software engineering.

G l e n n H. Lupton Glenn Lupton joined Digital in 1975 after receiving a
B.S.E.E. (1973) and an M E E E . (1974) from Rcnsselaer Polytechnic Insti-
tute. A consulting software engineer in the Technical Languages and Environ-
ments Group, he is the project leader of the VAX Language-Sensitive Editor
project. Glenn has been associated with the BLISS compiler projects as devel-
oper, project leader, and supervisor. He has also supervised the development
of a number of software programming environment tools, including the pro-
totypes for VAX SCA, DEC/MMS and the DEC/Test Manager software.

K a r e n L. McKeen Karen McKeen is a senior software engineer working
in the VAX VTXpALU engineering group. She joined the VTX group in
1985 and has been responsible for designing and developing information
provider components. Shc is currently the architect for VTX and VALU. Previ-
ously, Karcn was projcct leader for the VAX DECgraph project. She has also
worked in the Commercial Systems Evaluation Group developing perfor-
mance tools. Karen joined Digital in 1979 after earning a B.S in mathematics
with a computer science interdisciplinary option from thc University of New
Hampshire

Char les Z. Mitchell Charlie Mitchell, a consulting software engineer in
the Technical Languages and Environn~ents Group, has been a member of the
VAX Ada development project since its inception as an advanced develop-
ment projcct in 1979. Currently the project leader of the VAX Ada develop-
ment projcct, he joined Digital in 1976 as a developer in the LCG Languages
Group. Charlie reccived a B.S. from thc University of New Mexico and an M.S.
in computer science from Rensselaer Polytechnic Institute. He is a member
of the ACM and SIGAcla.

Jeffrey S. Saltz Jeff Saltz joined Digital after receiving a B.S. in computer
science (honors, 1985) from Cornell University. A senior software engineer
in the Core Applications Group, he is co-designer of Digital's Base Graphics
Architecture, and the VAX PHlGS and VAX GKS products. Jeff is a represcnta-
tive from Digital t o the ad hoc c o n ~ m i t t e e for the proposed three-dimensional
extension t o X 1 I and a co-architect of the X3D-PEX proposal. He is a mem-
ber of Tau Beta Phi.

Linda Ziman Linda Ziman is a development supervisor in the Commercial
Languages and Tools Group. She is currently responsible for several projects,
including the VAX DEC/Tcst Managcr, VAX DEC/CMS, VAX Software Project
Manager, and an advanced clevelopmcnt project. Previously, Linda worked
with integrated software environments and was project lcader of the DEC/
Test Manager project. She has worked in the area of software productivity
tools since joining Digital in 1 978. She received her B.S. degree from Union
College and is a member o f ACM and IEEE.

Foreword

WiUiam J. Heffner
Vice President,
Systems Software Croup

What is a programmer? What does he/she do?
Why does i t take so long? These are three of the
questions most often asked of those of us in the
software profession.

Augusta Ada Byron (181 5-1852), the
Countess of Lovelace, has been accorded the
title of the world's first programmer. Her notes
published in London in 1 8 4 3 regarding Charles
Babbage's analytical engine included a formula
for solving a problem on that machine. This
formula is in effect the first example of a com-
puter program, hence her recognition as a pro-
grammer.

For roughly the century following Byron's
notes, the person who designed the computer
also built and used the computer. There was sel-
dom a separation of the builder and the user. In
the middle of this century, however, computers
were being used by many people not involved
in either designing or building the computer.
These users transformed their problem state-
ment into a computational method understood
by the computer. This computer representation
of the problem was called a program, and the
person preparing it was called a programmer.

Now, what is a programmer? Simply put, the
programmer is someone heretofore unknown in
the professions. Programmers in the 1950s and
1960s came from many disciplines. Many were
electrical engineers and mathematicians, but
others were musicians, liberal arts majors, and
even dentists, hospital administrators and the
like. What was the unique talent they possessed?
In his book The M-ythical Man Month, Fred

Brooks likens a programmer to a poct in that a
creative, intangible product is the result of a
programmer's work. Even though colleges and
universities have formalized the training of pro-
grammers in a discipline called software engi-
neering, we are certain only that programmers
write programs; that the discipline is unique;
and that because this discipline is unique, pro-
grammers require unique tools and products to
effectively complete their tasks.

The papers in this issue of the Digital Techni-
cal Journal address a part of our continual effort
at Digital to produce the environment and
products that assist programmers in produc-
ing timely, well-defined, efficient, and reliable
programs. Historically, there have been two
major breakthroughs in reducing the elapsed
time to produce a working program. First were
compilers, which provide the programmer a
more concise and error-free technique for pro-
ducing programs. Grace Hopper at UNIVAC and
John Backus at IBM were leaders in this break-
through. The second major breakthrough, led
by Digital, was interactive timesharing. Inter-
active timesharing allowed the programmer
greater access to the computer, thus reducing
the elapsed time for program development.

In addition to the effort to reduce elapsed
time, equal effort is being expended to add dis-
cipline and predictability to the process of pro-
ducing programs. Today, very few programs
are developed by a single programmer. Instead,
teams of programmers collaborate to produce
larger and more comprehensive programs, for
example, the FORTRAN project and the VMS
project. To accomplish such projects, program-
mer productivity tools and the Computer Aided
Software Environment (CASE) have been devel-
oped. The VAX/VMS system has been the indus-
try standard for programming development and
the system of choice for programmers. The
papers herein demonstrate our continuing effort
to be the leader. Our goal is to produce the best
environment for programmers - an environ-
ment in which they can exploit their creativity
as they participate in a predictable and disci-
plined process.

Bert Beander 1

VAX/VMS Software Development
Environment

The VAX/VMS software development env.ironment comprises tools that
support all stages of the software life cycle. These tools include documenta-
tion tools, a project management tool, code management and system build-
ing facilities, a rich editing and browsing enuironntent, apowerfuldebug-
ger, static and dynamic analysis tools, test ntanagement facilities, and
project communications tools. Moreover, these tools are strongly ilzte-
grated with each other: they share a common user interface philosophy,
they have numerous tool-to-tool links that allow them to pass substantial
amounts ofprogram information to each other, and they support multiple
programming languages. As a result, the environment has both richness
and internal cohesiueness.

Software clevclopnient has become increasingly
dependent on programming environments that
provide a rich set of softwarc development tools.
Such environments are attractive because they
can increase both programmer productivity and
software quality, while reducing development
costs. The programming cnvironnlent that Digital
has devclopcd for the VAX/VMS operating system
is an example of a commercially available envi-
ronment that provides a particularly rich set of
tools.' This environment h;~s evolved from the
handful of compilers and tools that were avail-
able when the original VAX- 1 1/780 system was
introduced in 1978. A majority of the tools. liow-
ever. have been developed since the early 1980s.

As a result of this development. the VAX/VMS
programming environment now provides a set of
tools that satisfies two goals. One is that thc tools
should assist the software developer in all stagcs
of the softwarc life cyclc. All stagcs have tasks
t l i ; ~ t can be automated for greater programmer
productivity, and no stage should bccomc the
principal bottleneck in the dcvelopment process.
The other goal is that the tools should work well
together so that they providc an easy-to-use. con-
sistent, and tightly integrated environment for
the user. Tight integration increases programmer
productivity bccausc program data collected by
one tool can help automate the functions of other
tools, and consistency between tools increases

productivity by reducing developer learning
time. This paper describes how the separate tools
of the VAX/VIMS software developnlcnt cnviron-
ment support the various stages of t.hc softwarc
life cycle ant1 explains how the many tool-to-tool
links and information flows make the cnviron-
rncnt so tightly integrated.

Support ing the S o m a r e Life Cycle
Digital's programming environment on the VAX/
VMS operating sJrstem provides a rich sct of tools
designed to support all stages of the softwarc life
cycle. The software lifc cycle includcs the fol-
lowing stagcs:

'I'he requirements and specification stages.
when docii~nents are written to dcfinc the soft-
ware project

The design stage, when data structures and
prograrti components are designed
The implementation stage, when code is writ-
ten, debuggetl, and tcstcd

'The testing stage, when new software is tested
by users

T'he nz;~intcnance stage, when bugs arc fixed
and minor enhancements arc added

At each of these stages, software developers use
tools that arc specific to t1i:it stage. In addition,
they use certain tools in all stagcs of the
life cycle to ~iiaintain project artifacts, such as

Digital Trch#rical Jorrmal
No, 6 F ~ , h r r ~ n r ~ , 1988

IMPLEMENTATION STAGE

NANCE STAGE

RUNOFF. DOCUMENT

VAX NOTES. V M S MAIL

LANGUAGE-SENSITIVE EDITOR

CODE MANAGEMENT SYSTEM

SOFTWARE PROJECT MANAGER

MODULE MANAGEMENT SYSTEM

COMPILERS. LINKER

SYMBOLIC DEBUGGER

PERFORMANCE ANDCOVERAGE ANALYZER

SOURCE CODE ANALYZER

DEC/Tesl Manager

KEY:

PRIMARY TOOL USAGE

OCCASIONAL TOOL USAGE

Figure I The Softu~ure Life Cycle

documents ant1 source files, and to manage pro-
ject activities. This section describes the stages of
the softwarc life cycle and the tools that are usccl
at each stagc.

Figure I summarizes the software dcvelop-
ment stagcs and the associated tools. In this dia-
gram, the life-cycle stages arc listed along thc
top and selcctcd tools are listed along the right
side. Solid bars mark the life-cycle stages where
tools have their primary uses; light bars mark the
stages where tools are occasionally used.

Requirements and Specification Stages
During the requirements stagc, the customers
or developers identify the requirements of the
proposcd softwarc system. During the specifica-
tion stage that follows, developers formulate
detailed specifications that define what the sys-
tem will do and how it will be used. By com-
paring chc specifications to the requirements,
the devclopcrs can show, at least informally,
that if the systcm is built as specified, it will meet
its requirements.

Both requirements and specifications are usu-
ally written in English or another natural Ian-
guage. Thc tools nccded at thcse two stages must
thus facilitate the production and organization
of documents. To produce documents, develop-
crs first nccd one of the environment's text
editors, such as the VAX Text Processing Utility
or the VAX language-Sensitive Editor (described
further below), to composc the actual text.
They then need a tcxt processing tool to format
their documents. Two such tools are available on
VAX/VMS. Onc is Runoff, which produces docu-
ments as formatted ASCII text files. Runoff is sim-
ple but quite serviceable for documents that only
rcquire typewriter quality. VAX DOCUMENT is a
newer tool, which has been used at Digital to
produce all VAX/VMS software documentation.
DOCUMENT converts text files written in a
markup language into typeset-quality, formatted
output. The output can be printed on a laser
printer or processed on a typesetting system for
final production. DOCUMENT is layered on top
of Donald Knuth's TeX text processing system,

Software
Productivity
Tools

Digital Techrrical Journal
No. 6 Frbrunrj~ 1988

and thus supports multiple fonts, rnathcmatical
typesetting, and extensive formatting capahili-

2 ties.
Documents also need to be stored. Although

they can be stored as ordinary files in ordinary
VMS directories, i t often ~nakcs more sense to use
the VAX DEC/CMS (Code Management System)
tool to store documents. CMS can store mill tiplc
versiolis of document sources efficiently, anti it
allows old versions to be retrieved at any time.
CMS also provides check-out/check-in control
over document sources to prevent different
developers from inadvertently modifying the
same sources at the same time. A developer thus
checks out (or "reserves") a sourcc file from a
CMS library into a private work area, works on i t
in the private area until satisfied with it, and thcn
checks it back in (or "replaces" it) to thc CIMS
library. While the source modulc is reserved, no
other developer can modify i t . (CMS allows ~11111-

tiple concurrent reservations, but developers
who choose this option must be willing to 1;lrcr
merge the independently made changes. CMS has
facilities that partially automate such merges.)

Another tool that is very useful when collect-
ing rcqliirements is the VAX NOTES electronic

3 conferencing system. NOTES allows multiple
users to share comments on a variety of topics.
Each NOTES conference is organized into "top-
ics," where a wrjtten note starts the discussion of
each topic. Members of the confercnce can create
new topics at any timc, and they can reply to
existing notcs and other pcople's replics. All
information is stored on line and is easily perused
from any node in the users' computer network.
VAX NOTES thus provides a very convenient and
expedient way to collect requirements ;~ntl
reviewers' comments for a software project, and
is widely used within Digital during the requirc-
ments and specification stages of the softw;~rc
life cycle. The VMS Mail utility is also used extcn-
sively for project communications and for infor-
mation exchange with other groups.

Design Stage
During the design stage, dcvclopers design the
data structures and program components that
will constitute the implementation of the pro-
posed softwarc system. Developers usually write
documents to describe their designs; but in ;idtli-
tion, they normally define selccted data struc-
tures and routinc headers at this stage. Thcsc
components arc written in programmjng lan-

guages and are thus created using editors. The
VAX I.;inguage-Sensiti\le Editor (LSE) is usually
the crlitor of choice.' In this scction, we discuss
how 1.SE is used ant1 also mcntion how designs
may be represented graphically. Once a design is
in placc, the developers must formulate a plan
for building the dcsircd software ;ind create a
devclopmcnt schedule based on that plan. A dis-
cussion of a tool that helps developers do such
planning concludes this section.

The design components written in program-
ming languages are normally created using LSE.
LSE is a full-featured, programmable, full-screen
text crlitor. It is "language-sensitive" in several
senses. First, i t provicles templates for the con-
structs in cach supported programming language
(about a dozen languages arc currently sup-
ported and users can create tcmplatcs for addi-
tional languages). Second, it allows placeholders
in those templates to be expanded so that the
valid possibilities for each syntactic cntity can be
displ;iycd and selcctcd. 'Third, it provides on-linc
help for each supportcd language. And fourth, it
allows programs to be compiled directly from
tllc editor and compilation errors to be reviewcd
directly in the editor.

'These capabilities are best explained by exani-
ple. Suppose a user wants to enter a W H I L E loop
in a Pascal program. To do so, the user entcrs thc
WHILE kcyword and then expands that construct
by pressing an "expand" key. In response, ISE
produces the following text:

W H I L E % { e x p r e s s i o n > % DO
%(statement>%

Within this template. there are two placeholders:
onc for thc Boolean expression, and one for the
statement that forms the loop body. Single
keystrokcs move the editing cursor from place-
holder to placeholder. Any placeholder can in
turn be expandcd to display a list of valid alterna-
tive cxp;~nsions from which rhc uscr can choosc
one. R)r examplc, pressing the cxpand key when
thc cursor is on the X (s taternen t 1 % placeholder
c1ispl;cy.s a list of valid Pascal statement types. The
user can thcn choosc the desircd statement typc
ant1 expand i t to get its template jnscrted into the
text buffer. Alternatively, the uscr can simply
type ovcr the pl;~ccholdcr to repl;~cc it with the
desircd program text.

The expansion of pJ;tceholdcrs into templates
is by itself a powerful form of lang~~age help
bec;~ilsc it enables programmers to produce syn-

Digital TecbnicalJournal
No. 6 Febrrrary I988

Software
Productivity
Tools

tactically correct programs even if they do not
know the language very well. In addition, LSE
provides language help in the form of help text
that explains the form and usage of each language
construct.

Finally, developers can compile programs from
LSE and review compilation errors in the editor.
To compile a program, LSE writes the contents of
the current buffer to a file, creates a subprocess,
and runs the compiler on that file in the subpro-
cess. The compiler records any error messages in
a "diagnostics file," which it passes back to the
editor. The editor displays these error messages
in one editing window while displaying source
code in another window. 'The user can select suc-
cessive error messages and direct the editor to
automatically position the source window on the
corresponding error locations. Errors are thus
quickly located and corrected. Some compilers
will also suggest error corrections, in which case
LSE automatically displays those corrections in
the source window for the user's approval or dis-
approva I .

When designing data structures, developers
may choose to store their data definitions in the
VAX CDD (Common Data Dictionary) database.
CDD serves as a repository for data definitions
common to many separate programs, where the
programs access common databases and may be
written in many different languages. CDD is par-
ticularly well suited to commercial environments
where multiple applications programs access
large central databases.

Developers may also create graphical represen-
tations of designs using techniques such as struc-
tured analysis, structured design, or data model-
ing. Digital does not itself provide tools to
automate graphical software design, but suitable
tools are available for the VMS operating system
from other vendors such as Intech, Cadre, Nastec,
Tektronix, and Interactive Development Environ-
ments.

Once a design is in place, the project leader
must formulate a plan for building the desired
software. To do so, he creates a work break-
down structure that identifies the individual
tasks or work assignments needed to implement
the design. He associates time estimates with
the individual tasks, identifies dependencies
between tasks, and determines which pro-
grammers are available. Given this information,
the project leader then uses the VAX Software
Project Manager (PM) tool to construct a project

schedule that shows when each task will begin
and end. By later recording the actual start and
end dates of each task, the project leader can
use PM to track actual progress and compare it to
the schedule. The value of PM is that it automates
much of the bookkeeping associated with
scheduling and controlling a software project,
thus helping to ensure that the project is com-
pleted on schedule. 'This kind of bookkeeping
would otherwise have to be done manually.

Implementation Stage
During the implementation stage, code is writ-
ten, debugged, and tested. The environment
provides numerous tools for this stage. These
tools include editors, compilers, a debugger,
code management facilities, a system builder,
and static and dynamic analysis tools. This section
gives an overview of these tools.

When writing code, developers using the
VAX/VMS software development environment
can choose from among more than a dozen pro-
gramming languages, and they may include mod-
ules written in different languages in the same
program. The developers write most code using
LSE, but may also use specialized editors such as
a forms editor. Developers compile programs
using both the standard language compilers and
specialized compilers such as the message com-
piler (for error messages) and the help librarian
(for creating hierarchical help text). They then
link and run the program.

To debug their code, programmers use the
VAX/VMS debugger.5 The debugger allows the
programmer to set breakpoints in the code, to set
watchpoints (data breakpoints) on data loca-
tions, to single-step the program by source line or
machine instruction, to examine variable values,
and to deposit new values into memory, among
many other things. The debugger is fully sym-
bolic, receiving its symbol information from the
compilers via the linker. The debugger uses mul-
tiple windows on the user's screen to display
extensive program state information to the user.
This information allows the user to find program
bugs rapidly and efficiently.

To organize and maintain all program sources,
the developers use the VAX DEC/CMS code man-
agement system, described earlier as a tool for
managing document sources. To build the soft-
ware system being developed, programmers use
the VAX DEC/MMS (Module Management Sys-
tem) system builder. Like the UNIX Make utility,

Digital Technical Journal
No. 6 February l988

V A X P M S Sofiuare Development Environment

MMS performs a minimal system build based on
module dependency information and knowledge
of which source modules have changed since the
last build.

To follow cross-references and perform static
analysis, developers use the VAX Source Code
Analyzer (SCA) . SCA receives cross-reference
information from the compilers. This information
is incorporated into a database that allows cross-
reference queries over an entire software project
to be answered quickly. SCA is tightly integrated
with LSE so that LSE can display cross-reference
information and cross-referenced source code in
editor windows. SCA can also perform static anal-
ysis by showing call trees and by checking proce-
dure calls for consistency with the corresponding
procedure declarations.

To perform dynamic program analysis, devel-
opers use the VAX Performance and Coverage
Analyzer (PCA). PCA can collect several kinds of
performance data during program execution,
including program counter sampling data, page
fault recording, 1/0 usage, and exact execution
counts at specified program locations. PCA can
later display all this data in a variety of his-
tograms and tables. PCA can also show perfor-
mance data at various resolutions, from the pro-
gram module level down to the individual source
line or even instruction. By using PCA, pro-
grammers can quickly locate performance bottle-
necks, many of which usually turn out to be easy
to remove by reprogramming. PCA thus helps
programmers produce high-performance soft-
ware, something that is hard to do without this
kind of tool.

Testing Stage
There are typically two kinds of software testing.
First, developers test the software during the
implementation stage to ensure that all individ-
ual functions work. Second, actual users test the
software to ensure that it works under normal
operating conditions. Several components of the
VAX/VMS software development environment
were designed to help make programmers more
productive by automating certain activities of the
testing stage.

To test software during implementation, devel-
opers use the DEC/Test Manager (DTM) testing
tool. To use DTM, developers must first write test
scripts for their software, where each "script"
consists of input to the software that will test var-

ious software functions. The developers then
have DTM capture the software's output when
the software is run under each script, and they
manually certi* that the software produces cor-
rect output for each script. DTM then saves the
correct outputs as "benchmark files" and orga-
nizes the test scripts into user-defined categories.
Subsequently, the developers can use DTM
to automatically run various categories of tests
(or all tests) on later versions of the software.
When DTM runs a collection of tests, i t runs a set
of test scripts through the software being tested,
collects the outputs from the software, compares
the actual outputs to the expected outputs (the
benchmark files), and reports any differences
to the user. DTM allows developers to build
up large regression test systems for their soft-
ware. Experience indicates that such test systems
constitute the single best guarantee of software
quality.

The VAX Performance and Coverage Analyzer is
important during testing because i t can measure
test coverage, that is, identify the code paths
that are or are not executed by the regression
tests. (PC4 measures what some people would
call "statement coverage"; PCA determines what
instructions are executed, not what branches are
taken.) The coverage is reported symbolically in
source code displays. Using this information,
developers can write additional test scripts to
ensure that all code paths are tested at least once.

Once the software is implemented and passes
a11 regression tests, it is ready to be tested by
actual users in a field test. During field test, prob-
lems must be reported to the developers. Pro-
vided the users and the developers are on the
same computer network, VAX NOTES has proven
to be an excellent problem reporting tool. A user
can report each new problem as a separate topic
and developers can reply to each topic. Other
users can see the problem reports along with
their responses, which alerts them to known
problems; they can also enter additional
responses to supply further information or to
answer questions.

Muintenance Stage
When a software system is released to its
users, it enters the maintenance stage of the
software life cycle. At this stage, bugs are fixed
and minor enhancements are added. (Major
enhancements require a new pass through the

14 Digital Technical Journal
No. 6 Februarv I988

Software
Productivity
Tools

whole software life cycle, and developers start
this process by defining the requirements
for the next major version.) As during field test,
NOTES can be an effective tool for recording and
responding to problem reports, provided the
users and developers are on the same computer
network. As during implementation, the standard
coding tools - LSE, the compilers, the linker,
the debugger, and PCA - are used to fix bugs
and add enhancements.

During the maintenance stage, CMS and
MMS remain essential. CMS's ability to keep
track of multiple versions of the software sys-
tem and to maintain multiple parallel develop-
ment streams (variants) of the program sources
is particularly important. For example, by using
CMS, developers can easily maintain a version
1 . 1 maintenance stream of the sources (for bug
fixes) while also working on a version 2.0
development stream (for major enhancements).
The Source Code Analyzer is also very useful
because it makes it easy to browse through unfa-
miliar sources and quickly obtain the definitions
of procedures, variables, and other program
constnlcts.

Finally, the Test Manager remains very irnpor-
tant at this stage for maintaining software
quality as changes and bug fixes are made. A
well-designed set of regression tests can ensure
that all major functions of the software system
still work correctly after changes have been
made. Testing can never demonstrate the absence
of errors, but the successful execution of well-
designed tests can demonstrate that all common
operations work correctly in typical circum-
stances. Such tests can therefore give developers
a high degree of confidence in the integrity of the
software.

Integration among Tooh
To increase their usability and to enhance the
smoothness with which they can be used
together, Digital's tools are strongly integrated
with each other. This integration takes three
forms:

Al I tools share a common command language
philosophy. Consequently, commands have
the same syntactic form and general appear-
ance in all tools.

A great deal of program information flows
between tools. The compilers, in particular,

generate a substantial amount of information
for tools such as the debugger, the perfor-
mance analyzer, the editor, and the static
analysis and cross-reference tool. Other tools
can invoke each other, passing along enough
information to create a smooth transition from
tool to tool.

All tools support the development of applica-
tions written in multiple programming lan-
guages. Developers are therefore free to pick
the language or languages they deem best for
their applications.

The strong integration between tools gives
the programming environment a mature, cohe-
sive feel to the user. Because tools have been
developed together, they can also give a wealth
of capabilities which would not otherwise be
possible. This section describes how the environ-
ment is integrated across tools and illustrates
some of the capabilities that this integration
makes possible.

Common Command Syntax
All tools in the VMS environment have command
languages that are based on the same philosophy
as the Digital Command Language (DCL), the
top-level command language for VMS. In DCL,
each command consists of a command name,
followed by zero or more "qualifiers," followed
in turn by zero or more command parameters.
The following command, which invokes the
FORTRAN compiler, is an example:

Here FORTRAN is the command keyword, /DEBUG

and /NOOPT are qualifiers, and A and B are
parameters. The command compiles files A. FOR

and B. FOR with debugging information enabled
ant1 optimization disabled.

All tools in the VMS environment have com-
mands of the same syntactic form as DCL. Fur-
thermore, when tools have common capabilities,
they use the same command syntax. For exam-
ple, the SPAWN command, which creates a new
subprocess, has the same syntax in DCL, the
debugger, the Mail utility, the Language-Sensi-
tive Editor, and many other tools. The help sys-
tcm also works the same way in all tools. As a
rcsult, all tools share a common "feel," and
users can frequently guess how to use a given
tool from their knowledge of other tools. Future

Digftal Technical Joiirnal
No. 6 February 1988

15

VAX/VMS Software Development Environment

workstation interfaces will maintain this unifor-
mity across tools by having all tools use a new
windowing interface conforming to the industry-
wide X Window standard.

l n formation Flow between Tools
The integration of the VMS programming envi-
ronment stems in large part from the informa-
tion flow between tools. The compilers in
particular generate a substantial amount of infor-
mation for other tools. They generate symbol
table information for the debugger and the Per-
formance and Coverage Analyzer, diagnostic
information for the Language-Sensitive Editor,
and cross- reference and calling-sequence infor-
mation for the Source Code Analyzer. The com-
pilers are thus the sole sources of semantic pro-
gram information, but they make that information

available in suitable forms to all tools that need
i t . This section discusses these information flows
and certain other connections between tools.

Figure 2 illustrates the many connections and
information flows between tools that give the
VAX/VMS programming environment its tight
integration. The boxes represent tools, and the
arrows represent information flows, either via
files or through direct calls between tools.

The debug symbol table (DST) contains the
name, type, and address or value of every symbol
in the user's program. This information is passed
from the compiler to the linker, which performs
address relocation on the DST. The information is
then passed to the debugger. The DST contains
scope information so that the scope of each sym-
bol is known to the debugger. The DST also con-
tains the correlation between program counter

DEBUG
SYMBOL
TABLE

I PCA CALLS,
COLLECTION
INFORMATION

SOURCE FILES. 1 I

TEST SCRIPTS.
BENCHMARKS

COMMANDS OUTPUT

I COMPILE

ANALYSIS
FILES

COMPILERS
A N D LANGUAGE
DEFINITIONS

KEY

CMS - CODE MANAGEMENT SYSTEM

PCA - PERFORMANCE AND COVERAGE ANALYZER

SCA - SOURCE CODE ANALYZER

COMMANDS

.

Figure 2 Information Flows between Tools

Digital Technical Journal
No. 6 Februaty I988

LANGUAGE-
SENSITIVE
EDITOR

CMS C O M M A N D S
w

d

CMS

Digital Technical Journal
No. 6 February 1988

Software
Productivity
Tools

values and source lines so that the debugger can
display the source code that corresponds to
specified run-time program addresses. PCA uses
the same information to display performance and
coverage data symbolically .

The diagnostic information is passed from com-
pilers to the LSE editor via a diagnostics file, as
described earlier. This information includes the
text of each error message along with the source
location of the error. If the compiler suggests
error corrections, the suggested corrections are
included too.

Language syntax (templates and placeholders)
is passed to LSE through template files, and
language-specific help is passed to LSE via help
files. Although template and help files are not
generated by the compilers as such, they are
written by Digital's compiler developers. These
files thus represent information flow from the
compilers to LSE.

The compilers create "analysis files" to hold
all cross-reference and static analysis informa-
tion. These files can then be included in an SCA
library, from which SCA can quickly answer
cross-reference queries and perform call-tree and
call-sequence analyses. The analysis file contains
the name, type, and scope of each symbol in the
user's program; its information thus partially
overlaps the DST information. However, the
analysis file also contains detailed information on
all symbol references, including the type of
each reference (read-reference, write-reference,
declaration, etc.), and detailed calling sequence
information on all procedure symbols.

LSE and SCA are separate tools that can be
run separately. However, they are strongly inte-
grated with each other so that any SCA com-
mand can be entered directly to LSE. Nso,
LSE win-dows can be used to display cross-
reference and static analysis information, and
cross-reference information can be used to auto-
matically position editor windows at specific
symbol references. This tight coupling between
the two tools makes them look like a single
tool to the user and gives the user a very rich edit-
ing and browsing environment for program
sources. In fact, SCA is seldom used alone except
in batch runs.

Other connections between tools pass more
modest amounts of information, but still help
provide a smooth, seamless feel to the environ-
ment. The debugger can display the source code

corresponding to the current program location. If
the user sees an error in that source code, he can
enter the EDIT command, which causes the
debugger to invoke LSE in a separate process and
to pass the current source location to LSE. LSE
positions the editing window to that source loca-
tion, and the user can correct the source code
immediately. PCA has the same connection to
LSE. After editing the code, LSE can invoke the
appropriate compiler, also in a separate process,
and pass along the edited source.

If the user wishes to browse through sources
stored in a CMS library, LSE is able to read those
sources by calling CMS directly. There is also a
RESERVE command in LSE which allows source
modules to be checked out from a CMS library
directly via the editor. Again, LSE calls CMS to do
this. The Test Manager can also store test scripts
and expected test results in a CMS library and
will call CMS directly to retrieve those files.

A test run managed by the DEC/Test Manager is
often a natural vehicle for collecting perfor-
mance or coverage data. DTM therefore passes
information to PCA (via VMS logical names) that
tells PCA the name of each separate test script
and the way the data should be collected. When
the developer later uses DTM to review test
results, he can invoke PCA directly from DTM to
display the performance or coverage data associ-
ated with the current test execution.

In all these cases, Digital's tool developers have
created connections between tools whenever
they have been able to identify useful connec-
tions. Since most of these tools are developed in
the same organization and most tool groups
are physically close to each other, it is relatively
easy for the developers of different tools to work
together to develop the connections between
tools that give the VAX/VMS programming envi-
ronment its cohesiveness.

Multilanguage Support
One of the strengths of the VAX/VMS program-
ming environment is its support of multiple
programming languages. Software developers are
thus free to choose the programming languages
best suited to their applications, and they can
include modules written in different languages
in the same program. At present, the environment
supports about a dozen languages. Only com-
piled languages are supported; interpreted lan-
guages have execution and editing models

VAXpMS Software Development Environmenll

that do not readily fit into a compiled-language
environment.

The programming environment supports mul-
tiple languages in two ways. First, all Digital
compilers generate code that adheres to the
VAX/VMS Calling Standard, which standardizes
how programs call procedures and pass parame-
ters. Because all compiled languages use this
standard, modules written in different languages
can always call each other, provided both
languages understand the data types of the
parameters.

Second, all the tools support multiple lan-
guages. The debugger can debug modules writ-
ten in any language whose compiler passes
symbol table information to i t . LSE can support
templates and placeholders for any language for
which someone has constructed a template file,
and it can review error messages from any com-
piler which passes diagnostics files to it. SCA
can provide cross-reference services and static
analysis for any language whose compiler creates
analysis files. The Common Data Dictionary
(CDD) can pass data definitions to any language
whose compiler accepts them. To fully partici-
pate in the environment, each compiler must
thus provide all the information needed by the
various tools, and each compiler must call cer-
tain tools, such as CDD.

TO support multiple languages, all tools use
essentially the same implementation strategy.
They define a single canonical representation for
the data they need so that the same data from two
different languages is always represented the
same way. LSE has only one template file format
and one diagnostics file format. All compilers
dcscribe a givcn data type or programming con-
struct in the same way to the debugger. PCA uses
the same symbol information as the debugger.
SCA accepts only one format for its cross-refcr-
ence information. If two languages pass a given
piece of information to a given tool, they must
always do it the same way.

However, all tools must also support the union
of all constructs in all the programming lan-
guages they support. The debugger must support
every data type that occurs in any language. It
thus understands a numeric string type that
occurs only in RPG (a report generation lan-
guage) and tasking constructs that occur only in
the Ada language. SCA must understand every
kind of cross-reference and every kind of calling

sequence that may come u p in a multilanguage
program, even though no one language has them
all. PCA and the debugger must both understand
case-sensitivity, which occurs only in C.

Multilanguage support thus complicates the
design of most programming tools considerably.
The tools must be designed to cope with a wide
variety of language constructs. They must
understand subtle semantic differences in appar-
ently similar constnlcts in different languages.
They must also be very extensible since i t is
impossible to predict what languages they may
have to support in the future. As a result, the
tools generally are very table-driven, and they are
very dependent on having well-defined interfaces
with the compilers and the other tools.

However, there are also substantial savings in
solving a given problem once for 12 languages
instead of solving it 12 times. Furthermore, there
is a lot of power in a multilanguage environment
because the programmer is free to choose the
programming language based on which language
is best for the application, and he is free to use
existing program libraries regardless of what lan-
guages they are written in.

Future Directions
The \IAX/VMS tools environment is still evolving.
Some directions for future work include improv-
ing the integration between tools where suitable
opportunities are perceived, providing fuller
support for program design, providing better
configuration management tools, and continuing
the trend to increasingly distributed software
development. The environment is likely to main-
tain increasing amounts of project data and to
use that data for more kinds of project-control
and reporting functions. The increasing use of
workstations and their capabilities is another
trend that will affect practically all tools in
the VAX/VMS programming environment to one
degrcc or another.

References

1. C. Mitchell, "Engineering VAX Ada for a
Mul ti-Language Programming Environ-
ment," Proceedings of the ACM SICSOFT/
SIGPLM Software Engineering Symposium
on Practical Soflwat-e Dewlopment Envi-
ronments, SIGPLAN Notices, vol. 2 2 , no. 1
(January 1987): 49-58.

Digital Technical Journal
No. 6 February I988

Digital Tecbnical Journal
No. 6 Febntnry 1988

Software
Productivity
Tools

2 . 0. Knuth, The TeXbook (Reading: Addison
Wesley, 1 986).

3 . P. Gilbert, "Development of the VAX NOTES
System," Digital Technical Journal (Febru-
ary 1988, this issue): 1 17- 124.

4 . G . Lupton, "Language-Sensitive Editor,"
Digital Technical Journal (February 1988,
this issue): 28-39.

5. B. Beander, "VAX DEBUG: An Interactive,
Symbolic, Multilingual Debugger," Proceed-
ings of the ACM SIGSOFT/SIGPLAbr SoJ-
w r e Engineering Sywtposium on High-
Level Debugging, SIGPLAN Notices, vol . 1 8 ,
no. 8 (August 1983): 17.3- 179.

Anne Smith Duncan
Thomas J. Harris 1

Sofiware Productivity Measurements
One objective of Digital Sopware Engineering is to build and maintain
high-quality sofiare products at reduced costs. To determine to what
degree we are achieving this goal, Digital's Commercial Languages and
Tools (CLT) Group is studying soflware productivity in relation to their
somare development cycle. In today's environment, engineers are build-
ing tools that assist in writing code and that automate project tasks. Fur-
ther, development teams share processes and reuse existing code. To mea-
sure the eflectiwness of these and other steps, this group has begun to
devise sofiare product and project metrics and to collect project data. To
date,findings have been made for three metrics: engineering productivity,
defect rate, and cost to build.

Digital's CLT Group builds and supports high-
volume software products, including comrner-
cia1 language compilers, software development
tools, and the V A X p S run-time library rou-
tines. CLT has been shipping native-mode
VAX/VMS software products since 1978.
Approximately one hundred software engineers,
managers, release engineers, operational ana-
lysts, and system managers work in this group.
User-documentation writers and editors, busi-
ness product managers, and product marketing
specialists are also members of the project
teams.

me Importance of Productivity
Not long ago, computer users focused their
attention on increasing the productivity of hard-
ware because hardware was the component of
greatest overall system cost. Although important,
software development costs were small com-
pared to the cost of running the software. There-
fore, software engineers stressed writing pro-
grams that ran fast, used small amounts of
memory and disk, and minimized the number of
compiles and tests needed during the develop-
ment process.

The Digital engineering culture allows each
software project team substantial freedom to
determine its own conventions, standards, and
infrastructure. In this culture, moving a success-
ful "process" from one completed project to a

new one depended on the people who moved
between projects. In the 1970s and early 1980s
few supported tools were available, and tool
development was done at the project level, if at
all. Some processes were automated, most were
not. Regression testing (testing that reveals
whether something that previously worked still
does) was done by hand, bug lists were com-
piled on blackboards, and debugging major inte-
grations at base levels was difficult and time con-
suming. The project members paid minimal
attention to tracing how and when things hap-
pened, and they documented this activity on
paper, i f at all.

Another aspect of this culture was the sense
that each project team had to write all the code
needed for that project. This attitude meant
that code to do common routines was duplicated
from project to project. Each team believed that
its problem was unique, that it could not share
code with any other team. The belief was perva-
sive that each problem was different and that
each project team had found the only appropri-
ate techniques.

By the mid- 1980s, our customers, and our soft-
ware engineers and managers started to pay much
more attention to software costs, as the costs of
software development and maintenance began to
exceed the cost of hardware. Concurrently, cer-
tain trends both inside and outside Digital were
forcing us to shift our focus from improving the

2 0 Digital Tecbnfcal Journal
No. 6 Februnrv I988

Software
Productivity
Tools

hardware to improving the software development
process. These trends were as follows: . Marketplace expectations - Software cus-

tomers were becoming more sophisticated and
demanding. They needed software systems
that would provide them with a competitive
advantage in their marketplaces. They also
wanted software that could be used safely by
people of varied abilities and training.

Increasing complexity - The complexity of
developing software systems was increasing,
and project management became more diffi-
cult as projects became interrelated and some-
times were located in different facilities,
states, or countries. Communications between
teams became increasingly difficult as the nor-
mal communications paths became clogged.
New technology - New technologies were
arriving at a faster rate and providing capabili-
ties we had not considered feasible 5 , 10, or
20 years earlier. . Software maintenance - Various studies indi-
cated that from 50 to 70 percent of the cost
of software is spent on main tenan~e ."~ Mainte-
nance includes defect correction, product
support, and feature and capability evolution
and extension. Software maintenance, espe-
cially defect correction and product support,
consumes the human and hardware resources
that should be used to build new products.
Shortage of skilled software engineers - The
growing demand for highly skilled and trained
software developers, projected to continue for
the next 20 years,3 meant that experienced
engineers had more pressure to increase their
output. . High-quality software - 'The demand for con-
sistently high-quality software was increasing
as more businesses bui It their operations
around software systems. These businesses had
little tolerance (nor should they have had) for
software systems with defects.

To address these trends, Digital's software engi-
neering managers and engineers have identified
objectives for both the software product and the
software development process. . We want to build and deliver high-quality,

dependable software products that meet
our customers' needs in predictable, cost-
effective ways.

We want our engineers to solve new problems
in creative ways, and we want to solve each
problem only once.

We want to reduce the costs of delivering new
products. . We want to reduce the costs of maintaining
and supporting the product set.

We want all team members and their managers
to feel more "in control" of their own work.

And these objectives have to be accomplished
within the constraints of our budgets and the
availability of good software engineers.

In order to determine how to better accom-
plish these objectives, we needed to understand
how we were doing at a point in time compared
with how we had done in the past. This compari-
son is frequently described as measuring pro-
grammer "productivity" or measuring software
engineering "productivity."

In February 1985, a graph was published
under the topic of programmer productivity.
The graph showed the actual and projected
rates of growth in lines-of-code per programmer
from 1980 through 1 9 9 0 . ~ It indicated that by
1990 the average software developer would pro-
duce 1,075 lines-of-code per month, up from
650 lines-of-code in 1985.

This graph re-emphasized to us the need to
clarify how productivity should be defined and
measured. Productivity in software development
is more complex than simply increasing the
lines-of-code produced by each programmer.
The productivity of people, regardless of how it
is measured, is only one part of the software
development process. In any case, that projection
caused us to seek answers to several important
questions, such as the following: . What exactly is programmer productivity or

software engineer productivity? . How can we help our software project teams to
become more productive, and how can we
measure whether or not their efforts and
achievements are better?

How do we know if our products and the ways
in which we develop those products are better
now than in the past? What do we mean by
"better" ?

The remainder of this paper describes some
answers to these questions and how the answers
were derived. A major benefit of this work has

Digital Technical Journal
No. 6 Februarv 1988

2 1

Software Productivity Measurements

been the increased and continuing contribution
by all members of the CLT group to more precise
definitions of quality in our products and pro-
cesses. Our findings indicate that CLT's produc-
tivity has improved over the last seven years. And
our findings justify the costs of collecting and
analyzing the data so that we can know whether
we are continuing to do better work.

Somare Productivity
Software productivity encompasses more than
just the programming of software products. A
software system is completed only when the
functional and performance requirements have
been met and when it is useful for the intended
user. Therefore, the usual steps to reaching that
state include analyzing the requirements; design-
ing, coding, and testing the code; documenting
the system for both its users and maintenance
software engineers; and providing training and
field support. The only way we can really exam-
ine productivity is to consider the software sys-
tem in the context of the entire development
cycle.

Two major dimensions of software engineering
productivity are (1) the change in quantity of
software produced for a given period of time at a
given cost and (2) the quality of the resultant
software system.

Since a software system is built to solve a set of
problems, not as an end in itself, we need to con-
sider the product and the process in the context
of each other. Then we can measure productivity
and use the results to help us focus on whether
our process is better, and what needs to be
changed in the development process.

The quality attributes that are important to the
user of the software are important also to the
engineer who supports and extends the software.
For example, quality attributes include the
usability, usefulness, defect level and rate, and
performance of the software system. Also, we
must include the quality attributes that affect
future costs; for example, the ease of modifying
to enhance or correct the software and the ease of
porting the software to other hardware.

Influences on Productivity
A number of studies indicate that software pro-
ductivity is influenced by multiple factor^.^
These factors include

Personnel and team capabilities and experi-
ence

Requirements on the resultant software sys-
tem, including reliability, storage use, and
performance
Characteristics of the development proccss,
including the use of disciplined engineering
practices, the use of software tools, and the
availability of hardware for development and
testing

The major factors that have changed at Digital
during the last seven years are (1) increases in
size, complexity, and dependencies of products;
(2) increased use of shared tools; and (3) the
sharing (reuse) of design, code, and documenta-
tion between projects.

The first factor would be expected to decrease
the overall productivity of the project teams. The
second two factors would be expected to
increase productivity.

Other papers in this issue of the Digital Tech-
nical Journal describe specific tools used during
product tlevelopment and give examples of
design and code reuse. 6 7

Tool Development and Use

In today's environment, each project team can
choose whether to use tools, define its project
infrastructure, and determine its own methods
for running the project. With the availability of
supported and useful tools, however, project
members usually choose to automate some pro-
cesses, thus avoiding the redundant effort of rein-
venting designs and code that already exist. The
paper "VAX/VMS Software Development Environ-
ment" (this issue) describes the tools and their
uses during the development process.8 The same
tools are used across multiple development
phases. For example, the VAX DEC/CMS Code
Management System tool, the version control sys-
tem, can be used from the beginning through the
end of the process. At the beginning, this pro-
gram manages versions of the requirements docu-
ments; at the end. it manages the versions of
code, tests, command files, and documents.

Here are some examples of CLT's use of these
tools:

Previously, the procedures for building and
controlling source code were usually listed on
a blackboard, in a notebook, or in someone's
head. Now, the VAX DEC/CMS and VAX DEC/
MMS Module Management System tools auto-
mate the versioning of source code, the identi-
fication of modules that belong to a particular

DigitaJ Technical Journal
No. (i February 1988

base level or version, and the build processes.
The library structures and MMS build proce-
dures also serve as project documentation.

Regression testing is now simplified by the
VAX DEC/Test Manager software. By support-
ing attribute-based subset test selection, this
tool makes it easier for software engineers
working on optimizations or defect correc-
tions to quickly run subsets of a major test sys-
tem. Being easier, testing is done more often.
Many projects routinely rebuild the project
code (using CMS and MMS) and run either the
entire test system or a part of i t every night.
The next morning, the software engineers
know immediately if their previous work
caused a new problem or regression. Projects
that have adopted this process for builds and
tests have almost completely eliminated the
many hours of integration at base level.

The VAX NOTES system, a distributed confer-
ence tool, helps in automating and tracking
project design discussions and decisions. The
project members can open a separate topic
dealing with an issue. Subsequent responses
from the project members, and perhaps field
support personnel (world-wide), are available
to all interested parties on Digital's internal
network. Although the NOTES conference does
not replace meetings of the project team for
design discussions and reviews, it does
provide an easy-to-use mechanism for describ-
ing the history of the discussions. NOTES helps
to inform new project members of the pro-
ject's history and status.

Reduced Redundancy

Our software engineers now search for code,
designs, additional tools, and documentation
that can be reused. Both managers and engineers
consider reuscd code as an investment in
design, programming, and testing that has
already been paid for. Moreover, the support for
that code has becn planned and is in place.
Reusable run-time components have been used
and available since the first version of the
VAX/VMS operating system in 1977. The VAX
Common Run-Time Library (RTL) is used by all
products. This library is a group of approxi-
mately one thousand software routines used
by hundreds of software components and prod-
ucts for run-time support of common functions.
Recently, major components outside the RTL

have been planned and designed specifically to
provide functions that are needed in multiple
products.

Software Metrics
The best way to gauge improvements is to have
a set of measurements that compares how things
have changed over time. A software metric
is a quantitative way to characterize an attribute
of either the software system or the software
development process. For a metric to be mean-
ingful, there must be a way to measure these
attributes consistently and objectively. Then
various software systems and development
projects can be compared to themselves over
time and to each other. (That assumes other
variables remain constant; for example, similar
types of organizations building similar types of
software using similar methods and processes.)
Only when metrics have the same definition (and
therefore are measured in the same way) should
they be compared. 9 . "

Any metric process should guard against

Measuring only one dimension; for example,
quantity alone without considering quality;
time only without regard for the product
delivered (For the results of a study on the
effects of measuring one dimension or crite-
rion in favor of another, see Weinburg and
Schulman's study on computer programming
goals and performance.'2)

Measuring for the wrong reasons; for example,
using measurements to appraise an individual

Comparing measurements with too many vari-
ables; for example, process control applica-
tions are different than payroll applications;
the quantity of code per unit of time is less for
high-level languages vis-a-vis assembly lan-
guage code
In this paper, we discuss two sets of software

metrics: product metrics to describe the software
itself, and process metrics to reflect the process
of software development.

Software Product Metrics
Product metrics (also called system metrics)
describe the attributes of the software system
or components of a system, and the related
documentation, tests, and system control infor-
mation (for example, command language batch
streams). Size, usability, maintainability, number
of defects, and performance are all attributes of a

Software
Productivity
Tools

Digital Tecbnical Journal
No. 6 February 1088

Software Productivity Measurements

software system. For this study, we used three
software product metrics: size, defects, and
defect rate.

The size S o f a software product i is defined as

in which S, equals the number of lines 01
code, including data declarations, and S,.
equals the number of lines of comments. Each
line is counted as one regardless of the number
of operators, operands, and comments that the
line may include. Include files are counted
once, and reused code shipped with the
product is counted. Blank lines are not
counted. Project tools, tests, test data, and
control files are also not counted.

The number of defects D for a product i is
defined as

Di = Db + Dd + Dr

in which Db is the number of customer reports
answered as a "bug" or "correction given," Dd
is the number of customer reports answered as
"documentation error," and D, is the number
of customer reports answered "restriction on
the use of the software."

The defect rate DRi, which also describes the
software product, is defined as

The defect rate provides a way to normalize
the data associated with a particular product
such that the defect rates of multiple products
may be compared without regard for variances
in product size.

Software Development Process Metrics

Process metrics describe the attributes of devel-
oping the software system, product, or compo-
nent. Attributes of the process include the cost of
development (in human resources, hardware
resources, and calendar time), the predictability
of the schedule and delivered software capabil-
ity, the number of design and code reviews, and
the length of time to respond to a customer
inquiry or problem report. For this study we are
using the cost and engineering productivity met-
rics.

One definition for cost C of the development
of the software product i is the length of time

in months that the software engineers and pro-
ject leader spent in the various phases of the
project. Thus cost Cis defined as

in which DM equals the number of months
directly charged to the project by the software
engineers and project leader, and P 1 , P 2 , and
P3 are phases 1 , 2, and 3, respectively.

The engineering productivity EPi is defined as

This metric provides a means for comparing
various projects by normalizing the size and
the cost of each project.

Indicators of Improvement
To answer the question, h e we doing better now
than in the past?, we have to gather data on older
projects and then compare it with data from more
recent projects.

Collecting the Data
For the products in this study, we present three
sets of data: size, number of defects, and develop-
ment cost. We chose version 1 products and other
major product versions in which more than 50
percent of the delivered code was new. All prod-
ucts in this study were developed on the VAX/
VMS system, and all but one were written in the
VAX BLISS-32 language. Shipment of these prod-
ucts to customers began during the period from
late 1980 through summer 1987.

Collecting data from older projects was some-
what difficult: there were few common tools that
we could use for data collection, files were fre-
quently lost, and memories of the project team
members were not always clear or accurate. Some
projects did keep data, and these are included in
the comparisons Many projects of the late 1970s
and early 1980s, however, did not collect or save
needed data; so there arc fewer data points for
products shipped before 1783. Many of the early
products developed in CLT were not written for
the VAX/VMS system and have not been included
either.

Collecting data from recent projects was
easie because most of them used the same tools
as part of the project infrastructure. We were
able to collect product lines-of-code data in a
consistent manner by using routines written in
the VAX SCAN language to access thc project

Digital Technical Journal
No. 6 Februa~y 1988

VAX DEC/CMS libraries. Customer-reported
defect data has been collected for many years
through a database that stores information from
Software Performance Reports. The data for time
and effort to build the products was collected
from project phase review and accounting
records.

The Results
This paper presents the findings for two derived
metrics, the engineering productivity metric and
the defect-rate metric, and the change in cost-to-
build as reflected by the relationship between
size and cost data.

The Engineering Productivity Metric
Engineering productivity indicates the rate of
code production for an investment of each
person-month. This metric is helpful for under-
standing whether programmer productivity is
improving. Figure 1 shows this metric for
14 products and the date of the first shipment.
The engineering productivity associated with the
products delivered before January 1985 and
those delivered since are shown by the regression
lines. Since 1985 there has been a significant
increase in the quantity of code produced for
each developer-month. For the 1980 through
1984 period, the productivity rate ranged
from 220 lines-of-code per developer-month to
1,487 lines-of-code per developer-month, with a
mean of 792. For products shipped since January
1985, the productivity rate has ranged from
1,133 lines-of-code per developer-month to
3,735 lines-of-code per developer-month, with a
mean of 2,169.

We attribute this improvement primarily to the
increased reuse of code from other projects. Of
the four most recently shipped version 1 prod-
ucts, reused components composed between
22 and 56 percent of the delivered code. Addi-
tionally, we believe that the use of common, sup-
ported tools that became available during the
development of products delivered since January
1985 also contributed to this improvement.

The Defect Rate Metric
Defect rate is one measure of the quality of the
software products that we ship to customers. Var-
ious published studies indicate that the "typical"
defect rate for American industrial software is
10 defects per 1,000 lines of code,I3 and that this
rate varies from 5 to 30 defects per KLOC.'"

DATE OF RELEASE TO CUSTOMERS. 14 PRODUCTS

KEY:

--- PRE-1985 T R E N D

- POST-JANUARY 1985 TREND

Figure I Engineering Productivity

To understand our own level of defects and to
compare our performance to those published fig-
ures, we examined the post-release defect rate
for 1 3 products over the time period from the
date when it first shipped to customers until the
summer of 1987. (One older product was elimi-
nated because the accuracy of the data was sus-
pect.) This data is shown in Figure 2 . Since Janu-
ary 1985, the defect rate has decreased to 0.066
and less. Of the 7 products in the 1985-1987
grouping, 4 had zero customer-reported defects
at the time of this study. Our pre-1985 defect
rate ranged from 0.07 to 1.5 1 defects per KLOC.

Although this defect rate is advantageously
low, the most important finding from this data
concerns the trend of this rate: it is decreasing.
That trend means that our software customers
have more reliable software, and that we can
reduce maintenance and support costs, and free
engineers to work on new products as well as
support other products.

a
5 DATE OF RELEASE TO CUSTOMERS, 13 PRODUCTS

Figure 2 Product Defect Rate

Digital Technical Journal 2 5
No. 6 February 1988

Software
Productivity
Tools

So Jt-ware Prodzlctivity Measurements

summer of 1 0 8 7 indicated that 100 pcrccnt of
the projects responding use the VAY DEC/CMS
tool, 8 0 percent of the projects use o r plan to use
the VAX DEC/MMS tool, 100 percent of the

We ;ittribute the improvement in cl~iality to 0
0 0

an incre:~sc in the availabilit), and use of tools, -
3

KEY

--- PRE-1985 TREND

- POST-JANUARY 1985 TREND

especially the VAX DEC/<:iMS. VAX DEC/MMS, 300

projects use o r plan t o use the VAX DEC/'li.st
Figure .j Relutionship of Product Size and Cost Manager tool, 100 percent use interactive editors

-

with 8 6 percent &ing the VAX Language-Sensi-
tive Editor tool, and 7 9 percent use o r plan to use
the VAX Source Code Analyzer tool.

The Cost-to- Build Rate

z 8,'

We also examined the relationship between the
size of the product and the cost to build it. Fig-
ure 3 shows the data for the cost to deliver tested
and debugged code for 1 4 products. The hori-
zontal axis indicates the project cost C for devel-
oping the product , the vertical axis represents
the procluct size 5 , and the date at each data
point is the year that the product began shipping
to customers. Many stutlies show that the cost
of software has a direct relationship t o the size
of the software Figure 3 indicates
that CLT has delivered products with lower
cost since January 1 9 8 5 than for thc period
1 9 8 0 to 1 0 8 4 . For example , in 1 9 8 0 , one project
cost C = 1 4 5 to design, implenlent, test and
deliver a product wi th size S = 83. In 1 9 8 7 , a
project delivered a product wi th a cost C = 13 1
with size S = 2 9 4 . That is a 2 5 4 percent jncrease
in product size with a reduction in cost of 10 per-
cent . In other words, a product that is over
three-and-one-half times thc size of another was
produced wi th less cost. We consider that as one
indicator of improved productivity.

VLY DEC/Test Manager. VAX Language-Sensitive w 5 250

Editor, and VAX Source Codc Analyzer tools. (The 200
0 last three tools first bea imc available for intcrn;il ; ,50

Digital use during the sccond half of 1 9 8 4 .) Dur-
*a w I O O - ing projcct quality reviews, each project team i s o

8 s o - questionetl about the use of tools, which has let1

Continuing Improvement in the Fzrture

-

-
-

85 / / / A.

86 A 84 /
/

T3 A/.--. +& 83

By col lecting project ant1 process inform;ition.
we have the data to compare past projects with
new projects and to compare projects wi th them-
selves over time. We can use that data t o evaluate
the estimates and progress of current projects.

to an increased use of various tools dur ing the % o Z I L 8

(I)
LU

0 20 40 60 80 100 120 140150
development process. An unpublished survey z

d COST (DEVELOPER MONTHS), 14 PRODUCTS taken of the current CLT project groups in the

This data helps both the project team and their
managers to gauge how a project is doing. One
use of the data in Figure 1 is to check the validity
of the estimates of a new project. We can use this
data to answcr cluestiolis such as, Do the fore-
casted costs appear to be realistic given the his-
tory of past projects in this organization?

The data also provides ;I known base that can
b c used for comparisons wi th newer data when
there arc changes in t.he methods, tools, o r train-
ing of engineers and their managers. Using these
comparisons, w e can determine if our process
and products are getting "better" o r not.

We are defining additional metrics, searching
for those that add t o ou r knowledge about the
qualjty of the product and the process. Additional
software product metrics include the mean-time-
t o - f ~ i l u r e , n ~ o d u l c ant1 product complexity, and
maintainability and extendability of product
codc , documentation, and test systems. Addi-
tional development process metrics include the
ratios of defects found by inspections, unit test-
ing, prc-customer testing, and customer testing,
the mean-time-to-fix a problem, the cost and
effort for the various development phases, and
the rate of successfill test completion.

To collect the data, w e use the software devel-
opment tools that the project teams use as part
of their project infrastructure. For example , the
VAX DEC/CMS program maintains a complete
history of the activity of a library, including addi-
tions and changes, when made, by whom. and for
what reason. Using the VAX DEC/CMS history-fi lc
data, w e can analyze the reasons for changes to

26 Digital Technical Journal
No. 6 Fehrrrnr), 1988

modules and the rates of changes and deliveries
for code, documents, and tests. A5 another exam-
ple, we can track test failures and successes using
the VAX DEC/Tcst Manager software. The test
manager tool also provides a history of additions
and changes to tests, thus yielding data about the
arrival of tests into the test system.

Summary
The metrics and data discussed in this paper
demonstrate that one group in Digital is building
higher quality software products at lower costs.
Particularly noteworthy is the increased quality
of products, leading to reduced costs of mainte-
nance. In several cases, one project team is able
to support , maintain, and enhance one product,
while providing suppor t and maintenance for
another.

One central cluestion we asked earlier was,
Do we understand what software development
"productivity" means? O u r answer is. More than
we did in the past, but w e have more work to do.
We look at software development "productivity"
to include more than the productivity of individ-
uals o r the project team. Software developmcnt
productivity also includes the quality attributes
of the product.

Quality and productivity improvement arc
ongoing. They have become part of our way
of doing business. The managers and software
development team members consider software
metrics and measurements as additional tools that
help them to manage projects. The ability to col-
lect data from the productivity tools themselves
has assisted in this process of change. Thus data
collection has become a nonintrusive by-product
of normal tool use. By using consistent collection
methods, team members can compare the data
across projects in the organization. However, that
data is never used to measure an individual's pro-
ductivity; the focus is always on the software
development process and software systems that
we deliver.

Acknowledgments
We want to express ou r appreciation to the
present and past CLT project team members and
rnanagcrs for doing good work, for their uncnd-
ing search for improvement, and for their efforts
with data collection.

References

I . R. Knight, "COBOL Still Strategic After All
7 - 1 hcse Years," Software News 7(7) (June
1987) : 58-64.

2. R. Hall, "Seven Ways to Cut Software Mainte-
nance Costs," Datamation ('July 15 , 1987) :
81-84 .

3. "Help Wanted," Business Week (August 1 0
1087) : 50 .

4 . H. Davis, "Measuring the Programmer's Pro-
ductivity," Electronic Engineering Man-
ager (February 1985) : 44-48.

5 . B. Boehm, Software Engineering Econom-
ics (Englewood Cliffs: Prentice-Hall, 1 9 8 1)

6. S. Greenwood, "VAX SCAN: Rule-Based Text
Processing Software," Digital Technical
Journal (February 1 9 8 8 , this issue):
40-50.

7 . S. Grass, "Dcvelopment of a Graphical Pro-
gram Generator," Digital Technical Journal
(February 1988 , this issue): 1 0 1-1 0 9 .

8. B. Beander, "VAX/VMS Software Develop-
ment Environment," Digital Technical Jour-
nal (February 1 9 8 8 , this issue) : 10- 1 9 .

9 . T. Capers Jones, Programnzing Prodztctiv-
ity (New York: McGraw-Hill, 1986) .

10 . S. Conte, H. Dunsmore, and V. Shen, Soft-
wure Engineering Metrics and Models
(Menlo Park: Benjamin Cummings, 1986) .

1 I . R. Grady and D. Caswell, Software Metrics:
Establishing a Company- Wide Program
(Englewood Cliffs: Prentice-Hall, 1987) .

1 2 . G . Weinburg and E. Schulman, "Goals and
Performance in Computer Programming,"
Human Factors, (1 (, /I) (1974): 70-77.

13 . B. Beizer, Software Systems Testing and
Quality Assurance (New York: Van Nos-
trand, 1 9 8 4) .

14 . W. Myers, "Can Software for the Strategic
Defense Initiative Ever Be Error-Free?" Com-
puter (November 1986) : 6 1-67.

Software
Productivity
Tools

Digital Technical Journal
No 6 Fc.brrtat:y 1988

2 7

L anguage-Sensitive Editor
Tbe VAXLanguage-Sensitive Editor, a component of the VAX/VMSprogram
development environment, is an advanced text editor speczj?caUy designed
to help programmers develop and maintain program code. Developers of
the product required that it include a simple interface that would be read-
ily accepted by tbe VMS user community, language-sensitive features that
improve programmer productiuity) support for multiple languages with
the same user interjke, and support for user extensions. In addition, the
editor had to mesh well with the existing program development environ-
ment oflered by Digital. Tbis paper provides the background of the devel-
opment eflort, a close look at the design of various features and some of the
insigbtsgained, and a summary of the cuwent status and future directions
for the environmentprovided by the editor.

Background

In late 1982, the Technical Languages and Envi-
ronments Group started a project to specify a Pro-
gramming Support Environment (PSE). Several
Digital products related to supporting program
development were already available or under
development. The PSE project outlined a number
of components needed to complete Digital's PSE
offering. One component was an editor special-
ized for program development. The editors being
used to develop software typically did not con-
tain any special features to support the program-
ming process. The PSE project developers saw
this as an interesting opportunity, and the pro-
gram editor became the first target of the PSE
development effort.

Research of Program Editors

At the time, various universities were research-
ing program editors, and a number of papers
appeared i n technical journals. The program-
ming-related features the editors provided often
varied with the language they supported, but
they typically provided interactive syntax check-
ing and special commands to insert language
statements. Most of these were tree editors,
which model a source file as a syntax tree, rather
than text editors, which model a file as a stream
of characters. An advantage of tree editors is that
syntax errors and some semantic errors are pre-
cluded or diagnosed immediately. Tree editors

can determine the syntactic context of the cur-
rent editing position and offer assistance on the
language constructs or the identifiers that are
valid at that position. There are also operations
that can be performed conveniently on a parse
tree, such as cursor movement by syntactic ele-
ment and elision, the suppression of selected
program details in the display. Although tree
editors can offer some very useful programming
support, thcir disadvantages are significant.
Thcir main drawbacks relate to their user inter-
face, their performance, and their specialization
to a single programming language or subset of a
language.

Making modifications to source files is often
awkward using a tree editor. Since trec editors
insist that the contents of the file must always
correspond to a well-formed syntax tree, there
are serious constraints on the intermediate
forms that the contents of the file can assume.
In one tree editor, the language keywords are
not items that can be edited by the user. A
simple change, such as replacing the keyword
WHILE with UNTIL, requires a number of
steps, including saving the loop-body, deleting
the WHILE-loop. and reconstructing it as an
UNTIL-loop. '

Another tree editor copes with such difficulties
by integrating a simple text editor with the edi-
tor.' Users may edit a portion of the source file as
text by clipping a syntax subtree into thc text
editor. Of course, thc benefits of the tree editor

Digital Technical Journal
No. 6 February 1988

are not available when using the text editor facil-
ity. When returning the clipping to the source
file, the tree editor parses the clipping to verify
that its syntax is valid at the point where it
is being inserted. In both of the above editors,
there are constraints on how users make changes
to source code. Moreover, they must think in
terms of changes to a syntax tree, even if that is
not the most natural way to think of a particular
editing task.

Tree editors rely on pretty-printers to convert
their internal parse tree representation of a
source file into text for display to users. When
the formatting style of the pretty-printer is agree-
able to the user, this is a time-saver. However,
every pretty-printing algorithm has limitations,
including cases that the user can format more
readably. Thus, another drawback of tree editors
is that users must accept the formatting style of
the pretty-printer even when they would prefer a
different style.

Tree editors also consume considerable com-
puter resources, both processing power for
parsing and memory for storage of parse trees.
Only single-user systems or lightly loaded, multi-
user systems could accommodate the resource
requirements of these editors.

Tree editors have difficulty in supporting cer-
tain language features, such as macros and
conditional compilation. For example, the fol-
lowing fragment of C code uses conditional
compilation to call the function PROCESS with
an extra parameter when i t is compiled for
TARGET2:

process<

input

i f target2

, length
Uendi f

) i

Such language features pose considerable prob-
lems in both the construction of a parse tree and
pretty-printing. Typically, tree editors place
restrictions on the usage of such c o n s t r u ~ t s . ~

Another language feature that poses problems
for tree editors is file inclusion. This feature
inserts a specified source file into the compiler's
input stream, temporarily suspending input from
the original source file. The "include preproces-
sor control line in the C language is an example
of this. Although a file specified by "include typi-
cally contains only declarations, the language

Software
Productivity
Tools

does not place such a restriction on the contents
of the file. Since the file may contain any frag-
ment of a compilation, it might be impossible to
construct a parse tree for the contents of the file,
and so, impossible to edit the file using a tree
editor. It may also be difficult to construct a
parse tree for a source file that contains #include
statements.

Still another drawback is that tree editors can-
not be used for all editing needs. Most tree edi-
tors are tailored to a particular language. Users
have to use other editors for other languages and
for text files.

Product Requirements
The primary requirement of the program editor
is to improve programmer productivity by sup-
porting program editing with language-sensitive
features. Based on the insights gained from the
above research, the PSE project assembled a list
of additional requirements and design consider-
ations.

Ease of Use
Users must view the PSE editor as being easy to
learn. In particular, since most of our customer
base was using EDT, the program editor should
have an interface that is compatible with EDT."

Given that they know how to use EDT or
another text editor, there should be very little
that users have to learn in order to begin using
the program editor productively.

Additionally, the PSE editor must not compli-
cate the users' programming environment by
forcing them to use the PSE editor for editing
source files and another editor for other text
files. They should be able to use the PSE editor as
a replacement for their current text editor. The
PSE editor must enhance the programming pro-
cess with minimal changes to users' editing
styles.

Multiple Language Support
The editor must support a variety of program-
ming languages. FORTRAN was the most widely
used programming language in our customer
base; but many customers were using other lan-
guages, and a significant portion were using more
than one high-level language. Some customers
would soon start using the Ada language, and a
program editor that would help users make the
transition to Ada would be an important part of
Digital's Ada Programming Support Environment
(APSE). The editor must also make it easy for

Digital Technical Journal
N o . 6 February I988

29

I

Language-Sensitive Eclitor

users to work on software written in more than
one language and to work on multiple programs
written in various 1angu;lges. Therefore, the etli-
tor must support a variety of languages with ;I

common uscr interface.

Flexibility
In addition to supporting a variety of languages,
the editor must provide access to all the features
of each language. The editor must not limit users
to a subset of the language nor restrict the way in
which language features are used. IJsers must be
able to construct any legal prograrn and format
the code as they wish.

Extensibility
Users must be able to modify and enhance tlic
editor to suit their preferences and their special
needs. The popularity of EMACS, a programmable
editor, was evidence of the need for this.5 Also,
many customers had tailored EDT for specjal
uses.

In addition to providing a malleable editing
interface, the editor would have to accommod;~te
user-defined languages and user modifications to
the languages provided by .Digital. Users should
not have to change their coding style or their pro-
ject coding conventions when switching to the
PSE editor.

Performance
Performance was an important design considcr-
ation. Somc users complained that the perfor-
mance of E D T was barely acceptable on a loaded
timesharing system, which was the expected
environment for the PSE editor. Developers work-
ing on a text editor for such a target system \yere
then wrestling with the problem of echoing char-
acters as fast as the uscr typed them. The PSE
editor must support program editing without
requiring significantly more system resources
than typical text editors needed

7%e EDITH Prototype
Although program editors that viewed a source
file as a parse tree showed promise and had
advantages over editors with a test view of a pro-
gram, their disadvantages were significant. An
alternate approach was to add language-sensitive
enhancements to a text editor. This approach had
been meeting with some success internally with
enhancements to the E D T editor." and externally
with EMACS,~ and the Z editor." This is the
;~pproach that the PSE project chose to prototypc.

Given the above requirements, the PSE project
dcvcloped a prototypc program editor called
EDITH. This was a text cd~ to r with an EDT-style
intcrk~ce. I t maintained only a textual representa-
tion of source code and could be used to edit any
text file.

EDITH supported program cditing by supply-
ing templates for source constructs. A template is
usu;llly a skeleton for a language construct. Users
can i~lstruct the editor to insert a template into a
source file. The following is an example of a tem-
plate for an IFstatement:

i f (condition) t h e n

{ s t a t e m e n t) . . .
C e l s i f - p a r t 1 . . .
[e l s e - p a r t 1

e n d if ;

Rmplates provide sever;~l benefits:

Correct keywords and punctuation

Proper formatting and indentation

Consistent case conventions

Source entry using fewer keystrokes

Templates typically contain syntactic markers
indicating where other program elements can
or must appear. Templates also aid the user in
entering correct source code. Markers, such as
[else-part] and (statement). have templates or
menus of templates associated with them that the
user can select. The user is free to use the text
editing capabilities of the editor to enter and
modifj progr:lm text. By providing language tem-
plates, the editor helps the user develop syntacti-
cally correct programs, without restricting the
contents of the source file, as docs a tree editor.
This design for syntax support also performed
well and could easily accommodate a variety of
languages.

Additionally, EDITH interfaced to a parser to
pcrform syntactic checking and to report errors.
An explicit PARSE command would pass the
source code to n language-specific parser. As
errors were detected, the parser passed diagnos-
tic information back to the editor. The editor dis-
playccl this information to the user, who could
then step through the errors one at a time. As
each error nicss;ige was displayed, the editor
positioned the editing cursor at the point in the
source where the selected error was diagnosed.
The user could then make appropriate correc-
tions. This interface allowed users to find syntax
errors without leaving the editor to run the com-

30 Digital Trcbnical Journal
N o (j ~ ~ h ~ l l c t r) ~ I988

piler, and provided a convenient interface for
reviewing the errors and locating the correspond-
ing source code.

A number of ideas prototyped in EDITH
evolved into features of LSE.

Foundation for the Implementation
Coding for the VAX Language-Sensitive Editor
begin in January, 1984. At that time, a prelimi-
nary version of the VAX Text Processing Utility,
VAXTPU, was available. VAXTPU is a text editor
users can program using a procedural language.
The language supplies a large number of built-in
functions that are used to manage files, windows
(portions of the terminal screen), text, and even
subprocesses. VAXTPU provides compilation and
execution facilities for programs written in the
VAXTPU language. To use the VAXTPU editor,
the user needs a user interface written in the
VAXTPU programming language. The first release
of VAXTPU provided two interfaces. O n e inter-
face was an EDT emulator; the other, called EVE,
was heavily oriented to the keyboard for VT200-
series terminals. VAXTPU was to replace EDT as
the VMS editor. Shortly after the release of
VAXTPU, LSE would have to address compatibil-
ity with VAXTPU and EVE, as well as with EDT. To
meet this new requirement, and the requirement
for the editing capabilities to be user-tailorable,
LSE would be a superset of VAXTPU. The high-
performance design of VAXTPU would also help
LSE meet its requirement to perform well on
loaded timesharing systems. LSE would also use
VAXTPU to provide EDT-compatible functions.

As a result. the LSE project used the VAXTPU
sources as a base when implementing LSE.
Although a number of the VAXTPU source mod-
ules had to be changed to interface to LSE func-
tions, most of the VAXTPU code was used
unchanged. Thus, LSE used the VAXTPU code as a
library of run-time routines for terminal intcrac-
tion and for support of the user-progran~mable
features. This gave the LSE developers access to
a powerful set of functions for text manipulation
and screen management. At this point , the codc
for the EDITH prototype was abandoned.

syntax support
One obvious way an editor can support pro-
gramming is to assist in the constructiorr of syn-
tactically correct programs. To providc such
assistance, LSE adopted the template approach
prototypcd in EDITH.

Tokens
The keyword or text that a user types to identify
the template he wants inserted is called a token.
An EXPAND operation replaces the token wi th
the corresponding template. For example, typing
IF into an Ada source file and then pressing the
EXPAND key inserts the following into the file:

if {condition) then

{statement) . . .
[elsif-part1 . . .
[else-part1

end if ;

A token is usually a keyword that introduces a
language construct o r the name of a predefined
function cal I . Only one EXPAND key is needed to
expand any token into a template. Users d o not
have to type the entire token name before press-
ing the EXPAND key, just enough to uniquely
identify the token. If the prefix that they enter
matches more than one token, the editor displays
a menu of possibiljties from which to choose.

This style of interaction has proved to b e easy
and effective. Users have access to a large number
of templates, including templates for calls to
all the VAX/VMS system services and run-time
library routines, and can access any template
quickly and easily.

PZaceholders
As mentioned earlier, placeholders are the syntac-
tic markers that arc inserted into the editing
buffer as part of a template. Placeholders are

Software
Productivity
Tools

Templates for Language Constructs
To provide support for entering source code, LSE
adopted the template approach prototyped in
EDlTH. In a very basic sense, a template is simply
text that is inserted into the editing buffer at the
user's request. Within that text may be places
where the uscr will have to enter additional text
to complete the material.

In the context of a programming language,
the text of a template is usually a sequence of
lexemes, such as keywords and punctuation,
that form some piece of the syntax of a program-
ming language. Places where the user must fill
in more syntax to have valid program text are
indicated by syntactic markers called placehold-
ers. Templates are inserted into a source file
by an EXPAND operation. Text inserted as part
of a template can be edited like any other text in
the source fj le.

Digital Techiricul Journal
No 6 Fchrrrnrv 1988

Language-Sensitive Editor

distinguished from program text by the brackets
(I]) or braces ((1) that delimit them. They
are stored internally as text, and files that contain
placeholders are simple text files that require
no special processing for operations such as
printing. Editor functions that operate on place-
holders recognize them by the characters chosen
as delimiters for the language. For languages
in which braces or brackets arc valid lexemes,
other delimiters must b e chosen. Typically,
the delimiters in such cases are formed using
braces and brackets in conjunction with some
other character, such as a tilde (for example,
(-statement-]).

Optional and Required Placeholders

A placeholder may represent optional or requir-
ed language syntax. The optional or required
nature of the placeholder is indicated by the
enclosing delimiters. In the IF example above,
the (condition] placeholder appears with braces,
delimiters that indicate to the user and the edi-
tor that it is a placeholder for syntax that is
required at that point. The [else-part] place-
holder appears with brackets as deliniiters,
indicating that the else-part is optional. The
placeholders terminating with ellipses (. . .) are
called list placeholders. They indicate where
users may enter more than one of the correspond-
ing language constructs. Braces and brackets
indicate whether a list placeholder is for
required or optional syntax. Thus, (statement). . .

appears at a point where the user must enter
one or more statements, whereas [statement]. . .
appears where the user may optionally enter
statements.

Expanding Placeholders

Like tokens, placeholders may be expanded.
There are three types of placeholders: nontermi-
nal, menu, and terminal.

Nonterminal placeholders expand into a tem-
plate. For example, in thc above IF template, the
[else-part] placeholder expands into the follow-
ing simple template:

{statement). . .
A menu placeholder expands to a display of

a set of choices. The {statement). . . placeholder
above is a menu placeholder. Expanding this
placeholder results in the display of a menu of
statements, as shown in Figure 1.

Expanding a terminal placeholder simply dis-
plays a description of the program syntax that
must be entered at that placeholder. A typical
example is the (identifier) placeholder; the
expansion provides information such as the char-
acters that are legal in an identifier and the maxi-
mum length of an identifier.

Filling in Placeholders

Once users have the level of detail they need from
the templates, they can fill in the missing syntax

f u n c t i o n PRIME (NUMBER : i n INTEGER) r e t u r n BOOLEAN i s
b e g i n

f o r I i n 2 .. NUHBER/2 loop
i f (NUHBER - ((NUHBER / I) * I)) = 0 then

{ I t a t e m e n t l . . .
C e l s i f - p a r t 1 . . .
[e lse -par t1
end i f ;

end loop;
[s t a t e m e n t l . . .
r e t u r n {exr ress ion) :

w o r t W n t r any f u r t h e r r e n d e z v o u s w i t h t h e named tasks 1
accept : Specifies t h e r e s u l t i n g a c t i o n o f a task, e n t r y c a l l
(assignment-statement) : Assigns the va lue o f an expt-ession t o a v a r i a b l e
(block-statement) : An o p t i o n a l l y named block. o f d e c l a r a t i o n s and statements
case : Chooses an a c t i o n based on t h e va lue of an expression
de lay : Delays execut ion for s p e c i f i e d amount o f time

--

13 l i n e s r e a d from f i l e LSES:[DEHOlPRIMES.ADA;l r
Figure I Editor Display with Choices for 1 s tat erne n t) . .

Digital Technical Journal
No. 6 Febrrtnr:y 1988

by typing text on the placeholders. In some
cases, such as an assignment statement, users will
likely be sufficiently familiar with the syntax of
the language to type the complete statement on a
statement placeholder, rather than to expand the
statement placeholder and select the assignment
template from the menu. In other cases there will
be no more detail that can be supplied by the
template, either because the template designer
did not provide the detail or because the user has
reached a true terminal in the language syntax
such as {identifier).

When text i s typed on a placeholder, that
text immediately replaces the placeholder.
In the case of list placeholders such as
{statement). . . or {identifier). . ., typing text on
the placeholder causes a separator and a dupli-
cate of the original placeholder to be inserted
after the text. For example, typing COUNT on
{identifier). . . results in:

COUNT, [identifier]...

Note that the placeholder is now shown as
optional and that the editor inserted a comma
and a space as a separator. The definition of the
identifier placeholder specifies the separator that
should be used. The definition of a placeholder
also specifies whether it should be duplicated
vertically o r horizontally. {identifier). . . is an
example of a placeholder that duplicates hori-
zontally, whereas (statement). . . duplicates verti-
cally.

Erasing Placeholders
Many templates present placeholders for optional
pieces of syntax that the user may not want.
These optional placeholders can be erased using
the ERASE PLACEHOLDER key. The algorithm for
erasing a placeholder is one of the most complex
algorithms in the editor. This would appear to be
a simple text deletion, but even in the simplest
cases some special rules come into play. In the
following example, erasing the optional [expres-
sion] placeholder requires that a space b e erased
to prevent leaving an extra space before the semi-
colon.

return [e x p r e s s i o n] ;

Usually, the editor erases the whitespace (blanks
and tabs) preceding a placeholder along with the
placeholder. But when a placeholder appears at
the beginning of a line, the editor must avoid
erasing leading whitespace; erasing the leading

Digital Technical Journal
No. 6 Febrrrary 1988

Software
Productivity
Tools

whitespace would change the indentation of the
line. In this case, it erases the whitespace that fol-
lows the placeholder.

In a number of cases, lines must also be erased.
In the example of the IF statement shown earlier,
after erasing [else-part] the editor must also erase
the now blank line. This can be slightly more
complicated, as in the following example of an IF
statement in Pascal:

IF {expression)
THEN

{statement)

[ELSE statement];

Here, after erasing the ELSE part of the IF state-
ment, the editor must move the semicolon u p to
the end of the preceding line and erase the line
that contained the ELSE statement. This example
becomes more complicated when the preceding
line is terminated by a comment. In that case, the
semicolon must be inserted at the end of the
statement placeholder but before the comment.

List placeholders, such as (identifier). . ., re-
quire special handling as well. A s mentioned
above, typing the identifier COUNT on this place-
holder results in:

C O U N T , [i d e n t i f i e r] . . .
When erasing the placeholder, the editor must
erase the comma and space.

When erasing placeholders, the editor must
maintain correct program syntax and proper
formatting. The editor does not have a parser
and pretty-printer for each language, but the
algorithm for erasing placeholders achieves
acceptable results by examining text surround-
ing the placeholder and using limited informa-
tion about the language and placeholders.

On- line Help
The VAX/VMS operating system provides a HELP
facility for managing and displaying information
stored in a tree-structured text library. The infor-
mation at a particular node in this tree is accessed
by specifying a sequence of keywords. Each key-
word selects a subtopic of the information for the
preceding keyword. For example, issuing the
VMS command HELP FORTRAN INTRINSIC COS
accesses the information on the FORTRAN intrin-
sic cosine function.

Before LSE was developed, HELP libraries were
available for a number of languages. LSE pro-
vides convenient access to this information by

a Languuge-Sensitive Editor

I
allowing the keyword sequence for accessing a
particular node of the tree to be associated with a
token or placeholder. For example, the token for
the FORTRAN cosine function, COS, has the
string "FORTRAN INTRINSIC COS" associated
with it. When the user presses the language-help
key while the cursor is on the token COS, the
information for COS will display. Similarly. the
{statement) placeholder can have a string associ-
ated with it that accesses a node of the tree whose
subnodes describe the different types of state-
ments for a language. This allows users to get
help on language constructs without leaving the
editor and without typing HELP commands.

Defining Language Support
The editor supports a special definition language
for describing a language to the editor and speci-
fying the tokens and placeholders. For each of
the languages supported by Digital, the corre-
sponding compiler project develops the lan-
guage, token, and placeholder definitions, and
the on-line HELP library. The definition language
is documented for customers so they can m o d i b
the definitions supplied by Digital or add defini-
tions for other languages. The editor acccsses
these definitions when it is invoked. By conven-
tion on the VAX/VMS operating system, source
files for different languages are distinguished by
a naming convention for the file-type portion of
the file specification. The description of each lan-
guage includes the file types that apply to
that language. The editor uses this to determine
which set of language definitions to associate
with a source file. Users may edit several source
files written in different languages in one editing
session.

Temphtes Stray from BNF
A formal definition for the syntax of a languilge,
such as a BNF description, provides a good refer-
ence when developing templates for a language
However, strict adherence to such a description
can produce templates that are very tedious to
use.

The syntax for a language may be clefincd
uslng many intermediate productions. A straight-
forward conversion of this grammar into tem-
plate definitions will result in a menu place-
holder for each production that has several
alternatives as a right-hand side. Therefore many
menu placeholders will have elements that are
also menus

For example. to get from a placeholder for a
statement to a template for a while-loop might
require going from statement menu to control-
statement menu to loop-statement mcnu to
prctested-loop menu to while-loop. I t would be
much better to include the template for the
while-loop in the menu for the statement place-
holder. In general, templates can be vastly
improved by eliminating intermediate menus and
reducing the number of expansions required to
access a template.

In some cases, the formal syntax definition
for ;I language does not include some simple
semantics that the templates should include. For
example, the syntax may define BEGIN and END
statements but not include their relation. The
template for the BEGIN statement should include
the matching END statement, plus placcholdcrs
for the syntax that may appear between them.
Thcrc are a number of cases like this where com-
mon sense and coding standards should influence
the template definitions. The template for a pro-
cedurc declaration is another good example.
Often a user site follows a coding standard that
requires a procedure to have a specially format-
ted comment associated with it. Also, the coding
standard might require that the body of the pro-
cedure be a BEGIN/END block, although the
language does not require this. The predefined
templates for a language can be a greater pro-
ductivity aid if they are tailored to the way in
which the language is typically used on a particu-
lar project.

Flexibility in Detail of Templates
The levcl of detail that templates provide is
up to the author of the template definitions.
For example, the placeholder {condition) could
be ;I terminal placeholder that expands into
a description of Boolean expressions in the lan-
guage; or it could expand into more detailed tem-
plates and menus that provide the syntactic
elements of a Boolean expression, such as AND,
OR, and relational operators.

Highly detailed templates are especially usefill
in declarations, for example:

{identifier) . . . :
[c o n s t a n t] [subtype-indication]

: = [i n i t i a l - v a l u e] ;

Compared to a control construct such as an IF
statement, the syntax of declarations is often
complex, and likely to have a large number of
options. Detailed templates help users with this

Digital Technical Journal
N o . 6 Februrr>:y 1988

complexity by presenting menus of choices and
placeholders for various declaration options.

Observations on Using Templates
One of the significant aspects of the editor's sup-
port for entering source code is that its use does
not interfere with the use of the editor for arbi-
trary text manipulation. There are no restrictions
on the intermediate contents of the text buffer
when reorganizing or restructuring code. Text
manipulation operations that users have coded
themselves in the VAXTPU language are also
available. The final formatting of the source is u p
to users. Templates supply formatted language
constructs, but users can reformat the program
text without restrictions. This is not possible in
most language editors.

In practice, users frequently take advantage
of the source entry support afforded by tem-
plates. There are two primary reasons to use
templates. One reason is for assistance with unfa-
miliar language syntax. Users who are just
beginning to learn a new programming language
can use the templates to help them get details
correct. Users who are generally knowledgeable
about the language can rely on the templates
when they have to use a construct that they rarely
have occasion to use, or when they have to make a
call to a system routine that takes many parame-
ters. A second reason to use templates is that they
provide structured formatting and reduce typing.
Even the most experienced programmers can
benefit from using the editor to insert properly
indented control constructs, matched BEGIN and
END statements, and comment blocks, such as
those used to describe the function, parameters,
etc., of a procedure.

By helping users with language syntax and by
inserting some of the source code for the user.
the editor reduces errors and improves produc-
tivity.

Beyond Syntax - Integration for
Programming Support
If assistance in entering syntactically correct
source code were all that the ctlitor offeretl
with respect to support for program develop-
ment, i t would be a very uscful productivity
aid. However some of its most important produc-
tivity features do not deal with editing source
code. In fact if the editor provided no support
at all for language syntax, LSE would still be
a valuable ald in program development bec;iuse

Digital Technical Journal
No. 6 F e b r u a ~ I988

i t also provides tight integration with the follow-
ing facilities: . VMS language compilers . VAX Source Code A.nalyzer7

VAX DEC/CMS (Code Management

Compiler Interface
The editor provides users the means for diagnos-
ing syntactic and semantic errors by interfac-
ing with the language compilers. Each compiler
for the languages that support LSE has been
enhanced to generate diagnostic files that specify
the compilation errors and the related source
locations. The editor creates VMS subprocesses to
perform the compilations. This is a very different
design from the EDITH prototype that interfaced
by procedure calls directly to a parser. This
design has the following benefits.

Users need not run the language processor
from the editor.

Concurrent compilations are possible.

All compilation errors are diagnosed, not just
syntax errors.

No special parsers are needed.

Implementation is straightforward.

Since the compilers place the diagnostic infor-
mation in a file, the source processing does
not need to be done from within the editor.
Con~pilations can even be done overnight by a
batch procedure, and the diagnostics reviewed
later using the editor. Also, since the compila-
tions are done in separate processes, the user
is free to continue editing one source file while
compiling others.

A drawback of using a parser, as in EDITH, is
that the parser does not catch semantic errors,
such as mismatched data types. These errors were
caught by the compiler in a separate compilation
step. In LSE, all compilation errors are caught by
a single mechanism and can often be fixed in one
step.

Another drawback of using a parser within the
editor is the work required to develop the parser
and keep it consistent with the compiler. Not all
compilers are designed in a way that makes it
easy to pick u p the parser and use it as a separate,
callable utility. Consequently, considerable time
was saved by avoiding the implementation of a
callable parser for each of the many languages
LSE had to support.

Software Productivity

Tools

Lczn,qtlrr,oe-.Yensitizle Editor

Once the compiler has written the diagnostics
information to a file, the editor reads the file and
displays the information in an editing window.
Conventional editing commands for scrolling
and searching can be used within this window.
Special keystrokes allow the user to select a
diagnostic and bring the corresponding source
file into a second editing window, as shown
in Figure 2.

Each diagnostic consists of message text and
one or more lines of related source cotle. The
message text may be one line or many lines.
Usually one line of source related to the error
is presented. The sophistication of the diagnostic
information depcnds on the capabilities of the
compiler being used. Most compilers present
one- l inc error messages and the corresponding
source line. The most sophisticated presents
detailed crror messagcs that include references
to sections of the language manual and multiple
related source lines. One use of multiple source
lines is to display both the declaration and use
of a variable with the error message. The user
may select either source line in the diagnostic
display, and thc editor will position the editing
cursor on the corresponding line in the appro-
priate source file. In some cases, such as a
missing semicolon or a misspelled keyword,
the diagnostic information supplied by the com-

piler will include a suggested correction. The
editor will make the correction, subjcct to the
user's confirmation.

Source Code Analyzer ln tqace
Perhaps the greatest protluctivity aid in LSE is
its interface to the VAX Source Code Analyzer
(SCA). SCA is a multilanguage, source code
cross-reference and static-analysis tool. Compil-
ers for supported VAX languages collect informa-
tion during the compilation process and write
this information to a special analysis file. SCA
loads this information into a library for a program
system. For each occurrence of an identifier in
the program system, the SCA library contains
information such as the source file, line, and
column of the occurrence; the type of occur-
rence (read, write, declaration, call, ctc.);
and the class of identifier (procedure, variable,
etc.). SCA can also display calls to and from
a procedure, and can perform consistency checks
on calls and declarations between compilation
units.

Through its integration with SCA, LSE becomes
a browsing utility for a software system. By posi-
tioning the editing cursor on a use of an identifier
in a source file and pressing a key that invokes the
GOT0 DECLARATION command, the user can
bring the source corresponding to the declaration

GER in PI-edefined STANDARD o f variable

CLRM 5.2(1)3

i f H I G H 3 10000 then
HIGH fl= 10000.0;

60 l i nes read from f i l e LSE$:IDEMOlPRIMES~ERROR.ADA;l

Figure 2 Editor Displciy ~ t ~ i t h Sorlrce for Selected Diagnostic

36 Digital Technical J o u n i a l
No. 6 Febrrrn?;~, 1988

Software
Productivity
Tools

of the identifier into an edit ing window. In this
way, the user can view both the use and declara-
tion on the terminal screen, as in Figure 3.

Users can perform more general queries using
the SCA FIND command. Using FIND, a user can
locate all the places where a variable is used.
LSE displays the list of places and highlights the
information for the first occurrence. Using single
keystrokes, the user can select an occurrence and
have the editor access and display the corre-
sponding source, as shown in Figure 4 .

LSE's integration with SCA has tren~endously
enhanced its value as a program development
tool. Together these tools make programming
tasks on a large software system much easier,
since users d o not need to rely on their memory
o r large cross-reference listings to locate declara-
tions and uses of idcntifiers. The editor accesses
the appropriate files and finds the source line of
interest without the user even having to know the
file name. By making it easier for developers to
understand a software system, LSE wi th SCA
speeds the development of n e w code and helps
developers make changes to existing code more
reliable.

VAX DEC/CMS - Code Management
System
The VAX DEC/CMS tool stores project source
files project, manages access to those files, and

tracks ch;~ngcs to thcm. Source filcs are stored in
a CMS l i b r a n in a compressed format as changes
to the original version of the file. llsers rescrve a
file from the CMS library to makc changes to i t .
After they are satisfied with t.heir changes, they
replace the file into the CMS library. Users may
need to get a file from CMS without intending to
change it. This is called fetching the file; a file
that has been fetched but not reserved cannot not
be rcpl ;~ced. Two users may reserve the same file
at the same time. When the second replaces his
version, CMS will assist in merging the two sets of
changes. CMS provides many features for organiz-
ing a library, grouping sets of related files and
related versions of files, maintaining variants of
files, and inquiring into the status and history of
files in the library.

CMS has become an important part of the daily
routine for many VMS users. LSE provides com-
plete access to all CMS commands from within
the editor. LSE can also invoke CMS for the user.
For example, when LSE needs to access a source
file as part of the SCA G O T 0 DECLARATION func-
tion described above, LSE can invoke CMS to
access the source file and bring it into the editor
to display the specified declaration. Special LSE
commands provide for reserving and replacing
files while performing appropriate editor win-
dow and file management, eliminating interme-
diate steps for the user.

lode-value = min-code . . max-code;
code-vector-length = 0 .. code-vector-limit:
code-vector = ARRAY l l . . c o d e ~ v e c t o r ~ l i m i t l OF code-value;

code, rep l ace-code : code-va l ue;
i : 1 .. code-vector-limit;
compress : BOOLEAN;

Digital Technical Journal
N o (j Februorr~ 1988

Figure 3 Editor Display with Declaration and Use of c o d e -va 1 u e

The integration of LSE and CMS is ;In ;iddcd
convenience for LSE users that streamlines the
usage of the two tools, and so enhances produc-
tivity.

Summary
The combination of templates, on-line help, and
interfaces with compilers makes LSE an effective
and easy-to-use program editor. Users c:~n tonc
the templates provided with LSE for thcir own
environment or define templates, hclp, ;~ntl a
compiler interface for languages that Digital does
not support.

Through integration with SCA and CMS, LSE
expands its capabilities from a source-code edi-
tor to a high-productivity user interface to the
source code for a software system.

Since May 1985 when versjon 1 of the editor
shipped, LSE has continued to cvol\le as a compo-
nent of the VAXset, a set of productivity tools
for software development. The VAX Language-
Sensitive Editor is now playing an important role
both as an editor designed to support writing
software and as a hub for the integration of soft-
ware development tools.

This paper describes the current release of
VAX LSE, version 2.1 .' LSE supports 15 langilages
including Ada. BASIC, C, COBOL, FORTRAN,
Pascal, PL/I. In addition LSE supports somc non-

progr;~rnming I;~ngi~ages. including IIATATRIEVE,
a data m;lnagcment tool; DOCUIMEN'~, a docu-
mentation markup language; and CDDL, a com-
mon data dictionary language.

Future Directions
The hardware environment for software develop-
ment is shifting from timesharing systems to
workstations. 'I'his shift wiIl open somc opportu-
nities for LSI?, m:~king i t possible for LSE design-
ers to considcr including capabilitics that require
more hardware resources than were typically
available in the past. The current text-editor
orientation docs not preclude enhancements that
require parsing the source, such as prctty-print-
ing, cursor movement by syntactic element, and
elision. The display capabilities of a workstation
could support pretty-printing, using bold and
italic fonts to improve the readability of source
code. The availability of the mouse, icons, graph-
ics, etc.. allows for many enhancements to the
user interface.

The software that supports program develop-
ment will also continue to evolve. Additional
Ian-guages and tools can be expected to include
LSE and SCA support, and there will be opportu-
nities for LSE to grow through integration with
other components of the programming support
environment.

BUILD-TABLE\47 V A R (vat-iabl e) declat-ation
BUILD-TABLE\74 w r - i te reference

signal-duplicate (code):

Figure 4 Editor Displcq~ zuith Selected "write reference" to c o d e

3 8 Digital Technical Jorrrnal
N o 6 Febrrrtrr)) 1988

References

1. T. Teitelbaum, T. Reps, "The Cornell Pro-
gram Synthesizer: A Syntax-Directed Pro-
gramming Environment," Communications
of the ACM, vol. 2 4 , no. 9 (September
1981): 563-573.

2 . M. Zelkowitz, "A Small Contribution to Edit-
ing with a Syntax Directed Editor," Proceed-
ings of the ACM SfGSOFT SICPLAN Sympo-
sium for Practical SoJware Development
Environments (May 1984): 1-6.

3. J. Horgan, D. Moore, "Techniques for
Improving Language-Based Editors," Pro-
ceedings of the ACM SIGSOFT SIGPLAN
Symposium for Practical SoJware Develop-
ment Environments (May 1984): 7- 14 .

4 . VXX EDT Reference Manual (Maynard:
Digital Equipment Corporation, Order No.
AA-Z300A-TE, September 1984) .

Digital Technical Journal
No. 6 Frhrzrary 1988

8. VAX DEC/CMS Reference Manual (May-
nard: Digital Equipment Corporation, Order
No. AA-L372B-TE, November 1984).

Software
Productivity
Tools

5. R. Stallman, "EMACS: The Extensible, Cus-
tomizable, Self-Documenting Display Edi-
tor," Proceedings of the ACM SIGPLAN-
SIGOA Symposium on Text Manipulation
(June 1981): 147-156.

6. S. Wood, "Z-The 95% Program Editor,"
Proceedings of the ACM SIGPLAN-SIGOA
Symposium on Text Manipulation (June
1981): 1-7.

7 . Guide to VAX Language-Sensitive Editor
and V U Source Code Analyzer (Maynard:
Digital Equipment Corporation, Order No.
AA-FY24B-TK, April 1987) .

Stephen R. Greenwood I

Rule- based Text Processing Sopware
l%e VMSCANproduct simplzjTes forprogrammers the building of somare
that recognizes complex text patterns. The product achieves this simplifi-
cation by unitingpowerful text-basedpattemz-matching capabilities with a
procedural language that integrates these capabilities into the VM/VMS
environment. In typical applications of the product, programmer time to
design, code, debug, and maintain programs is greatly reduced, contribut-
ing to increased soJtware productivity. The short development time, low
cost, and high reliability of the VM SCAN product itself is attributable to
the procedures and took available in Digital's engineering environtnent.

The text processing capabilities typically pro-
vided by high-level languages are quite primi-
tive, especially in contrast to the syntax diagrams
used in describing programming languages.
High-level languages normally include opera-
tions to move, compare, concatenate, search, and
perhaps sort text strings of fixed length. Syntax
diagrams, more formally known in computing
literature as grammars, prcscnt :I very nice niodcl
for very complex text pattcrns.

Programmers throughout the computing indus-
try understand both primitive text operations
and the more coruplcx patterns represented
by syntax diagrams. However, fcw programmers
use syntax diagrams to express input to a pro-
gram, because of the complexity involved in
builtling the software needed to recognize such
patterns.

The VA1Y SCAN product solvcs the complex-
ity of using syntax diagrams by making text
pattern recognizers available to the general VAX
programming community. The SCAN language
allows a user to express language grammars
in a form very similar to the BNF-like syntax
diag;ams that appear in VAX/VMS documenta-
tion. The product builds a recognizer, in the
form of an object module, that matches text
described by the grammar. In addition. the
product supports the VAX Common Language
Environment, so that VAX SCAN recognizers
can be easily integrated into existing programs.

Principles of tbe Language
The text processing capabilities of the SCAN lan-
guage are based 011 the simple substitution
paradigm of finding a specified pattern and
repl;~cing it with a string of text, much like a sub-
stitution cornmand in an etlitor. S C m differs
from most editors, howevc-r, in that the search
piittern can be as complex as a grammar for a pro-
gramming language. The replacement text can be
generated by an arbitrarily complex sequence of
procedural statements. The actual SCAN lan-
guage construct that supports this substitution
paradigm is called a macro.

The syntax of a macro is given as follows:

MACRO macro-name attribute . . .
i pattern) ;

macro-body

END MACRO;

Jn a macro, the pattern specifies the text that
the macro is to search for and match The text
matched by the pattern is then replaced by text
gencrated by the macro-body. Figure 1 is an
example of a macro that scarchcs for time values
;~nd rcplaces them with a string.

In this ex;iniple the p;lttcrn dcscr~bes a time
valuc as an integer, followcd by a colon, followed
by a second intcgcr, followed optionally by
another colon and ;i third integer. Whenever this
pattern is matched, the VAX SCAN product
rcplaces that occurrence of the pattern with the

Digilal Tecbtrical Journal
No. (5 Febrrtnrv 1388

Software
Productivity
Tools

text generated by the macro body. The algorithm
for generating the replacement text increments a
static variable named count and specifies the
replacement text with a special SCAN statement
called the ANSWER statement. The first time the
macro is invoked, the replacement text will
be the string "time: 1 ". The second invocation
of the macro produces the replacement text
" t ime : 2". The TRIGGER keyword determines
the type of macro, described later in the section
Invoking Macros.

The body of the macro in this example is writ-
ten using the procedural portion of the SCAN
language. This portion not only serves as a means
of creating replacement text, but also allows
the language to achieve integration with the
VAX/VMS environment. In that respect, SCAN is
similar to PASCAL.

The procedural portion of the SCAN lan-
guage includes procedures, functions, state-
ments, and data structures that a programmer
can use to interface with procedures written
in other VAX/VMS languages. Procedures that
can either call or be called by routines written
in other languages can encapsulate SCAN'S
text processing capabilities. This encapsula-
tion permits the VAX/VMS user to conveniently
access the unique capabilities of the SCAN
language.

Macros are the central construct of the SCAN
language. Some additional considerations must be
discussed, however, to fully understand the lan-
guage:

The origin of the language

The invocation of macros

The spccification of patterns

The method by which text matched by the pat-
tern can be viewed by thc macro body

The interplay between the procedural code
and text scanning

Origin ofthe Language
Few langi~ages are designed from scratch; SCAN
is no exception. The text processing paradigm
employed by the SCAN language is an outgrowth
of techniques developed for parsing computer
languages using context-frce grammars. These
techniques permit the syntax of a language to be
described by a grammar. Efficient algorithms arc
then used to check that an input stream of char-
acters conforms to the syntax specified by the
grammar.'

The MACRO language developed at Sperry Uni-
vac Corporation for their 1 100 Series computers
took this concept and applied it to string substi-
tution and, in fact, developed the notion of
macros that are found in the SCAN language.2 The
PASCAL language and the VAX/VMS architecture
also influenced the design of the SCAN language.
SCAN'S data structures and data types are based
on concepts in PASCAL. The desire for SCAN to
integrate well with the rest of the VAX/VMS envi-
ronrncnt mandated that i t be convenient to call
SCAN programs from other VAX/VMS languages.

Invoking Macros
Several principles influenced the rules used by
the SCAN language to invoke macros. Since a
pattern might appear numerous times in a file of
text, the first principle was to apply a macro each
time its pattern is found so that the macro can
make multiple transformations, just like an editor
substitution command. Second, it was important

MACRO find-time T R I G G E R (integer ' : ' integer [' : ' integer I > ;

DECLARE count: S T A T I C I N T E G E R ;

count = count + 1 ;
4NSWER 'time: ' , S T R I N G < count);

END MACRO;

Figure I Example of a Macro

VAX SCAN: Rule- based Text Processing Software

to be able to specify many concurrent substitu-
tions. Therefore, when a VAX SCAN program is
compiled, linked, and then run, it behaves much
like a batch (rather than an interactive) substitu-
tion command. The third principle in designing
macro invocation rules was that patterns may
be of varying degrees of complexity. To manage
very complex patterns, the patterns have to be
separable into parts, much like a program can be
separated into multiple procedures.

Two types of macros are defined to support
these principles: syntax macros, and trigger
macros. These names reflect the two different
macros distinguished by the attributes SYNTAX
and TRIGGER within a SCAN macro declaration.

Trigger macros provide search and replace
semantics. A program may contain any number
of trigger macros. Upon executing a START
SCAN statement, a program begins scanning
the input stream of text specified by that state-
ment for the patterns specified by the trigger
macros. Figure 2 illustrates a series of trigger
macros.

The file f ile-to-be-scanned. dat, in this
example (specified in the START SCAN state-
ment) is searched for a-pat tern, b-pat tern,
and c-pa t t e rn (specified in trigger macro pat-
terns). The file f i 1e-to-be-created. dat (also
specified in the START SCAN statement) is cre-
ated by the program. Its contents will be the orig-
inal file, f 1 1e-to-be-scanned. dat, including
the substitutions performed by the macros.

Syntax macros permit patterns to be defined in
terms of other patterns. That is, within one pat-
tern a programmer can request that a pattern
described by a separate syntax macro be recog-
nized. This concept of composing a pattern from
more elementary patterns is the basis of formal
language theory.' This topic is explored in
greater depth in the next section.

Specifying Patterns
The design of patterns is influenced by the fol-
lowing three sources:

1 . The BNF-style syntax diagrams customers
find in Digital's manuals

MACRO find-pattern-a TRIGGER { a-pattern > ;

ANSWER replacement-text;

E N D M A C R O ;

MACRO find-pattern-b TRIGGER b-pattern > ;

ANSWER replacement-text;

E N D M A C R O ;

MACRO find-pattern-c TRIGGER t c-pattern) ;

ANSWER replacement-text;

E N D M A C R O ;

PROCEDURE main-procedure M A I N ;

S T A R T SCAN

INPUT FILE 'file-to-be-scanned.dat'

O U T P U T F I L E 'file-to-be-created.dat';

E N D PROCEDURE;

Figure 2 Trigger Macro Example

4 2 Digital Technical Journal
No. 6 February I988

Software
Productivity
Tools

2 . Compiler theory for context-free grammars

3. The original MACRO language implemented
by Sperry Univac Corporation

Al l three sources recognize a two-level
approach for specifying patterns. The lower level
recognizes simple constructs, such as numbers,
keywords, names, and punctuation. The higher
level arranges the lower level constructs into
statements and groups of statements.

This two-level approach has several advan-
tages. Abstracting primitives into lower level
patterns results in a more uniform use of primi-
tives. That, in turn, makes the overall pattern
easier to remember, which is of great benefit
to a programmer trying to design a language
that he is trying to recognize using the VAX
SCAN product. Compiler theory also states that
lower level patterns can be recognized very
efficiently if they conform to a set of rules, such
as regular expressions.'

To take advantage of those features, the SCAN
language provides a two-level description of a
pattern. The lower level pattern, called a token,
groups characters. The higher level pattern that
appears in a macro is composed of tokens.

Figure 3 illustrates several SCAN tokens.
The syntax for the patterns comes largely from
the conventions used in Digital's software
manuals.' Curly braces surround a sequence
that is required, and square brackets surround
an optional sequence. An ellipsis indicates
that the prior sequence can occur multiple
times, and a vertical bar separates alternative
choices. Thus in the Figure 3 example,
morse-code-letter describes a required
sequence of " . " or "-" characters. This
required sequence can occur one or more times.

The token i den t i f i er illustrates the pattern
for an identifier in the SCAN language. The
token definition uses two sets, alpha and other,
to simplify the specification of its pattern.
The definitions of these sets appear in the exam-
ple as well.

In macros, higher level patterns are defined
using the same operators that are used in token
declarations. Unlike a lower level pattern,
however, the operands of a macro pattern are
tokens and other macros, rather than characters
and sets. Therefore, tokens are the building
blocks of a macro pattern. Referencing a macro
within a macro pattern provides a subroutine-
like capability for patterns. The placement of a
macro name in a macro pattern indicates that
the pattern of that macro should be recognized
at the point of reference.

Defining the pattern of one macro in terms
of other macros adds significant power to
SCAN'S patterns. This power, illustrated in Fig-
ure 4 , shows the syntax for a SCAN token decla-
ration. The pattern found in a token declara-
tion is equivalent to patterns that can be
described using regular expressions. Token
patterns need to express the precedence of
three operators: alternation, concatenation, and
repetition. In addition, a token pattern sup-
ports nested subpatterns that are either required
or optional.

This example utilizes macros to provide

Levels of abstraction

Sharing of patterns

Recursion

Levels of abstraction refers to the process of
building a hierarchy of concepts in which each

TOKEN morse-code-letter t { ' . ' : '-') . . .) ;

TOKEN begin-keyword { 'BEGIN' 1 ;

S E T alpha < 'a'..'~' O R ' A 8 . . ' Z ' 1 ;

S E T other < '08..'9' O R ' S ' O R '-' 1;
TOKEN identifier { alpha [alpha : other I . . . 1 ;

Figure 3 Token Examples

Digital Technical Journal
No. 6 F e b r u a ~ ~ 1988

4 3

VAX SCAN: Rule-based Text Processing SoJware

level of the hierarchy is built on the next lower
level. The SCAN language justifies two levels
of patterns, tokens and macros, based on this
principle. In Figure 4 , the principle is employed
further. Token-declarat ion is defined in terms
of to k en-pa t tern, which is defined in terms of
token-operand. Each macro describes a level
of abstraction that makes a c o ~ n p l e x pattern
both simpler to write and to understand. In this
particular example, the levels expose the prece-
dence of the three token pattern operators.
T-pa t 3 and to k en-pa t t er n are examples of

sharing patterns by means of macros. Much as a
subroutine is a vehicle for sharing code in a
FORTRAN program, macros are a vehicle for
sharing a pattern in SCAN.

Recursion - defining a pattern in terms of
itself - is very useful in the description of many
patterns, especially when patterns can be nested
as in the case of a token pattern. In Figure 4 ,
token-pa t tern is defined in terms of
to k en-pa t tern because token patterns can be
arbitrarily nested using curly braces and square
brackets.

T O K E N token-keyword ! patterns for the tokens

T O K E N identifier ! have been omitted

T O K E N character-string
T O K E N ' ; '
T O K E N ' I '

T O K E N ' ['
T O K E N ' l '

T O K E N 't'....
T O K E N ') '
T O K E N ' ; '
T O K E N ' . . . '

! syntax for token declaration

MACRO token-declaration S Y N T A X

t token-keyword identifier 't' token-pattern ') ' ' ; ' 1 ;

! syntax for alternation

MACRO token-pattern S Y N T A X t t-pat3 [' : ' t-pat3 I . . . 1 ;

! syntax for concatenation

MACRO t-pat3 S Y N T A X tt-pat2 . . .) ;

! syntax for repetition

MACRO t-pat2 S Y N T A X t t-pat1 [' . . . ' I) ;

! syntax for optional and required patterns

MACRO t-pat1 S Y N T A X t token-operand

: ' [' token-pattern ' I '

: 't' token-pattern ') ' 1 ;

! syntax for operands

MACRO token-operand S Y N T A X t character-string : identifier 1 ;

Figure 4 Syntax iMacro Example

4 4 Digitd Tecbnicd Journal
N o . (i February I988

Software
Productivity
Tools

Viewing Matched Text in the Macro
Body
Macro patterns provided a simple mechanism
for describing complex patterns. Macro bodies
provided a powerful mechanism for creating
replacement text. For a complete solution, the
SCAN language needed a robust means so that a
macro body could view the text matched by the
pattern.

A solution to this problem was provided in
the original IMACRO language. That solution
consisted of inserting variables in the pattern to
capture the text matched by a segment of the pat-
tern. See Figure 5 for an example.
Hour, minute, and second are variables

inserted to capture matched text. Hour is
assigned the text matched by the first integer
token. M i nut e is assigned the text matched
by the second integer token. Second holds the
text matched by the third integer token, which
may be the null string if the optional pattern
[' : * integer 1 is not matched.

A pattern can, in fact, contain an arbitrary num-
ber of variables, each of which can capture the
text, line number, and column position of one or
more tokens matched by the pattern.

Interplay between Procedural Code
and Text Scanning
The SCAN language is an interesting amalga-
mation of a rule-based language and a proce-
dural language. The text scanning capabilities of
the SCAN language are rule-based. Tokens and
macros describe the rules for recognizing pat-
terns. These descriptions have no concept of
flow of control. Macro bodies, on the other hand,
are algorithms with a very definite concept of
flow of control. The interaction of the rule-based
and procedural parts of SCAN is a key principle of
the language.

A SCAN program starts executing in procedural
mode at the start of its main procedure. That
main procedure may be a SCAN main procedure
or one written in another VAXfVMS language.
The rule-based technique of pattern matching
begins with the execution of a START SCAN state-
ment. The START SCAN statement specifies the
input stream to be scanned by the macros and the
output stream to hold the transformed input
stream. The main procedure in Figure 6 is a SCAN
main procedure named mai n-proc. The START
SCAN statement commences the search for the pat-
tern described by the macro trans late-mor se.

CONSTANT h = *hhn;

CONSTANT m = 'mm';

CONSTANT s = 'ss';

! replace a time such as 5 : 4 5 : 0 1 with h : m m : s s

! where number o f h'5, m's and 5's corresponds to the number

! of digits in the time

MACRO find-time TRIGGER
hour: integer ':' minute: integer [':' second: integer I) ;

ANSWER h[l . . L E N G T H < hour) I , ': ';

ANSWER mC l . . L E N G T H < minute)I;

I F second < > "
THEN

ANSWER ' : ' , ht l . . L E N G T H (second 1 1 ;

END I F ;

END MACRO;

Figure 5 Variables for Capturing Matched Text

Digital Technical Journal
N o . 6 February 1988

4 5

VAX SCAN: Rule- based Text Processing Software

Each time a macro matches its specified pat-
tern, procedure mode is entered for thc duration
of the execution of the macro body. When the
macro body completes execution, the text
replacing the matched text will have been gencr-
ated and can be substituted in the output stream
for the matched text.

Eventually, the input stream will be exh;iustecl
and the output stream completes. At this point,
execution continues with the statement follow-
ing the START SCAN that initiated pattern match-
ing, and the program returns to procedural
mode.

Sofiware Productivity Benefits of
Using VAX SCAN
Increasing software productivity depends on
reducing the cost of implementing software
whilc maintaining a high degree of reliability.

Within its problem domain, the VAX S G W
product increases programmer productivity
by dramatically simplifying the solution to a
problem. Consider the following program frag-
ment:

TOKEN s p a c e t t ' ' : s ' h t ') ... 1'

MACRO c o m p r e s s TRIGGER t s p a c e) ;

ANSWER ' ' ;
END MACRO;

PROCEDURE m a i n - p r o c MAIN;

START SCAN

INPUT F I L E ' i n p u t - l o g i c a l '

OUTPUT F I L E ' o u t p u t - l o g i c a l ' ;

END PROCEDURE;

This short sequence expresses the concepts of
opening a file, scanning it for arbitrary-length

MODULE m o r s e - c o d e ;

DECLARE l e t t e r - c o u n t , e r r o r - c o u n t : INTEGER;

EXTERNAL PROCEDURE

m o r s e - t o - a s c i l (DYNAMIC STRING, F IXED STRING(1) OF BOOLEAN;

TOKEN m o r s e - l e t t e r < < * . ' : '-') . . . 1;

MACRO t r a n s l a t e - m o r s e TRIGGER < d o t s : m o r s e - l e t t e r) ;

DECLARE c h a r : FIXED STRINGCI) ;

I F m o r s e - t o - a s c i i C d o t s , c h a r)

THEN

ANSWER c h a r ;

ELSE

e r r o r - c o u n t = e r r o r - c o u n t + 1 ;

END I F ;

l e t t e r - c o u n t = l e t t e r - c o u n t + 1 ;

END MACRO / * t r a n s l a t e - m o r s e * / ;

PROCEDURE m a i n - p r o c MAIN;

l e t t e r - c o u n t = 0 ; e r r o r - c o u n t = 0 ;

START SCAN

INPUT STRING ' . . . - .- -. .- / . . . -.-. .-
OUTPUT F I L E ' ~ . y s $ o u t p u t ' ;

WRITE l e t t e r - c o u n t , e r r o r - c o u n t ;

END PROCEDURE / * m a i n - p r o c ' 1 ;

END MODULE / * rnorse-code * / ;

Figure 6 A Complete SCAN Progrulrrn

4 6 Digital Technical Journal
No. 6 Februaty 1988

Software
Productivity
Tools

sequences of contiguous blanks and tabs (s'ht' is
the SCAN notation for a horizontal tab), replacing
the matched sequence with a single blank, and
placing a copy of the modified input file in an
output file.

The sequence is at least one order of magni-
tude shorter than an equivalent algorithm in PAS-
CAL. In general, using SCAN decreases the times
to design, code, debug, and maintain programs.

The domain of programs well suited for imple-
mentation using the VAX SCAN product is some-
what difficult to assess. In this section, several
types of applications are surveyed to give an idea
of the range of applications and the cost of imple-
menting each.

A typical use of the VAX SCAN product is to
create a tool that will extract information from
a set of files. An example of an extractor is a
program to read a VAX SCAN source file and
report the numbers of blank lines, the lines
containing just comments, and the lines contain-
ing code. A version of such an extractor was
written to gather statistics for this paper. The
program prompts for a file specification, which
may contain wild-card characters, and then scans
all the files that match the file specification.
The program lists the statistics for each file
matched and the totals for all files scanned. The
extractor consists of 50 lines of code, 25 blank
lines, and 3 lines of comments; the entire extrac-
tor program took approximately 30 minutes to
create and debug.

Mother typical use is to build translators.
Translators make modifications to parts of a file
and leave the rest of the file unchanged. During
the development of the SCAN language, several
changes were made to its syntax. For example,
parentheses were changed to braces in token and
macro patterns, and files became explicitly
declared rather than implicitly declared objects.
Rather than change all the programs in the test
system manually, we wrote a translator to do the
job. The program consists of 188 lines of code,
6 0 blank lines, and 7 comment lines. Like the
previous example, the program converts all files
that match a specified file specification and
reports which files were modified.

A third example that merges the concepts of an
extractor and a translator is a program that reads
BASIC source files that may contain record decla-
rations. For each BASIC record declaration en-
countered, the SCAN program outputs an equiva-
lent VAX Common Data Dictionary declaration.
This program consists of 207 lines of code and 71
lines of comments and took approximately one
workday to write and debug. Sample input and out-
put for this record translator is given in Figure 7.

A language with a limited problem domain has
the potential to decrease programmer productiv-
ity, because such a language is unlikely to be a
programmer's main implementation language.
Thus a programmer has a tendency to forget the
details of the language, which in turn decreases
his efficiency.

I n p u t O u t p u t

2 0 0 RECORD e x a m p l e

BYTE a , b

INTEGER WORD c < 5)
GROUP n e s t e d - g r o u p

HFLOAT d < 1 0 , 1 0)

STRING e = S
REAL f

END GROUP
END RECORD

e x a m p l e STRUCTURE.
a DATATYPE SIGNED BYTE.

b DATATYPE SIGNED BYTE.

c DATATYPE SIGNED WORD ARRAY 0 : s .
n e s t e d - g r o u p STRUCTURE.

d DATATYPE H-FLOATING ARRAY 0 : 1 0 0 : l O .

e DATATYPE TEXT S I Z E 5 .
f DATATYPE F-FLOATING.

END n e s t e d - g r o u p STRUCTURE.

END e x a m p l e STRUCTURE.
3 0 0 END

Figure 7 Sample Input and Output for Record Trunslator

Digital Tecbnfcal Journal
No. G February I988

47

VAX SCAN: Rule- based Text Processing Sofiwrrre

VAX SCAN attempts to minimize this problem
by

Basing pattern matching constructs on syntax
diagrams used in Digital's documentation

Providing a VAX Language-Sensitive Editor
interface for creating and compiling SCAN
programs

Adding support for the VAX/VMS Debugger,
including features to monitor pattern match-
ing

Providing simple integration with procedures
written in other VAX/VMS languages

Basing the syntax on a well-known language,
PASCAL

Providing an extensive on-line help facility

In summary, the benefits of using the VAX
SCAN product are twofold. First, for a large class
of problems, SCAN drastically reduces the cost of
designing, implementing, and maintaining the
solution to those problems. Second, the product
contains many ease-of-use features to minimize
the overall cost of software development.

Leveraging the VAX S W
Implementation
The initial version of the VAX SCAN product took
approximately three developer-years to produce.
This period includes the time to design the lan-
guage, design and implement the VAX SCAN com-
piler and the run-time library, and internally test
the product. The initial version was ready to be
field tested by customers at the end of the thrce-
developer-year effort.

Producing an optimizing compiler and run-
time library in only three developer-years is a
significant accomplishment. Three factors in
Digital's engineering environment contributed
greatly to making this level of software produc-
tivity possible.

Digital's Software Development Policies and
Procedures

The VAX/VMS software environment

The VAX/VMS tool set

Digital's Software Development
Policies a n d Procedures
Digital's Software Development Policies and Pro-
cedures define the life cycle of a standard Digital
software This life cycle is dividcd into
five phases.

Phase 0 - Requirements gathering

Phase 1 - Design of the product

Phase 2 - Implementation of the product

Phase 3 - Field testing of the product

Phase 4 - Maintenance of the product

Each phase has a set of inputs and outputs. The
output of Phase 0 is a product-requirements doc-
ument that becomes an input to Phase 1. The out-
put of Phase 1 includes a description of the
product at a level that can be documented, a
design of the product to a level at which the
implementation costs can be estimated, and a
development plan describing Phase 2 as a set of
scheduled tasks.

These procedures and policies greatly reduce
the effort required to manage a project by provid-
ing a common model for describing a project.
The procedures provide a common framework
and terminology to address issues of scheduling,
cost, and task completion. A project manager,
his team members, and people from other sup-
porting groups, such as field test administration,
all measure their efforts in terms of these com-
mon parameters. Since the definitions of tasks are
specified as standards, time is not wasted dis-
cussing differences of opinions about these defi-
nitions. As a result, the different groups that
develop, field test, and manufacture the product
can work rather independently. The phase pro-
cess details at what times those groups need to
coordinate their activities and the manner in
which they will do so.

Many of the documents that are part of the
phase process have markup language templates.
Each template outlines the contents of the docu-
ment and includes a series of questions and
checklists of the items to be considered during
the preparation of the document. The questions
and checklists are a distillation of the successes
and failures of previous software products; the
use of these questions and checklists helps to
reduce the number of unanticipated problems
that often plague software development.

Digital's Software Development Policies and
Procedures provided a platform on which the
VAX SCAN team built their product. By follow-
ing these guidelines, less time was spent man-
aging the project, leaving more time for the
design and development of the final product.

Digital Technical Journal
No. 6 February 1988

Software
Productivity
Tools

V M / V M S S o f t w a r e E n v i r o n m e n t
At Digital, software engineers have always strived
to achieve a high degree of integration among
VAX/VMS products. For example, command line
parsing for most products is provided by a com-
mon command line utility. The use of the VAX
RMS product as the standard 1 /0 package is
another example. VAX languages foster integra-
tion by supporting parts of an application being
written in different languages. To meet this level
of integration, Digital has evolved standards that
describe

Calling sequence

Format of data types

Format of descriptors

Alignment of record fields

Processing of exceptions

Interface to the debugger

Management of dynamic storage

Structure of files

For a product like VAX SCAN, each standard
represents a design problem that had already
been solved. The VAX SCAN product simply had
to conform to each existing standard.

The desire for an integrated language environ-
ment naturally results in shared code among VMS
products. Initially, this sharing existed only at
run time in a common math library and a com-
mon record management system. Eventually,
however, engineers recognized that large sec-
tions of code were being duplicated over and
over again in each compiler. Therefore, the next
logical step was to develop a common compiler
with language-specific sections to handle lan-
guage-specific tasks such as parsing. On the
VAX/VMS system, this common compiler is the
VAX Code Generator (VCG).

At the time SCAN was being designed, the VCG
supported the VAX PL/I and the VAX C compil-
ers. Moreover, work was underway to support the
VAX Ada compiler. The VCG included

Aglobal and peephole optimizer

A comprehensive code generator

Object module generation

Listing and error-message facilities

Digital Tecbnfcal Journal
No. G February I388

. Command line interpretation

Internal memory management

Tools for debugging a compiler

During the design phase (Phase 1) of the VAX
SCAN project, the team created a prototype for
the product using the VCG to generate code for
SCAN concepts that were new to the VCG. The
success of this prototype effort showed that using
the VCG concept was the correct solution to
reducing the development cost of the VAX SCAN
product.

The final results were impressive. By using the
VCG, the team cut the cost of implementing the
SCAN compiler by at least a factor of three. At the
same time, the VAX SCAN compiler generates
high-performance machine code to move strings
and perform arithmetic operations that rivals the
performance of any of the other VAX compilers.

The productivity benefits gained by using the
common code generator are far reaching. Bug
rates in the code generator are remarkably low,
because the code generator is tested by four dif-
ferent languages. In addition, as new demands
are made for compilers to support tools such as
the VAX Language-Sensitive Editor, the work
needed to support the tool is divided in two:
the language-specific work, and the common
work needed by all the compilers supported by
the VCG. Frequently, this duality reduces the
amount of work the VAX SCAN product must
do to support such tools. Finally, each VCG
improvement is actually an improvement for four
languages. 'Thus, for example, a better register
allocation algorithm benefits all four languages
because it will be added to the common portion
of each compiler.

The original vision of VAX/VMS products being
well integrated had a handsome payback for the
VAX SCAN product. First, it resulted in a set of
standards that defined many of SCAN'S external
and internal interfaces. Second, integration fos-
tered code sharing, which greatly reduced the
cost of implementing the VAX SCAN software.

VAX/VMS Tool Set
Building software systems without the proper
tools can be an inefficient and difficult process.
Several of the tools available in the VAX/VMS
environment are topics of other articles in this
issue of the Digital Technical J ~ u r n a l . ~ ' ~ " ' "

Robert A. Conti I

Software Productivity Features
Provided by the Ada Language
and the VAXAda Compiler

The Ada language provides a number of features that can increase soft-
ware development productivity. Many of these, sucb as packages, tasks,
and exceptions are not present in conventional programming languages
(such as C, FORTRAN, and Pascal). Others, such as strong typing rules,
range-checking, and portability, are prouided by some conventional lan-
guages, but not all. Beyond the inberent Ada language features, Digital's
Ada compiler for the VMS operating system provides additional features
that enbance productivity. Examples are automatic inlining, portability
checking, and a comprehensive program library manager. This paper
introduces the major productivity features of both the Ada language and
Digital's Ada compiler, and describes some of the benefits that result.

Ada 3 Contribution to Productivity
For the purposes of this paper, software produc-
tivity will be defined to be the total profit gener-
ated by a software product divided by the total
development costs (nowadays, mostly labor)
required to design, develop, test, maintain, and
enhance the product over its entire life cycle.
This definition of software productivity is one
that the manager of a commercial software busi-
ness might use. By including both profit and
expense, this definition also includes the effects
of attributes that are associated with software
quality, attributes such as

Compatibility

Ease of implementation

Ease of use

Execution time

Future extensibility

Maintainability

Memory space

Portability of applications

Reliability

Response time

Reuse of software components

Tailorability

Time to market

User expectations

It should be apparent that the traditional use of
"lines of code per day" to define software pro-
ductivity is incomplete in comparison with the
definition used in this paper.

The U.S. Government developed the Ada pro-
gramming language to help decrease the life-
cycle costs of its computer programs. (Profit
was not a factor.) Ada's features are intended to
make software easier to design, read, and mod-
ify, as well as to be more reliable and portable
between computer systems. In short, the fea-
tures are intended either to reduce expenses or
increase the quality of the software. Both of
these effects make software development more
productive according to our definition of pro-
ductivity. Commercial enterprises should also be
able to achieve improved software productivity
by using Ada.

In March 1985, Digital released its VAX Ada
compiler product for computers running the

Digital Technical Journal
NO. 6 February I988

5 1

Software Productivity Features Prozlided by the Ada Language

VMS operating system. This product includes a
number of additional features that reduce costs
or improve software quality.

Although we have not made actual measure-
ments of the productivity increases that would
result from using Ada in general, and VAX Ada in
particular, our experience in developing soft-
ware in other languages indicates that certain
features are quite beneficial. This paper intro-
duces those features. We encourage the reader
to reflect upon their collective impact.

Familiarity with a conventional program-
ming language, such as FORTRAN, C, Pascal,
or BLISS, is assumed. (References 1, 2, and 3
are textbooks containing detailed information
on programming in the Ada language. Refer-
ence 4 is the more formal and technical lan-
guage standard.)

Inherent Productivity Features of the
Ada Language
The Ada language has inherent compiler-inde-
pendent features that offer great promise for
improving productivity. These features can be
categorized as either "new" (those that would
be novel to a FORTRAN, C, or even a Pascal
programmer) or "improved" (those that may
exist in other languages but have been improved
in Ada).

New Features and Their Benefits
The new features of the Ada language support
several modern software engineering concepts
that can improve productivity.

Formal Separation of Specification and Body
Many software interfaces are designed with too
much knowledge of the current implementation
details. In some cases, the interfaces are even
produced as a side-effect of doing the imple-
mentation. This common error of blurring the
distinction between interface and implementa-
tion often results in haphazardly designed soft-
ware with poor quality. The software is often
difficult to extend (because it depends unneces-
sarily on some arbitrary detail of the first imple-
mentation), and its performance is hard to
improve (because the implementation cannot be
replaced by one with different arbitrary details).
Moreover, the software is often too closely cou-
pled to functionally unrelated software, is not
portable to other targets, and is inconsistent in

the view it presents to its clients. The term
clicnts here refers to all the software that relies
upon the features provided by the interface.

Good programmers have learned to informally
discipline themselves to recognize the distinc-
tion between interface and implementation, and
to design interfaces that are independent of an
implementation. The Ada language formalizes
this design practice by allowing a programmer
to code the interface (the specification) sepa-
rately from the implementation (the body) for
program units such as procedures and functions.
The language requires this separation for other
program units such as packages and tasks (to be
described later).

The following example illustrates this separa-
tion: 5

-- The specification defines
-- what the caller can rely upon.
--
procedure SORT C X : in out WIDGETS);

-- The body contains the current
-- implementation.
- -
procedure SORT C X : in out WIDGETS) is

-- Declarations go here.
begin

-- Details of the current sort

-- algorithm go here.

end;

The following benefits accrue from formaliz-
ing this separation of the specification from the
body:

Improving the implementation is easier.
Client software is less likely to depend on
details of the first implementation; instead, it
depends on just the interface.

The client software is portable to other
targets, because changes in implementation
details are more likely to be hidden from
clients rather than entangled in the interfaces.

Consistent user views are maintained. The
interfaces tend to be more logical because the
design can be done before the implementa-
tion details are considered.

The software tends to be more decoupled
from unrelated software. (It tends to be more
"modular.")

Digital Tecbnical Journal
No. 6 February 1388

Software
Productivity
Tools

Packages
Programmers often use the term "software pack-
ages" informally to describe collections of
related types, declarations, and operations. Con-
ventional languages provide no way to bind such
related software together.

The Ada language formalizes the concept of
package. An Ada package has a specification,
which contains what the client software sees,
and a body, which contains the package's cur-
rent implementation. The specification contains
rypes, objects, and subprogram specifications
that define the interface for the package's
clients. The body supplies the bodies for the
subprogram specifications and anything else
needed to implement them. The specification
and the body can be compiled separately, so that
interfaces can be developed and checked long
before the implementation is coded.

The following example shows a package
specification and body for a window manager:

package WINDOW-MANAGER is

-- This section would contain the
-- specification of data,
-- procedures, and functions that

-- represent or operate upon
-- windows, and can be used by

-- client software.

-- The specification for a
-- procedure that creates

-- windows.
procedure CREATE-WINDOW

(W : out WINDOW);

...
end;

package body WINDOW-MANAGER is

-- T h i s section corresponds to the
-- current implementation of the

-- window manager.
-- The body of a procedure that

-- creates windows.
procedure CREATE-WINDOW

(W : out WINDOW) is

begin

. . .
end;

e n d ;

Packages promise easier use and modification
of software. Related objects and operations tend
to be grouped in the same package, thus making

Digital Technical Journal
No. 6 February 1388

them easier for a user to find and comprehend.
The collocation of related implementation soft-
ware in the package body allows a maintainer to
better understand the ramifications of a potential
change.

Support for Abstract Data Types
Abstract data types are a relatively recent com-
puter science concept. An abstract data type rep-
resents a set of abstract objects having a well-
defined set of applicable operations. A client can
operate upon an object only with the operations
provided. Information about the internal struc-
ture of the object is hidden from the client.

The benefits of this information hiding are
that the programmer of the client software is
presented with a simpler conceptual model,
one containing only the information that is
essential for a client to know. Furthermore,
client software cannot apply arbitrary opera-
tions to the object and thereby become depen-
dent on accidental internal details that might
need to change in a future implementation.
Information hiding makes implementation of
the object easier, because hiding clarifies which
information current clients depend on and
which information can be changed without
affecting them.

Ada formalizes the concept of information hid-
ing by allowing an implementor to declare "pri-
vate types" in a package specification. Although
clients can declare objects of a private type, only
the implementation code in the package body
can operate on the detailed internals of such
objects. For example, if the object represents a
window on the terminal, the client may only be
allowed to request that it be shrunk, etc. How-
ever, the implementation may need to privately
associate the window with a file and can store
the file name within the window object, hidden
from the client.

Figure 1 illustrates the two views of an
abstract data type.

Ada's support of abstract data types should
enhance an implementor's ability to extend
applications in the future, as well as to make
software more reliable.

Tasks
Most operating systems provide constructs to
support concurrent execution, even on unipro-
cessors. But these constructs are typically very
low level and difficult to use, and they are cer-

Sopware Productivity Features Provided by the Ada Language

package WINDOW-MANAGER is

-- The client knows the object only by the operations

-- that a r e provided here.
type WINDOW is private;

procedure SHRINK-WINDOW CW : WINDOW; P : PERCENTAGE);

. . .
end;

package body WINDOW-MANAGER is

-- T h e implementation knows the object by its internal

-- structure. In this case the window is really a record.

type WINDOW-IMPLEMENTATION is

record

F : FILE-TYPE;

end;

...
end;

Figure I Two Views of an Abstract Data Type

tainly not portable. The Ada language is one of
the few widely available programming languages
that has built-in constructs for concurrency
(called tasks). Ada's tasks are both easy to use and
portable; the language standard requires that all
implementations support tasks in a specified
manner.

An Ada task is like a procedure that executes in
parallel with other pans of the program. A task
starts executing as soon as the first statement of
its declaring unit executes; tasks need not be
started explicitly. Like packages and subpro-
grams, a task has a specification and a body.

The following example illustrates the essential
syntax of a task:

task T i5

-- This section would declare
-- the entrles that client
-- software can call.

end ;

task body T 15
begin

-- This 5ection would contain the
- - step5 that the task

-- execute5 in parallel with
-- other tasks.

end ;

Although not required by the Ada language
specification, the Ada marketplace highly values
the ability of an Ada compiler to execute other
tasks while one task is waiting for an 1 /0 comple-

tion. Implementations that support this feature
(such as VAX Ada) provide a powerful reason to
use tasks - even on a uniprocessor - to easily
obtain greater throughput and responsiveness
from an otherwise 1/0 bound program. On multi-
processors, users expect that an Ada implementa-
tion will assign different tasks to different pro-
cessors for a program speedup. (VAX Ada does
not currently have this feature.)

Using tasks written in Ada rather than the con-
currency primitives provided by the operating
system can lead to better productivity because

rn Tasks are portable (less rework)

rn Tasks are easier to understand (reduced
maintenance)

Tasks are easier to code (faster time to market)

rn Using tasks on a uniprocessor results in free
performance improvements when multipro-
cessor support becomes available

Like other Ada constructs, tasks also improve
the overall thought process (even on a uniproces-
sor). Programmers soon stop "thinking serially."
With tasks able to do asynchronous I/O, it
becomes unthinkable to lock up the user's key-
board while a program does work that could be
done in the background. As a result, products
using tasks are more likely to be responsive to
user inputs. This benefit is important for any
product with a user interface.

Digital Technical Journal
No. G February 1988

Separation of Representation from Type
In many programming languages, integer vari-
ables are intimately bound to the attributes of a
particular machine. For example, integer vari-
ables are often bound to the number of bits
needed to represent some integer machine type.

The Ada language separates the inherent prop-
erties of a variable's type from the underlying
machine types. For example, the declaration

t y p e PLANET-NUMBER i s r a n g e 1. .9 ;

SPACECRAFT-LOCATION : PLANET-NUMBER;

says only that type PLANETJVUMBER needs a
range of 1 to 9; the corresponding machine type
is neither apparent nor important. The compiler,
not the programmer, chooses which hardware
data type will actually be used (for example,
8, 16, or 32 bits). This general concept - in
which the most a programmer need specify are
the range and precision, and the implementation
chooses the detailed representation - is present
for all Ada types. For cases in which detailed
representations are important, the language pro-

vides a way to force data representations and stor-
age layouts.

Separating the types from their representations
achieves portability between machines (provid-
ing of, of course, that a machine type can be
found that can satisfy the required range). Error
checking is enhanced because the compiler auto-
matically checks that the value of the variable
stays within its declared range.

Exception Handling
In the conventional languages without built-in
exception handling, a programmer must manage
status variables that indicate whether or not a call
to a procedure has failed. In addition, those lan-
guages provide no easy means for automatically
passing error notifications to the calling routine
or for cleanly specifying recovery actions.

In contrast, the Ada language has built-in fea-
tures for handling exceptions. A programmer can
decide which error conditions should be defined,
when they should be signified, and how they are
to be handled. Moreover, all these features are
portable. Figure 2 shows how this feature works.

-- T h e e r r o r c o n d i t i o n i s d e c l a r e d .

LOST-THE-LINE : e x c e p t i o n ;

p r o c e d u r e GET-DATA i s

b e g i n

i f STATUS / = NORMAL

t h e n

r a i s e L O S T - T H E - L I N E ; -- T h i s s t a t e m e n t s i g n i f i e s t h a t t h e e r r o r h a s o c c u r r e d .

end i f ;

e n d ;

p r o c e d u r e TEST-COMM-LINE is

b e g i n

-- T h i s s e c t i o n c a l l s r o u t i n e s t h a t c a n r a i s e e x c e p t i o n s .

GET-DATA ;

e x c e p t i o n

-- T h i s s e c t i o n s p e c i f i e s a l l t h e e r r o r h a n d l i n g c o d e f o r t h i s p r o c e d u r e .

when LOST-THE-LINE = > NOTIFY-REPAIR-STAT ION;

r a i s e ; -- T h i s s t a t e m e n t p a s s e s t h e

-- c u r r e n t e r r o r t o t h e c a l l e r .
e n d ;

Figure 2 Example of Ada 3 Features for Exception Handling

Dig i fd Technical Journal
No 6 February 1,988

5 5

Software
Productivity
Tools

Software Productivity Features Provided by the Ada Language

I

Because error handling is easily programmed
in the Ada language, error-handling code is easier
to read, and the constructed software is likely to
be more reliable.

Dynamic Memory
Another feature often absent from conventional
languages is the allocation and deallocation of
dynamic memory. Although many operating sys-
tems provide this feature, most do not provide it
in a portable form.

Ada, however, has a built-in dynamic memory
feature that all Ada implementations support:
pointer variables can be declared, and they can
have dynamic objects assigned to them. Figure 3
describes how pointer variables can be used.

Ada's dynamic memory feature increases
portability. In addition, because Ada's pointers
are typed (can only point to objects of specified
type), two other benefits accrue: It makes their
use less error-prone, and it enables a compiler to
exploit the additional knowledge it has about the
objects, such as their maximum and minimum
size, for optimization.

The Program Libra y
In most conventional languages, each procedure
is compiled independently of other procedures.
Thus it is possible to have a set of software rou-
tines that is inconsistent. For example, callers
could assume certain conditions about the inter-
face, yet those conditions may have changed.

The Ada language addresses this problem by
requiring a program library to hold a consistent
copy of all program units. The program library
manager makes it impossible to link a program
that has internal inconsistencies caused by obso-

lete interface specifications. This feature saves
the time that would otherwise be spent tracking
down obscure run-time errors.

The presence of a program library also creates
the opportunity for Ada implementations to
provide many other additional features and bene-
fits. Some features that become possible, many of
which are now common among implementations
in the industry, are . A simplified means of compiling and linking

the entire program
A simplified means of recompiling program
units after another unit on which they depend
has changed
Query functions to answer questions about the
program as a whole
Ways of using multiple libraries together to
realistically match project needs
Optimizations that take into account more
than one procedure (interprocedural opti-
mizations)
Subsystems, that is, the ability to restrict client
software to use only certain allowed interfaces

The more important productivity benefits
likely to accrue are faster development, and less
time spent tracking down obscure errors.

Overloading
Most programming languages require a unique
name for each program unit declared. The Ada
language, however, allows any number of pro-
gram units to have the same name, provided that
the units have different interfaces, called signa-
tures. This concept, called overloading, allows
procedures that have the same logical effect but

type PTR is access N O D E ; -- T h i s statement declares a pointer
-- type.

X : P T R ; -- T h i s statement declares a pointer
-- variable.

X : = new N O D E ; -- T h i s statement dynamically
-- allocates an object and assigns
-- a pointer t o it.

Figure 3 Ada Pointer Variable

5 6 DigftaL TecbnZcal Journal
No. 6 February 1988

Software
Productivity
Tools

that operate on different data types to have the
same name. For example, a package defining
both vectors and matrices could have two proce-
dures called CREATE and two called DELETE.
There is no need to construct artificially different
names to differentiate between the procedures.

Overloading helps implement the principle of
orthogonality, which means that each operation
applying to one object type can also apply to any
other object type, whenever that is meaningful.
Overloading is simply a generalization of the
common language feature allowing arithmetic
operations to be applied to both integers and real
numbers. Ada allows a programmer to define the
meanings of most built-in operators for any pro-
grammer-defined data types; for example, one
can define an addition operation for one's own
matrix type.

Generics
Many languages force programmers to recode
utility operations for each type of data on which
they will operate. For example, different proce-

dures are needed for sorting integers and one-
dimensional arrays, even though a programmer
may want to use the same sorting algorithm for
both.

In contrast, the Ada language allows the defi-
nition of a generic form of package, procedure,
or function. A generic program unit is indepen-
dent of the type of data on which the program
unit operates. This feature allows algorithms to
be coded in their purest abstract form.

After defining a generic program unit, a pro-
grammer can then create an executable program
unit by specifying the actual types upon which
the generic unit is to operate. Creating an exe-
cutable instance of a generic unit is called
"instantiating" the generic unit. When instantiat-
ing the generic, one can also specify as parame-
ters any procedures, functions, or tasks that need
to be called by the unit. For example, a generic
sort package may need to pass the function "less
than" for the particular type to be sorted, such
as a matrix.

Figure 4 illustrates the use of generics.

generic

-- Declare that a n arbitrary type is to be specified a s
-- the actual type to be sorted.
type ELEMENT-TYPE is private;

-- Since nothing is assumed about the type, the

-- comparison function must be passed in a s a parameter.

with function "<Im (L : ELEMENT-TYPE, R : ELEMENT-TYPE)

return BOOLEAN;

package QUICKSORT is

-- The sort package interface would be written here.
end;

package body QUICKSORT is

-- The generic implementation would be written in this

-- section; it would use the passed-in function "<" .
end;

-- T h e following statements create a n instance of the QUICKSORT package
-- for the type BOXCAR which is defined in package TRAINS. T h e generated

-- package is now capable of sorting BOXCARS using the quicksort method.

with QUICKSORT;

package QS-BOXCAR is new QUICKSORT <TRAINS.BOXCAR, TRAINS."<" 1;

Figure 4 Example Use of Generics in Ada

Digital Technical Journal
No. 6 February 1988

57

L Sofiuvrre Productivity Features Provided by the Ada Language

I
Generics allow the easy reuse of software, thus

avoiding the inevitable errors caused by recoding
an algorithm. The promise of generics is that one
can truly code an algorithm just once.

Improved Features and Their Benefits
Ada improves upon a number of features that are
commonly provided by other languages. In gen-
eral, these features increase the amount of
checking done at compile time, and thus save
debugging time and make modifications easier to
accomplish.

Strong Typing Rules
Like several other languages, Ada allows a pro-
grammer to define not just variables but types of
variables. A type is simply a template for a set of
values that share some properties. For example,
the type named INTEGER describes a set of dis-
crete, signed values with a certain range and per-
mits certain well-defined operations, such as
addition and subtraction. (A type does not have a
size; objects have that property.)

The Ada language also allows a programmer to
define a derived type, which is a new type whose
properties are derived from a parent type.
Although a derived type has the same properties
as its parent type, its values, like the values of any
other type, have different meanings and cannot
be mixed freely with the values of other types.

Ada also provides the subtype construct, a way
to name part of the full range of values of a type.

Ada's rules for mixing variables of different
types within the same expression are stronger
than the rules in other typed languages, such as
Pascal. The only implicit type conversions
allowed in Ada are between numeric literals and
compatible numeric types. No implicit conver-
sions are allowed between values of different
types. Type conversions can be done, but pro-
grammers must explicitly write them. Every
compiler is required to report an error if an
attempt is made to combine different types with-
out conversion.

The main benefit of these typing rules is
that, when used properly, they help with error
detection. An Ada compiler will detect many
errors during compilation that might not even
be checked for in other languages, or that
might not immediately manifest themselves even
at run-time. For example, typing can prevent
the accidental truncation of a real number to
an integer when rounding is required. Simi-
larly, typing can prevent the accidental addition
of a variable in feet to one in yards, or the addi-
tion of an employee's ID number to his or her
salary.

Figure 5 illustrates several forms of type defini-
tion and use.

-- Define a machine-independent type and a subtype.

type PHYSICAL-NUMBER is digits 8 range -1.OE35 . . 1.OE35;
subtype POSITIVE-PHYSICAL-NUMBER is

PHYSICAL-NUMBER range O.O..PHYSICAL-NUMBER'LAST;

-- D e f i n e new types derived from the above.

t y p e F O R C E is new PHYSICAL-NUMBER;
type M A S S is new POSITIVE-PHYSICAL-NUMBER;
type ACCELERATION is new PHYSICAL-NUMBER;

-- Declare variables of each type.

F : F O R C E ; M : MASS; A : ACCELERATION;

-- F O R C E and M A S S cannot be mixed in the same expression

-- without a n explicit conversion back to the base t y p e ,

-- PHYSICAL-NUMBER. Ada compilers must diagnose the following

-- illegal expression.
F : = M;

-- T h e following statement is legal because there a r e

-- explicit conversions.
F : = FORCE<PHYSICAL-NUMBER(M1 + PHYSICAL-NUMBER<A));

Figure 5 Example of Forms of Type Definition

58 Digital Technical Journal
No . G February 1988

Software
Productivity
Tools

The productivity benefits of Ada's typing rules
are reduced error tracking (and, hence, more
productive use of development and maintenance
time) and more readable and reliable programs.

Range Checking
In addition to providing strong typing rules, the
Ada language requires that range checking be a
default behavior (with most compilers permit-
ting its suppression). Range checking involves
either compile-time or run-time checks for com-
puted values that exceed the legal range for a
type.

In many languages, calculations can overflow
without being detected. Not only are such errors
often difficult to locate, but the erroneous results
could cause an unpredictable and possibly disas-
trous outcome. For example, on one fateful day
for a bank in New York, a number OF real-time
financial transactions overflowed the 16-bit vari-
able; millions of dollars were lost as a conse-
quence. If the program had been written in Ada,
built-in checking could have detected the error
the moment the first transaction overflowed.

Parameter-passing Checks
Many languages do not detect the passing of the
wrong number of actual arguments (either more
or fewer), or the accidental interchange of argu-
ments with different types. These kinds of prob-
lems often lead to obscure run-time errors that
are very difficult to track down.

Ada implementations, however, are required to
detect and report such errors the moment the
program unit is compiled. These checks immedi-
ately save debugging time and eliminate the dele-
terious effect that such errors have on product
quality.

Validation and Portability
Ada, unlike many languages, has strict rules on
what implementations are allowed to do. An
implementation is allowed neither to extend the
language it compiles nor to compile only a part
of that language. As a result, all Ada compilers
translate the same language, yielding increased
portability between computer systems. Pro-
grammers need not learn the specifics of an
implementation in addition to the language.

Before an Ada compiler can be called vali-
dated, it must pass a series of validation tests
(currently over 4,000, but the number has
increased with each release of the validation test

suite). These validation tests not only ensure
portability of Ada code but also force compilers
to translate the whole language exactly as
required. (A compiler must be validated once a
year and must pass all new validation tests.)
These tests ensure that legal programs are trans-
lated correctly and that all required error report-
ing, both compile-time and run-time, is accom-
plished.

Productivity Features Provided by
VHXAda
VAX Ada provides additional productivity fea-
tures related to optimization, program library
support, and smooth interaction with other
VAX languages and the underlying VMS environ-
ment. (Detailed product documentation is pro-
vided in references 6, 7, and 8. Reference 9
describes how VAX Ada fits in with the VMS
environment, and reference 10 describes some of
the design decisions that were made in develop-
ing VAX Ada.)

Inlining
The VAX Ada compiler implements the language-
defined pragma INLINE. (In Ada, a pragma is a
compiler directive.) The compiler thus replaces
calls to subprograms with inline code expansions
(unless the subprogram uses a feature like
tasks that prevent these expansions). In addition
to honoring such explicit requests from the
programmer, the compiler will automatically
replace certain calls with inline code; the com-
piler uses a heuristic to decide if inlining results
in more efficient execution than the call. (The
heuristic considers both space and execution
time.)

Inlining allows programs to run faster, and its
use simplifies the conceptual design process.
Call overhead is no longer a concern, and pro-
grammers can define the most logical interfaces.

Import/Expo rt Pragmas
The VAX Ada compiler defines several pragmas to
match the Ada language to the VAX Calling Stan-
dard in an optimum fashion. For example, the
pragma IMPORT-PROCEDURE allows a call
to a procedure written in any language. This
pragma permits a programmer to specify parame-
ter-passing mechanisms (reference, value, and
descriptor), the procedure's external name, and
other VAX-specific attributes that are not part of
the Ada language.

Digital Tecbnfcal Journal
No. 6 February I988

5 9

L Soft-ware Productivity Features Provided by the Ada Language

These pragmas allow the mixing of Ada sub-
programs with existing programs written in
other languages so that the benefits of Ada can
be obtained for new code, and the benefits of
reusing existing code can also be realized.

Portability Checks
VAX Ada can perform portability checks while
con~piling a program. These checks inform a
programmer of the uses of potentially non-
portable features. Such features include imple-
mentation-defined pragmas and other features
that the Ada Language permits to allow tailoring
to the specific computer system. These checks
allow a programmer to manage the trade-off
between portability and access to implementa-
tion-dependent features.

Program Library Functions
As mentioned earlier, Ada's unique concept of a
program library provides many benefits. The
VAX Ada program library provides all of those
benefits, as well as some others.

Any program units made obsolete by revising
a particular unit can be automatically recom-
piled.

The compilation order for the program units
of a program can be determined by simply
naming the main program.

A11 entire program can be built automatically
by specifying just the name of the main pro-
gram.

Ada program units can be imported from
other program libraries, or from other lan-
guages.

Asynchronous I/O Operations
The VAX Ada run-time library performs asyn-
chronous input/output for all predefined Ada
1 / 0 operations. As a result, a programmer can
use tasks to do computation and 1 /0 in parallel
and obtain greater throughput and more respon-
sive user interfaces.

Support for Asynchronous Operations
The VMS operating system defines the asyn-
chronous system trap (AST) construct for deal-
ing with asynchronous events. An AST is really a
software interrupt. Ada allows hardware inter-
rupts to be mapped into a call to an entry point

in a task. To support ViMS software interrupts
in a like manner, the VAX Ada compiler pro-
vides an implementation-defined attribute called
AST-ENTRY. This attribute causes a software
interrupt to generate a call to a task entry point.
This feature simplifies the interfacing of Ada
programs to the VMS environment.

Summary
The Ada features we have discussed make this
language an excellent choice for general-pur-
pose programming. Ada's principal productivity
benefits are realized in software that is more
extensible, portable, maintainable, reliable, and
reusable. The VAX Ada compiler adds further
features that enhance productivity. While each
feature taken separately may not seem that sig-
nificant, the combined benefit of all of them
should be quite significantly improved software
productivity (as defined earlier in terms of
profit and life-cycle costs) relative to the use of
other languages.

Acknowledgment
The author wishes to thank Barbara Rising
Bishop for greatly improving the content and
readability of this paper.

References

I . J. Barnes, Programming in Ada (Reading:
Addison-Wesley Publishing Company,
1 984).

2. G . Booch, Software Components with
Ada: Structures, Tools and Subsystems
(Menlo Park: The Benjamin/Cummings
Publishing Company, Inc., 1787) .

3. G. Booch, Software Engineering with Ada
(Menlo Park: The Benjamin/Cummings
Publishing Company, Inc., 1787) .

4 . Ada Programming Language, ANSI/MIL-
STD- 18 15A- 1983 (United States Depart-
ment of Defense, U.S. Government Printing
Office, 17 February 1783).

5. In the examples throughout this paper,
lowercase is used to distinguish Ada
reserved words from programmer-defined
identifiers (shown in uppercase). Note that
a comment in the language is identified by
using a leading double hyphen (--).

Digital Technical Journal
No. 6 February 1988

Software
Productivity
Tools

6. Developing Ada Programs on VAX/VMS
(Maynard: Digital Equipment Corporation,
Order No. AA-EF86A-TE, 1985).

7 . VAX Ada Programmer's Run-Time Refer-
ence Manual (Maynard: Digital Equipment
Corporation, Order No. AA-EF88A-TE,
1985).

8. VAX Ada Language Reference Manual
(Maynard: Digital Equipment Corporation,
Order No. AA-EG29A-TE, 1 085) .

9 . C. Mitchell, "Engineering VAX Ada for a
Multi-Language Programming Environ-
ment," Proceedings of the ACM SICSOFT/
SIGPLAN Software Engineering Sympo-
sium on Practical Software Development
Environments, ACM SIGPLAN Notices,
vol. 2 2 , no. 1 Uanuary 1987): 49-58.

10. R. Conti, "Critical Run-Time Design Trade-
offs in an Ada Implementation," Proceed-
ings of the Joint Ada Conference, Fifth
National Conference on Ada Technology
and Washington Ada Symposium (March
1987): 486-495.

Digital Technical Journal
No. 6 Februaq~ I988

6 1

Bm'an A. Axtell
William H. Clzxord, Jr.

Jeflrey S. SaCtr

Programmer Productivity Aspects
of the V N GKS and
V U PHZGS Products

Tbe recent availability of high-leuel, device-independent standards for
computer graphics programming has made the graphics programmer's
task easier and far less time-consuming. Graphics programs, once major
undertakings, can now be produced quickly and once written can be easily
transported to other graphics devices and host systems. lBe VAX GKS and
VM PHIGS products are implementations of two of the major graphics
standards. Tbeseproducts are based on a cmmon architecture, the Base
Graphics Architecture, consisting of five layers. The architecture was
designed to incur minimum overbead in accessing bigh-performance
devices, allow the reuse of many code modules, andprovide easy extension
of theproducts.

Computer Graphics Standards
Interactive computer graphics is the synergistic
union of computer graphics output with an
assortment of input techniques to facilitate oper-
ator feedback and control. Interactive graphics
has long been recognized as the most effective
available mechanism for man/machine interac-
tion. The presentation of information in a visual
form takes advantage of the superb pattern recog-
nition capabilities of humans. Well designed
input techniques enable much more natural and
efficient interaction than is possible through key-
board input alone.

Throughout the early years of computing and
well into the 1960s, the high cost of hardware and
the even higher cost of software production in-
hibited the widespread use of interactive compu-
ter graphics. The expense of writing software was
d u e in large part to the graphics interfaces of the
period, which were typically device dependent
and at a very low functional level. Because of the
low level of these interfaces, the application had
to d o a lot of work to create even a simple image,
thus making graphics programming difficult and
time-consuming. The device-dependent nature of
these interfaces often meant that programs had to
be largely rewritten for each different device on
which graphics output was to be produced.

By the mid- 1 970s, however, falling hardware
prices and the availability of better proprietary
graphics interfaces allowed computer graphics
use to become fairly widespread. With this expan-
sion came the realization that a standard graphics
interface was needed that was both high level and
device independent. Enough experience existed
by then to attempt to design such a system.

The Core Graphics System, developed under
the sponsorship of the Association for Computing
Machinery, was the first significant device-
independent graphics interface.' The concepts
embodied in Core profoundly influenced subse-
quent graphics standards. Core never became an
official standard, however, because too many
nonconforming implementations became avail-
able before standardization could b e achieved.
Moreover, the experience gained from these early
implementations of Core showed that a better
interface could be designed.

The Graphical Kernel System, or GKS, is a ben-
eficiary of the experience gained from Core and
was adopted both as an ANSI and IS0 standard
in 1 9 8 5 . ~ It is the first official ANSI/ISO graphics
standard. Digital's implementation of GKS for
the VMS operating system, called VAX GKS,
has been available since 1984 and is now in its
third release.

Digital Technical Journal
No. G Februaly 1988

Software
Productivity
Tools

The Programmer's Hierarchical Interactive
Graphics System, or PHIGS, is being developed as
both an ANSI and an IS0 ~ t a n d a r d . ~ PHIGS has a
different architecture and different design goals
from GKS; it is compatible with GKS, however,
wherever this compatibility is technically feasi-
ble. The first release of VAX PHIGS became avail-
able in January 1988.

me Role of VAX GKS and VAX PHIGS
Products in Software Productivity
The VAX GKS and VAX PHIGS products are high-
level functional interfaces that make graphics pro-
gramming easier and more straightforward. A
competent programmer should be able to
develop graphics software after a short period of
study. Moreover, the use of these systems eases
the difficulty of finding trained graphics applica-
tions programmers. Many colleges and universi-
ties teach GKS as part of their computer-graphics
curricula; there is evidence that they will teach
PHIGS as well.

Each standard is built on the model of an
abstract graphics workstation with standardized
input and output capabilities. That is, each stan-
dard defines an idealized device for acquiring
input from the operator and for generating graph-
ics output. To a large extent, the job of the GKS or
PHIGS implementor is to provide a layer that
makes a particular real device behave like an
ideal device. We call such a layer a "workstation
handler." If the abstract workstation model of
GKS or PHIGS can be implemented quite directly
on a real device, such a device is called GKS-like
or PHIGS-like.

This device-independent approach means
that a program written to the GKS or PHIGS
interface can, within limits, run unchanged on
any supported device. Moreover, if an appli-
cation is written to one of the standard language
bindings (i.e., uses standard function names and
parameterization), then the application can eas-
ily be ported to any other GKS or PHIGS host sys-
tem supporting that language binding.

Although the basic functionality of both GKS
and PHIGS is strictly defined, Digital's implemen-
tations further increase programmer productivity
in several ways.

Both VAX GKS and VAX PHIGS provide for very
easy support of additional devices. Any user
can add support for a new device by simply
writing a few functions and building a table
defining the capabilities of the device. (Refer

to the Workstation Manager section for more
details.)

VAX GKS or VAX PHIGS workstation handlers
are activated at run time, not directly linked
with the application. Therefore an application
can operate any supported device without
relinking, thus minimizing the link time and
executable program size of an application.
This allows the application programmer to
spend more time doing productive debugging.

Both VAX GKS and VAX PHIGS provide exten-
ded input and output functionality. Additional
output primitives implement common objects
(for example, circles and ellipses in VAX
GKS), thus saving the programmer from hav-
ing to build them from lower level primitives.
Extended output functionality (for example,
lighting, shading, and depth cueing in VAX
PHIGS) provides services not easily layered on
top of the basic model.

Both VAX GKS and VAX PHIGS integrate
cleanly into a windowing environment. VAX
GKS and VAX PHIGS enable the creation of
applications with the same "look and feel" as
other applications written using low-level
windowing commands. The application pro-
grammer is thus freed from concerns about the
windowing system, and the user sees a consis-
tent windowing interface.

Support for many devices is available through
both VAX GKS and VAX PHIGS. VAX GKS is
supported on VWS workstations4 and on
ReGIS, HPGL, POSTSCRIPT, and Sixel devices.
PHIGS is supported on these devices as well
as on the VAXstation 8000 high-performance
workstation.

VAX GKS and VAX PHIGS as
Complementary Graphics Standards
GKS and PHIGS are designed to satisfy different
needs. GKS is a two-dimensional interactive view-
ing system. That is, GKS provides a mechanism
by which images, described as collections of two-
dimensional output primitives, can be displayed.
In addition, GKS provides a variety of operator
input methods. Although GKS can be used to
display graphs and charts and other two-dimen-
sional information, i t can also be used as the
imaging stage of a higher level system. Such a sys-
tem first does the necessary processing to convert
its objects (for example, objects defined in three-

Digital Tecbnical Journal
N o . 6 February 1988

I
I Programmer Productivity Aspects of the V M GKS and VAX PHIGS Products

dimensional space) into GKS two-dimensional
output primitives for display.

GKS commands for setting attributes of pri-
mitives and for generating output primitives can
be either aggregated into collections called
"segments" or executed immediately without
being retained in a segment. The set of defined
segments can be used later to rebuild the
image on a display, thus the application does not
need to reissue those commands. GKS segments
are not revisable; once defined, the contents of
a segment cannot be modified. However, each
segment has several attributes (for example, a
segment transformation and a segment visibility
control) that can be changed.

PHIGS is a three-dimensional interactive mod-
eling system. Like GKS, PHIGS offers operator
input techniques; unlike GKS, however, PHIGS
primitives are defined in a three-dimensional
coordinate system rather than a two-dimensional
system. PHIGS also does not have immediate exe-
cution of output commands. Instead, all com-
mands that set attributes of output primitives,
generate output primitives, or define other
aspects of the graphics database are aggregated
into revisable collections called "structures."
This approach is motivated by two of the goals of

PHIGS: to be able to describe and implement the
application model (the concept or system being
modeled by the application) and to allow the effi-
cient revision of that implementation and its cor-
responding image.

Since typical application models are multi-
level, PHIGS structures can be organized hierar-
chically. The relationship between levels of the
hierarchy may represent geometric relation-
ships (for example, the positional relationship
between the components of an articulated arm)
or other logical relationships as dictated by appli-
cation requirements. (One can think of GKS seg-
ments as providing a single level of hierarchy.)

In PHIGS, for example, one can define a "wheel"
structure (a collectionofcommands that describes
something having the appearance of a wheel) and
a "body" structure. One can then define a "car"
structure as an assemblage consisting of four
instances (displayed images) of the wheel and
one instance of the body structure. Each instance
has a geometric relationship to the car (that is, it
has some position with respect to the car). The
car can be moved around as a unit, with the rela-
tive positions of the wheels and body maintained
by virtue of the geometric relationships imposed
on them. This concept is illustrated in Figure 1 .

Wheel and hredatacounesy 01 Brlgharn Young Un~versity. Car body datacopyrlght L Evans and Sulherland Computer Corporation

Figure 1 PHIGS Structure Hierarch-y

6 4 Dfgital Tecbnlcal Journal
N o . G February 1988

Software
Productivity
Tools

GKS and PHIGS share a common set of output
primitives, although GKS allows their definition
only in two dimensions, whereas PHIGS allows it
in three. These primitives are lines, symbols
("markers"), polygons, text, and pixel arrays.
GKS and PHIGS also share a common input
model. This model defines six input device types
that are abstractions of common physical input
devices, such as pointing devices, dials, button
boxes, and keyboards.

GKS was designed as a very general interface on
top of which many different classes of applica-
tions can be built. In fact, it is possible to build a
layer on top of GKS that emulates PHIGS. PHIGS
is also a very general interface, and the range of
applications that can make use of PHIGS' model-
ing and three-dimensional capabilities is large
and diverse. However, PHIGS is a bit more spe-
cialized than GKS, and building some styles of
graphics applications on top of PHIGS is difficult
if the application model cannot be made to fit
PHIGS' modeling facilities.

The benefits of incorporating modeling into
PHIGS are twofold. First, the application writer
has a well developed, standard modeling facility

APPLICATION
APPLICATION
LAYER

WORKSTATION ..- 51
WORKSTATION I K E I...I H A N D L E R I
LAYER 1 I-

available. Second, it becomes economically feasi-
ble for hardware vendors to provide direct hard- DEVICE

ware support for PHIGS modeling because the LAYER

modeling facility is standardized. Such devices
can provide very high performance. Figure 2 Layers of the Base Graphics Architecture

The VAX PHIGS and VAX GKS products have a
common architecture called the Base Graphics
Architecture, described next. . VAX GKS and VAX PHIGS products had to con-

form to their respective standards.
Base Graphics Architecture
Digital's Base Graphics Architecture was Since performance is critical in graphics sys-
designed as a general framework for implement- tems, the architecture had to allow access to
ing graphics systems. It takes a layered approach any high-performance hardware features of a
and consists of five components: device. Moreover, the system had to incur min-

Application layer imal overhead in using those performance fea- . Language binding layer tures.
Kernel layer
Workstation handler layer
Device layer

Adding support for new devices had to be rela-
tively easy.

This approach is shown in Figure 2. Following . wherever possible, components of each
a discussion of the design goals of the Base implementation of the architecture had to be
Graphics Architecture, each of these components interchangeable and reusable.
is described.

The architecture had to provide a mechanism
Design Goals for customers and third-party vendors to write
The design team set a number of goals for the graphics handlers for their own devices and to
design of the Base Graphics Architecture. integrate them into the system.

Diglral Tecbnlcal Journal 65
No. 6 February 1988

Programmer Productivity Aspects of the VAX GKS and VAX PHfGS Products
I

I
The architecture had to be extensible enough
to allow for changes in both graphics hard-
ware technology and graphics standards.

Each layer of the Base Graphics Architecture is
described below.

The Application Layer
The application layer is not a part of the graphics
system but is, rather, a user of its services. The
application programmer defines and has total
control of the application layer. In reality, the
application layer is typically another series of
layers of increasing functionality, not the monolj-
thic component depicted in Figure 2. The inter-
face seen by the application layer is called a
language binding and is supported by the bind-
ing layer.

The Binding Layer
A language binding is a functional interface to the
capabilities of the graphics systems. A binding
layer consists of several bindings, but a typical
application uses only one language binding. Each
binding is oriented toward some particular lan-
guage or calling convention. The language bind-
ings of the binding layer fall into two categories:

Standard bindings for single languages. These
are language bindings developed by the same
organizations that developed the graphics
standards. For example, the VAX GKS binding
layer includes a FORTRAN language bind-
ing that conforms to an ANSI/ISO standard.
Such a single-language binding is designed to
be consistent with the capabilities of the par-
ticular language. Programs written to such
standardized bindings are portable to any
implementation of the same binding for that
graphics standard.

VAX calling convention bindings. Each bind-
ing layer provides a VAX run-time library
(RTL) binding, called the GKSS and PHIGSI
bindings for VAX GKS and VAX PHIGS, respec-
tively. These bindings conform not to inter-
national standards but rather to the VAX/VMS
calling standard. Therefore, VAX GKS and
VAX PHIGS can be accessed through these
bindings from any language that conforms to
this calling standard.

The language binding layer is typically a very
thin shell over the kernel layer.

The Kernel Layer
The kernel is the portion of the architecture that
manages and controls the device-independent
operations of the graphics system. Its main func-
tion is to act as a router, directing commands to
the appropriate workstation (multiple worksta-
tions can be simultaneously active in both GKS
and PHIGS) and to serve as a collection point for
input events generated by the input devices. The
kernel also maintains all information about the
state of the system as a whole and is capable of
responding to inquiries about system state and
facilities. For example, an application can
inquire about the types of devices available or
the number of active workstations. Furthermore,
the kernel is responsible for reporting errors back
to the application.

Another responsibility of the kernel is to acti-
vate the workstation handlers. These components
of the workstation layer are not linked directly
with the higher levels of the system, but instead
are built as shareable images. When the services
of a handler are first needed, the kernel activates
the handler through a VMS library routine.

The advantages of dynamically activating a
workstation handler, rather than linking some or
all handlers directly with the application, are as
follows:

A user-supplied handler can be incorporated
without the need to link it (that is, using the
VAX linker) directly with the application and
kernel. It is only necessary to define several
logical names that indicate the file name and
entry-point table symbol name for the particu-
lar workstation type. (An entry point table is a
structure similar to a VMS transfer vector.)

rn Link time is substantially reduced because an
application is only linked against the language
binding interface, which is itself a shareable
image.

The amounts required by the application of
both disk space and virtual address space are
significantly reduced.

The VAX GKS and VAX PHIGS kernels are opti-
mized for the most common functions. They
incorporate various caching schemes and "hot
paths" to accelerate performance for expected
configurations and call sequences. Therefore,
for many functions, the kernel merely has to per-
form one or two tests and then call the next layer.

66 Digital Technical Journul
No. 6 February I988

Software
Productivity
Tools

The Workstation Layer
The collection of workstation handlers that con-
stitutes the workstation layer is responsible for
implementing the workstation abstraction of its
particular graphics standard. For any graphics sys-
tem based on the Base Graphics Architecture, the
workstation handler interface must be defined at
a very high level to allow access to the high-per-
formance features of a device.

The hnctions of the workstation handler inter-
face for VAX GKS, for example, are basically one-
to-one with GKS functions that deal with the
input, output, and workstation state. The work-
station handler interface for VAX PHIGS has a
similar relation to the PHIGS functions. Thus the
implementor of a workstation handler can take
advantage of the capabilities of those devices
that closely match the workstation abstraction.
Although the workstation handler interface thus
includes many entry points, the implementation
of each function should be relatively straightfor-
ward for devices that closely match the worksta-
tion abstraction.

However, most current devices d o not have
an architecture that closely matches the work-
station handler interface. Very few devices, for
example, could be considered GKS-like or
PHIGS-like (though this situation is slowly
changing). The job of writing a workstation
handler for a low-level device is indeed an
arduous one. To minimize the effort needed to
interface such a device, an abstract graphics
device at a much lower level has been defined.
Therefore, each implementation of the Base
Graphics Architecture needs a workstation han-
dler that implements that implementation's
high-level workstation abstraction for this low-
level abstract graphics device.

VAX GKS, for example, has such a special
workstation handler that implements the GKS
workstation abstraction for the low-level device.
VAX PHIGS also has one for the PHIGS abstrac-
tion. This special workstation handler is called a
workstation manager; an implementation of the
low-level abstraction is called a device handler,
as shown in Figure 2.

Workstation Manager
To the kernel, the workstation manager is just
another workstation handler. It is activated the
same way and is accessed through the same inter-
face as other workstation handlers. After activat-
ing the workstation manager image, the kernel

calls the "open workstation" function of the
workstation manager. The workstation manager,
in turn, activates the appropriate device-handler
shareable image, again through a VMS library
routine.

The main job of the workstation manager is to
span the semantic distance between the worksta-
tion handler and the device handler interfaces.
The exact nature of that job differs depending on
the abstract workstation implemented by the
workstation manager. However, a typical worksta-
tion manager does the following tasks:

Maintains state information on behalf of the
low-level device

Performs necessary geometric transformations

Simulates functionality not available through a
particular device handler

Performs data management of aggregated out-
put primitives and attributes (for example,
GKS segments o r PHIGS structures)

Responds to inquiries about workstation state
and available facilities

In reality, the design of the device handler
interface requires that each workstation manager
implement its particular workstation abstraction
for a range of abstract low-level devices. That is, a
device handler need not implement the entire
low-level abstraction. The workstation manager is
expected to simulate those functions not sup-
plied by the device handler. In fact, the only
mandatory output function for the device handler
is a function which draws a series of connected
lines. If necessary, the workstation manager will
simulate all other output primitives in terms of
that single primitive. Similarly, most of the input
functionality of the device handler is optional;
the workstation manager will simulate the miss-
ing functionality.

For example, both VAX GKS and VAX PHIGS
can generate polygons whose interiors can
be filled with a solid color or with various
crosshatched patterns. The implementor of a
device handler may choose to support this primi-
tive directly if the device for which the device
handler is being written has this capability. If
the device does not provide this capability, the
device handler can have the workstation manager
simulate filled polygons using the line-drawing
primitive of the device handler.

Digital Technical Journal 6 7
No. 6 February 1988

Programmer Productivity Aspects of the VAX GKS and VAX PHlGS Products

Device Handler

A single device handler interface is common to
all implementations of the Base Graphics Archi-
tecture. As a result, PHIGS supported several
dozen devices immediately when the develop-
ment of the PHIGS workstation manager was com-
plete. Those supported devices were the ones for
which device handlers had previously been
developed in support of VAX GKS.

The device handler interface defines 27 func-
tions, a device description table, and a n entq7-
point table (a transfer vector). The workstation
manager consults both the device description
table and the entry-point table to determine what
functionality is available through the device han-
dler and what must be simulated.

Because of the adaptability of the workstation
manager, a new device can be added by writing
just seven device handler functions and then
building the device description and entry-point
tables. Such a minimal implementation will not
provide optimal performance for most devices,
but will allow them to be put into service
quickly. Over time, the implementor of a device
handler can add more device handler functions
to take advantage of the capabilities of the dev-
ice. As it becomes available, each new version of
the handler is placed into service simply by in-

stalling it in place of the previous version. Relink-
ing the application program, kernel, and worksta-
tion manager is not required.

Device Layer
The device layer, the lowest layer in our architec-
ture, marks the lower boundary of the Base
Graphics Architecture. This layer consists of the
various devices made available to the application
by the higher levels of the architecture. The
interface to this layer is device dependent.

Integration witb Windowing Systems
The Base Graphics Architecture was designed so
that a windowing system could be treated as just
another device type within the Base Graphics
Architecture. The model for supporting window-
ing systems realizes each instance of a "worksta-
tion" (the abstract device, not a specific device,
such as a VAXstation II/GPX workstation) as a
separate window on the device's display. Thus
multiple GKS and PHIGS workstations can be
active on the same device under the control of
one or more applications. For example, "work-
station" windows for both PHIGS and GKS and a
third window created through the graphics com-
mands of the native windowing system can all co-
exist on the same display, as shown in Figure 3.

.-:.,!r,".. -.:< :. ..-.I ,

.-I.., : r T -.,-., ..I 8 ::. .
' * l i l t l r . ~ . : a r - ' 1 . r 1 . 8 . .
,?l:~t$l.,'.,.~,.>,* .. @ - c , ,
~ * l , l l l I ~ . - . 1 K . t , - ..-.' .
Cr:t,l:,.C ,.I.' I?. .

Figure 3 Three Workstation Windows in One Screen Display

6 8 Digital Tecbnicd Journal
No. 6 February 1988

Software
Productivity
Tools

The method by which a windowing system is
supported (whether through a workstation han-
dler or a device handler) logically depends upon
the level of graphics support provided by the
windowing system. For example, the VMS Win-
dowing System (VWS) is supported through a
device handler because W S is neither PHIGS-
like nor GKS-like enough to warrant writing a full
workstation handler.4 However, if three-dimen-
sional and other higher level. capabilities exist in
a windowing system (for example, the proposed
X3D-PEX extension5 to the X Window system6),
then it might best be supported with a worksta-
tion handler.

The implementor of the handler can use any
tool kit that the windowing system provides to
create windows and to perform certain classes of
input operations. For example, typical tool kits
provide menuing capabilities that can be used to
support the CHOICE input type defined by
PHIGS and GKS. When the tool kit is used for all
possible windowing operations, all windows have
the same appearance to the user or application
programmer, even when they are generated by
different graphics standards. The net effect is a
graphics standard operating within the window-
ing environment.

Extensibility in the Base Graphics
Architecture
The Base Graphics Architecture includes a mech-
anism that allows an implementation to provide
extensions in a manner conforming to standards.
Such extensions can define additional output
primitives and provide extended control capabil-
ities. The VAX PHIGS and VAX GKS products use
these mechanisms to provide extensions sup-
ported by Digital. In addition, the design of the
Base Graphics Architecture enables the imple-
mentors of workstation or device handlers to add
their own extensions. The special capabilities of
a particular device, not otherwise accessible
through the standard functionality, can be made
available in this way.

VAX GKS Extensions
VAX GKS has extended output primitives for gen-
erating various unfilled and filled circles, circu-
lar arcs, ellipses, elliptical arcs, and rectangles.
These are frequently needed primitives which an
application programmmer would otherwise have
to generate using standard GKS primitives. The

implementation of these primitives as extensions
can also take advantage of any support provided
by the underlying device (for example, if the
device has a circle primitive). VAX GKS also pro-
vides control over such things as line join and cap
styles, as well as primitive "writing modes" (for
example, replace, complement, negate).

VAX PHIGS Extensions
In November 1986, an ad hoc working group
representing some twenty companies and univer-
sities, including Digital, was formed to propose
and develop extensions to PHIGS in the area of
lighting, shading, depth cueing, back-face sur-
face processing, and curve and surface represen-
tation. The set of functionality formulated by this
group is called PHIGS+ .

While PHIGSS is not an official standards
effort, a baseline document has been made avail-
able to the members of the ANSI PHIGS commit-
tee for comment.' It is the intent of the ad hoc
PHIGS+ working group that a revised PHIGS+
draft be made available to the official standards
bodies when the document is complete.

VAX PHIGS includes extensions in most of the
areas being addressed by the PHIGS+ group.
VAX PHIGS supports depth cueing, back-face sur-
face processing, several different types of lights,
various surface rendering effects (methods for
simulating shiny or matte surfaces), and an
advanced output primitive.

These extensions are defined in the VAX PHIGS
workstation handler interface. Where possible,
these extensions are also simulated by the PHIGS
workstation manager. Therefore, within the lim-
its of a particular device, these extensions are
available on all devices supported through the
device handler interface. Using these extensions
effectively, however, is possible only on a device
that can simultaneously display a reasonably
large number of colors or shades of gray. Cur-
rently the PHIGS workstation manager requires
that a device be able to simultaneously display
64 colors in order to simulate these extensions.

Summary
The VAX GKS and \'AX PHIGS products are
extended implementations of the existing GKS
and proposed PHIGS computer graphics stan-
dards, both of which are high level and device
independent. Both PHIGS and GKS make com-
puter graphics programming far less complex
than in the past. Moreover, they allow program

Programmer Productivity Aspects of the VAX GKS and VAX PHIGS Products

portability among different graphics devices and
different host systems. These qualities can lead to
greatly increased application programmer pro-
ductivity.

Both VAX GKS and VAX PHIGS are based on a
single architecture designed by Digital. This
architecture allows the efficient utilization of
high-performance devices, the reuse of large por-
tions of code during implementation, flexibility
in the approach taken to support a particular
device, and access to the unique capabilities of a
device. This approach has boosted the produc-
tivity of the VAX GKS and VAX PHIGS implemen-
tation teams, and is expected to minimize the
work required of third parties to add device sup-
port.

Acknowledgments
The authors wish to acknowledge the tremendous
contributions made by the VAX GKS and VAX
PHIGS development teams: Dwight Brown,
George Chaltas, Kenney Chan, Keith Comeford,
Glenn Davison, Jeff Ford, Garry Poegel, and Moh-
Fung Shen. This effort could not have been made
without continuing guidance from John
McConnell. Finally, we wish to thank Joy Kin-
near for her constant support of our efforts.

References

1 . Computer Graphics, vol . 1 3, no. 3 (August
1979).

2 . Standard IS0 7942 for Information Process-
ing Systems, "Graphical Kernel System
(GKS)," International Standards Organiza-
tion (1 985).

3. Draft Standard IS0 9592 for Information
Processing Systems, "Programmers Hierar-
chical Interactive Graphics System
(PHIGS)," International Standards Organi-
zation (1 987) .

4 . MicroVMS Workstation Graphics Program-
ming Guide (Maynard: Digital Equipment
Corporation, Order No. AA-GIIOB-TN,
1985).

5 . PEX Protocol Specification, Version 3.00
(Boston: Massachusetts Institute of Technol-
ogy, 1987).

6 . X Window System Protocol, Version 11,
Project Athena (Boston: Massachusetts
Institute of Technology, 1987).

7. PHIGS+ Functional Description, Revision
2.0, report issued by the ad hoc PHIGS+
Committee (1 987) .

7 0 Dfgftal Technical Journal
No. 6 Febrtrary I988

The VAX RALLY System -
A Relational Fourth-generation
Language

The VAX RALLY system, a forms-based fourth-generation language, is
designed to simplify the production of interactive database applications.
The designers of this system sought a balance between ease of use andflex-
ibility in the development of the object-based definition system. The defini-
tion system allows commonly anticipated features to be implemented by
nonprocedural means, and other features to be implemented by means of
escapes to other languuges. Tbe run-time environment allows many users
non-inte$m'ng, concurrent read/write access to the same data. The rep-
resentation of an application by a set of objects allowed the definition sys-
tem to be implemented as a RALLY application. This use of RALLY for its
own user interface gave the designers a fast and eflectiue means to make
product improvements.

The VAX RALLY system is a forms-based, fourth-
generation language (4GL), or application gener-
ator, for database applications. Like other
fourth-generation languages, it increases the pro-
ductivity of application definers by providing
them with high-level constructs that simplify
application development.

This paper discusses the design principles
that have contributed to RALLY'S usability by
application definers and to the efficient develop-
ment of the RALLY definition system itself. In
particular, attention is given to the design trade-
offs inherent in 4GLs; the design of an object-
based environment; and the use of the same
data model for application data as for the applica-
tion itself.

Product Design Overview
Version 1.0 of the VAX RALLY system was
developed over a three-year period (1983-
1986) as a combined effort by Digital Equip-
ment Corporation and Foundation Compu-
ter Systems, Inc., the original authors of the
"ALLY" 4GL product. Digital is currently
developing later versions of the VAX RALLY
system.

VAX RALLY is an application definition system
and run-time environment for applications using

Rdb/VMS databases. The definition system con-
sists primarily of the following:

An object-based, nonprocedural set of tools

A procedural language whose syntax is adap-
ted from the Pascal language

Interfaces to programs written in traditional,
third-generation programminglanguages (3GL)

The run-time environment provides the follow-
ing:

Virtual multitasking in a single VMS process

Flow control within and among tasks

rn Screen painting

Capture and validation of input from the user
of an application

Data manipulation operations to and from
databases

The users of VAX RALLY fall into two classes
corresponding to its two major divisions: applica-
tion definers who use the definition system to
build applications, and end users who use these
applications. However, because the definition
system itself uses a RALLY application for its
forms and menus, both classes of users, and
indeed both of the major divisions of RALLY, are
affected by the same design decisions.

Digital Tecbnical Journal
No. 6 February 1988

The VAX RALLY System - A Rel~itionul Fourth-generation Language

Trade-offs between Ease of Use
and Power

A recurring trade-off in the design of RALLY, as in
4GLs generally, involves the tension between the
goals of ease of use and power, or flexibility. If
the 4GL is too complicated, then users may find
it simpler to continue using traditional 3GL pro-
gramming methods. If the 4GL is not sufficiently
powerful to meet the users' needs, users may
have no choice but to resort to 3GL program-
ming.

RALLY accommodates both these goals in sev-
eral ways. First, RALLY is specifically optimized
for the development and execution of a particular
class, albeit a large class, of applications, namely,
interactive database applications. Second, RALLY
provides the application definer with a small set
of carefully chosen objects and the ability to
combine these simple objects into complex com-
binations. Finally, RALLY provides four different,
partially overlapping approaches to application
development: the builder tools, the editing envi-
ronment, an integrated procedural language, and
the ability to interface with programs written in
traditional programming languages. In effect, the
designers solved the problem of having to trade
off either ease of use or flexibility by resolving
the problem in, not one, but several aspects of
the RALLY software.

The builder tools are a greatly simplified sub-
set of the features available in RALLY as a whole.
Few choices are given to the application definer,
extensive defaulting is used, and many RALLY
concepts are simplified or omitted altogether.
By using the builder tools, a novice can learn
the most important RALLY concepts immediately,
build a usable application in a short time, and
defer learning other RALLY concepts until
needed.

The editing environment is the largest part of
RALLY. I t is almost entirely forms-based. An appli-
cation definer fills in blanks on forms to specify
the options to employ or the connections to make
between RALLY objects. Using these forms, the
definer has no need to learn or recall a language
syntax. Although the set of features RALLY offers
is not simple, the entire set is organized through
RALLY'S menus, and each form is labeled. Because
each form presents a manageable amount of func-
tionality, i t can be documented using on-line
interactive help messages specific to each form
or to each field on a form.

RALLY includes an integrated procedural lan-
guage called ADL (Application Development Lan-
guage). ADL can b e used for application features,
such as arithmetic formulae, that are easier to
describe using a language than by filling out
forms. A definer typically uses an ADL procedure
to specify the formula for a computed field, to
define the conditions for validating data opera-
tions, to manipulate data outside of a form or
report, or to alter flow control.

Lastly, a RALLY application can be integrated
with programs written in traditional program-
ming languages. Although this does not con-
tribute directly to the productivity improve-
ments realizable by using a 4GL, it expands the
range of applications that can use RALLY.

Kinds of Applications Generated
The word "application" can refer to practically
any effect achievable by traditional, 3GL pro-
gramming languages. The goal of RALLY is more
focused: to simplify the production of interac-
tive database applications. Within the narrower
domain of these data processing applications that
RALLY generates, it is possible to predict what
features are most likely to be useful. The concep-
tual basis for both the definition system and the
run-time system was largely governed by such
predictions about the types of applications RALLY
would generate.

The VAX RALLY product, like other 4GLs, sim-
plifies application development by providing the
application definer with a small set of high-
level constructs and the tools with which to com-
bine them. Because RALLY focuses on database
applications, many of RALLY'S constructs are data-
base operations: reading, inserting, deleting, and
updating records; and committing and rolling
back transactions. The major components of such
applications are forms through which end users
enter data to be written to the database, and
reports on which end users see data that has been
read from the database. Finally, although the pri-
mary focus of RALLY is on interactive applica-
tions, RALLY is also designed to be able to pro-
cess records in batch.

The Object-based Definition System
RALLY conceives of an application as an inter-
connected network of objects. Each object has
attributes that represent characteristics of the
application.

Digital Tecbnical Jounlal
No . 6 February I988

Software
Productivity
Tools

Virtually an entire VAX RALLY application can
be defined by filling out forms to specify the
attributes of and connections between objects.
The application definer gives each object a name
that is used when connecting it to another object.
Because the application definition system con-
trols the storage and retrieval of objects, it always
makes available to the application definer a list of
all the objects at the definer's disposal. These
lists, called lists of values, improve productivity
because the definer need not rely on memory or
written notes. Because the definer can specify
connections by moving the cursor to the list of
values and pointing at the appropriate name,
without having to type the name manually, the
definer is encouraged to give objects long,
descriptive names.

The major types of objects that may be defined
in a RALLY application are tasks, menus, form/
reports, data source definitions, ADL procedures,
external program links, number formats, and
date formats. Form/reports and data source defi-
nitions, which are discussed in more detail later
in this paper, contain subobjects such as fields.

The design of these objects was governed by
principles of modularity. When a set of charac-
teristics is likely to be used together, those char-
acteristics belong in the same object. When a
subset of these characteristics is likely to be
changed while the other characteristics remain
unchanged, that subset may belong in a separate
object. These decisions are heavily dependent
upon knowledge of how the characteristics are
viewed and used by users, in this case, by appli-
cation definers.

The most significant design decisions in the set
of RALLY object types were

The separation of data source definitions from
forms and reports

The unification of forms and reports into a sin-
gle object type

The following sections describe the data
source definition and form/report objects, and
the data groups which are the basic structure of
form/repons.

Data Source Definitions
The data source definition (DSD), unlike the
form/report or menu, is not an object with an
obvious justification for existence. Forms,
reports, and menus are visible components of

applications; DSDs are invisible auxiliaries to
forms or reports. Yet there are two strong reasons
for the existence of the DSD as a separate object:
data independence, and reusability.

Data independence means the isolation of an
application from unnecessary dependence upon
the details of data storage. Most characteristics of
a database application, and most characteristics
of a form or report, are unconcerned with such
details. RALLY isolates these storage details, such
as the type of database and the names of relations
and databases, in the DSD object. The form/
report object handles the user-visible features of
the application, such as how data is formatted
and, in the case of forms, validated.

Reusability refers to the ability to make several
uses out of information that is defined only once,
thus avoiding redundant and time-consuming
work. The same DSD, describing the same source
of data, may connect to several different forms
and reports. Conversely, a form/report can be
reconnected at different times to different DSDs,
allowing a form or report with the same features
to operate on a different set of data.

An additional reason to separate out DSDs as
objects in their own right is the design goal of
supporting both interactive and batch process-
ing. Interactive data processing occurs in RALLY
in form/reports; batch processing occurs in ADL
procedures. For both types of data processing, an
application definer must specify the source of
data, restrictions on record selection, and a lock-
ing strategy. The information that must be speci-
fied for both interactive and batch processing is
contained in the common object, the DSD.

The existence of DSDs as separate objects con-
tributes to the goal of simplifying ADL syntax. A
small set of high-level primitive functions serves
for all access methods.

Form and Report Functions in a Single
Object
The VAX RALLY system treats both forms and
reports as a single object, called a form/report.
Despite the common practice, even in this paper,
of referring to forms and reports as distinct phe-
nomena, they share essential characteristics for
the display and formatting of data records with
accompanying text. Providing a single construct
simplifies the concepts that a definer must learn.
Moreover the form/report is an inclusive, not dis-
junctive, generalization of the characteristics of
both forms and reports. Not only the conceptual

Digital Tecbdcal Journal 7 3
No. 6 February 1988

The VAX RA LI, Y System - A Relational Fourth-generation Language

definition of the form/report object but also
each instance can include the union of the sets of
form characteristics and report characteristics.
Because a single RALLY form/report object can
handle the entire set of interactive data opera-
tions, the definer can attain considerable produc-
tivity after mastering a small set of concepts.

A form/report by default reads records from
one or more data sources, displays them to the
user, and performs data manipulation operations
in accordance with the end user's actions, writing
data out to the data source(s). By default, an
end user may browse through the records dis-
played, modify o r delete them, insert n e w
records, commit o r roll back the database trans-
actions, perform queries to view a subset of the
data, and perform these same data operations on
the subset shown as a result of the query.

Each capability can be removed outright from a
given form/report or restricted conditionally. For
example, to make a forrn/report behave like a tra-
ditional data entry form, the definer may elimi-
nate the capabilities of reading existing records
and querying.

Data Groups - Building Blocks of
RALLY Form/report Structure
Traditional forms processing software confines its
function to the collection of data, leaving the pro-
grammer to write the collected data to a file o r
database. The RALLY designers recognized that,
once collected, data is most commonly written
out to a data source. Consequently RALLY pro-
vides as a standard option the combined function-
ality of collecting data and writing it t o a file.
RALLY also allows for "pure forms" that d o not
automatically write out data.

The most significant design feature within
W L Y form/reports is the data group. This struc-
ture is specifically designed for forms or reports
connected to a data source, such as a database or
a file with normalized data.

The data group itself does not contain the defi-
nition of the file or the relation in a database that
stores the data for the group. Rather, the DSD
object discussed earlier contains this informa-
tion. Therefore aspects of the user's interaction
with the data (formatting of output and restric-
tions on input) are separated from details of how
and where data is stored, which may differ in
character between different types of data sources.

Several data groups can b e combined within a
form/report t o support access to several data

sources, possibly in different databases or in dif-
ferent kinds of databases and files, &lore specifi-
cally, groups in a form/report form a hierarchy
that reflects the relationship bctween differcnt
data streams. Each group can have one or more
children grc.)ups. In such a parent/child relation-
ship , the data in the child group is related to and
dependent on a record in the parent group; a
field o r set of fields in each child record must b e
equal to the corresponding ficld(s) in the parent
record. In relational database terms, this simu-
lates a join between the data in the parent and
child groups. The application definer, simply by
defining a parent/child relationship, achieves the
following effects:

rn When records are read for the child group, an
implicit restriction is added to read only
records for which the corresponding fields
match.

When records are inserted into the child
group, RALLY automatically fills in the fields
to match thosc in the parent record.

When records are deleted in the parent group,
RALLY can, at the option of the defincr, delete
all records in the child group, preserving the
integrity of the database.

This ability to organize related data is crucial
in the development of applications that use
relational databases. Data normalization forces
logically related data t o b e separated into multi-
p l e relations to avoid repetition o r excessive
functional dependencies within a single record.
To display repeated data in its proper context and
to display dependent descriptive data, a single
form or report often relies on data from several
relations. A typical example is an order entry
form. Repeating data for the line items in the
order are stored in a relation separate from the
order header data. The order header data contains
a reference to the customer, but descriptive
information about the customer (such as name
and address) must b e looked u p from a separate
relation. Similarly, line items refer to products.
but the descriptive information (product name
and price) are looked u p in yet another relation.
A hierarchy of data groups in a RALLY form/
report corresponds directly to the relationships
among these relations.

At each level in the hierarchy of groups, the
definer can allow o r restrict insertion, dele-
tion, and update of records. The definer can also

74 Digital Technical Journal
No . 6 February 1988

Software
Productivity
Tools

define additional fields such as computed fields
and aggregates. RALLY produces an instance of
such fields for each record in the data group. For
example, an aggregate field in a parent group
will produce a set of subtotals, one for each
record in that group.

Control break reports are also implemented in
RALLY with data groups. The fields on whose val-
ues the control break is based are placed into a
separate data group above the rest of the data. As
with form/reports based on simulated joins, each
level of control break can have aggregates and
formatting attributes defined in the data group.

Nonrepeating fields, such as grand totals, are
owned by a special group called the main group.
The main group sits atop the hierarchy, owning
the top-level data groups. This group can also be
used for "pure forms" whose data is not automati-
cally written out to a data source.

A special kind of data group, called a list-of-
values group, offers a simple, nonprocedural
method for ensuring referential integrity. From
the point of view of the end user, the list of
values assists in supplying a value for a particular
field. The end user uses the RALLY command
LIST-OF-VALUES (typically using a function
key) to move the cursor from the field to the list.
The user then moves the cursor to the desired
value and uses the RALLY command SELECT
VALUE to copy the value to the field. The applica-
tion definer has the option to restrict the user to
selecting a value that appears in the list of values.
The implementation of a list of values is simple
and consistent with the definition of other
groups: a DSD describes the data that will appear
in the list, and the data group describes the for-
matting of the data on the screen. Because the
list-of-values data is independent of the other
data on the form/report, the list-of-values group
is neither a parent nor a child of the other data
groups, but is realized as an independent sibling
owned by the main group.

Escapes to Procedural Programming
RALLY tries to anticipate the features that will be
required in applications and to provide the
definer with the option to include those features.
Fields, data groups, and form/reports as a whole
are replete with options. But this is not enough.
No collection of options will meet the require-
ments of all applications. Therefore, RALLY
allows the application definer to escape from the
nonprocedural confines we provide.

The VAX RALLY system offers the definer two
levels of escape: an integrated procedural lan-
guage, ADL, that runs within RALLY; and the abil-
ity to call traditional programs that run on the
VAX system, independent of RALLY. Both ADL
procedures and calls to external programs latch
on to a RALLY application at various "hooks,"
called action sites.

Action Sites
A number of action sites are available at various
levels in the application.

A simple example is a computed field that has
an action site for a procedure which supplies the
formula for the computation. In addition, action
sites can be invoked before and after the user
moves the cursor to each field or changes the
value of each field; before and after insertions,
deletions, and updates in each data group; before
and after commits, rollbacks, queries, and invo-
cation of the form/repon as a whole; and at the
explicit request of the end user. Action sites that
occur before an event generally have the ability
to prevent that event from taking place. For
example, the before-deletion action site, under
conditions specified by the definer, can forbid
the user conditionally from deleting records in
a particular data group. By using external pro-
grams or ADL procedures, the definer could
call upon a system service to determine a user's
login-identification, read records from an autho-
rization file, and/or call a RALLY menu to allow
the user to reconfirm, before proceeding with
the deletion.

Because RALLY has direct control over the
"action stack" that governs the flow control,
action sites can be put to very powerful use. At
any action site, the definer can call another
RALLY action (for example, form/repon, menu,
ADL procedure, or external program), spawn a
RALLY task, return to an existing task, "unwind"
the action stack, or invoke a RALLY command
(for example, COMMIT).

ADL Procedures
Although external programs can do things ADL
procedures cannot, their effect on the RALLY
application is limited to their ability to write
their output parameters into RALLY fields or
variables.

ADL provides a convenient way to define com-
puted fields without having to link to an exter-
nal program. Although there is some overlap

Digital Techical Journal
N o . 6 Februav 1388

75

Tbe VAX RALLY System - A Relational Fourth-generation Lunguuge

between the abilities of external programs and
ADL procedures, certain operations are better
suited to ADL procedures. An ADL procedure can
directly read and write fields and variables in the
application; indicate that a validation has failed,
preventing a data operation from going forth;
invoke RALLY form/reports, menus, error mcs-
sages, or help messages; unwind the RALLY exe-
cution stack to a specified point; and manipulate
RALLY tasks. In addition, ADL can read, query,
and write data through a set of built-in functions
that closely parallel the operations permitted in
form/reports. As with form/report groups, the
specific definition of the location of the data is
isolated in the DSD object.

Moreover, given the choice of using either an
A D L procedure or an external program, a definer
will find the ADL procedure significantly faster to
implement. To incorporate an external program
into a RALLY application, the definer must leave
RALLY, edit the text of the program, compile and
link the program, and return to RALLY. To use an
ADL procedure, the definer can invoke the ADL
editor and compiler from within the definition
system menus, and test the results without leav-
ing RALLY,

The syntax of ADL is a good cxample of how
RALLY accommodates the definer's need for both
simplicity and power.

ADL derives its syntax from Pascal in order to
provide local variables, parameters with call by
reference, conditionals, and loops. The syntax is
relaxed for cases that do not use all these fea-
tures:

If an ADL procedure does not use parameters,
the PROCEDURE statement may be omitted.

If an ADL procedure does not use local vari-
ables, thc BEGIN and END enclosing the pro-
cedure body may be omitted.

As a result, an ADL procedure that specifies the
formula for computed fields - the most com-
mon use of ADL - can be written as a single Pas-
cal statement. For example:

FORM-REPORT . COMPUTED-FIELD : =

FORM-REPORT . INPUT-FIELD-1

+ FORM-REPORT . INPUT-FIELD-2 ;

Implementation of the
Definition System
The definer of a RALLY application manipulates
objects such as form/reports, menus, DSDs,

external program links, and ADL procedures.
Most of these manipulations are done in terms of
data operations: creating, deleting, and modify-
ing information in a "record" that represents
each object.

The implementation of the definition system
uses RALLY for its own forms, treating the
application definer's objects as data. Thus the
definition system is simply an example of an
application built with RALLY, although probably
much larger than the typical RALLY appli-
cation. However, the definition system also
includes tools, such as editors, and has an
access method specifically designed for effi-
ciently storing application objects in files.
The code that supports this access method
can also be called directly by the definition
system code, or by ADL procedures in the
definition system application.

The definition system uses its data about the
application to assist the application definer.
Whenever the application definer has the oppor-
tunity to connect one RALLY object to another
(for example, at action sites), the definition
system displays a list of values showing all
the existing objects of the appropriate type.
Whenever the application definer attempts
to delete an object, the definition system
checks for references from other objects; if it
finds any such references, it warns the definer
and displays a report that lists the referenc-
ing objects. Again, standard form/report features
are used in connection with the specialized
access method.

An intcrcsting aspect of the way objects are
handled as data is the way object names are
handled. The definer regards the object's name
as the primary key that uniquely identifies
the object. However, to encourage the devel-
opment of mnemonic names, RALLY allows
the dcfiner to rename objects. Therefore,
RALLY internally identifies objects not by name
but by an internal identifier not displayed to the
definer. From RALLY'S internal point of view,
the name is just another attribute of each
object that can be changed at will. From the
definer's point of view, renaming an object
automatically renames all references to that
object.

The definition system uses a specialized form
of escape to 3GL programs to support nonstan-
dard form/rcports. C;illed the 3GL access
method, this technique allows the definition sys-

Digital Technical Journal
No. 6 February I988

Software
Productivity
Tools

tem to present information in tabular form even
when the underlying data is not stored as a
sequence of records. For example, the definition
system uses the 3GL access method to display an
Rdb/VMS record selection expression on a series
of tabular form/reports: sorting, restrictions, and
projections. Each "3GL DSD" is implemented by
a single routine that can be called with one of
several function codes. These functions corre-
spond to the data operations that are supported in
form/reports and in ADL procedures: get first
record, get next record, insert, delete, update,
commit, and rollback. Each such routine, in
effect, implements its own access method, sup-
plying data and effectuating data operations. The
definition system can use the "access method" as
any other data source, for example, to supply the
data for a list of values.

The Run-time Environment

Mapping User Actions
to Database Operations
The typical end user of a VAX RALLY application
is not skilled in database concepts. Therefore, to
aid this user, database operations should happen
in a natural correspondence to the end user's
actions.

The basic concepts that RALLY presents to an
end user are very similar to those presented by
the VAX TEAMDATA software, a data management
tool specifically designed for exclusive use by
unsophisticated end users. Specifically, the "data
table" metaphor by which TEAMDATA operates is
very similar to the mechanisms that RALLY uses. A
data table evokes the classical form of a table to
represent a relation. Rows in the table represent
records; columns represent fields in the relation.
The VAX RALLY run-time environment includes
built-in commands with which the end user
manipulates records or navigates between fields
in a form/report. Function keys have been pre-
defined for the commands most commonly used.

To delete a record, the user moves the cursor to
a field in the record and invokes the DELETE
RECORD command (typically by pressing the
Remove key). To modify a record, the user moves
the cursor to the desired field in the desired
record and types the new value. However,
the update is not communicated to the data
source until the user moves the cursor off the
record. Besides minimizing the cost of repeated
updates, this allows the user to change several

fields that are subject to cross-field validation
imposed either in the database or by the RALLY
application.

Transaction Management
in Form/reports
RALLY uses Rdb/VMS transaction and locking
mechanisms to extend TEAMDATA'S straightfor-
ward data table metaphor from a single-user to a
multiuser environment. Moreover, the designers
wanted to allow many users to access the same
data concurrently with minimal interference
between users, and to do so with reasonably effi-
cient performance.

The following brief review of the Rdb/VMS
transaction and locking mechanisms will help in
explaining RALLY'S implementation of shared-
write access in form/reports.

Rdb/VMS provides essentially two types of
transactions: read-only and read/write.

A read-only transaction, as its name implies,
permits only reading operations. It gives a "snap-
shot" of the state of the database as it was when
the transaction started; later changes by other
users are not seen in a read-only transaction. A
read-only transaction does not take out any locks
on the database and is affected only by those rela-
tion-level locks taken by other transactions with
"exclusive" access.

A read/write transaction must be used to write
to an Rdb/VMS database. In addition to various
degrees of locking of relations, a read/write
transaction locks individual records as it operates
on them. If a read/write transaction reserves a
relation for shared-write access, many transac-
tions may read a given record, but only one trans-
action may write to a particular record. The
mechanisms Rdb uses to ensure this are called
"read locks" and "write locks." As a read/write
transaction reads a record, it takes a read lock
on that record. For so long as this transaction
holds that lock, no other transaction is allowed
to delete or modify that record. However, other
read/write transactions may read the record,
taking their own read locks on the same record.
Read-only transactions are unaffected. When a
read/write transaction writes to a record, a write
lock is taken on that record. For so long as
this transaction holds that lock, no other read/
write transaction may read that record or write to
i t . Both read locks and write locks are held until
the read/write transaction is terminated by a
commit or rollback.

Digital Technical Journal
No. 6 February 1988

The VAX RALLY System - A Rehtional Fourth-generation Languuge

RALLY'S simple, elegant "data table" model, j f

implemented simply by using a single read/write
RdbpMS transaction, would thwart the goal of
noninterfering, simultaneous, multiuser access.
Recall that ;I read/write transaction takcs a read
lock as a side effect of reading each record. The
mere displaying of a record in the table, even
without the user attempting to modify it, would
immediately interfere with other users' access to
that record. Although several users could each
read the record, their read locks would prevent
any user from writing to the record. This would
make the shared-write access virtually unusable.
To decrease contention among users, RALLY
implements shared-write access using two Rdb/
VMS transactions: a read-only transaction for dis-
playing records in a data table fashion, and a
read/write transaction that is used sparingly as
needed when the user performs data update
operations.

Another difficulty is caused, however, by the
use of the read-only transaction to display exist-
ing data for the user's perusal. Because the read-
only transaction supplies a "snapshot" of the data
as i t was when the transaction started, it is possi-
ble for the displayed data to lag behind the actual
state of the database. Other users may have writ-
ten and committed changes to the record in the
meantime.

To alleviate this problem of stale data display
while avoiding the overhead of repeatedly read-
ing from the database to check for updated
records, RALLY employs a compromise. RALLY
checks for and reports discrepancies only at the
point where a user attempts to modify or delete a
record. After RALLY warns the user that the
record has undergone changes since it was read
from the read-only transaction, RALLY redisplays
the record with its current data. RALLY does this
by reading the record from the read/write trans-
action. This read operation, called a select for
update (SFU), is done as soon as the end user
changes a single field in a record. This action by
the user is the earliest indication RALLY has that a
user's interest in a record is more than that of pas-
sive observation. Reading from the read/write
transaction serves two purposes: it allows RALLY
to alert the current user to any interim changes in
the record, and by taking a read lock on the
record, it prevents other users from making any
further changes to the record. When the current
user moves the cursor off the current record,
RALLY writes the changes to the read/write trans-

;iction, taking a write lock on the record. Notc
that RALLY can still read and display the record
for other users despite the write lock, because
the other users are reading from their own read-
only transactions. Finally, when the current
user performs a commit, whether explicitly by
using the COMMIT command, implicitly by
means of a positive exit from a form/report, or
as a result of the application definer's design,
the read-write transaction is committed and all
locks are released.

Advantages of Using RALLY for Its
Own User Interface
The use of RALLY to implement the user interface
for the RALLY definition system has resulted in
several advantages. Despite some early bootstrap-
ping difficulties, the use of RALLY within itself
has noticeably improved the quality of the
product. Any time we change the user interface
for the definition system, we simultaneously
exercise the definition system as well as the
run-time system. The definition system has prof-
ited from the ease with which we have been able
to incorporate into it the same features that
are easy to develop in applications, notably, vali-
dation, lists of values of valid choices, and flex-
ible flow control. As part of the ongoing develop-
ment work on future versions of the VAX RALLY
product, we have been able to experiment
readily with the user interface for the definition
system, for example:

We have implemented prototypes of the menu
structure of the definition system in which
menus and forms have been changed to reflect
better the relationship between the various
attributes of each object. The time to imple-
ment these changes has been negligible,
allowing the development group to spend
appropriate amounts of time evaluating design
alternatives, rather than on implementation
details.

We are studying a change in the way an appli-
cation definer specifies the location of RALLY
objects. In the current version, an application
definer specifies for each object the start row,
end row, start column, and end column. Under
the proposal being studied, the definer would
specify the start row and column, and the size
in rows and columns. This change was easily
prototyped without changing the way RALLY
stores the information. We introduced com-
puted fields for the size information and made

- --

Digital Tecbtafcal Journal
No . G Februaty 1988

Software
Productivity
Tools

thc end coordinates nondisplayed fields. Only
two ADL procedures were needed, despite the
fact that this change affected numerous forms.

We are experimenting, by means of the SGL
access mcthod, with form/reports that display
data about the ;~pplication in a nonstandard
fashion. For example, we have designed a
form/rcport that would list the location infor-
mation ;thout all the fields, groups, and text
objccts in a form/report. The 3GL routine to
supply the data for this form/report adds
sp;~c.cs to thc beginning of each object's name
so that indentation reflects the depth in the
hierarchy of form/report groups.

We have prototyped a way to streamline the
means by which an application definer works
on related objects in a RALLY application. In
the current version, the application definer
works on one object at a time, returning to the
menu tree each time to select a different
object. The prototype took advantage of
RALLY'S "local function" feature, by which an
application definer can give the user the abil-
ity to call a RALLY action at will by pressing a
key. This feature would allow an application
definer to press a key to edit an object named
on the current screen. For example, if an
application definer were editing a menu and
were to move the cursor to the name of the
form/report that is called as a choice from that
menu, RALLY would suspend its editing of the
menu and allow editing of the form/report.

The speed with which such changes can be
made has allowed us to compress several cycles
of design, implementation, testing, and reaction
into the time ordinarily taken to complete a sin-
gle cycle. The ability to respond substantively to
user feedback is a major contribution to our
efforts to improve VAX RALLY'S user interface.

Also, our experience with the definition sys-
tem, one of the largest applications ever built
using RALLY, has givcn us valuable insight in
evaluating RALLY and proposing new features.
Lists of values is an example of a feature influ-
enced by the use of RALLY by the definition sys-
tem. Several features were added to lists of values
for the benefit of the definition system to make
the feature more useful for applications gener-
ally. These features include the ability to validate
the user's typed input against a list of values, the
ability for variables in the application to affect
the set of records in the list of values, and the use

of lists of values to translate keywords into code
numbers.

Summary
To make application definers more productive,
the VAX RALLY system is designed to be at once
easy to use and powerful. VAX RALLY achieves
these goals in several ways. First, it offers a small
set of concepts that address those application fea-
tures commonly needed by application definers.
Second, RALLY gives the definer ways to combine
small pieces and ways to move in and out of the
nonprocedural environment of the definition sys-
tem. Finally, the designers of this object-based
system delineated objects based on knowledge of
how the objects are likely to be used.

The VAX RALLY product's unified form/
reports, comprising combinations of data groups
connected to data sources, provide application
definers the functionality most needed for inter-
active database applications.

The representation of an application by a set of
connected objects allows programming to be
treated as a data processing application that
manipulates those objects. In particular, this rep-
resentation has allowed RALLY to implement the
user interface for the application definition sys-
tem as a RALLY application.

The use of RALLY form/reports as the basis for
the RALLY definition system has resulted in
several significant advantages, both in anticipat-
ing the needs of users and in increasing our own
productivity and flexibility in developing VAX
RALLY.

General References
E. Horowitz, A. Kemper, and B. Narasimhan, "A
Su wey of Application Generators," IEEE Soft-
ware (January 1985) : 40-53.

J . Martin, Fourth-Generation Languages (Engle-
wood Cliffs: Prentice-Hall, 1985).

C. Date, An Introduction to Database Systems,
Third Edition (Reading: Addison-Wesley, 1981).

VAX Rdb/VMS Guide to Data Manipulation
(Maynard: Digital Equipment Corporation,
Order No. AA-N036B-TE, 1985) .

VAX RALLY Dialog User's Guide (Maynard: Dig-
ital Equipment Corporation, Order No. AA-
GX89A-TE, 1986).

VAX RALLY ADL User's Guide (Maynard: Digital
Equipment Corporation, Order No. AA-GX9OA-
TE, 1986).

Digital Technical Journal
No. 6 Februarv I988

7 9

Linda E. Benson
Michael Gianatassio, Jr.

Karen L. McKeen I
V . and VALU - Software
Productivity Tools for Distributed

Digital's VAX VlXproduct is a distributed information-retrieval tool that
operates in conjunction with another tool, the VAX I'IX Application Link
Utilities, or VUU. These products enhance so@are productivity by
providing components tbat work togetber to allow the deuelopment and
integration of applications in distributed, heterogeneous environments.
VlX and VMU provide the means for creating information seruices,
providing network access to either centralized or distributed informa-
tion, and building external applications through basic tools andprogram-
ming interfaces. The deuelopment of distributed applicudions with r/7X
and VALU requires little or no knowledge of the underlying network.

The designs of VTX and VALU center on a dis-
tributed open architecturc using the client/
server model. This open architecture allows VTX
and VALU applications to be integrated with oth-
ers available through Digital's networking envi-
ronment. The architecture enables these two
products to provide a simplified development
environment for applications. Within this envi-
ronment, a developer can create distributed
applications that allow geographically dispersed
users to access information stored in geographi-
cally dispersed locations connected by a com-
puter network. This flexibility allows the base
services of a distributed information retrieval
system to be extended into a more robust dis-
tributed system. In such a system, a developer
can integrate applications with other software
products or external computer systems.

The V l X Project Goals
The designers of the VTX product had to address
a unique set of problems related to information
access through a computer network. The central
problem was how to efficiently distribute infor-
mation on-line to a large group of peoplc. The
chief aspects of this problem were the following:

There were neither means to access informa-
tion stored in dispersed locations nor easy
ways to alert potential users about it.

Even if information could be reached, i t was
not well organized for ease of access.

At the decentralized locations, information
was usually maintained in different ways by
those people most familiar with it.

These problems describe the information situ-
ation in most corporate business environments.

Thcrcfore, the challenge for the VTX design-
ers was to determine how a corporation handles
information flowing between different locations.
Note that information in this case could be any-
thing from policies and procedures manuals, to
job postings and travel schedules, to CAD/CAM
drawings and technical documentation. A major
goal of the designers was that a minimum of spe-
cial learning should be required by people
accessing the information; browsing through it
should be as simple as using a telephone.

This goal caused the VTX architects to exam-
ine various systems with these characteris-
tics, including public videotex systems, that
addressed the problems listed earlier. A main
feature of public videotex was that basic naviga-
tion through the on-line information system was
simple for users. They could easily locate infor-
mation and then rely on the system to quickly
and easily access that information. Public video-
tex systems were also distributed systems: users

Digital Technical Journal
No. 6 February 1988

Software
Productivity
Tools

were geographically dispersed, and the informa-
tion accessed was located in multiple informa-
tion "stores" in a computer network.

Since public videotex was a well-accepted sys-
tem that was also easy to use, the architects
chose it as the basic model on which to build
the VTX product.

Figure 1 presents the architects' view of a sim-
plified model of information flow within a cor-
poration. This model would be refined as project
goals were clarified.

SYSTEM 1
I 1

INFORMATION

INFORMATION INFORMATION

SYSTEM 2 SYSTEM 3

Figure 1 In formation Flow Model

Although ease-of-use was a primary goal for an
information retrieval system, other major goals
included the following:

rn Information access must be fast.

rn The product must accommodate access from a
variety of desktop systems and terminals from
different manufacturers.

rn The product should be protocol neutral so
that information, regardless of its format or
presentation-level content, could be stored in
a single data store.

The product must support a distributed envi-
ronment in which the information, as well as
its users and information providers, might all
be geographically dispersed.

Guided by these goals, the designers built a
prototype that was then tested by users within
Digital to determine its ease-of-use factors, per-
formance, and general acceptability. Based on its

success as a prototype, the development of the
product began, following the goals described
above. Somewhat later in the development
phase, the team added goals aimed at making the
product extensible, thus taking advantage of the
open architecture. Extensible in this case simply
meant the ability to enlarge the tool-kit nature of
the product so that an application developer
could expand the system by interfacing with
other products and environments. As a result,
designers identified some growth areas for these
products that took advantage of their flexible
open architecture.

These additional goals led to the concept
for the VALU product. Although VTX would
provide the base services for a distributed infor-
mation retrieval system, those services had to
be expanded to interact with other applica-
tions. VALU was conceived as a tool kit that
would allow application developers to enhance
applications built with the basic system pro-
vided by VTX.

Enhanced tools and environments for the
information providers

rn Tools for acquiring and incorporating infor-
mation into the VTX-based system

rn Integration with non-VTX applications
through interfaces that require no knowledge
of the underlying network by the application
developer

Building the Base V3X System
This section discusses the characteristics of a
distributed architecture, how it facilitates appli-
cation development and integration, and the
methods for building upon i t .

Characteristics of a Distributed
Architecture
Distributed connotes dispersion, spreading out
and placing things in different places. A dis-
tributed application comprises two or more
application components, separated from each
other, but working together to form the applica-
tion. An application component is a self-con-
tained program that executes independently of
other application components.

Application components may reside on differ-
ent CPUs or on the same CPU. In either case,
these components need some means to commu-
nicate with each other. The communication

Digital Tecbnkal Journal
No. 6 February 1388

VTX and VALU Tools for Distributed Applications Development

means chosen may vary depending on the local-
ity of other application components. For cxam-
ple, components residing on the same CPU may
communicate through shared memory, whereas
those on different CPUs may communicate over
a network. The design of an application com-
ponent is independent of the locality of other
components. At run time, the software support-
ing the system can sense any difference in locali-
ties and choose the appropriate communication
means.

Since the locations of application components
are transparent to the design of the application,
these components may be distributed across
heterogeneous, or mixed-vendor, environments.
For example, DECnet software extends its cotl-
nectivity to heterogeneous environments through
SNA and X. 2 5 networks. Therefore, the compo-
nents of a VTX/VALU system may also be dis-
tributed across these environments.

Client/Server Relationship
The components of a distributed application
have a client/server relationship. As consumers
of resources, clients initiate requests to servers;
as providers of resources, servers respond to
requests from clients.

Clients and servers generally interact accord-
ing to a request/response protocol. Since
requests and responses may be formulated over
multiple messages, a "token" is used to regulate
whose turn it is to communicate. The applica-
tion component that possesses the token has the
right to communicate. The completion of com-
munication is signaled by the passing of the
token, either explicitly by flags within the mes-
sage or implicitly by the message type.

Servers may communicate with other servers.
The server that initiates the communication then
becomes a client to the other server. If a server
communicates with another server on behalf of
its client, that server is called a broker. Figure 2
illustrates this broker relationship. Brokering
facilitates application integration and allows
clients transparent access to any application
available throughout the network. How the VAX
VALU product integrates applications through
brokering services will be discussed latcr.

Regardless of which communication means is
used for application components, a set of rules
in the form of protocol messages must be
defined to specify how functions are distributed.
These rules are called the application protocol.

CLIENT
COMPONENT COMPONENT

SERVER
COMPONENT

Figure 2 Client/Seruer/Broker Relationships

Application protocols define how functions
that are specific to the application are distri-
buted across its components and the rules for
component interaction. Although the applica-
tion protocol is independent of the communica-
tion means, the protocol may require certain
characteristics, for example, full-duplex com-
munications.

Application protocols must be invisible to the
application developer. In the VTX and VALU
products, callable application protocol libraries
are implemented to increase the productivity of
the application developer by

Creating a single library that s u p p o w the
application protocol and is shared by all
application components requiring support for
the protocol

Having the application developer learn a sim-
ple, higher level call interface rather than all
the details of the application protocol

Defining a clear interface for integrating
applications into a distributed environment

Insulating the application from changes in the
application protocol

Resolving incompatibilities between applica-
tion protocol versions in application compo-
nents

Insulating the application developer from the
communication means used between applica-
tion components

Facilitating the development of applications
that can be accessed by simultaneous users

How the Architecture Achieves the
Project Goals
Fast information access in a distributed environ-
ment is achieved by making VTX available over
networks with the DECnet architecture. This
architecture extends connectivity to multiven-
dor environments, thus achieving the goal of
accessing dispersed information. For example,

Digital Technical Journal
No . (; February I988

the DECnet/SNA Gateway and the packet-switch-
ing interface products (X.25) provide access to
a great variety of non-Digital environments.

The architecture allows transparent access to
heterogeneous environments through the broker-
ing capability of servers. Users can navigate
transparently to other VTX servers or to applica-
tions that have been integrated into the VTX
environment. Applications integrated into that
environment can be developed independently of
whatever input devices the users have. There-
fore, application developers can make their
applications available immediately to any user
on the network having the standard VTX client.
No additional software needs to be installed on
the client systems.

The features mentioned above provide full
support for processing and storing data in a truly
distributed, heterogeneous fashion. By allowing
transparent navigation to servers and applica-
tions, the architecture can retrieve data stored in
any format from any point throughout the net-
work.

Components of the W / V A L U
Product Set
The VTX and VALU product set includes a col-
lection of application components interacting

over the network. Their foundation is based on
the distributed architecture illustrated in Fig-
ure 3.

The store of information referred to earlier is
contained in the VTX information base, a hierar-
chical system of pages called an infobase. The
infobase contains presentation information that
users can navigatc through using menus and key-
words. On- line updates are allowed because the
infobase is shared among the infobase, update,
and VISTA servers.

The terminal control program (TCP) is
responsible for presentation management and
parsing users' requests according to the specific
input devices being used. The TCP maps those
requests to specific VTX function requests,
which are then sent to the information server.
The TCP and the information server communi-
cate through the DECnet software using an
application protocol called the videotex access
protocol PAP) .

Infobase servers communicate with other
infobase servers or with applications on behalf
of the TCPs. This communication is transparent
to the TCPs, thereby providing transparent
access to them. Al l communication between
infobase servers and applications is through the
VAP application protocol.

y-I , ~ ~ 6 . 2 APPLICATION

I

INFORMATION VAP VA DECnet
SERVER APPLICATION APPLICATION

I UPDATE 1 1 v u p {q
S E R V E R

R M S

VISTA VIP
CLIENT

Software
Productivity
Tools

KEY:

VISTA

R M S - RECORD MANAGEMENT SERVICES

CLIENT

-

V I P

Figure 3 VIX and VALU Product Architecture

VISTA
SERVER

Digital Tecbnical Journal
No. 6 February I988

83

! I/TX and VALU Tools for Distributed Applications Development

The external link kit (ELK) interface is an
application protocol library used by pro-
grammers to integrate applications into the VTX
environment through the VAP protocol.

The VTX application service (VAS) is a dis-
tributed application integration tool. VAS allows
access to applications on other computer sys-
tems through both DECnet and non-Digital net-
works. The productivity gains of developing and
integrating applications into the distributed
environment of VTX using VAS is discussed later.

The VTX infobase structure tool and assistor
(VISTA) is a distributed application development
tool that displays a graphical view of an infobase
to assist a user in creating and managing an
infobase. VISTA clients are information providers
who interact with a VISTA server to perform
those tasks. All communication between VISTA
clients and servers is by means of the DECnet
network using an application protocol called the
videotex information provider (VIP). Using
VISTA yields productivity gains that are dis-
cussed in the next section.

Update clients are information providers who
interact with an update server to create and
maintain an infobase. The update server uses a
command-oriented interface. All communication
between update clients and servers is through
the DECnet network by means of an application
protocol called the videotex update protocol
(WP) .

Application developers can also use RUSL
(remote update server link), an application pro-
tocol library used to create infobase manage-
ment tools as well as to allow the updating or
populating of an infobase from a program. The
RUSL application protocol library was built to
support the W P protocol. The VTX update
client was built using this protocol library.

Tools Provided for Application
Development
This section discusses two tools provided by the
VTX and VALU product set to enhance the pro-
ductivity of application developers building dis-
tributed information systems. VTX information
systems can be grouped into two classes: those
simply providing information to users, and those
interfacing with other applications to enhance
and expand on the information itself. The first
tool, VISTA, addresses the needs of application
developers building the first type of information
system. The second tool, VAS, provides the nec-

essary capabilities that allow application devel-
opers to easily build interfaces to other applica-
tions.

VTX as an Application
Development Tool
The VAX VTX base product provides the tools
for quickly and easily building a distributed
information application. The open architecture
allows an application developer to easily extend
the application by adding new applications and
support for heterogeneous environments as the
requirements change. These extensions are dis-
cussed later in the section Application Integra-
tion Using VAS.

The basic VTX components allow an informa-
tion provider to create an infobase. The infobase
is the application; the information provider is
the application developer. Policies and proce-
dures manuals, sales and competitive informa-
tion articles, reference manuals, jobs books,
training schedules and course descriptions,
CAD/CAM drawings, and newswire stories are
examples of information that can b e organized,
maintained, and delivered as VTX information
applications.

With the simple information-based applica-
tion, VTX relieves an information provider from
having to know specific details of the underlying
communications and the terminals. Thus, the
information providers can direct their attention
to the content of the information and can more
easily design the structure by which an informa-
tion user accesses the infobase.

VISTA
VISTA is a tool to increase the productivity of the
information provider when creating a dis-
tributed information system using VTX. VISTA
helps a naive information provider to become
productive very quickly and allows an experi-
cnced information provider to remain produc-
tive. VISTA provides a simple graphical interface
for the naive user, yet also has a command-line
interface for the more experienced user. The
productivity of creating applications increases
because VISTA is easy to use.

VISTA uses the client/server model to allow
one VISTA server to maintain the actual VTX
infobase files. One or more information pro-
viders can access that VISTA server through
the VISTA user-interface program (VISTA client).
Building on the foundation of a distributed

84 Digital Technical Journal
No. G February 1988

architecture allows information providers to be
dispersed geographically. VISTA can coordinate
multiple information providers working on an
infobase by allowing them to reserve portions of
it for updating.

VISTA uses a simple graphical interface that
allows an information provider to quickly design
the layout of a VTX infobase. The picture dis-
played represents the hierarchical nature of the
infobase, much like an information provider
would imagine the infobase menu structure to
be. VISTA improves and enhances the infobase
development process by allowing the informa-
tion provider to design the menu structure right
on the terminal instead of constructing it first on
paper. Figure 4 shows a sample of a VISTA
screen with a menu structure.

An information provider using VISTA builds a
VTX infobase by selecting options from the strip
menu appearing at the bottom of the screen. The
large work area above the options menu displays
the current state of the infobase as the informa-
tion provider continues to work. The single box
at the top of the work area depicts a current
menu. Any number of boxes drawn just below
the current menu show the menu choices from
the main menu. Any of those menu choices may
themselves be menus. The menu structure of the
VTX infobase can be modified through simple
add, delete, and cut-and-paste operations.

Each box at the top and across the center of
the screen represents a particular page in the

infobase. In an application development envi-
ronment, the VISTA options allow an information
provider to easily specify all the necessary infor-
mation for each page. The information provider
can invoke an editor to supply the text for any
page without leaving the environment. VISTA
builds the text of menus according to a default
style and allows that style to be modified for any
menu page. Its simple forms interface allows the
information provider to specify additional infor-
mation for any page. This page information is
grouped into categories of similar items, each
with its own form. Figure 5 shows a VISTA form.

Once the information provider has created the
menu structure, VISTA handles the process of
building that infobase from the picture. Each
page in the menu structure is convened from
graphical format to infobase format through the
VISTA server. VISTA handles the underlying com-
plexities of page generation, such as page num-
bering and the association between a menu page
and its choice pages.

Once the information provider has initially
developed an information application using
VISTA, the tool can continue to be used to
enhance, extend, and maintain the application.

Extending the VTX Application
Using the VAX VALU product, the information
provider can extend the basic application into a
more interactive one by using the VALU tools for
two-way access to the infobase. Not only can the

Figure 4 Sample VfiTA Menu Structure

V A X V T X V l S T A V 3 . 0
MA I N MENU

I
I

Digital Technical Journal
No. 6 February 1988

P O L I C I E S

SOFTWARE ENG.
HARDWARE ENG.

Software
Productivity
Tools

l i) O D p T l ~ ~ l ~ ~ >
U s e t h e a r r o w keys t o select an o p t i o n , t h e n p r e s s RETURN.

JOBS BOOK

E N G I N E E R I N G
MANUFACTURING
MARKET I NG
SALES

S A L E S U P D A T E

J U L . 1987
AUG. 1987
S E P . 1987

F I N A N C E -

T R A I N I NG NEWSW I R E S

SCHEDULES
COURSE DESC.
SEMINARS
V I D E O T A P E S

V7X and VALU Tools for Distributed Applications Development

V 3 . 0

18I!8!!n G e n e r a l P a g e C o n t r o l Information

G e n e r a l I n f o r m a t l o n F o r : Ml.INMENU
-.

Page number: -
Page t y p e : MENU
C l o s e d u s e r g r o u p : 25
C o d i n g : ASCl I
C h a r g e v a l u e : 0
S c r e e n w i d t h : NARROW
C r e a t i o n d a t e : --

E x p i r a t l o n d a t e : 0 1 - J A N - 1 9 0 8
C l e a r : - Y
D i r e c t : Y -
Log: - N
Save : - Y
M o r e : - N
U s e r d a t a : -

M o r e B e l o w
P r e s s F I N D o r PF1-L t o s e l e c t a v a l u e f r o m t h e l l s t o f s u p p l i e d v a l u e s

Figure 5 Sample VISTA Form

application distribute information to users, i t The VAS language consists of eight verbs used
can also collect information from them, process to
it, and return the results. Using VALU allows an
application developer to define the flow of con. . Display lnformation from the infobase of the

trol for infobase access by a user. VALU also server (optionally merging data from VAS),

allows simple connections to external applica- collect user responses, and make flow-control

tions that can provide information to the system. decisions based on user requests

Some examples of external programs are on-line
ordering and registration systems. Declare local and global variables

The next section describes the VAS component
of VALU. VAS is a powerful application dcvelop-
mcnt and integration tool that provides the func-
tionality to connect the W X system with appli-
cations on DECnet, SNA (LU6.2), and X.25
networks. VAS was built on ELK, thc applicatiotl
protocol library that is provided with VALU.

Application Integration Using VAS
VAS is a flow-control and integration layer bc-
tween the W / V A L U environment and external
applications. Figure 6 illustrates how applica-
tions are integrated using VAS.

VAS simplifies application development and
integration by providing a fourth-generation lan-
guage for using VAP. The VAS language is spe-
cialized to provide the functions of VAP and to
F~cil i tatc the integration of external applica-
tions. VAS applications are organized into scripts
called transaction definitions. Application flow
control can occur by transaction definitions
transfcrring processing to other transaction defi-
nitions.

Manipulate the contents of variables

Pass variables and state information to exter-
nal applications (or to local user-written rou-
tines that have been dynamically loaded in
the VAS image) and receive responses

[Make flow-control decisions based on
responses from user input, external applica-
tions, and user-written routines

Log the contents of variables

Interaction with External Applications
VAS interacts with external applications over
communication channels using its own request/
response protocol. A request contains current
state information about a user, for example,
which transaction the request was made from,
the contents of variables, what operation is
being requested, and time-stamp informatiotl. A
response contains updated variables from the
processing of the application.

Digital Technical Journal
No. 6 Frbruar)~ 1988

Software
Productivity
Tools

- IBM SNA- APPLICATION COMPONENT

VAp Ffl SERVER VAS $:!?t ---c APPLICATION COMPONENT

X.25- APPLICATION COMPONENT

Figure (5 Application Integrution through VAS

VAS transaction definitions specify the names
of the communication channels over which
requests to applications are made. A single VAS
transaction may interact wi th multiple applica-
tions over various communication channels. The
VAS operator dynamically associates cornniunica-
tion channel names t o specific communication
types and specific applications. VAS has built-in
support for communicating wi th applications
over the DECnct, SNA (LU6.21, and X.25 net-
works. The same request/response protocol is
used over all communication types. Transaction
definitions are written independently of thc
communication channels used; the application
developer requires no knowledge about the nct-
work.

Communication channels are shared by users
and may have multiple outstanding requests;
however, each user can have only one outstand-
ing request. VAS manages the sending and
receiving of all requests. These activities
include suspending the execution of a transac-
tion definition, timing requests, receiving ;i

request and identifying which user's transaction
definition to resume, and extracting the contents
of a request into local variables.

Using the concepts of the request/rcsponsc
protocol over communication channels, a VAS
application developer can build an application
that uses a consistent programming interface to
communicate wi th a variety of heterogeneous
environments. Let u s examine some of the
details that VAS handles for the application
developer.

VA.7 and SNA (LU6.2)

VAS uses the DECnet/SNA Gateway and the VMS
APPC/LU6.2 products t o communicatc wit I1 thc
SNA environment, as illustrated in Figure 7.

The application developer using \/AS requires
no knowledge of the DECnct/SNA Gateway and
VMS hPPC/I.LJ6.2 products, or of tlie IBM envi-
ronment. The CICS transactions on the IUM sys-

tem need to conform only t o the request/
response protocol.

VAS and the X . 2 5 Environment

VAS can communicatc with any packet-mode
data terminal equipment (DTE) that is connec-
ted t o a packet-switching data network (PSDN)
by using the VAX PSI product . The PSDN pro-
vides task-to-task communication between any
two conlputers connected to an X . 2 5 network.
Therefore, the en\lironmcnt is heterogeneous
in nature. Thc VAS developer needs no knowl-
edge of the PSDN, the VAX PSI product , o r the
remote DTE being accessed. Applications writ-
ten on the remote DTE need to conform only to
the request/rcsponsc protocol.

VAS and DECnet Applications

VAS can communicatc wi th other DECnct appli-
cations using ei ther transparent o r nontranspar-
ent task-to-task communication. Once again, the
VAS application developer needs no knowledge
of the DECnct software. External applications
written o n the remote system need to conform
only to the requcst/responsc protocol.

Handling Simultaneous Users
The VAS developer writes transaction definitions
as if they were synchronous and for a single uscr.
After VAS compiles and loads the transactions,
they become available for simultaneous users.
VAS interleaves uscr activity by suspending users
whose transactions are currently performing
asynchronous activities, for example, waiting for
the TCP to respond to the last page displayed, o r

VAX IBM

1 -

Figure 7 VAS Inle,qr~~tion (/sing SNA (LU6.2)

Digital Techtrical Journal 8 7
No. 6 Fe:rb~.rrnrj~ 1988

VTX and VALU Tools for Distributed Appliccrtions Development

waiting for an application to respond to a
request. In other words, while one user is wait-
ing for some sort of 1/0 to complete, VAS pro-
cesses another user's request.

Since VAS automatically handles simultaneous
users, simultaneous requests may b e generated
to the same application. However, developing
applications to service simultaneous users can
be complex. Therefore, VAS has built-in fea-
tures that allow single-user, synchronous appli-
cations to service simultaneous users. In that
way the burden of developing a simultaneous-
user application is removed from the appli-
cation developer. These activities are all accom-
plished through the subchannel feature of the
communication channel. The VAS operator can
start multiple copies of the same application on
a single communication channel. When requests
are made over the channel, VAS allocates a copy
of the application that is not currently being
used. If all subchannels are busy, VAS holds the
request until a subchannel becomes available.
The subchannel feature creates a pool of identi-
cal applications which can be distributed across
all communication types. From the VAS transac-
tion definition, this pool of applications acts like
a single communication channel. Figure 8 illus-
trates these subchannel capabilities.

Creating High Availability Computing
Environments
VAS functions are managed without interrupting
any active users. Such functions include starting
and stopping communication channels, opening
and closing log files, loading new transaction
definitions, modifying the contents of global
variables, and changing the association between
channel names and communication types.

The VAS application developer can make
updates to transaction definitions and load them
dynamically. Users accessing the transactions
before they were modified will continue to use
the older version of the transaction definitions.
New users who connect to VAS will immediately

7 APPLICATION A

APPLICATION A

APPLICATION A

Figure 8 VA.SS~~bchannels

APPLICATION A

APPLICATION A VAS

start using the updated transaction definitions.
When there arc no active users on the older
transaction definitions, they are automatically
unloaded

CHANNEL A

Sample VAS Application
This section contains a sample VAS application
that displays a form pagc to the user and then
sends a data block (using the REQUEST step) to
pass two fields wi th initial values (specified by
the DFLD variables) to a CICS transaction for
processing. Upon returning from the CICS trans-
action, the VAS application directs that pagc 102
be displayed from the VTX infobase to the user.
This sample VAS application could be part of an
interactive banking application that gathers data
from the user and then validates it (for example,
a user's bank account number and acccss code)
before allowing access to the system.

TRANSACTIONfirst-trans/ENTRY

= ' a c c e s s c o d e '

BEG I N

D ISPLAY ' 1 0 2 5 '

REQUEST c h e c k c o d e s n a - c h a n l

BEG I N

RFLD-1 D F L D l / L E N G T H = 6

R F L D - 2 DFLD2/LENGTH=15

END

E X I T / P A G E - ' 1 0 2 '

END

The channel to the SNA gateway has been
established with a command of the following
format:

VAS>START CHRNNEL s n a - c h a n l / S N A =

CGWY-sna-gwy,

A C C - c i c s - a c c e s s ,

T P N = c i c s - t r a n s l)

GWY is the name of a DECnet/SNA Gateway,
ACC is the access name on that gateway that
allows access to CICS, and TPN is thc name of
the IDM host transaction to be invoked.

Sample Distributed Application
Using W / V A . L U
The following example illustrates an applica-
tion th;~t was built using the VAX VTX and VAX
VMIJ products to handle document publishing
wi th ;in integrated frce-text search product. This
example highlights some capabilities of these

Digital Technical Journal
No. 6 Februnry 1988

distributed products and illustrates the benefits
of building applications utilizing the distributed
base system.

The primary functions of this application
provide

A periodical called Sales Update on-line for
corporate-wide distribution

The capability to supply users with a free-text
search feature using a third-party application
called BASIS

The capability to supply users with a hard-
copy formatted version of any article in the
periodical through an integrated mail inter-
face

In this application the screens of information
are formatted by a preprocessing application
that creates the VTX infobase. This same appli-
cation also provides data to the BASIS database
and supplies files formatted for hardcopy out-
put.

The information user is presented with a
menu of categories of Sales Update articles,
along with an option to search through them for
a particular text string. If the user selects a
search option, the VALU application will pass the
string to the BASIS application, which returns to
VALU one or more article IDS that match the
search criteria. VALU then creates a menu
dynamically with associated title strings to help
identify the articles located. Subsequently, the
user chooses a menu selection and the resultant
article is displayed.

A further extension to this application gives
the user the option of mailing the current article
being vicwed. Figure 9 gives a view of the com-
ponents of this distributed document publishing
system.

This example clemonstrates some of the most
important productivity benefits to an applica-
tion developer.

A single application program utilizing VTX
and VALU can be accessed by a network of
users without regard to the asynchronous
environment and the need to support a large
number of users.

An information retrieval-only application can
easily be extended to interface with external
products without changing the user interface
or disrupting the information retrieval "ser-
vice."

The applications provide VTX-like access that
is consistent with the information retrieval
access to provide extended capabilities to the
users. This extension allows the application
to free the users of the system from having to
learn a new interface to the newly integrated
product. In fact, the integration to another
product may be virtually transparent to users.

The application can support both softcopy
(on-line) and hardcopy distribution from a
single source file.

Summary
Working together, the VGX VTX and VAX VALIJ
products provide a rich set of software produc-

VTX

SEARCH

OPTIONS

FORMATTED SCREENS
OF ARTICLE INFORMATION

SEARCH
CRITERIA

ARTICLE
ID N U M B E R S

BASIS

BASIS
DATABASE

TEXT PAGE NUMBERS
SUBJECTS
ARTICLES

Software
Productivity
Tools

TEXT FILES
FOR HARDCOPY
DISTRIBUTION

Figure 9 Distributed Document Publishing Application

Digiral Technical Journal
No 6 Fc,bruar)~ 1988

89

VTX and VALU Tools for Distributed Applications Development

tivity tools and programming interfaces. These
products enable an application developer to con-
struct both centralized and distributed appli-
cations uscd in both homogeneous and heteroge-
neous environments. Because of the range and
flexibility of these tools, the resulting systems
can diffcr significantly according to the function
sets utilized and configurations selected. For
example, with these products, a simple informa-
tion retrieval or transaction-based system can first
be built and then evolve into a more complex sys-
tem based on the concepts of the VTX/VALU open
distributed architecture. The ability to expand a
system is essential; with the capabilities provided
through VTX and VALU, this evolutionary system
model is easily achieved.

General References

VAX VTX Documentation Kit (Maynard: Digital
Equipment Corporation, Order No. QL03 1 -GZ-
V 3 . 0 , 1987) .

VAX VALU Documentation Kit (Digital Equip-
ment Corporation, Order No. QL035-GZ-V2.0,
1 986) .

J. Morency, D. Porter, R. Pitkin, D. Oran, "The
DECnet/SNA Gateway Product - A Case Study in
Cross Vendor Networking," Digital Technical
Journal (September 1986): 35-53.

P. Beck, J. Krycka, "The DECnet-VAX Product -
An Integrated Approach to Networking," Digital
TechnicalJournal (September 1986): 88-99.

9 0 Digital Technical Journal
No. 6 February 1988

Ronald F. Brender
Bevin R. Brett

Charles Z. Mitchell

Pragmatics in the
Development of VAXAda

The somare tools and techniques (pragmatics) used daily by the VAXAda
developers significantly contributed to increases in product performance
and developer productivity. Approximately 500,000 lines of code were
written for this project. Ofparticular interest in this project's development
is the automation of the codingprocess, instrumentation of the compiler,
built-in consistency checking within the compiler (self-checking), and the
use of self-describing data structures. This paper gives examples of how
these tools and techniques were used in he development of the compiler.
Houleuer, these tools and techniques can be applied to a w& range of sofl-
ware development e$orts.

Software engineering literature to a great degree
focuses on design and implementation method-
ologies, as well as on tools to go with them. Little
is said, however, about day-to-day tools and tech-
niques that can also significantly impact the pro-
ductivity and effectiveness of a development
team.

The development of VAX Ada involved writing
approximately 500 ,000 lines of BLISS source
code. This paper discusses some of the tools

niques that would minimize the time spent on
routine or duplicate activities and would maxi-
mize the amount of time available for interesting
technical problems. Thus, we balanced the value
of each tool and automation technique against
the time it would take to build the tool o r
develop the technique and use it . We wanted to
spend most of our time developing VAX Ada.

These are some examples of activities we auto-
mated:

and techniques that have been important over Production of error-message information held
the course of that development. The tools and

in common between the compiler and the user
techniques fall roughly into the following

documentation
categories:

Automation

Instrumentation

Self-checking

Self-description

The task of creating and entering tests into the
VAX Ada test system

Compiler builds and check-in procedures

The process of managing multiple versions of
the compiler

We would like to suggest that many of these Some debugging tasks
tools and techniques could be useful to any soft-

= Key algorithms within the compiler
ware developer and could be applied to any pro-
ject of significant size

Automation
During the development of VAX Ada, we wrote
support code to automate various aspects of the
coding process and to help with day-to-day devel-
opment activities. Our interest was never in tools
or automation techniques for their own sake.
Instead, we were interested in tools and tech-

The first two examples are described in more
detail in the following sections. The last example
is described at the end of this paper in the section
Self-description.

Production of Error-Message
Information
VAX Ada has close to 1 ,000 distinct error mes-
sages. One of the VAX Ada user manuals lists all

Digital Technical Journal
No. 6 Februcrry I988

9 1

Pragmatics in the Development of V A x Ada

the error messages in an appendix. The usual
method for producing error messages and docu-
menting them is to create two source files: one
source file to be maintained by the compiler
developers and processed by the VMS message
compiler, and one source file to be maintained by
the writer and processed by the documentation
processor.

This method quickly became difficult for us to
manage. Messages were continually added as the
VAX Ada compiler was being developed - even
during the final stages of the development cycle.
Because documentation is written and reviewed
concurrently with compiler development, the
writer and editor of the user manual needed to
have a matching set of messages in the documen-
tation for draft reviews and final production. The
writer and editor also needed to be able to sug-
gest wording modifications as messages were
written, including wording modifications to the
messages added late in the development cycle.

To keep the two sets of sources synchronized,
we chose to automate. We wrote a processor that
accepts a superset of the language accepted by
the V M S message compiler as input. The addi-
tional language constructs allowed us to write
one source file containing all the messages and
any descriptive text appropriate for the docu-
mentation. Both the developers and the writer
were allowed access to the file. We then used
the processor to produce two output files: one
file containing all the messages and the coding
required for the message processor; and one file
containing all the messages, any descriptive text,
and the formatting constructs needed for the doc-
umentation processor.

Our processor saved us from having to review
two different sources at already busy times in the
development cycle. This approach also allowed
the user manual appendix to be generated irnme-
diately for each new version of the compiler.

Creating and Entering Test-System
Tests
An important task too often neglected is the
preservation of tests written during development
for later use by developers and maintainers. We
observed during the development of VAX Ada that
the number of tests added to our test system
varied inversely with the difficulty of adding
them. Our objective in automating the tasks asso-
ciated with adding tests to our test system was to

make sure that these complex, and important,
tasks would be done routinely and accurately.

For example, we developed

Command procedures to help create a test that
followed project conventions

Command procedures to automatically insert a
test in the test system

The ability to mark comments within a test as
keywords, and then automatically read the key-
words comments and enter them as attributes
of the test in the test system

Support for all major classes of tests (com-
piler, project library manager, debugging sup-
port, etc.), so that no major areas of testing
were neglected

Instrumentation
The richness of the Ada language presents a num-
ber of challenges to compiler writers. One of
these challenges is to achieve good compiler per-
formance. We found that instrumenting the com-
piler to measure i t s use of resources was an
important factor in developing a high-perfor-
mance product.

We used general-purpose tools such as the VMS
Debugger and the VAX Performance and Cover-
age Analyzer extensively during the development
of VAX Ada. These tools were also very useful in
improving performance. However, our special-
ized instrumentation helped us analyze the
behavior of the compiler at a level relevant to the
development strategies we were using; we could
then better understand how these strategies were
working. Many performance problems would
never have been identified had i t not been for our
specialized instrumentation. As a result of our
positive experiences, virtually every component
in the compiler that manages a resource is instru-
mented to gather detailed performance statistics.

The following sections show how instrumenta-
tion is used to

Provide data for design decisions affecting
compiler performance

Regulate the behavior of the compiler

Provide information on the behavior of the
compiler during maintenance and debugging

Although some of this instrumentation code is
present in the production version of the compiler

Digital Technical Journal
No. G February I988

Software
Productivity
Tools

that is shipped to customers, most of it is condi-
tionally compiled into only the debugging ver-
sion of the compiler.

Instrumentation as a Performance
Design Aid
As the Ada language itself was being developed,
we began to research the novel aspects of imple-
menting an Ada compiler and developed a bread-
board compiler as a vehicle for our research.
Because the breadboard compiler had been
instrumented extensively, we used it to collect
data to guide the design of the eventual product.
A number of design decisions were made as a
result of the data collected during the research
period. The role of instrumentation with respect
to the compiler's use of virtual memory is exam-
ined in particular in this section.

One major resource problem in the breadboard
compiler was the vast amount of virtual memory
required to compile some representative Ada
programs. The amount was often an order of mag-
nitude more than was acceptable to meet our
compiler performance goals. Our instrumenta-
tion data revealed that the tree structure used to
internally represent the Ada code occupied most
of the memory. Therefore, a finer analysis of the
data was performed based on frequency of occur-
rence and size of the individual kinds of tree
nodes.

For example, we instrumented the tree node
creation routine to count the number of nodes of
each kind that were created. The counts and the
number of bytes occupied by each node of a par-
ticular kind were displayed in the compilation
listing file.

An analysis of the data showed that relatively
few kinds of nodes occupied most of the space
and suggested a number of improvements in the
design of the tree to reduce the frequency of such
nodes. The combined effect of these improve-
ments halved the memory required for represent-
ing the tree for typical Ada units.

Further instrumentation showed that the addi-
tion of code-generation information to the tree
representation substantially increased the tree
size. These measurements suggested that memory
usage could be decreased by recycling memory as
soon as possible. An "inside-out" code-generation
scheme was devised for our version 1.0 compiler.
With this approach, object code is generated for
the most deeply nested subprograms in a compi-

lation unit first. The entire tree representation
and code-generation information for a subpro-
gram is no longer needed once the code has been
generated, and can be freed before the code is
generated for the next subprogram. Thus, the
memory is available for reuse by the next subpro-
gram. This approach reduced the amount of
memory required to compile a typical Ada unit
by a factor of two or more. This improvement,
combined with the tree modifications mentioned
previously, made it possible for us to meet our
compiler performance goals with respect to vir-
tual memory usage.

Instrumentation to Regulate Compiler
Behavior
We also used instrumentation data gathered dur-
ing a compilation to actually modify the overall
flow of the compiler, and thus improve the com-
piler's performance. In particular, the compiler
uses instrumentation data to modify its behavior
according to the availability of memory. This
kind of optimization is often seen in computer
operating systems and in general manufacturing
processes, but rarely seen in software tools such
as compilers. This section describes the use of
instrumentation data to diagnose and solve a pag-
ing-rate problem we detected during the devel-
opment of the compiler.

The VAX Ada compiler consists of a number of
phases that process the internal tree representa-
tion of Ada source code in a series of tree traver-
sals, or walks. Walks in the semantics phase mod-
ify the tree representation to reflect the semantic
meaning of the Ada code. Later walks, prior to
optimization and code generation, add code-gen-
eration information to the tree.

Each of these walks is instrumented to show
the amount of CPU time, elapsed time, page
faults, and I/O operations involved. An analysis
of this information during the development of
VAX Ada showed that a very large number of page
faults often occurred for typical program units.
Even with larger than normal working sets, the
paging rate was high enough to significantly
increase the load on the system, thus affecting
overall system performance and responsiveness
for all users. Comparison of the paging rates with
the same data for other parts of the compiler,
and against the totals for the whole compilation,
showed that a very large proportion of the page

Pragmatics in the Development of V A x Ada

faults occurred during the walks that added
code-generation information.

The trouble with any "static" solution to this
problem is that page faults are a property of the
amount of physical memory available to the com-
piler. The amount of physical memory varies
based on both the VAX hardware configuration
and the use of that hardware by other VMS pro-
cesses running concurrently with the process
executing the compiler.

In an effort to solve this problem, we measured
the size of the tree for typical Ada subprograms.
We found the tree size to be significantly smaller
than the size of the code doing the individual tree
walks. Furthermore, the code for the tree walks
was larger than typical VMS working sets. Thus,
the code for each walk was paged out by the sub-
sequent walk and then paged back in again for
the next subprogram. We concluded that the high
paging rates were caused by our inside-out code-
generation approach, which was designed to min-
imize the use of virtual memory.

To reduce the paging of the code, we chained
together the trees for sets of subprograms and did
each walk across all the elements of the set
before applying the subsequent walk to any of
them. This approach is contrary to the earlier
goal of reducing memory usage by doing one sub-
program completely before doing the next one.
However, in this context the earlier goal is more
accurately stated as "keeping the memory usage
to within the amount of memory that is avail-
able."

As a result of our observations, w e also made
the compiler "self-correcting" in a release fol-
lowing version 1 .O. We instrumented the com-
piler to measure the amount of virtual memory
available, the amount of physical memory avail-
able, and the pre-code-generation size of each
subprogram's trees. In addition, very consen7a-
tive heuristics estimate the additional memory
required for the code-generation information for
each subprogram. Together, the measurements
and heuristics are used by the compiler to build
the largest possible set of subprograms that do
not present a danger of exceeding the available
virtual memory. Furthermore, the sets are chosen
so that the code for the largest phase plus the size
of all the trees for the subprograms in the set are
less than the size of the working set extent of the
VMS process.

This modification successfully lowered the
paging rates of the compiler, hence improving

elapsed time and system performance. The exact
numbers vary according to the actual VAX hard-
ware configuration and Ada code being com-
piled. However, figures for the code-generation
phases were often halved, resulting in 30 percent
or more overall improvement for the whole com-
pilation.

This dynamic measurement of working set, vir-
tual memory, and tree size and the subsequent
tuning of the selection of sets to the process's
available resources means that all resources -
large or small - were fully exploited. This tech-
nique is applicable for enhancing the perfor-
mance of any compute-bound programs that also
use significant amounts of virtual memory.

Instrumentation as a Debugging and
Maintenance Aid
In addition to using instrumentation to obtain
resource measurements, we have used it to debug
the compiler. We have also found it to be a useful
maintenance aid.

Instrumentation data is read by calling one of a
number of routines either from the VMS Debug-
ger or from code triggered by an event. (Events
are special places in the compiler code.) The
routine displays the instrumentation data on the
terminal (so the programmer can see i t right
away) and in the listing file (for post-mortem
examination). The debugger or event-driven rou-
tines are capable of producing human-readable
listings of large and complex data structures.
The listings help simplify the task of debugging
the compiler, as it can be very time-consuming
to examine directly a very complex data struc-
ture, such as a tree, with a general-purpose
tool like the VMS Debugger. (An example listing
appears at the end of this paper in the section
Self-description.)

Each event is specified in the compiler code by
a DEB-EVENT macro. This macro takes one or
more parameters. The first parameter is the name
of the event, and subsequent parameters specify
additional code that causes instrumentation data
to be displayed.

An event will not occur unless its name has
been given either on the command line that
invoked the compiler o r via a simple interpreter
that is linked into the compiler. The interpreter
displays event names and allows breakpoints to
be set or canceled on particular events. For exam-
ple, the Ada compiler implements a sophisticated
syntax error recovery scheme that attempts a

Digital Technical Journal
No. G February I988

Software
Productivity
Tools

large variety of local correctioils when an error is
detected. When the parser makes an unexpected
correction, events in the recovery code can be set
to gather the data to determine why. Events in the
recovery code are set by the setting of break-
points on all events whose names start with
PARRECOVERY. The result is an informative dis-
play at the start of error recovery, and another dis-
play as each kind of recovery is attempted. The
displays can then be used to determine the reason
for the particular recovery chosen.

The information obtained by setting an event
gives precise information that is needed to deter-
mine why the compiler code made a particular
decision, as opposed to the more general infor-
mation given by the VMS Debugger. Often the
time saved in analyzing each problem exceeds
the amount of time required initially to put the
events into the code. Furthermore, such events
are still in place for the benefit of future develop-
ers who need to make enhancements or debug
other problems.

Self-checking
As mentioned previously, the VAX Ada product
contains approximately 500,000 lines of BLISS
source code. Of these lines, approximately 5 per-
cent are concerned with consistency checking
(self-checking) of some kind. This is not very
much incremental code in terms of overall devel-
opment cost, yet the reliability and productivity
benefits have been enormous.

The following sections examine some of the
consistency checks we incorporated in the VAX
Ada compiler for use by developers and main-
tainers. We look at the use of assertions in the
code, at the use of special macros to mark unim-
plemented features, and also at how we used
self-checking to track down memory-manage-
ment errors.

Assertions in the Source Code
An old idea in software engineering is to include
assertions in the source code. In its simplest
form, an assertion is a simple expression whose
value should be true at a given point in the code.
If the assertion is false, then something is wrong
and execution should be aborted. Although the
idea of assertions is not new, we believe that their
value is underestimated and that assertions are
too often neglected in developing large software
applications.

Detecting an internal error - often well
before the error leads to a compiler crash or,
worse, bad code is generated - is the primary
advantage of an assertion. Assertions often point
out errors that otherwise would not be noticed
during internal testing.

Assertions also help in analyzing failures, as
they provide a very good point at which to start
a search for the cause of an error. In a com-
plex, multiphase compiler, a bug in an early
phase can result in a compiler crash in a much
later phase or in the generation of bad code.
In many cases, the relationship between symp-
toms reported by a user and the actual problem
can be very remote and obscure. For example,
approximately half of all performance failures
reported by users of the VAX Ada compiler trigger
some kind of assertion failure when compiled
using the debugging version of the compiler. As
a result, many problems that might have re-
quired days to fix in the absence of assertion
checks have been fixed very quickly because we
knew where to look for the problem. Although
we have no statistics, we have no doubt that asser-
tions have saved an enormous number of mainte-
nance hours.

Assertions also help in day-to-day development,
debugging, and project management. Simple
inspection of the assertion failure message is
enough to know who should be the first to look at
the problem, and the person assigned to investi-
gate the problem has a good idea of where to
look. Assertions are also useful when the code is
enhanced, as new code is checked against the
assumptions made by the original programmer.

We implemented assertion checks using a
series of BLISS macros. (Although BLISS macros
were used to implement the checks, similar
effects can be achieved with subprograms in
other languages, such as VAX Ada, if the compiler
evaluates static, constant expressions at compile-
time and supports inline expansion of subpro-
gram calls.) These macros are listed in Table 1.

Each macro takes two or more parameters.
The first parameter is the assertion (expression)
to be checked. The second is a text string to be
displayed in the diagnostic produced when the
assertion is false. By convention, this text string
includes the name of the routine in which the
failure occurred in order to simplify assigning
initial responsibility (blame) for the failure. Any
additional parameters are interpreted as addi-
tional code to be executed if the assertion fails:

Digital Tecbnical Journal
No. 6 February 1988

95

Prugrnutics in the Development of VAX Arlu

Table 1 Assertion Macros and Their Effects

Effect in Effect in
Macro Name Debugging Compiler Production Compiler

DEBASSERT

DEB-WARN

I f assertion is false, then give a diagnostic
message and enter V M S Debugger.

I f assertion is false, then give a diagnostic
message and continue.

None

None

DIAGASSERT Same as DEBASSERT. If assertion is false,
then abort compiler.

typically these parameters are ~ l sed to display
additional information related to the failure.

Numerous assertions in the source code can
have a negative effect on performance. For exam-
ple, the consistency checks in the Ada compiler
increase compilation time by about 50 percent.
Thus, if assertions are to be included in the final
product, developers will naturally hesitate to use
them freely. We addressed this problem by caus-
ing the DEBASERT and DEB-WARN macros to
be conditionally compiled. The assertion checks
are made only in a debugging version of the com-
piler that is used for internal testing. The macros
are compiled as "no operations" in the produc-
tion version of the Ada compiler and thus have no
impact on performance.

On the other hand, it is desirable in some situa-
tions to retain the self-check in a production ver-
sion but cause a failure to behavc differently than
it does in the debugging version of the compiler.
The DLAGASERT macro addrcsscs this situa-
tion. DLAGASERT behaves in the same manner
as the DEBASERT macro in a debugging version
of the compiler; however, DIAGASERT aborts a
production version of the VAX Ada compiler.
(The abort reports failure of an internal consis-
tency check and requests that the user submit a
problem report.)

These three assertions - DEB-ASSERT,
DEB-WARN. and DIAGASERT - are the most
common form of consistency checking used in
the VAX Ada compiler. More general kinds of
checking are provided, for example, by special-
ized analysis routines and even complete traver-
sals over the in-memory tree.

Marking Code Paths for
Unimplemented Features
We adopted a rule during the development of
VAX Ada that the software at each intermediate
base level had to be robust. We required that the
con~pi ler diagnose the use of an unimplemented
feature rather than crash or generate bad code.

This form of self-checking was implcmen-
ted by the two macros called DJAGN71 and
DIAG-NYI-STOP. These macros are called with a
text string that identifies the particular feature
that has not been implemented. The execution of
either results in a "not-yet-implemented" diag-
nostic. DMG-NYI is used in situations where
processing can continue after the diagnostic.
DIAG-NYI-STOP is used to indicate that thc
compiler shouJd be aborted after reporting the
problem since there is no easy way to recover
gracefully.

Thcse macros proved to be a good clerical
device for keeping track of work remaining. In
addition, our approach - never leave a hole -
contributed greatly to the reliability of the
product. Robustness was the norm throughout
development rather than a last-minute, clean-up
activity. Ovcr a long dcvclop~ncnt effort, it is easy
to put off writing a particular codc path for
another day and even easier to forget about it as
the days and months pass.

Tracking Memory-Management Errors
The last approach to self-checking we discuss in
this section is the use of special consistency
checks to help track down some obscure mem-
ory-management errors in the compiler. Memory-

9 6 Digital Technical Journal
No. 6 February 1388

management problems can be very difficult to
diagnose because, for example, large programs
often operate correctly for a long time after a rou-
tine writes to the wrong location in memory.

The error-tracking progression that we
describe here occurred during the development
of the initial version of the compiler. In each of
the three problems in the progression, the intro-
duction of a new check led immediately to the
discovery of additional cases where the same
error was occurring but, for whatever reasons, no
negative consequences had yet been observed.
Each of these cases was a bug that would eventu-
ally have been triggered, requiring many hours of
a developer's time to debug. Finding the errors as
a result of one of these checks was far less expen-
sive in terms of development time than finding
them one at a time as each situation arose.

The first problem we discovered in the pro-
gression was that a block of memory was being
freed as expected, but the block size specified in
the tree was larger than the amount of memory
originally allocated for the block. To guard
against this behavior, we allocated (in the debug-
ging version of the compiler) an extra longword
for each request and used i t to remember the
allocated size. 'This procedure allowed us to
check the deallocation requests.

Later, we discovered that a routine was
attempting to deallocate a block of storage back
to a zone (subheap) other than the zone from
which the block was allocated. We coped with
this behavior by changing the extra longword to
contain the Exclusive Or of the allocation size
and the address of the zone control block.

Still later, we discovered that storage was being
read after it had been deallocated. To cope with
this behavior, we changed the deallocation pro-
cedure so that it overwrote the deallocated stor-
age with all one bits. The one bits allowed us to
distinguish unallocated storage ones from newly
allocated storage, which is generally initialized
to all zero bits.

Self-description
The primary data structure used throughout the
compiler is a tree representation of the unit
being compiled. This representation was made
self-describing in order to

Automate key algorithms in the compiler

Simplify creation of internal consistency
checks (self-checking)

Simplify creation of some kinds of instrumen-
tation

Provide sophisticated debugging aids

Each node in the tree contains an eight-bit field
named the KIND field. This field contains a value
indicating the kind of information represented in
that node. More than 230 kinds of nodes are used
throughout the compiler. (There are many kinds
because the tree is used not only for statements
and expressions, as is common in many compil-
ers, but also for declarations, in place of a more
traditional symbol table. Indeed, except for com-
ments, the entire unit being compiled is repre-
sented by a single tree.)

The KIND field is located at the same offset in
every node; given the address of a node, it is easy
to determine its kind and thus the information
available in that node.

Moreover, the KIND field can be used to access
a "node property table" in the compiler that con-
tains a description of the fields in each kind of
node, including the fields' types, offsets, and so
on. Because each node describes itself in its
KIND field and because the KIND field can be
used to access the node property table, we refer
to the compiler tree as a "self-describing" data
structure.

The source-code definition of the tree repre-
sentation can be thought of as essentially a vari-
ant-record type, where the kind value is a tag
that discriminates among the variants. The actual
run-time description of the tree representation
goes beyond the level of detail that can
be expressed even in a strongly typed language,
such as Ada. For example, the description
distinguishes between four kinds of pointer
fields - all of which are simply pointers to other
nodes in the tree from a data-type point of view.
However, it is the presence of the variant-record
definition itself as part of the compiler that is
unusual and leads to valuable implementation
techniques.

Automation of Key Algorithms
Several parts of the compiler use the node prop-
erty table as a major part of their operation. For
example, the part of the compiler that reads and
writes the tree representation to disk, called the
compilation library component, is driven almost
completely from the node property table. As a
result, we can easily add, delete, or change a
field, introduce new node kinds, and so on. After

Software
Productivity
Tools

LMgital Technical Journal
No. 6 February 1988

97

Pragmatics in the Development of VXX Ada

a change is made, all that is needed is to recom-
pile the few BLISS modules that create the node
property table, link a new compiler, and con-
tinue development. The compilation library code
does not need to be recompiled, let alone modi-
fied, to reflect the change; it adapts automati-
cally.

Similar considerations apply to other parts of
the compiler. In particular, the compiler has an
algorithm for copying trees that is fundamental
to the implementation of generic instantiation,
inline expansion of subprogram calls, and default
parameter evaluation. This algorithm is also heav-
ily driven in part by the node property table.

Many utility routines also make good use of
the node property table, for example to create a
node of a given kind - given the code for the
kind - the required size is obtained from the
node property table, and each field of the new
node is properly initialized as appropriate for
that type of field.

Self-checking Based on the Node
Property Table
We have described some kinds of self-checking
earlier in this paper; it is also interesting to see
that some self-checking is based on the node
property table. First, we must back u p and be a
little more precise in our vocabulary.

Although we talk of the "tree," this is really
something of a misnomer. The tree is really a
general directed graph. However, there is a sub-
set of the pointer fields that, in fact, does deter-
mine a spanning tree - a set of paths that
spreads from the root (the COMPILUNIT
kind of node) and reaches every node cxactly
once (and wlthout cycles). Pointer fields that
d e f ~ n e the spanning tree are called "son
pointers," whereas all other pointer fields are
called "attribute pointers." (Son pointers are
one of the several kinds of pointers alluded to
earlier; there are three kinds of attribute
pointers.)

Because the "tree-ness" of the program repre-
sentation is so important to the correct operation
of the compiler, one of the most important self-
checks the compiler makes is to ensure that the
tree really is a tree. This self-check is accom-
plished by a routine that starts at thc root (the
COMPIL-UNIT node) and uses the node property
table to visit every node in the unit. Every son
pointer is followed. As each new node is encoun-
tered, a bit is set. (This bit is reserved at thc same

fixed position in every kind of node.) If a node is
encountered that already has the bit set, then a
cycle has been detected (and a bug exposed).
This check is performed at least twice, sometimes
three times, during a compilation when the
debugging version of the VAX Ada compiler is
used.

Instrumentation through the
Node Property Table
The node property table also provides a valuable
tool for implementing certain kinds of instru-
mentation. Statistics on kinds and amount of stor-
age by kind are readily calculated using simple
tree walks like thc one described for self-check-
ing in the preceding section.

Enhanced Debugging
Finally, the node property table provides the
basis for the variety of debugging display routines
that were written as part of the project. As
described in the section Instrumentation, these
routines go well beyond what could be achieved
by even the best general-purpose debugger,
including the VMS Debugger. Rather than show
the tree as a series of independent nodes, we can
display the tree as the nested data structure i t
really is. Extraneous information, such as the
addresses of nodes that are not legitimately
pointed to by attribute pointers, can be sup-
pressed. Certain kinds of nodes that are actually
"private" in the Ada sense can be displayed in
a natural manner by display routines created
as part of the implementation of these abstract
node kinds.

Figure 1 illustrates one such display for a sim-
ple example program. I t is not necessary to
understand this display in detail; rather, compare
the kind of display one could get from node-by-
node displays versus the highly annotated and
interpretive example shown. A display tool such
as the one that produced this example clearly is
application specific and could be produced only
as part of the project in which it is used. More
importantly, even a project-specific tool such as
this would not be practical without the run-time
self-description of the data structures in use.

Summary
During the development of VAX Ada, we relied on
established design and implementation method-
ologies, and we made extensive use of VMS tools

Digital Technical Journal
No. 6 February 1988

1 p r o c e d u r e FOO i s
2 X : lNTEGER : = 0 ;
3 b e g i n
4 i f X > 0 t h e n X : = X - 1 ; e n d i f ;
5 e n d ;

0088D3BO :
FOO - K-PROC-BODY-DECL<ANA-USED @ 1 : 0

< < v o i d > > :
< < v o i d > > : -CORRES-BLOCK
K-BODY <

0 0 8 A D 9 F 4 : K-DECLS < @2: 4
0 0 8 A D 8 9 8 : ' X - K-OBJ-VARIABLE<NON-CONST, ANA-USED @ 2 : 4

INTEGER - K - R E F E R < S T A T I C 0 0 0 0 D 2 3 0 : @STANDARD/4>
0 - K - I N T E G E R - V A L < C T C - V A L , S T A T I C @ 2 : 2 2

S L >
CONF-BEG-SEQ - 0 B J - F L A G 1
OCCURS-IN-NAME - 0 B J - F L A G 2
0 08ADDE 0 : -SYMTAB
< n u l l l i s t) -PRAG-REP-CC >

. < n o f l a g s s e t > -DECLS-FLAGS

. < < v o i d > > : -CONTINUE

. 0 0 0 0 0 0 0 0 - C L - V I S >
<

. K - I F - S T M T < @ 4 : 4
K-BINARY-OP<NON-CONST @ 4 : 9

GT- I NT
X - K-REFER<NON-CONST 0 0 8 A D 8 9 8 : @ 2 : 4 >
0 - K - I N T E G E R - V A L < C T C - V A L , S T A T I C @ 4 : 1 1

S L ,
0 0 0 0 D 2 3 0 : INTEGER @STANDARD/4 - B I N D I N G
0 0 0 0 D 1 4 0 : BOOLEAN @STANDARD/2 -RES-TYP>

<
K -ASSIGN-STMT< @ 4 : 2 0

X - K-REFER<NON-CONST 0 0 8 A D 8 9 8 : @ 2 : 4 >
K-BINARY-OP<NON-CONST @ 4 : 2 5

. B I N A R Y - M I N U S - I N T

. X - K-REFER<NON-CONST 0 0 8 A D 8 9 8 : @ 2 : 4 >

. 1 - K - I N T E G E R - V A L < C T C - V A L , S T A T I C @ 4 : 2 7
SL >

. 0 0 0 0 D 2 3 0 : INTEGER @STANDARD/4 - B I N D I N G

. 0 0 0 0 D 2 3 0 : INTEGER @STANDARD/4 -RES-TYP>
< n o f l a g s s e t > -ASSIGN-FLAGS>

< v o i d l i s t ,
< n u l l l o c a t o r > -LAST-LOCATOR

< n o f l a g s s e t > - 1 F-FLAGS > >
< v o i d l i s t >
< < v o i d > > :
NO-EXCP-PART -BODY-FLAGS
< nu1 1 1 i s t > -PRAG-REP-CC
F F 7 5 2 9 B 8 : -ZONE
@ 3 : 0 -BEGIN-LOCATOR
@ 5 : 0 -LAST-LOCATOR
0 0 8 8 C A l C : -S IGARGS
T I ME -SAVED-OPT-STATE
T I M E -LOCAL-OPT-STATE
< nu1 1 l i s t > -LOCAL-SUPP-CC >

DST-HAS-SEG, DST-HAS-ZEM, EXIM-ALLOWED, IS-ELABORATE?, I S - G E L - V I S ,
I S - L I B - U N I T , MECH-F IXED -PROC-FLAGS

< n u l l l i s t > -PRAG-REP-CC
0 0 8 8 C A l C : -SYMTAB
< < v o i d > > : - F U L F I L L S
< < v o i d > > : -STATUS-OBJ, >

Figure l Example Tree Display in the VRX Ada Compiler

Digital Tecbnkal Journal
No. G February 1988

Pragmatics in the Development of VAX Ada

(VMS Debugger, VAX Performance and Coverage
Analyzer, and so on). However, we also used
some relatively simple internal tools and accom-
panying development philosophies to help us
increase our productivity, improve the reliability
of our product, and decrease maintenance costs.

Automation, instrumentation, self-checking,
and internal self-description all played major

roles in our day-to-day practices, from early
design phases through field test. We continue to
use these tools and techniques in the ongoing
maintenance and evolution of VAX Ada. We hope
that our successf~~l experience with these prag-
matics on the VAX Ada project will help promote
wider interest in the use of such ideas on other
software projects.

100 Digital Tecbnfcal Journul
No. 6 Februar,y 1988

Steven J. Grass I

Development of a Graphical
Program Generator

To develop an unprecedented graphical-interface product for generation
of COBOL applications, project engineers explored a neu, development
approach. During the advanced development pbase, types of generators
were researched, a prototype was built, and product goals were outlined.
In the product development phase, the major components of the
VAX COBOL GENERATOR somare - tbe data dictionary, the work-file
system, and the graphical display - were designed and coded. In addi-
tion, developers integrated existing components into tbe generator.
Testing, design documentation, and project rm'ew were also part of tbis
phase. Tbis development approach, combined with the use of several
development took, proved to be productive and resulted in a stable and
reliable product.

The VAX COBOL GENERATOR software is a
fourth-generation language approach to the cre-
ation of commercial applications. Using this gen-
erator, the programmer draws a picture resem-
bling a flowchart of the final application rather
than use an editor to write lines of code. This
picture produces VAX COBOL code, which can
be compiled, linked, run, and debugged. All
maintenance is performed at the graphical level.

This paper describes the development of the
VAX COBOL GENERATOR software from initial
concept to product shipment, a process that
took approximately three years. Because this
was the first product containing a graphical
interface developed at Digital, many unique pro-
ject development problems were encountered.
This paper discusses how the project team
solved these problems in the research, develop-
ment, document, test, and project review stages.

The project can be divided into two major
phases. The first phase involved advanced devel-
opment and lasted one year. During this phase, a
prototype was developed and demonstrated to
various management groups.

The second phase was product development
and lasted two years. This product development
phase was divided into two major base levels,
that is, milestones at which specified capabili-
ties are complete. At the first base level, a

skeleton was built that contained most of the
core functionality of the generator. Once the
skeleton was completed, additional function-
ality could easily be added. The skeleton con-
sisted of the work-file system, some screen
interface routines, the driver for the main screen
editor, and the driver for the code generator.
Each member of the team was responsible for
one of these components of the skeleton. The
second base level marked the enhancements to
the skeleton and the definition of system func-
tionality in design documents.

Advanced Development
A program generator was so unlike other prod-
ucts being designed at Digital at that time that
it was necessary to spend the first project
phase on advanced development work. During
this time, research could be performed, ideas
could be exchanged between the developers,
and breadboards and prototypes could be cre-
ated. This advanced development phase indeed
proved to be worthwhile and a significant step
toward the product's success. In particular, the
development of the prototype provided a way to
communicate concepts to each other and to man-
agement. Remarkably, the prototype, although
crude, incorporated all the underlying concepts
contained in the final product.

Digital Technical Journal 101
No. 6 February 1988

Development of a Graphical Program Generator

From June 1983 to June 1984, two developers
worked on the advanced development of the VAX
COBOL GENERATOR software. This section dis-
cusses that work, including the creation and
demonstrations of the prototype.

Defining Product Specifications and
Beginning Research
The specifications for the proposed product
were open ended. The one, general product
requirement was that the program generator
would generate \'AX COBOL code. At that time,
the kind of generator to build, the interface to
use, and other aspects of the product were not
yet understood or specified.

The first two tasks facing the developers,
therefore, were to determine what a program
generator was and what currently existed in the
marketplace. They learned that although much
had been accomplished in the development of
fourth-generation languages, not all product
approaches had been fully explored. They saw
the advantage in creating a type of generator that
not only increased programming efficiency but
also was simple and interesting to use.

They learned there are two types of genera-
tors: application generators and program genera-
tors. Each has its own advantages and serves a
distinct market.

An application generator processes commands
interpretively. It does not produce source code.
The application generator has a close relation-
ship with its application's database and is used
mainly for relatively simple data retrieval and
report generation. Where execution speed is not
critical, programmers use application genera-
tors for quick development turnaround. DATA-
TRIEVE, RALLY, and Cognos' PowerHouse are
examples of application generators.

A program generator, on the other hand, pro-
duces source code. Program generators can gen-
erate anything from BASIC to Ada program code.
Because the code produced can be compiled,
execution speed of the created application is
faster than the execution speed of a similar
application produced by an application genera-
tor. A program generator does, however, take
longer to develop the application.

Most program generators produce about 70
percent of the final application. However, the
applications produced are skeletal and have to
be edited after development. The generated pro-
grams consist of the high-level structure, but

many of the lower level routines still need to be
edited by hand. Once having edited the gener-
ated program, the developer can no longer
enhance the product using the generator since
the hand-coded changes would be lost. There-
fore, after a program has been developed, all
program maintenance must be performed at the
code level. The development time saved using
the program generator is only with reference to
the program development phase, not the pro-
gram maintenance phase.

The VAX COBOL GENERATOR team saw an
opportunity to close the gap between program
development and maintenance. They decided to
produce a program generator that would create
the entire program. Software development gains
in terms of developer time saved would then
extend beyond development phase to encompass
the maintenance phase as well.

The team also saw another opportunity. Most
existing generators are restricted in the types of
applications that can be generated. Although
generators could relatively easily create typical
commercial applications, complex applications
were more difficult to create. The generator
team decided to build an open-ended product
that stressed flexibility in the level of program
complexity.

Finally, most of the interfaces of the genera-
tors we studied were menu-driven. Users were
required to repeat continually the same steps in
order to create the application. The generator
team felt that a user-friendly human interface
would be a more expedient tool and more
appealing to users as well.

The decision to produce a graphical interface
for the generator was one of the first the devel-
opment team made. In 1983 the VT200-series
terminals were beginning to be shipped, and
graphics workstations were starting to be devel-
oped. It was evident to the generator team that
graphical terminals would become integral to
program development work.

Moreover, human-factors research and the
developers' own experience with graphical
workstations confirmed the decision. During
research, the developers spent a great deal of
time using the revolutionary Xerox Star worksta-
tion, which had been introduced in the early
1980s.

This workstation demonstrated the power that
windowing and icons can give to software devel-
opment. The developers felt that they could

Digital Tecbntcal Journal
No . 6 February 1988

Software
Productivity
Tools

cxpand the concepts of the Xerox Star (later fur-
ther demonstrated in Apple's Macintosh com-
putcr) to the area of program generation. The
icons could represent the various data and pro-
cedural entitics in typical programs, and the
windows cou Id be used to define these entities.
The flexibility of a graphical workstation
allowed this to happen.

In summary, research into types of generators
and user interfaces helped to determine the fol-
lowing product goals prior to the development
of the prototype:

The generator would produce an entire VAX
COBOL program, thus extending use of the
generator through the maintenance phase.

The generator would have the flexibility to
crcate complex as well as simple types of
applications.

The generator interface would be a graphical
intcrface; it would be easier and faster to use
than conventional editors.

Project Value of the Prototype
In the early research stages, the product ideas
formulated by developers were so unlike any
previously developed products that the ideas
were difficult to explain and demonstrate. Icons,
for cxample, were not in general use at that
time; and the ideas of boxes and lines represent-
ing operations and control flow were entirely
new concepts and were difficult to grasp.
Attempts to draw the ideas on paper fa~led since
drawings could not show the facile action of the
interface that the developers visualized. Devel-
opers decided they needed to construct a proto-
type

Crcatlng a prototype before spec~fications
were clearly defined was a risk the developers
wanted to take. The simple prototype proved
them right. I t was invaluable for communicating
project concepts among the developers and to
management

Their first task was to decide what functions to
build into the prototype. A prototype is written
to demonstrate ideas, without regard to maintc-
nance or the performance of any programs pro-
duced. Therefore, the developers knew that the
prototype code would have to be discarded
when the product development began. In ordcr
to ensure that no code would be reused, it was
decided that the entire prototype would be writ-

ten in the VAX COBOL language. The final
product would be written in the preferred
development language, VAX BLISS. Also, it was
decided that a graphical software package such
as the Graphical Kernel System (GKS) would not
be used for the prototype. The strengths of GKS
were terminal independence, easier mainte-
nance, and better performance, none of which
were goals of the prototype. In addition, the
time taken to learn GKS would cause a needless
slowdown in the prototype development.
Instead, ReGIS escape sequences would be out-
put. This decision to output ReGIS directly
instead of using GKS would speed the effort to
obtain a working prototype.

As it turned out, many major functions of a
program generator were completely defined
within the prototype. The method of form,
report, and file definition, as well as the con-
cepts of procedural and data flow could all be
visualized using the prototype, which even did
program generation. The prototype was so com-
plete that a member of Digital's Management
Information Systems (MIS) department used it to
develop applications to be used within his
department. The prototype demonstrated how
these high-level graphical concepts could be
translated into the generation of source pro-
grams.

Product Specification Approval
Demonstrations of thc prototype were given well
over one hundred times to all levels of manage-
ment, project leaders, some customers, and Digi-
tal's Research and Development Committee.
Reaction was positive. It was agreed that the
product was ready for development. Unfortu-
nately, reviewers had little with which to com-
pare the product and were therefore unable to
offer the constructive criticism the developers
were seeking. Feedback on the product would
be gained through the more painful process of
experience.

Product Development
The product development phase of the VAX
COBOL GENERATOR software started in June
1984 and ended in September 1986. This two-
year period began with the first written design
specifications and closed with delivery of the
product. Product development included design,
coding, and testing phases. No more than four
software engineers were assigned to the project

Digital Technical Journal 103
No. 6 February 1988

I Development of a Graphical Pro~r~trn Gc.nerc~tor

at any one time. An additional thrcc cngincers
were assigned to write the graphical package
(described later in this papcr). The final
product had over 140,000 lines of source code,
or nearly 3000 lines per developer per month
during the coding phase. This achievement was
considerable when cornpared to 1985, when
650 lines of code was the average number writ-
ten per developer per month.' The productivity
of the VAX COBOL GENERATOR team was due in
large part to Digital's software development
environment t o o l s . h o m e of these tools are
dcscribed later in this paper.

This section gives a brief overview of the
COBOL generator product. Following this
overview are descriptions of the components and
systems selected for and designed in the
product's implementation. The major compo-
nents of the generator are the data dictionary,
the work-file system, and the graphical display
system. Also described in this section is the
reuse in the generator of previously developed
components.

Product Functions Overview
Programs are graphically described within the
VAX COBOL GENERATOR product by a combina-
tion of nodes and connections between these
nodes. After the nodes and connections arc cre-
ated and defined, the VAX COBOL GENERATOR
softwarc can create a VAX COBOL source pro-
gram which can be compiled.

A node graphically represents data and opera-
tions to be perfornicd on that data. There are
eight node types, and they fall into two cate-
gories: procedural and data. Procedural nodes
represent functional tasks to be performed in the
program or represent structure in the program.
Exaii1~Ies of procedural nodcs are those that
represent the lnovernent of data between two
data nodes, a sorting operation, or the manipula-
tion of a menu. Data nodes represent data to bc
accessed in the program. Examples of data nodes
are forms, filcs, and reports.

The connections between the nodes represent
flow in the program. Procedural connections
show procetlur;il flow; data connections show
data flow.

The programmer creatcs nodes on each level
of an application and connects them to show
procedural and data flow. Editors, pop-up forms,
and pop-up menus prompt the programmer for
detail about the nodes and connections. From
this information, the VAX COBOL GENERATOR
software creates a VAX COBOL program.

Figure 1 shows an example of a VAX COBOL
GENERATOR screen. The procedural type nodes
READ-INFO and SHOW-ERROR are shown as are
the form node EMP-FORM and file node EMP-
FILE. The data connections are shown as dashed
lines, and the direction of the connections indi-
cates that data is to be read from the form and
written into the file. The procedural connection
is shown as a solid line that indicates control

Figure 1 VAX COBOL GENERATOR

104 Digital TecbnicaI Journal
No. 6 February I988

Software
Productivity
Tools

flow is to go from the READ-INFO data move-
ment node to the SHOW-ERROR procedure
node.

The generator helps the novice user via sev-
eral functions. At any time, the programmer can
use the Help key to obtain context-sensitive
information about an operation. The pro-
grammer can also use the HELP command or
choose help from the menu. Easy-to-understand
error messages also guide the programmer
through the design process.

The V M COBOL GENERATOR software
enforces top-down programming. The pro-
grammer begins program definition at the top
level of the program. Group nodes, which repre-
sent much more complex operations at a lower
level, create structure within the generated pro-
gram. Editing a group node moves the pro-
grammer down one level in the program, thus
breaking the program into smaller, more modu-
lar pieces.

Other VAX COBOL GENERATOR features
include data dictionaries and libraries for the
storage and reuse of common data and proce-
dures, an Rdb/VMS interface, a complete jour-
naling capability, and a method to escape into
an editor where user-defined COBOL code can
be entered into the generated program. Also
available are program documentation facilities
that include a map with a breakdown structure
of the program. These facilities also permit the
addition of user-written documentation to parts
of the program.

The Data Dictionary Asset
A main component of the VAX COBOL GENERA-
TOR is i ts data dictionary. Although this compo-
nent was not included in the prototype, the
developers found in later research that nearly all
fourth-generation languages, no matter how
primitive, contain a data dictionary. As Digital's
MIS department pointed out, a successful
product must contain a depository for reusablc
programming. Developers therefore devised a
method by which users of the VAX COBOL GEN-
ERATOR product could easily define data and
procedural entities in a central location. Users
could then share these entities within one or
more programs developed using the generator.

The VAX Common Data Dictionary (CDD) was
the current Digital standard for sharing data
among the layered products. CDD is excellent as
a standard for sharing record-structure defini-

tions. Developers, however, needed a method
that could in addition understand entities
defined by the user within the generator, such as
reports and user-defined procedures. Therefore,
the CDD was used within the generator so that
users could optionally share record definitions;
another method, the generator library, was
devised so they could share other components of
the generator.

The generator library lets the user share any
form, file, report, local storage, procedure, or
field definitions. If a user of the generator wants
to share a program component, this component
can be either defined directly in the library or
stored in the library from an application. Any
other program developer wishing to reuse that
component in another program can simply refer-
ence it.

Each time a new node or field definition is
created within an application, the generator per-
forms a search through all known generator
libraries. If a match is found, the user is given an
option of referencing the component from the
library. If he chooses to reference the compo-
nent, the previously defined component is then
read into the application and is thus reused. The
internal representation stored in a library file is
identical to its counterpart defined in the appli-
cation. Because of this, no conversion is required
to be performed by the generator when a com-
ponent is referenced, and the internals of the
generator do not need to know whether the com-
ponent is referenced from a library or is defined
within the application.

The data dictionary utility proved to be one of
the strongest assets of the product for two main
reasons. First, because components can be
reused in many applications, users' programs
can, for example, all have the same interface.
Each user does not have to redefine the compo-
nents for his particular application. Second, mul-
tiple users can simultaneously develop different
pieces of the same program. Each user can
define components in a different library, then
one user can integrate these components into
the application.

The one restriction is that only the generator
can read from or write to the library structure,
because the library structure is defined by the
VAX COBOL GENERATOR software. Forms can
be shared among COBOL programs developed by
the generator, but not with any other language
or tool.

Digital Technical Journal 105
No. 6 Februaty 1988

Development of a Graphical Program Generator

The Work- file System
Another key component in the VAX COBOL GEN-
ERATOR software is the work-file system struc-
ture, a key component in any software product. It
was important to the product's success to give
users the ability to quickly access the generator's
database on disk and to manipulate records in
memory. The developers were looking for an
easy-to-use, efficient interface when they
decided on the format of the VAX COBOL GENER-
ATOR database file and the associated manipula-
tion routines. Instead of developing a new file
structure, the developers decided that the data-
base would be an RMS indexed file. They could
then use standard VAX RMS file manipulation rou-
tines rather than write new routines. Time saved
during development was considerable. Most
work-file systems take months to develop; the
generator's system was performing within two
weeks. Run-time performance, thought at first to
be a possible problem, was acceptable.

After the work-file records were read into
memory, the routines used for manipulation were
patterned directly after their RMS file counter-
parts. Each record contained a key, so records
were read by key and then read sequentially.
Records defining a node were logically grouped
together since their keys were alike.

The Graphical Display System
Another key component in the VAX COBOL GEN-
ERATOR is the graphical display system. The VAX
GKS program is Digital's implementation of the
IS0 (IS 7942) and ANSI (ANS X3.124-1985)
GKS standard for two-dimensional, device-inde-
pendent graphics. The VAX GKS program had just
been released when development of version 1.0
of the VAX COBOL GENERATOR software began.3
Because it appeared to contain all the graphical
primitives and terminal independence for which
the generator team had been looking, it was cho-
sen to be the graphical system for the generator.

Early in the development cycle, however, i t
became apparent that a higher level graphical
interface was needed. GKS provided the required
functionality, but the routines were too low level
for the developers' purposes. By layering a higher
level interface above GKS, the generator's inter-
nals would be simpler and, therefore, easier to
develop and maintain.

Using GKS calls, a node representation on the
screen would be extremely complex to con-
struct. The generator would have to make multi-

ple calls to GKS routines to create the square
containing the node, draw the text, and draw the
icon representing the node type. In addition,
calls would have to be made to determine if all or
part of the node would be visible, to determine
which font to use for the drawing of the text, to
determine the select area for the node, and others
as well. Instead, one higher level routine per-
forms all these functions.

Another product being developed, the VAX
Software Project Manager program, also needed a
graphical interface with the same capabilities our
product required. Consequently, the group of
three engineers, mentioned earlier, developed
the high-level graphical manipulation routines
layered above the VAX GKS software. These rou-
tines would be completely terminal indepen-
dent. Any product using these routines would run
on a terminal, where the cursor is manipulated
by arrow keys, or on a workstation, where the cur-
sor is manipulated by a mouse. By sharing the
same human-interface routines, both the genera-
tor and the VAX Software Project Manager pro-
gram have the same appearance and interface.
Consequently, users who learn one product's
interface can more easily learn the other.

Because developers needed to focus only on
developing the high-level screen interface, they
were able to spend more time writing the genera-
tor internals as opposed to developing the graph-
ical display system internals.

Use of Existing Components
As noted earlier, the implementation language for
the VAX COBOL GENERATOR software is the VAX
BLISS language. Because Digital's software prod-
ucts had been written in BLISS, any components
written for these existing products could easily
be integrated into the generator. Time to market
was important, so the time-saving use of any
already written software was encouraged. Conse-
quently, during the design stage, developers
decided to reuse some of these components.

In addition to saving schedule time, the use
of these existing components meant greater
product stability. The components had been used
within Digital's products and therefore had been
tested by customers for years, and the compo-
nents would be tested again after integration in
the generator. After the integration had been
completed, the reused pieces contained fewer
errors than any other components within the
generator.

Digital Tecbnkal Journal
No. 6 February I988

This section describes the components that
were used or adapted within the

Forms Editor

The definition of a form node required the use of
a forms editor to define the layout of the form on
the screen. Digital had two forms products at that
time: VAX EMS (Forms Management System) and
VAX TDMS (Terminal Data Management System)
programs. Not only did each contain a forms edi-
tor, but the key definitions within each were
identical. The VAX COBOL GENERATOR develop-
ers decided to use this established set of key
sequences.

The similarity between the FMS and TDMS key-
pads is not a coincidence. Developers of TDMS
modified the FMS sources for their TDMS
product. The generator developers also decided
to modify the FMS sources. Only two changes
were needed: one was to change the field
attributes such that they were particular to the
generator, such as autoterminate; and the other
was to include an interface to the generator's data
dictionary. Routines were written to convert
between the forms editor's internal data struc-
tures and those of the generator.

Within a very short time - one week - the
forms editor had been integrated and was work-
ing within the generator. Writing a forms editor
from scratch would have taken much longer, per-
haps six to eight months.

File System
A set of routines was needed to access the
product's various files, such as the generator
database, generator libraries, journal file, and any
COBOL files that would be generated.

To perform the standard set of operations on
these filcs, the generator developers chose the
file 1 / 0 system developed for the VAX TPU (Text
Processing Utility) software. It contained the
standard open, close, read, and write routines in
a modular, easy-to-integrate form. As with the
forms editor, integration was simple and stability
was high.

CDD Interface Routines

The VAX COBOL compiler already contained rou-
tines that read in records defined within the VAX
Common Data Dictionary software. The VAX
COBOL GENERATOR developers converted these
routines so that they recognize generator data
structures. Again, the use of previously written

interface routines saved a great deal of develop-
ment time.

Design Documents for Project Use
The developers wrote a design document for
each major piece of functionality needed for ver-
sion 1.0 of the VAX COBOL GENERATOR soft-
ware. These documents included the following:

The reason for the new functionality

A high-level description of the functionality

Details of the functionality, including each
routine to be written or enhanced

Atest strategy

Resource and time estimates for design, cod-
ing, and testing of the new functionality

These documents had three purposes. The first
purpose was to have the team review the pro-
posed implementation of the new functionality.
Any discrepancies in the graphical interface
design or internal implementation were found
early, before actual coding began. The second
purpose was to give the project leader a reliable
estimate of coding time for determining future
schedules. The third purpose was to help the
individual writing the documentation keep cur-
rent on all new features. With this information,
the writer could allocate the appropriate time
needed to write about new features.

Product Testing - Internal and
External
Three different types of testing were performed
during development of the VAX COBOL GENERA-
TOR software:

Testing by the developers

Human-factors testing, by the Software Usabil-
ity Engineering Group

Field testing, at Digital's internal sites and at
external (customer) field test sites

The standard internal test method for software
at Digital is the VAX DEC/Test Manager (DTM)
s o f t ~ a r e . ~ DTM can test generated data and text
screens. DTM can test the generator database file,
any libraries, and any generated COBOL source
code. A large DTM test set consisting of approxi-
mately two hundred tests was run at periodic
intervals and at base levels. Tests were required
to be written for each new piece of functionality.

Digital Technical Journal
No. 6 Februaty 1988

Software
Productivity
Tools

Development of a Graphical Program Generator

However, DTM has no capability for testing
graphical screens. In fact, the developers discov-
cred that there was no product available that
could test graphical and asynchronous interfaces.
Any previous graphical product was tested inter-
actively by the users, and this method was also
used for the generator.

At each base level, the VAX Performance and
Coverage Analyzer (PCA) software was run on the
entire test set to determine test coverage. If PCA
determined that a large piece of code was not
being tested by the test set, one of the developers
wrote a new test for the code.

The second type of testing was human-factors
testing, performed by the Software Usability
Engineering ~ r o u ~ . ~ Early in the development
effort, test subjects (programmers) unfamiliar
with the VAX COBOL GENERATOR software were
asked to perform simple tasks using the product.
The test report listed and prioritized a.ll problems
the subjects encountered. As a result of this
report, changes were made to both the human
interface and to the documentation.

For example, one problem, which accounted
for the largest percentage - 19 percent - of
the total error time, involved field termination
in the editor used for the definition of record
structures. In this editor, the Return key was
used to create a new field's definition. Users
were mistakenly using this key when attempt-
ing to move from one attribute to another for a
field's definition. As a result, new field defini-
tions were being created inadvertently. The
generator team changed the definition of the
Return key as a result of the human-factors
testing, and selected another key for the creation
of new fields.

Other changes were implemented as a result of
this testing. Better labeling was devised within
the generator, and better, easier-to-understand
documentation and context-sensitive help mes-
sages were written.

The third type of testing was field test. This
testing was divided into three phases. The first
phase began in September 1985 and included an
unlimited number of Digital sites and a limited
number of customer sites. Practically all func-
tionality was included in this release except for
report and sort nodes. Sites were asked to test
how well the VAX COBOL GENERATOR software
fit into their development environments. Unfor-
tunately, feedback from external sites was very
limited in this phase.

The second phase began in February 1986 and
marked the beginning of scrious field test. The
VAX COBOL GENERATOR software, with nearly
all functionality, was installed in 14 customer
sites and 200 Digital sites. Excellent feedback
was given from all sites. One customer site was
able to generate a 100,000-line program during
this five-month period.

This site notified the developers immediately
whenever a problem occurred; developers could
then fix errors in the product before it was
released to the public.

The third and final phase of field test began in
July 1986. All bugs found in the earlier tests had
been fixed, and all final functionality was
included in the product. This phase was used to
ensure that no major bugs remained in the gener-
ator.

In summary, all three types of testing con-
tributed to the stability of the final product.
Many bugs were found and corrected, the docu-
mentation was simplified, and the human inter-
face was improved as a result of the various types
of testing.

Project Test Communications
The unique and efficient communication
medium for internal test queries and responses
was VAX NOTES conference^.^ The VAX NOTES
network communications product functions as an
electronic blackboard and lets users conduct on-
line conferences or meetings. Using the VAX
NOTES program, any user on Digital's engineer-
ing network could make suggestions and ask
questions during development, and report prob-
lems during field test. Because the developers
monitored the NOTES conference continually,
users were given feedback quickly. Additionally,
the VAX NOTES program allowed the number of
test sites to expand. Developers had more time to
work with more than the usual number of sites
because the program not only facilitated commu-
nications between sites but also maintained a
record of any communications.

For communications outside the corporation
during field test, a hotline was installed. Devel-
opers took turns answering the calls. The imme-
diate feedback allowed for quick problem resolu-
tion, contributing to a successful field test. Also,
an on-line Quality Assurance Report (QAR) sys-
tem was available to all field test sites. The sites
could log on to the machine containing the sys-
tem and comment on bugs or make suggestions.

Digital Technical Journal
No. 6 Februaqj 1988

Developers would periodically scan the QAR
database.

Project Management Tooh
During VAX COBOL GENERATOR development,
developers kept resource status and task records
on paper. Group meetings were the only formal
mechanism for the exchange of status informa-
tion. A tool was used for scheduling, but
it did not provide the task tracking capabili-
ties that were needed. Simultaneous with the
development of the generator, the VAX Software
Project Manager program was being developed.
Early versions of this tool were used at the
end of the generator's development cycle, and
ts benefits were readily apparent. Before the
tool was available, the scheduling done on
paper contained errors. The VAX Software
Project Manager program automated the
process. The scheduling estimates made with
this tool were found to be much more reliable
than those done manually. Moreover, tasks are
graphically displayed, making it easy to visual-
ize a schedule and to test various schedule
scenarios.

Project Review Meeting
Immediately upon release of the VAX COBOL
GENERATOR software, a project review meet-
ing was held. All developers presented their
views on how to improve the process for build-
ing this product. Although the development
process had gone well, many valid points were
raised at this meeting. For example, the newer
mem-bers of the team had found much of the
code difficult to understand. The code would
therefore be harder to maintain. As a result of
this discussion, plans were put in place to
develop coding standards for future versions of
the product. Another point concerned infor-
mally made design decisions that went
unrecorded and were often lost. It was decided
at the meeting to create a NOTES conference
where discussions and decisions internal to
the group could be logged. Using this confer-
ence, future developers of the generator
could easily reference the earlier decision-
making process.

Team members found the meeting to be an
extremely valuable exercise and will hold such
meetings at the conclusion of all future product
releases.

Software
Productivity
Tools

Conclusion
The development process of the VAX COBOL
GENERATOR software was successful. An entirely
new process for the generation of programs was
devised, prototyped, written, and tested. More-
over, the process was completed in an amazingly
short period of a little over three years.

Three main factors contributed to the high pro-
ductivity of the VAX COBOL GENERATOR team
and stability of the final product:

An early prototype, through which ideas could
be presented for debate

The reuse of existing technology, so time was
not spent doing work that had already been
performed

Various forms of testing, where the technologi-
cal and human interface designs could be
tested

Acknowledgments
I would like to thank the developers who worked
on the VAX COBOL GENERATOR software,
including David Tarbay, Leo Treggiari, John
Ronan, Deb Bourquard, Andy D'Amore, Bill Foun-
tas, and Rich Phillips. Also, I would like to
acknowledge the contribution made by the mem-
bers of the graphical display team, Vick Ben-
nison, Jay Bolgatz, and Jeff Orthober.

References
1. H. Davis, "Measuring the Programmer's Pro-

ductivity," Electronic Engineering Man-
ager (February 1985): 44-48.

2. B. Beander, "VAX/VMS Software Develop-
ment Environment," Digital Technical Jour-
nal (February 1988, this issue): 10-1 9 .

3. B. Axtell, W. Clifford, J. Saltz, "Programmer
Productivity h p e c t s of the VAX GKS and
VAX PHIGS Products," Digital Technical
Journal (February 1988, this issue): 62-70.

4 . L. Ziman, M. Dickau, "Project Management
of the VAX DEC/Test Manager Software
Version 2.0," Digital Technical Journal
(February 1988, this issue): 1 10- 1 16.

5. M. Good, "Software Usability Engineering,"
Digital Technical Journal (February 1988,
this issue): 125-1 33.

6. P. Gilbert, "Development of the VAX NOTES
System," Digital Technical Journal (Febru-
ary 1988, this issue): 1 17-1 2 4 .

DIgiCal Technical Journal
No. 6 February 1988

Martin Linda Dickau Ziman 1

Project Management of the
V M DEC/Test Manager
Soflware Version 2.0

To produce a complex, major sopware version in less than one-year's time,
the DEC/Test Manager team became theflrst at Digital to use all available
VMSproductiuity took. Aspart of their strategy to meet a shortened sched-
ule and at the same time maintain quality, the team chose an iterative
development approach. Throughout the phases of requirements analysis,
specification and design, and implementation, the team took advantage of
the many somare tools available to streamline every aspect of the project
from source code management to pelfformance analysis. Tbe tools used
include VM NOTES conferencing, the VM Language-Sensitive Editor, VM
DEC/CMS sojlware, and the VMPeqormance and Coverage Analyzer.

As software development has increased in com-
plexity, software engineers have sought products
that help to increase their productivity as well as
the quality of the software they produce.' At the
same time, market pressure to deliver more soft-
ware products has increased. Software productiv-
ity tools are essential elements in the engineering
effort to meet the market need for the same or
greater software functionality delivered in a
shorter amount of time. It is not uncommon for
the development cycle of a major version of a soft-
ware product to be longer than one year in dura-
tion. The VAX DEC/Test Manager team was able
to deliver a major version to market in less than
seven months. This paper describes the develop-
ment methodology and the productivity tools
used at various software life-cycle stages to
achieve this shortened time to market.

V2X DEC/Test Manager
Product Overview
The VAX DEC/Test Manager software is a produc-
tivity tool that automates the regression testing of
software during the development and mainte-
nance phases. Regression testing ensures that
modifications made to the software do not affect
the previously tested execution of the program.

The DEC/Test Manager allows users to describe
tests as a set of files, execution environmental
aspects, and processing options. These descrip-

tions are stored in a DEC/Test Manager-controlled
directory, called a "library," and are easily
accessed, tailored, and managed via DEC/Test
Manager commands.

The core of a DEC/Test Manager test descrip-
tion is a user-supplied script which the DEC/Test
Manager executes when the test is run. Use of a
script and the environmental and processing con-
trol specified in a test description ensures that
only changes in the software being tested can
alter the results of a test run.

After test execution is completed, the DEC/
Test Manager automatically compares the results
of the run with a set of benchmark results.
The comparison statistics are available through a
simple command, and the DEC/Test Manager
provides a set of functionality and commands
for locating and examining the results of those
tests that indicated some type of change from
expected behavior. All file management is han-
dled automatically.

The VAX DEC/Test Manager software version 1 . O
was mainly a batch testing system. Pressure came
both from the market and from internal Digital
engineering groups to produce a follow-on ver-
sion that would do more, one that would test
graphical applications on character-cell termi-
nals, such as a VT52 or VTl 00 terminal.

From the outset of the project, the develop-
ment team realized the difficulty of the design

Digital Tecbnfcal Journal
No. G February 1988

problem. Adding to the difficulties of develop-
ment would be the lack of a commercially avail-
able product with which to compare functionality
for such a tool.

Project Setup
The DEC/Test Manager version 2.0 development
team consisted of three junior engineers, a princi-
pal engineer, and a project leader. This team was
to be responsible for producing the new func-
tionality and for maintaining the previously
released versions of the software.

At the beginning of the project, the team mem-
bers recognized they would need to improve
productivity in order to deliver a product in the
time required. The work involved to produce ver-
sion 2.0 would be as complex as it had been for
the major version 1 .O. Version 1.0 had taken
18 months to produce, but market pressure dic-
tated a second version be delivered in 10 months
or less.

Consequently, the DEC/Test Manager team was
one of the first at Digital to use all of the VMS pro-
ductivity tools currently available. The team's
use of these tools is discussed in the sections
below. The tools consisted of the following soft-
ware:

VAX Language-Sensitive Editor

VAX DEC/CMS (Code Management System)

VAX DEC/Test Manager

VAX DEC/MMS (Module Management System)

VAX Performance and Coverage Analyzer

Problem Tracking or QAR system

VAXNOTES

Digital Standard Runoff

The project team also decided to use an itera-
tive development approach. This approach dif-
fers from the development method of complet-
ing all requirements of one stage, or phase, in the
software life cycle before proceeding to the
next.2 Instead, an iterative process allows prob-
lems to be detected, fixed, and quickly incorpo-
rated at any stage. Consequently, errors made in
the design are caught and corrected long before
the field test. Additionally, this approach allows
the corrected software to be made available to
the people who had detected the original prob-
lems. 'These users can then further evaluate and
test the software.

The first phase in iterative development is
product requirements analysis, which we discuss
next.

Requirements Analysis Pbase
One of the most difficult tasks of software engi-
neering is forming a clear statement of the prob-
lems the software must solve.

Traditionally, on small, less rigorously struc-
tured projects, programmers may interview users
about their needs. On large-scale projects, such
as those done by Digital Software Engineering,
more formal requirements analysis is undertaken
early in the project's life cycle. However, no mat-
ter how formal the analysis process, the quality
of the resulting problem statement strongly
depends on the information gathered during that
process.

The DEC/Test Manager version 2.0 team
wanted to decrease the time normally taken to
gather this information without decreasing the
quality of the requirements analysis phase and
without reducing the number of target markets
contacted for information.

Also to be considered in gathering require-
ments information is whether the proposed
product is new or a revised version of an exist-
ing product. For a new product, requirements
are often based on the abilities of similar prod-
ucts or simply on programmers' and potential
users' wishes. The requirements list for a new
version of an existing product, however, can
be an ex-panded and more precise list. Mem-
bers of a user community can make suggestions
based on their judgments of the deficiencies
of a product. The problem facing developers
is finding a mechanism by which to obtain
this feedback in a short period of time from these
users.

The team chose not one but several ways to
obtain responses from widely dispersed and
varied groups of users. These methods are the
subject of the balance of this section.

VAX NOTES Conferencing
The DEC/Test Manager version 2.0 team used a
variety of methods to quickly gather feedback on
version 1.0 from groups in such diverse locations
as Japan, England, and California. To obtain input
from groups in similarly widespread locales, the
developers of version 1.0 of the DEC/Test Man-
ager had spent a great deal of time in the require-
ments gathering stage.

Digital Tecbnical Journal
No. 6 Februaql 1988

111

Software
Productivity
Tools

Project Muncigement of the VAX L)EC/Test Manager SoJiu~are Version 2.0

Significant time was saved through the use of
VAX NOTES software. NOTES is a computer
conferencing tool which thc DEC/Test Mana-
ger team used to set u p a forum for discussing
its p r ~ d u c t . ~ Nthough NOTES at that time
existed only as several prototype tools, it pro-
vided a workable forum for the entire internal
user base. Not only was the team able to gather
requebts and ideas from the internal base, but
it also made available preliminary specifications
and gathered feedback before any prototyping
was started.

NOTES alone, however, was inadequate for
gathering all the feedback needed. At that
time, only a small portion of the user community
actively participated in the NOTES conference.
Moreover, any feedback from just one source
might be skewed. To correct for this possibility,
a more direct form of input gathering was
also implemented. The DEC/Test Manager ver-
sions 1.0 and 1.1 installation command proce-
dures had been made to send VAX Mail notifi-
cation of any Digital internal site installation to
the DEC/Test Manager development account.

These notifications provided the team with a
fairly complete list of the version 1.0 installed
base. The team used the list as a distribution and
interest list for sending users questionnaires and
requirements-input requests. These requests
served to draw more users into the requirements-
analysis process and to raise the quality of the
requirements analysis itself.

Quality Assurance Reports
Most Digital software engineering groups keep
track of all bug reports and suggestions in
Quality Assurance Report (QAR) databases.
These databases are used to record problems,
assign problems to specific developers, ana-
lyze quality statistics, and generally cnsure that
problems do not go unnoticed. Many groups,
including the DEC/Test Manager project team,
allow direct access to their QAR databases by
all users, both external field test sites and inter-
nal users. Indeed, a QAR database had been
used to gather feedback about versions 1 0 and
1. I from external field test sites and was
always available to internal users for reporting
bugs or submitting suggestions. Therefore, thc
DEC/Test Manager team was able to cull
product requirements from the internal QAR
system tool.

Developer as User
The team itself took advantage of the DEC/Test
Manager environment to gather requirements
input and to analyze the input. The team felt that
software devclopcrs who use their own software
products produce higher qualiry software.
Although software developers are already inti-
mately familiar with the internal technical
details of their products, if they are not also the
zisers, they lack external perspective.

External perspcctive is the perspective of the
customer or software user. A software developer
who has this perspective can more easily under-
stand and identify with customers' feedback. The
DEC/Test Manager had always been used to test
itself; therefore, the developers themselves were
users of the product, were familiar with the tool's
inadequacies, and knew where improvements
could be made, AS users, they were also able to
screen requirements and specification ideas for
usefulness before going to the user base for more
suggestions.

Software Quality Management
Quality assurance groups are not common in
Digital Software Engineering because Digital's
management believes each software developer
and each development group must be respon-
sible for the quality of its own product.
Although this is indeed the case, the Software
Quality Management (SQM) Group performs
a unique, cross-product quality assurance func-
tion. The VMS SQM Group, part of the VMS
Operating System Group, works with the various
product groups to ensure that all VMS pro-
ducts follow certain conventions for instal-
lability and inter-operability. The SQM Group
therefore obtains a set of tests suites for each
product and, on a frequent basis, tests how
well products work with each other on the VMS
operating system.

Through this process, the SQM Group pro-
vided valuable input to the requirements phase
of the DEC/Tttst Manager development cycle.
SQM required all product groups to submit
regression test subsets that could be executed
under the DEC/Tcst Manager software. This
request led not just to requirements from the
groups responsible for applications that run on
the VMS operating system, but also to require-
ments from the SQM test administrators who
needed test-control functionality to make their
task easier.

Digital Tecbnfcal Journal
No. 6 Februaty 1988

Software
Productivity
Tools

In summary, through the combined use of
these tools and improved information-gathering
processes, the DEC/Test Manager team was able
to move into the specification stage within the
first weeks of the project. The time savings was
significant since several months was the generally
expected timeframe at this stage for a project of
this scope and complexity.

Specification and Design Phase
During the specification and design stage, devel-
opers define what the system will do, how it will
be used, and how it will be implemented.' This
stage is often the longest in the development life
cycle. Again the team sought ways to decrease the
time required to complete the phase. They
started by streamlining how the specification
itself would be documented.

Since the DEC/Test Manager team did not know
what method they were going to use to test
graphical applications on character cell termi-
nals, they wanted to explore a number of differ-
ent design possibilities. They also wanted to
ensure that as they refined their ideas the product
specification document would be continually
updated to reflect current specifications. They
did not want to write the specification at the end
of the phase when there would be a higher possi-
bility of inadvertently leaving out details. As a
result, they developed procedures that would
allow for continual update of the specification
and also enable them to prototype a number of
alternative implementations.

Next the version 2.0 functionality was divided
into major components, and each component was
assigned to a developer for specification. A Ian-
guage-sensitive editor, VAX LSE, template was
written both for specifications and designs to
enforce a convention for information. As first
drafts of specifications were completed, the team
met to review the specifications and suggest
changes. The changes were incorporated into the
documents, and the next pass of the complete
specification was built. (The main specification
document was a Digital Standard Runoff proce-
dure with Include files for each of the compo-
nent files the individual developers wrote. It was
a simple matter of processing to generate the lat-
est specification, and as a result, processing was
done frequently during this stage.)

Finally, each new specification was made avail-
able in a public directory for internal review.
This availability not only enabled the entire team

Digital Technical Journal
No. G February 1988

to be up to date on the current thinking for all
version 2.0 components but also assured the doc-
ument was continually reviewed, which helped
the team complete the specification faster.

Concurrent Prototyping and
Maintenance
A conflict presented itself at this point in the
development process. Each developer wanted to
test various creative solutions, and each devel-
oper needed to access any module in the system
to quickly build prototypes. If such access were
allowed, it was likely that too many people
would access the same module at the same time,
causing skew. This problem was solved by the
use of the VAX DEC/CMS (Code Management Sys-
tem) software.

The specifications were made available at the
same time as a prototype version, which acted as
a "living" specification. The prototype included
some of the major interface changes, such as inte-
gration with DEC/CMS. Users were able to try out
the proposed interfaces and comment on what
they liked or did not like. In some cases, the
developers made available multiple solutions
that provided the same underlying functionality
to determine which possible solution suited the
users best. This approach enabled the team to
make decisions on functionality based on users'
feedback early in the development process. The
developers avoided the much longer process of
first developing one solution, waiting for feed-
back, issuing a modified solution, and continuing
the steps until results are attained.

Complicating the prototype effort was the
need to continue to maintain the released ver-
sion 1.1. DEC/CMS met the developers' need to
control multiple simultaneous development
threads. DEC/CMS maintains "elements," which
are all of the versions of a single file stored as
deltas from the original version. Each particular
version of the element file is called a "generation."

A generation from which another generation is
derived is called an "ancestor" generation. The
trail from a generation through all of its ancestors
back to the first generation of the element is
called a "line of descent." All elements have a
main line of descent, which consists of genera-
tion l , followed by generation 2, and so on. In
addition, DEC/CMS allows lines of descent to
branch off from the main line into what are
called "variant" lines. These variant lines of
descent exist in parallel to each other and to the

Project Management of the VAX DEC/Test Manager Software Version 2.0

main line. Changes made to one variant, for
example, are not reflected in the other lines of
descent unless the changes are explicitly mcrged
across lines.

Before any prototype work was begun, the
DEC/Test manager team agreed that all nonpro-
duction code would be replaced into the group
code library as variants, leaving the main line for
maintenance and production version 2.0 devel-
opment.

CMS classes - sets containing one specific
generation of each element in the set - were
used to represent complete prototypes, such as
CMS-INTEGRATION and RESUBMIT. A developer
working on a particular prototype could then
retrieve modules by telling CMS that he wanted
thc latest generation on the same line of descent
as the generation in the particular class:

CMS FETCH module-bli

/GENERATION=cms-integration* " "

These classes were also used with DEC/MMS
(Module Management System) software to per-
form builds. DEC/MMS works from a description
of objects to be built and their dependencies on
other objects. The tool searches CMS libraries for
components and makes use of CMS classes if told
to do so.

All individual prototypes were also included
in a more global class, PROTOTYPE, to allow
the team to construct a single, executable proto-
type version containing all current prototype
efforts. In some cases, the same module had
been modified differently for several of the indl-
vidual prototypes, and these modifications had
to be reconciled for the combined prototype.
DEC/CMS RESERVE/MERGE functionality was of
major assistance. This procedure combines two
generations from different lines of descent, auto-
matically including Independent changes and
flagging different changes to the same region of
the file (called merge "conflicts") for human
resolution.

Once CMS performed its merge and the merge
conflicts were resolved, the team used CMS's abil-
ity to compare a file against generations stored in
a CMS library. This comparison was made to
ensure the merged file contained code that made
sense and that was expected to be there. This
step was crucial to avoid accidental loss of code
during the conflict-resolution process and to
ens~ire that the automatically mcrged code sec-
tions were still valid BLISS.

A single executable version was built from the
merged prototypes and made available through-
out Digital on the DECnet network. Notification
of the availability was posted in NOTES and was
sent by VAX Mail directly to all known installed
sites.

A single executable image was used because
the team felt that a user was more likely to try the
various prototypes if only one image had to be
used.

Feedback on the prototypes was gathered from
NOTES and Mail. The team directly polled
installed sites, asking about the specific ques-
tions the prototypes had been designed to
answer.

During the design phase, thousands of CMS
merges were completed without problem. With-
out this merge capability, i t would have been
impossible to allow the developers access to all
modules at the same time. Without concurrent
access to all modules, the developers could not
have built as many prototypes as quickly as they
did. Further, without these early prototypes, the
participation of internal users would not have
been as high, and version 2.0 then would not
have been built in the required timeframe.

DEC/Test Manager and Performance
and Coverage Analyzer Integration
Testing was begun early in the development cycle
to find and fix problems as early as possible.
The existing DEC/Test Manager test set was run
against the prototype image to check for regres-
sions in nonprototype areas of the code. Some
of the more comprehensive prototypes touched
many modules; therefore, it was important
to ensure preexisting functionality remained
unchanged. In addition, some new tests were
written for the prototypes, the purpose of which
was not to test the prototype for correctness.
Rather these tests could be run with the VAX Per-
formance and Coverage Analyzer (PCA) to evalu-
ate the relative performance of different proto-
types and also to help tune the design.

The DEC/Test Manager and the PCA can be
used together in an integrated fashion. This inte-
gration allows programmers to use good-cover-
age regression test suites as performance tests,
merely by changing PCA collection from cover-
age information to performance statistics. For
the DEC/Test Manager version 2.0 development,
each developer was required not only to create
and run the regression test suite but also to do

Dig i td Technical Journal
No. G Februaly I988

code-path coverage analysis on his code before it
was checked back into the master source library.
The team was striving to have 9 0 percent of the
code paths covered, and PCA allowed us t o check
how we were doing throughout development.
The same tests were used to gather data on the
poorly performing commands s o developers
could identify which routines/modules needed
to be looked into.

While analyzing the prototype performance,
the developers ran PCA over the rest of the code
to identify the sources of several known perfor-
mance problems in version 1 . 1 . The results from
this performance analysis led to the redesign of
several key modules. The redesign produced no
user-visible functional changes but significantly
improved the performance of the commands
most often used.

Implementation
Once the feedback from the prototypes and
design reviews was incorporated into the designs
and the specification and design phase was
closed, implementation of DEC/Test Manager
version 2 . 0 was begun.

The effort was approached in three different
ways. First, some of the prototype code was good
enough to be kept, wi th only a little time spent to
make it production quality in the handling of
error cases. Then, the variant generations in the
CMS library were merged back onto the main line
of descent - now the version 2 . 0 development
stream.

Second, the developers took as much relevant
existing code as possible from other Digital
projects. This existing code was modified and
reused in the DEC/Test Manager version 2 . 0 .
Modification of the existing code for the Test
Manager environment proceeded far more
quickly than writing new code. Included among
the codc the team reused was the pseudoterminal
driver from an internal tool called PTYCON-32.
Also adopted and upgraded to handle VT200-
series terminals was the EDT group's terminal
simulator for building in-memory screen pictures
forVT52 and VT100 terminals.

Third, new code was written for all remaining
functionality. No new code was considered
complete until a code review was held. The
DEC/Test Manager team then adhered to the
software engineering principle of frequent,
small integrations rather than one large integra-
tion. Therefore, every evening during active

Software
Productivity
Tools

devclopmcnt, a procedure was run first to
determine if code was checked back into the
master CMS source library, and second to start
a system build if i t was warranted. As a result
of this procedure, all recent code was always
available to developers as they were writing
new 111odi1Ie~. Problems were found early rather
than a t a later, larger integration at the end of
a base level.

Also, as part of the build procedure, an auto-
matic test set execution was done. Just as the
incremental integrations had done, these test sets
kept the team aware of problems wi th the system.
Moreover, the test sets were always available s o
implernentors could easily schedule time for test
review.

We were able to detect and fix bugs early,
rather than have bugs mushroom into larger prob-
lems as more code was added. Problems were
usually identified and solved whi le the code was
still fresh in the developers' minds; therefore,
time for bug fixes was reduced.

The use of the DEC/Test Manager to test itself
during development was also beneficial as an
early problem-detection system. In addition, a
number of early versions of the software were
released to internal Digital users. These users
helped t o identify problems early, dur ing the
implementation phase, when problems are
often easiest and least expensive t o fix and
have the least impact on the project schedule.
Because these early versions were used and
refined for weeks internally, serious problems
never reached the customer field test sites.
For example, internal user feedback indicated
that some changes would be required in the
new functionality. This valuable feedback caused
a complete interface change; however, the work
was completed before external field test was
begun.

During implementation, NOTES and a QAR sys-
tem were used for problem reporting and track-
ing. This reporting enabled the developers to
associate problems with sections of code , t o
report progress, and t o associate i t with a test
in the DEC/Test Manager library. A project
rule required that all bug fixes have a test in
the library and a PC4 coverage analysis per-
formed before the bug was considered fixed. As
a result of enforcing this procedure, the DEC/
Test Manager team achieved a code coverage of
87 percent , finding two thirds of the problems
themselves.

Digital Technical Journal
N o . 6 February 1988

Project Management of the VAX DEC/Te.sl Mancrger Software Version 2.0

Conclusion
The DEC/Test Manager team was able t o produce
30,000 lines of prototype code (thrown away)
and 60,000 lines of tested, production-quality
code in under seven months as a result of several
key factors: creative use of project procedures
and tools, team commitment to these procedures,
and the use of the developing product by the
team as well as many internal users. It has been
two years since DEC/Test Manager version 2.0
became available to customers, and fewer than
six unique problems have been reported by the
customer base.

References
1. B. Beander, "VAX/VMS Software Develop-

ment Environment," Digital Technical Jour-
n a l (February 1988, this issue): 10-1 9.

2. A. Duncan and T. Harris, "Software Produc-
tivity Measurements," Digital Technical
Journal(February 1988, this issue): 20-27.

3. P. Gilbert. "Development of the VAX NOTES
Systetn ," Digital Technical Journal (Febru-
ary 1988 , this issue): 11 7-1 2 4 .

116 Digital Tecbnfcal Journal
No . 6 February 1988

Peter D Gilbert I

Development of the
VAX NOTES System

Tbe VAX NOTES computer conferencing system is a communicaEraErons tool
for on-line discussions. Tbis paper discusses the innovative strategies
devised by tbe VAX NOTES team for tbe d e v e l o e t of tbis system, imlud-
ing tbe decisions to build aprototype, toperform human-factors engineer-
ing, and to inclulie a technical writer early in the development cycle. Also
described in tbis paper are several key product features, witb empbasis on
tbeir e@ct on product perfortnume and extensibility: tbe multitasking,
multitbreaded server; the user int@ace; the underlying storage medium;
and tbe callable int4me.

Computer conferencing is a software tool for
ongoing discussions among individuals. Users
can asynchronously read and write messages in
the conference at times suitable to themselves.
The computer conference provides an organized
structure and a permanent record of users'
messages, or discussions. Computer conferenc-
ing is a viable substitute for conventional meet-
ings, offering conspicuous savings in space, time,
and money.

The VAX NOTES system is a computer confer-
encing tool designed for use on the VAX/VMS
operating system. The development effort was
successful, meeting its requirements and sched-
ule and incorporating several innovat ions. The
VAX NOTES system is used by Digital's hardware
and software engineers for structured project
communication and has found similar favor with
customers.

The success of the VAX NOTES system is largely
due to the design and development strategies
used in its creation, and to the context in which it
was developed. This paper discusses the rationale
behind these decisions and their effect on the
product. This retrospective may be useful to
other software developers.

First, we briefly discuss the origins of com-
puter conferencing at Digital.

A Brief History of NOTES at Digital
Early in 1980, a Digital engineer wrote a com-
puter conferencing program, K-NOTES, that had

its roots in the PLAT0 system developed at the
University of Illinois. The K-NOTES program was
written as a test of the newly added indexed
file support in the VAX PL/I language. VMS soft-
ware engineers also used K-NOTES to log VMS
design changes that might be of interest to oth-
ers. K-NOTES was a crude but effective tool for
communication and became popular with other
engineering groups within Digital. Indeed, it was
often mistaken for part of the VMS operating
system.

Software developers using PDP-11 systems also
wanted access to computer conferences. A soft-
ware developer wrote the NOTES- 1 1 program as
a "midnight project" - an unfunded project
developed outside normal working hours. Origi-
nally developed for the RSTS/E operating system,
NOTES- I 1 was later adapted to run on the RSX,
VMS, and P/OS operating systems. Many of the
enhancements suggested for K-NOTES were
incorporated into NOTES- 1 1 , including support
for multiple time zones and a per-user record of
conferences (later called the "notebook") .

As Digital's engineering network grew to hun-
dreds of computers connected by DECnet soft-
ware, the number of computer conferences
abounded. Most products had a conference for
Digital users to ask questions, report possible
problems, and suggest enhancements. There
were also conferences on a diversity of other sub-
jects of general and personal interest, such as
security, smoking policy, and jobs.

I)euelopment of the VAX NOTES S'lstem

VAX NOTES Project Decisions
In late 1984, VAX NOTES became a funded pro-
ject with two developers and a one-year develop-
ment schedule.

We looked at several competitive conferencing
systems. Nearly all of these systems were oriented
toward hardcopy terminals. Most included an
integrated electronic mail system or personal
messaging capability, and most had good basic
documentation. We found that in many of these
systems, navigation through the messages in a
conference was difficult.

None of the systems provided good support
over a computer network, none integrated well
with the underlying system, and none offered a
callable set of routines for accessing conferences.

Based on our study, we decided our product
should offer users the following:

A screen-oriented terminal interface

An interface to the VMS Mail utility

An easily conceptualized structure with sim-
ple navigation (A comb-like structure of topics
and replies was chosen.)

A distributed conferencing system that makes
efficient use of DECnet ~ a ~ a b i l i t i e s ' . ~

Simple, introductory documentation for non-
technical and novice users

A sewer-based technology layered on DECnet
software was clearly needed to efficiently sup-
port distributed conferencing.

During the planning of the project, we also
determined that the product should be extensi-
ble, which is discussed in the section Extensible
Design through the Callable Interface. In addi-
tion we decided to use the VAXTPU (Text Pro-
cessing Utility) software to implernent the user
interface, and VAX RMS (Record Management
Services) software for the underlying storage
mechanism. Discussion of the use of a server, the
user interface, the storage features, and the
callable interface can be found in the section
Design of Main Features.

These product decisions were coupled with
decisions about how to structure the develop-
ment process. We decided to build a prototype.
Also, we worked with the Software Usability
Engineering (SUE) Group to perform human-fac-
tors testing.3 Finally, we included a technical
writer early in the development cycle. These
decisions are discussed in the next section.

Our development tools included VAX DEC/
CMS (Code Management System) software for
source control and VAX DEC/MMS (Module Man-
agement System) software for doing incremental
builds. In addition, the NOTES utilicy itself
became an important development tool.

Because of limited resources and time, we
made no systematic test suite. We correctly
assumed that an internal field test with thousands
of users would provide an incredible amount of
testing. We discuss our test results in the section
Field Test at the end of this paper.

Development Decisions
This section describes three elements of the deve-
lopment strategy used for the VAX NOTES pro-
ject. Each of these - the prototype, usability test-
ing, and early inclusion of a technical writer -
is a solnewhat novel approach and led to the pro-
ject's success.

Reasons for Building a Prototype
Several of our product decisions conspired to
make a prototype very desirable. First, our un-
tried uses of the new VAXTPU utility imposed
some risks. Second, we had decided to perform
human-factors testing; our short development
cycle required that some form of the product be
available early for this testing. Finally, a proto-
type would give the developers more experience
with server-based applications and with TPU.
In short, we expected to learn from the proto-
type. (In addition to meeting our project needs,
the prototype could be used within Digital
to provide better access to remote conferences
while the VAX NOTES system was being devel-
oped .)

We only required that the prototype would
support core features. The prototype would use
the same conference storage format as was used
by NOTES- I I . Therefore, features that required
changes in the storage format (such as keywords
and membership lists) were necessarily absent
from the prototype. Also, some rarely used opera-
tions were left unimplemented in the prototype
since NOTES-1 1 could be used instead. Indeed,
the prototype was incapable of cven creating a
new conference.

We decided to include in the prototype one
additional feature called the notebook. The
notebook is a per-user record of the conferences
in which the user participates and of the notes

Digital Technical Journal
No. 6 February I988

that have been read in those conferences. From
our experience with the notebook feature in
NOTES- 1 1 , we anticipated difficulties in provid-
ing a smooth integration between the notebook
and the rest of the VAX NOTES interface. The
notebook feature was included in the prototype
so that human-factors tests could help us resolve
any problems.

Usability Engineering of NOTES
We enlisted Digital's SUE Group to help evaluate
and improve the VAX NOTES system's ease of use.

'The first task was to create a measurable defini-
tion of usability. This definition allowed us to
measure and improve the VAX NOTES user inter-
face. The SUE group helped us identify our goals
and offered guidance to help us reach them. The
usability engineering approach to software devel-
opment is described in the paper "Software
Usability Engineering," this issue.3

The VAX NOTES usability definition included
measurements for 1 0 attributes. These are

Initial use

Learning rate

Infrequent use

Compatibility with NOTES- I 1

Compatibility with other competitive confer-
encing systems

Initial evaluation

Casual evaluation

Mastery evaluation

Error recovery

Fear of feeling foolish

The first three attributes were measured by user
performance on NOTES benchmark tasks. For
these, the metrics were the number of errors and
the number of successful interactions made by
the users in 3 0 minutes. The compatibility and
evaluation attributes were measured with atti-
tude questionnaires containing a semantic differ-
ential. The final two attributes were measured
with unique questionnaires.

The testing centered on the initial use, learn-
ing rate, and initial evaluation attributes.

For initial performance, the goal was for initial
users to have three or four successful interactions

on a benchmark task in their first 30 minutes of
using VAX NOTES; 8 to 10 successes was consid-
ered the best case. The learning rate was mea-
sured by comparing the performance on a second
benchmark with the first, where the performance
was measured as a work speed relative to a prac-
ticed expert performing the same tasks. The goal
for initial satisfaction was fairly positive, 1 .0 on a
scale from -3.0 to 3 .0 .

In the first VAX NOTES tests, users exceeded
our best-case level for initial use, and so we
adjusted our goal. The learning rate was accept-
able, but the evaluation score fell just short of our
goal. We then made changes to the interface as a
result of the SUE Group's impact analysis. With
these changes, VAX NOTES eventually met o r
exceeded our usability goals.

Inclusion of a Technical Writer
We were able to include a technical writer on the
development team shortly after the prototype
was completed, rather than after implementa-
tion as is often the case. The writer's review and
exposition of the planned interface was concur-
rent with (and sometimes preceded) its imple-
mentation. The writer's most important role and
one of our goals was to ensure that the system
could be clearly documented for nontechnical
users.

As a member of the development team, the
writer made technical changes to simplify fea-
tures that were difficult to explain, made the set
of commands more self-consistent, and suggested
other improvements to the implementors.

Because the technical writer was involved in
the process early, problems with either the code
or the documentation could be resolved early,
and a combination of both code and documenta-
tion changes could be used in the solution.
The early involvement of a technical writer also
gave us high-quality documentation (and on-line
help) for field test and some of the human-factors
studies, thereby allowing the whole system to be
evaluated.

Design of Main Features
In this section we discuss the reasons for includ-
ing a server, creating the user interface with
TPU, selecting the VAX RMS software as a stor-
age medium, and designing a callable interface
that is extensible. We also discuss how these
features were implemented and what trade-offs
were made.

Digital Technical Journal
No. 6 February 1988

1 1 9

Software
Productivity
Tools

Development of the VAX NOTES System

Use of a Server
The K-NOTES and NOTES-1 1 tools relied on RMS
and the DECnet software to transparently access
conferences on remote systems. Although the
VAX RMS software provides efficient access to
individual records in a remote file, most NOTES
operations require multiple RMS operations. For
example, to list a directory of the notes in a con-
ference would require one RMS operation per
note. This performance i s efficient when the con-
ference is stored on the same system that the user
is on. However, when the conference is several
slow network links away from the user, the
round-trip delays for every RMS record operation
are seen as frustrating delays at the user interface.
The advantages of using a NOTES server running
on the system that hosts the conference were
clear. The server would

Perform many local RMS operations without a
network delay

Support sophisticated requests more effi-
ciently than RMS

Send back only the information that the user
requested

Allow DECnet software to send larger, hence,
fewer network packets with fewer transmis-
sions, resulting in a tenfold improvement in
the time taken to satisfy users' requests

A multitasking server can handle requests from
one or more users. Because more requests can be
handled, fewer server processes, hence fewer
resources, are needed on the system hosting con-
ferences. Also, VAX RMS software pools buffers,
which offers another advantage when several
users are reading the same conference: a user's
request may be satisfied from a buffer that had
been read for a different user's earlier request.

Multitasking gives the server process some-
thing to do between an individual user's requests.
For example, while a user is reading a note, the
server can process other requests. The multitask-
ing usually does not have much effcct on the
response time seen by the users.

The prototype server employed multitasking.
The VAX NOTES server used both multitasking
and multithreading.

When the multitasking server receives a
request, it builds a control block to contain the
request and queues it onto a list. Thc syn-
chronous code is in a loop that processes the

requests; the code removes a control block from
the queue, performs the operation, and sends
back the results. If there are more results than
can be returned in a single packet, a continuation
control block is enqueued, and later activated by
receipt of a "send me more" request from the
user.

The prototype processed each request either
to completion or until the results filled the
server's response buffer. A disadvantage with this
approach is that some requests may take a consid-
erable amount of time before returning any
results. For example, a request to search for a
string within a note could cause significant
delays for other users of the server. This problem
was solved by making the server multithreaded.

The n~ultithreaded VAX NOTES server can
switch from one task to another even before the
first task has completed. The implementation
proved to be far easier than we had anticipated,
and the multithreaded server simplified the han-
dling of users' "send me more" requests. Each
"thread of execution" has a separate stack and set
of registers. Whenever the server does an 1 /0
operation, it does so without waiting and tells the
"scheduler" to find and work on another request.

When the 1 /0 completes, the corresponding
request block is again enqueued for processing.
Because 1 /0 is invariably done for a request,
there is no need for a sophisticated scheduler.
The "scheduler" saves the registers on that
thread's stack, searches for a thread that can pro-
ceed, restores its registers, and continues the
execution of that new thread. Since the VAX
NOTES system does relatively little processing
between 1 /0 operations, no user is able to signifi-
cantly affect the response time seen by other
users.

The VAXTPU Programmable Editor
VAXTPU software is a programming language and
interpreter that is shipped with the VMS operat-
ing system. TPU is especially suited for writing
text editors and has been used to write the
human-engineered EVE editor, the ACL (Access
Control List) editor, and VAX ISE (Language-Sen-
sitive Editor).

Although the VAX NOTES system is not an edi-
tor, we wanted an interactive screen-oriented
user interface. We expected that VAXTPU would
provide a good language in which to write the
interface, since the functions for handling the
screen, key definitions, strings, and text manipu-

Digital Technical Journal
No. 6 February 1988

lation are built in to the TPU language. The
VAXTPU utility also provides a callable interface,
so that it can call and be called by programs writ-
ten in other languages. By using these features of
the VAXTPU language, we could economically
produce a desirable user interface.

However, TPU's callable nature had not yet
been used in anything as complicated as the VAX
NOTES product, and we were unsure whether its
performance as an interpretive language would
adversely affect the perceived performance. The
protorype helped resolve this issue early, and the
performance proved to be far better than we
needed.

The decision to use TPU had a considerable and
unexpected payoff: because of its interactive and
interpretive nature, it was possible to greatly
reduce the time spent in the compile-link-run
cycle. After the initial investment in getting
NOTES and TPU "talking" together, typical devel-
opment of the TPU code followed this procedure:

Run the VAX NOTES utility.

Read the TPU code into a text buffer (by a
command issued at the NOTES prompt).

Editthecode.

Select and recompile the modified procedures
in the code. This was done with only a few
keystrokes. Developers had defined a key to
mean "compile the selected code."

Exit the buffer; return to the NOTES prompt.

Test the change

This procedure continued until the developer
was happy with the changes. Then the buffer
containing the TPU code would be written out to
a file, and the developer could either exit the
NOTES utility or proceed with other changes.
The power of this approach resulted in an esti-
mated development-time savings of four person-
months.

We discovered, however, a disadvantage with
this evolutionary approach. The resulting TPU
code tended to be poorly commented because
the code would be working before there was any
need for comments. We solved this problem with
an occasional "revolution": we reviewed the
code as a whole, improved the organization,
made it more systematic, and added the com-
ments necessary to understand and maintain the
code.

Software
Productivity
Tools

The use of the VAXTPU software was not with-
out pitfalls. The VAX NOTES team made the most
sophisticated use of TPU software to date and dis-
covered several interesting bugs in the TPU soft-
ware. Because the development groups were in
close proximity to each other, little time was lost
waiting for fixes or workarounds. But not all of
the problems were resolved; for example, TPU's
control-C handling was designed for simple edi-
tors, not complex applications, and control-C
handling remained a weak point in the first
release of VAX NOTES.

VAX RMS Software for Storage
We had several good reasons for choosing the
VAX RMS software for our underlying storage
medium.

VAX RMS software is bundled with the VMS
operating system.

The code is robust.

VAX RMS performs well on large indexed files.
(We wanted an entire conference to be held
within a single file.)

RMS supports concurrent, coordinated access
and updating of records.

We were familiar with the VAX RMS software,
therefore we would not need to spend time
gaining experience with it.

Although these reasons were compelling, we
considered some alternatives because of the fol-
lowing issues. The NOTES software's view of the
information in a conference would be more akin
to a true database than to an indexed file. There-
fore, the use of indexed files would require that
development time be spent implementing a
makeshift database atop indexed files. Also, the
VAX NOTES system would be enhanced if it and
other tools used a relational or object database.

Despite these considerations, we decided in
favor of RMS based on the benefits of using RMS
listed above, our interest in not adding licensing
costs for customers, and a tight schedule.

We did, however, decide to insulate the higher
functions in NOTES from RMS with a callable
interface. This permits a future release of the
VAX NOTES system to use a different underlying
storage medium without affecting code that uses
the callable interface.

The VAX NOTES system stores data in the RMS
records with a type-length-value (TLV) encod-

Digital Technical Journal
No. 6 February I988

12 1

Development of the VAX NOTES System

ing called Digital Data Interchange Syntax
(DDIS). Each datum in a record identifies itself
by a "type" code and is followed by thc length
and actual value of the datum. For example, the
"header" information in each note in a confer-
ence may include the author's name, the date the
note was written, a title, and a list of keywords. A
sample note header with TLV encoding follows:

{author) 5 "BYRNE"

(Two interfaces used within Digital show the
value of this approach. One is designed for off-
line - batch - reading and writing of notes;
the other is an interactive interface imple-
mented with another programmable editor -
EMACS.)

Have the flexibility to be extended to handle
a variety of possible (and now unforeseen)
future enhancements

{date) 8 "22-JAN-1979 10:30:27" Provide a well-defined interface between the
{title) 15 "Crystallography" two halves of VAX NOTES: the user interface

and the file access routines The (author), {date), and (title) are suitably
encoded, and 8 bytes are used to represent the Map easily to remote procedure calls or net-
date (as on VMS) . work packet transfers

The advantages of TLV encoding are that it is
succinct and evolutionary. Additional informa-
tion (such as coauthors or an edit history) can
be added without changing the format or invali-
dating any existing data. Changes are made by
simply creating a new type code for the new
information, making minor changes within the
callable routines, and providing the new informa-
tion to the callable interface.

-

Extensible Design through the Callable
Interface
Computer-conferencing has a practically unlim-
ited range of possible uses and useful exten-
s i o n ~ . ~ We could not foresee all possible future
enhancements, or provide even a tenth of the
many requested features because of our develop-
ment schedule. Resigning ourselves to the fact
that we could not know what our code would
eventually become, we resolved to provide
extensibility that could support a variety of
future directions.

One of the design decisions allowing for this
extensibility is described in this section.

The design of the callable interface was a sig-
nificant aspect of the VAX NOTES system devel-
opment. This interface provides all the opera-
tions that access conferences and notebooks. The
callable interface must meet several goals; it
must

Allow the underlying storage medium to be
changed in a future implementation; for exam-
ple, from RMS files to object databases

Allow other user interfaces to be added with-
out publishing (and compromising) the
underlying storage format

Be reentrant, that is, the "context" of an opera-
tion must be specified in each call, and opera-
tions done with different contexts should
be independent of each other (This indepen-
dence also proved to be an advantage for
implementation of the multithreaded, multi-
tasking NOTES sewer.)

Be capable of becoming a supported interface
for use by customers

The callable interface proved quite successful in
meeting these goals.

All the routines in the callable interface have
the same format:

status = NOTEStobject-operation

(c o n t e x t , inputs, outputs)

The ob j ec t is either NOTEFILE, CLASS,
ENTRY, KEYWORD, NOTE, PROFILE, or USER.
The operat ions BEGIN, END, ADD, DELETE,
GET, and MODIFY are common to most of these
objects. A few additional routines handle lists
contained within an object, for example,
NOTES SNOTE-GET-TEXT gets the next line of
text from the note most recently accessed (with
the specified context by NOTESSNOTE-GET.

The context parameter is an uninter-
preted value defined by the NOTES facility. On
a NOTESSobjectBEGIN call, NOTES stores a
nonzero value in the context parameter. That
context is passed to other routines for access
to that kind ofobject.Acal1 toNOTESSobjecLEND
frees the resources used to maintain the context
and zeroes the value.

The inputs and outputs are item lists. An
item list is a list of one or more item descriptors,
each of which specifies an item code. The item

Digital Technical Journal
No. G February 1988

Software
Productivity
Tools

list is terminated by an item code of 0. Figure 1
depicts the structure of a single item descriptor.

ITEM CODE BUFFER LENGTH

Figure I Structure of an Item Descriptor

The item code specifies the item of informa-
tion that the caller is specifying (through the
i n p u t 5 parameter) or requesting (via the
o u t p u t s parameter). The buffer length and
buffer address describe the buffer (for inputs or
outputs), and the return length address is the
address of a location into which NOTES will
write the actual length of the requested informa-
tion (for outputs).

To see how this works, we consider the calls
needed to read notes 1 through 5 from a local
conference. The name of a file is specified
as an input to NOTESSNOTEFILE-BEGIN,
which opens the file and initializes the note-
file context. The notefile context is passed
as an input to NOTESSNOTE_BEGIN, and this
establishes the note context. A call to
NOTES SNOTE-GET requests notes 1 through 5.
(The string "1-5" is passed as an input.) Then
NOTESSNOTE-GET-TEXT is repeatedly called
until a "no more text" status is returned. The pro-
cess repeats: another call to NOTESINOTE-GET
is made (specifying a "continue" item code).
Eventually NOTESSNOTLGET returns the status
"no more notes."

At any time, the same note context could
be used to read other notes by omitting the
c o n t i n u e item code. This would cancel reading
of the current stream of notes (1 through 5 ,
in the example) before handling the new
request. This cancellation can be avoided by cre-
ating another note context, with another call
to NOTESSNOTUEGIN. The resources used
to maintain the note context are freed by
a call to NOTESINOTLEND, and similarly
with NOTESSNOTEFILEJND, which deallocates
memory and closes the file.

There is no separate call for opening a note-
book. Although conferences and notebooks
contain different kinds of information (in our

interface), the storage formats are actually the
same. Because the formats are the same, the vari-
ety in the code is reduced, and the inner routines
can be reused (and stressed) in several differ
ent ways, making them more robust. This similar-
ity offers another advantage. A future release
could easily allow personal notes or annotations
to be stored in the user's notebook, through
the use of the existing NOTES$NOTLoperation
routines.

Access to remote conferences is easily effected.
An operation code (for the routine), the context,
the inputs, and the requested outputs are "lin-
earized" into a TLV format (DDIS) and sent to the
NOTES server on the remote system. The routine
is called, and the returned status and outputs are
"linearized" and sent back. This can be viewed as
a set of specialized Remote Procedure Calls
(RPC) .

The inputs to NOTESINOTLGET may also
include "hints" to indicate, for example,
whether the text of the note is desired. (The
user may want to read the text or may simply
want a directory of the notes.) If the operation
is one that may be repetitive (such as
NOTESbNOTE-GET), the server makes multiple
calls to that routine so that it can buffer and send
back larger packets of information. There are
some complications in the handling of signaled
exceptions and buffering, and in how the server
validates the context, but they had little effect on
the overall design.

Field Test
The internal field test was impressive. Within an
hour of making the VAX NOTES system available
within Digital, it was installed on four conti-
nents. Besides providing a popular tool on hun-
dreds of systems on Digital's engineering net-
work, we also provided the medium - a VAX
NOTES conference - by which users could eas-
ily report problems and make suggestions. We
were deluged.

These reports directly contributed to the qual-
ity and success of the VAX NOTES system.

Acknowledgments
Thanks are due the editors and reviewers of this
paper, and the many people whose interest
in computer conferencing influenced the VAX
NOTES system, especially Mark Goodrich, Len
Kawell, Valerie Rogers, Benn Schreiber, and
Tom Spine.

Digital Technical Journal
No. 6 Februaly 1988

Development of the VAX NOTES System

References

1 . DECnet Digital Network Architectz~re
(Phase IV) General Description (Bed ford:
Digital Equipment Corporation, Order No.
AA-149A-TC, 1982).

2 . P. Beck and J . Krycka, "The DECnet-VAX
Product - An Integrated Approach to Net-
working," Digital Technical Journal (Sep-
tember 1986): 88-99.

3 . M . Good, "Software Usability Engineering,"
Digital Technical Journal (February 1988,
this issue): 125-133 .

4 . S. Hiltz, The Network Nation: Human
Communication via Computer (Reading:
Addison-Wesley, 1978).

Digital Technical Journal
No. 6 February 1988

Micbael D. Good I

Software Usability Engineering
Usability is an increasingly important competitive issue in the somare
industry. Somare usability engineering is a structured approach to
building somare systems that meet the needs of users in various envi-
ronments with varying levels of computer experkme. This approach
emphasizes observation of people using sojhare systems to learn what
people want and need from somare systems. The three principal actid-
ties of soclftware usability engineering are on-site observations of and
intmn'ews with system users, usability specification development, and
evolutionary delivery of the system. These activities are paraUel s t q s in
the development cycle.

Computer system designers have not always
adopted a user-centered perspective on software
design. Instead, many designers resolved design
questions about the human-computer interface
by using introspective criteria such as personal
preference or conceptual appeal.

This introspective approach to user-interface
design might produce a usable system when
software engineers represent actual users. How-
ever, computer systems today are being built
for a wide range of people whose needs often
have little in common with the needs of system
designers.

In response to market demand for systems that
satisfy a growing and varied user community,
usability is becoming an increasingly important
competitive issue. Designers are striving to cre-
ate computer systems that people can use easily,
quickly, and enjoyably. Indicative of this trend is
increased membership since 1982 in profes-
sional groups such as the Association for Comput-
ing Machinery's Special Interest Group on Com-
puter-Human Interaction (ACM SIGCHI) and the
Computer Systems Group of the Human Factors
Society.

Digital's Software Usability Engineering Group
believes that engineers must learn about the
needs and preferences of actual users and should
build systems to accommodate them. With an
understanding of customer environments, an
awareness of technological possibilities, and
imagination, we have produced many ideas for
products that meet users' needs.

m e Somare Usability Engineering
Process
The role of engineering is to apply scientific
knowledge to produce working systems that are
economically devised and fulfill specific needs.
Our software usability group has adapted engi-
neering techniques to the design of user inter-
faces. To understand user needs, engineers must
observe people while they are actually using
computer systems and collect data from them on
system usability. Observation and data collection
can be approached in the following ways:

Visiting people while they use computers in
the workplace

Inviting people to test prototypes or partici-
pate in usability evaluations at the engineering
site

Soliciting feedback on early versions of sys-
tems under development

Providing users with instrumented systems
that record usage statistics

Our group uses these methods to gather infor-
mation directly from users, not through second-
hand reports. We use these methods to study the
usability of current versions of our products,
competitive systems, prototypes of new systems,
and manual paper-based systems.

Our software usability engineering process
evolves as we use it in product development. As

Dfgiral Technical Journal
No. 6 February 1988

Soflware Usability Engineering

of 1987, the process consists of three principal their work, about the details of their system inter-
activities: faces, and about their perception of various

Visiting customers to understand their needs.
By understanding a customer's current experi-
ence with a system, we gain insight into our
opportunities to engineer new and better sys-
tems. We collect data on users' experiences
primarily through contextual interviews, that
is, interviews conducted while users perform
their work.

Developing an operational usability speci-
fication for the system. We base the system
specification on our understanding of users'
needs, competitive analysis, and the resources
needed to produce the system. This specifica-
tion is a measurable definition of usability that
is shared by all members of the project team.

Adopting an evolutionary delivery approach
to system development. Developers start by
building a small subset of the system and then
"growing" the system throughout the develop-
ment process. We continue to study users as
the system evolves. Evolutionary delivery is an
effective method for coping with changing
requirements - a fundamental aspect of the
development process.

These three development activities are parallel,
not sequential. We do not view user-interface
design as a separate and initial part of the devel-
opment process but as an ongoing process in sys-
tem development.

These usability engineering techniques apply
to most software development environments and
are most effective in improving software usability
when applied together. However, designers who
use any single technique can improve a system's
usability. Our group has used this process in the
development of several of Digital's software prod-
ucts, including the EVE text editor and VAXTPU
(Text Processing Utility) software, VAX NOTES
software, MicroVMS workstation, VAX Software
Project Manager, VAX COBOL Generator soft-
ware, VAX Language-Sensitive Editor, and VAX
DEC/CMS (Code Management System) software.

Visiting Customers to Understand
meir Needs
Data collected at the user's workplace provides
insight into what users need in both new and
modified systems. During interviews of users
actually working with their systems, we ask about

aspects of the system. The user and the engineer
work together to reveal how the user experiences
the system as it is being used. These visits with
users are the best way for engineers to learn
about users' experiences with the system.

Ideally, the number of interviews conducted
per product depends on how much data is being
generated in each succeeding interview. The
interview process stops when new interviews no
longer reveal much new usability data. In prac-
tice, resource and time limitations may stop the
interview process before this point. In any event,
our approach is to start with a small number of
interviews (four or less) with people in various
jobs. We use these interviews to determine how
many and what type of users will be most useful
for uncovering new usability data.

Information Gained in Field Studies
Contextual interviews reveal users' ongoing
experience of a system. Other types of inter-
views, which are not conducted while the user
works, reveal users' summary experience, that is,
experience as perceived after the fact. Data on
ongoing experience provides a richer source of
ideas for interface design than data on summary -
experience.

For example, data collected from field studies
has revealed the importance of interface transpar-
ency to users. A transparent interface allows the
user to focus on the task rather than on the use of
the interface. Our understanding of transparency
as a fundamental usability concept comes from an
analysis of data on ongoing experience.

Some interface techniques can help keep the
user in the flow of work, thus increasing interface
transparency. One example can be drawn from a
workstation application for desktop publishing.
Pop-up menus that appear at the current pointer
location create a flow of interaction that reduces
mouse movement and minimizes disruption to the
user's task. Users do not have to move their eyes
and hands to a static menu area to issue com-
mands, making this an effective interface feature
for experienced users.

We will consider using pop-up menus in
new workstation software applications when we
believe their use will keep the user in the flow of
work.

We have developed our understanding of trans-
parency by observing people using a variety of

Digital Tecbnical Journal
No. G F e b r u a ~ I988

applications in different jobs. Transparency is an
aspect of usability that we find across many dif-
ferent contexts. In developing new products, it is
also important to consider the diversity of envi-
ronments in which people will use the system.
Different users in different contexts have differ-
ent usability needs. Some important aspects of
user's context are

'Qpe of work being performed

Physical workplace environment

Interaction with other software systems

Social situation

Organizational culture

All these aspect. influence the usability of a
system for each individual. As with other prod-
ucts, software systems are used in the field in
ways not anticipated by the designers.

Because the context in which a system is
used is so important, we interview a variety of
users who use particular products to perform
different tasks. We look for common elements of
usability for groups of people, as well as the
distinctive elements of usability for individual
users.

Conducting Contextual Interviews
Interviewers bring a focus, or background,' to
their visits with users. The focus determines what
is revealed and what remains hidden during a
visit. The engineer needs to enter an interview
with a focus appropriate to achieve his goals. For
example, in some visits an engineer may need to
look for new product ideas; in others, the engi-
neer may need ideas to improve an existing
product.

To avoid losing data, interviewers should not
try to extensively analyze their data during the
session. We use two-person teams, where one
team member concentrates on the interview and
the second member records the data. Contextual
interviews rapidly generate large amounts of
data. The data derives from an understanding of a
user's experience of a system, as shared by a user
and an interviewer. To generate such data, inter-
viewers need to concentrate on their relation-
ships with users and understand what users do
during the session.

Software
Productivity
Tools

Whenever possible, we videotape interviews.
If users are unwilling to have their work video-
taped, we audiotape the session while the second
team member takes detailed notes to supplement
the taped information. The two team members
meet after the interview to reconstruct an accu-
rate record of events.

Even without any taping or note-taking, engi-
neers can learn a great deal from user visits.
Although the detail from the interview may not
be remembered, the understanding gained dur-
ing the interview is still a valuable source of
insight.

Developing an Operational Usability
SpeczJZcation
Studying users provides a rich, holistic under-
standing of how people experience software
systems. However, each person will have his
or her own interpretation of user experience
as it relates to usability. Similarly, a team of
people working on a project will find that each
member has a different understanding of what
"usability" means for that product. Keeping
these understandings private and unanicu-
lated can have two undesirable results. First,
team members work toward different and some-
times mutually exclusive goals. Second, the
team does not have a shared criterion for what
it means to succeed or fail in meeting users'
needs.2

Our group constructs shared, measurable
definitions of usability in the form of operational
usability specifications. These specifications are
an extension of Deming's idea of operational defi-
n i t i o n ~ . ~ We based our usability specifications on
the s stem attribute specifications described by 7 Gilb and enn nett.^ A usability specification,
described in the following section, includes a list
of usability attributes crucial for product suc-
cess. Each attribute is associated with a measur-
ing method and a range of values that indicates
success and failure.

Constructing a Usability Specification
The development of the VAX NOTES conferenc-
ing system provides an example of a usability
specification.6 Table 1 is a summary of the usabil-
ity specification for the first version of the VAX
NOTES system. Five items are defined for each
attribute: the measuring technique, the metric,
the worst-case level, the planned level, and the
best-case level.

Digital Technical Journal
No. 6 February I988

Software Usability Engineering

Table 1 Summary Usability Specification for VAX NOTES Version 1.0

Worst- Best-
Usability Measuring Case Planned Case
Attribute Technique Metric Level Level Level

Initial
use

Initial
evaluation

NOTES
benchmark
task

Attitude
questionnaire

Number of
successful
interactions
in 30 minutes

Evaluation
score (0 to 100)

Error Critical- Percent
recovery incident incidents

analysis "covered"

The measuring technique defines the method
used to measure the attribute. Details of the
measuring technique (not shown in Table 1)
accompany the brief description in the summary
table. There are many different techniques for
measuring usability attributes. We have usually
measured usability attributes by asking users to
perform a standardized task in a laboratory set-
ting. We can then use this task as a benchmark for
comparing usability attribute levels of different
systems.

In the VAX NOTES case, we chose to measure
initial use with a 14-item benchmark task that an
expert VAX NOTES user could finish in three
minutes. Initial users were Digital employees
who had experience with the VMS operating sys-
tem and the Digital Command Language but not
with conferencing systems. The users completed
their initial evaluations using 10-item Likert-style
questionnaires after they finished the benchmark
task. Error recovery was measured by a critical-
incident analysis. In the analysis, we used ques-
tionnaires and interviews to collect information
about costly errors (critical incidents) made by
users of the prototype versions of the VAX NOTES
software.

The metric specifies how an attribute is
expressed as a measurable quantity. Table 1
shows the definitions of the metrics in the VAX
NOTES specification. For the initial-use attri-
bute, the metric was the number of successful
interactions in the first 30 minutes of the bench-
mark task. For the initial-evaluation attribute,
we scored the questionnaire on a scale ranging
from 0 (strongly negative) to 100 (strongly posi-
tive), with 50 representing a neutral evaluation.

For error recovery, the metric was the percent-
age of incidents reported with the prototype
systems that would be "covered" (i .e. , elimi-
nated) by changes made in version 1 . O of the VAX
NOTES system.

The worst-case and planned levels define a
range from failure to meet minimum accept-
able requirements to meeting the speczyication
in full. This range is an extension of Deming's
single criterion value, which determines success
or failure. It is easier to specify a range of values
than a single value for success and failure.
Providing a range of values for several attributes
also makes it easier to manage trade-offs in levels
of quality of different attributes.

The best-case level provides useful manage-
ment information by estimating the state-of-the-
art level for an attribute. The best case is an
estimate of the best that could be achieved with
this attribute, given enough resources.

For the initial use of VAX NOTES software,
we defined the planned level as experiencing
3 or 4 successful interactions in the first half
hour of use. We considered 1 or 2 successful
interactions to be the minimum acceptable level,
and 8 to 10 successful interactions to be the best
that could be expected. In practice the actual
level was 13 successful interactions, suggesting
that we set the levels for this attribute too con-
servatively.

The planned level for initial evaluation (67)
was fairly positive. Users' neutral feelings were
acceptable but negative feelings were not, so we
set the worst case at 50. We set the best case at
8.3, which represented the highest scores we had
seen so far when using this questionnaire with

Digital Technical Journal
N o 5 Februaty I988

Software
Productivity
Tools

other products. The actual tested value was 67,
matching the planned level.

We planned an error-recovery level that could
cover 50 percent of the reported critical inci-
dents. The worst-case level was set at a fairly low
10 percent, whereas the best case would be to
cover all of the reported critical incidents. In
practice, 72 percent of the critical incidents
were covered, exceeding the planned level.

Many usability specifications provide further
detail by including "now" levels and references.
Now levels represent current levels for an attri-
bute, either for the current version of the product
or for competitive products. References can be
used to add more detail, such as describing how
the levels were chosen, and to document the
usability specification.

User needs and expectations are shaped in
part by the marketplace; therefore competitive
analyses can provide important data for usabil-
ity specifications. We have constructed usability
specifications that compare the system under
development to either the current market leader,
the product with the most highly acclaimed user
interface in the market, or both. We can also
compare the systems by measuring usability on
appropriate benchmark tasks.

Limitations of Usability Specifications
Constructing a usability specification helps build
a shared understanding of usability among the
diverse people working on a development project.
However, to achieve a shared understanding, trade-
offs have to be made. Usability specifications rep-
resent a constricted and incomplete definition of
usability. The analytic definition of usability is
necessarilylesscomplete thananindividual's holis-
tic understanding based on observing people use
systems.7 Nonetheless, we deliberately trade off
the holistic understanding for the analytic defini-
tion because the latter economically focuses our
efforts on essential elements of product usability.

If engineers do not understand the needs of
users before creating a specification, they risk
developing a specification that does not reflect
users' needs. As a result, the product that meets
its specification might still be unusable or com-
mercially unsuccessful. Development teams must
continually evaluate usability specifications dur-
ing the development process and make the
changes necessary to reflect current information
on users' needs. This approach is pan of evolu-
tionary delivery, described next.

Adopting Evolutionary Delivery
Changing requirements pose a challenge in user-
interface design as they do elsewhere in software
development. Brooks refers to changeability as
one of the essential difficulties of software engi-
neering - a problem that is pan of the nature of
software engineering and that will not go away.'

Evolutionary delivery exploits, ' rather than
ignores, the changeable nature of software
r e~p i r emen t s .~ This technique has been referred

8 to as incremental development and as iterative
design.9 We believe that "iterative design" is usu-
ally a redundant term in software design. Unless
otherwise mandated by external sources, most
software design is already an iterative process.'0
The waterfall model and similar models of soft-
ware design are useful for managing project
deliverables, but they do not describe what hap-
pens in software design and development. Evolu-
tionary delivery takes for granted the iterative
nature of the design process, rather than treating
iteration as an aberration from textbook methods.

Evolutionary delivery is the process of deliver-
ing software in small, incremental stages. An ini-
tial prototype subset of the software is built and
tested. New features are added and existing fea-
tures refined with successive versions of the sys-
tem. The prototype evolves into the finished
product.

Evolutionary delivery helps to build the project
team's shared understanding of the system's user-
interface design. Contemporary direct-manipula-
tion user interfaces are too rich, dynamic, and
complex to be understood from paper specifica-
tions. Even simpler terminal-based interfaces are
too involved to be understood completely with-
out being seen in action. Early delivery of subset
systems helps everyone on the development team
understand the system being designed, making it
easier to build a shared vision of the final system.

Early, incremental deliveries also demonstrate
project progress in a concrete form. Demonstrat-
ing improvements to the system at the user-
interface level can be an important factor in
maintaining managerial support for a project and
continuing availability of resources.

The techniques used to improve system usa-
bility during the stages of evolutionary delivery
include the following:

Building and testing early prototypes

Collecting user feedback during early field test

Digital Technical Journal
No. 6 February 1988

Software Usability Engineering

Instrumenting a system to collect usage data

Analyzing the impact of design solutions

These general-purpose techniques can be used
independently of an overall usability engineer-
ing process. They are described in the following
sections, some with examples from the evolu-
tionary delivery of the EVE text editor.'."

Building and Testing Prototypes
The first step in an evolutionary delivery pro-
cess is building and testing prototypes. These
prototypes effectively test for ease of learningI2
and can provide the germinal product. Prototyp-
ing also helps identify potential interface prob-
lems while still very early in the development
cycle.

From the point of view of usability engineer-
ing, the first prototype subset produced should
facilitate usability testing. This typically means
that thc system

m Includes only simple versions of the most
important and most frequently used fcatures
of the product

Is able to complete a simple benchmark
task that the designer will use for a prelimi-
nary evaluation of the system's usability
attributes

Is useful only for limited testing, not for nor-
mal work

If the first prototype is actually useful for nor-
mal work, it is probably a larger portion of the
project than needs to be delivered at this stage.

'l'he first prototype of the EVE text editor
was available three weeks after development
began. This prototype tested only the keypad
intcrface. At that point, we had neither imple-
mented nor fully designed the command-line
features. To test ease of learning, seven new
computer users used EVE in informal labora-
tory sessions. They performed a standard text-
editing task. The tests showed that the keypad
intcrface was basically sound; only minor
changes to the basic EVE keypad commands
were required. This prototype was the first
of 15 versions of EVE that users tested over
2 1 months.

Because prototypes are not suitable for daily
use, they must be tested in controlled condi-
tions. For example, the test might involve asking

users to conlplete a standardized task, where
that task is the only one that can be completed
using the prototype system. Special equipment
can make it easier to conduct these tests and to
collect more complete data, but is not necessary.
For example, videotaped records can help in
later analyses, but as with user visits, we can
learn much without them.

For many years we tested prototypes in spare
offices, developers' offices, or users' offices. Our
group now tests most prototypes in our usability
engineering laboratory, which is equipped with
computer hardware and software, a one-way mir-
ror, and videotaping equipment. The laboratory
resources provide greater opportunity for rou-
tine testing and elaborate data collection.

Collecting User Feedback during Early
Field Test
The earlier a system can be delivered to a group
of users for field test, the sooner valuable infor-
mation will be available to designers. User data
collected in the field is usually a richer source
of information than laboratory data collected
under controlled conditions. Field data takes
into account the context in which the system is
used.

We use "field test" to describe any version of
software distributed to a group of people for use
in their work. 'This definition includes the distri-
bution of early subset versions as well as the
later versions commonly referred to as field-test
software. Early field testing often begins by giv-
ing a usable subset system to users who under-
stand the status of the product and agree to use
and evaluate i t .

User visits, described previously, are a good
way to collect field-test data. Another way to col-
lect user feedback is by electronic communica-
tion. Digital's developers frequently use this
effective n~cthod by making early field-test ver-
sions available on Digital's private world-wide
DECnet network and by encouraging user feed-
back through electronic mail or a VAX NOTES
conference.

Dcsigners of the EVE text editor and VAX'TPU
software relied on user feedback by means of
electronic communication throughout the devel-
opment cycle. Preliminary versions of the EVE
editor were available for daily work six months
before external field test began. Overall, we
received 362 suggestions from 75 different
users. We implemented 2 12 (or 59 percent) of

Digital Technical Journal
No. 6 February I388

Software
Productivity
Tools

these suggestions for the version of EVE shipped
with the VAX/VMS operating system version 4 . 2 .
We received 225 (or 62 percent) of the sugges-
tions before field test began. More of these sug-
gestions were implemented than suggestions
received later: 65 percent of the suggestions
received during internal field test were imple-
mented compared to 4 8 percent of the sugges-
tions received during external field test.

Although contextual interviews provide more
information than users' reports of summary
experience, the summary experience data is still
valuable. The two methods complement each
other. The on-site interviews provide details of
users' ongoing experiences in the context of sys-
tem use; on the other hand, electronic mail, con-
ferencing, and problem reports provide sum-
mary experience data from a wider range of
users than engineers could interview.

Early field testing is especially important for
collecting data on experienced users. Experi-
enced users, as well as new or infrequent users,
must find systems easy to use. Early field testing
is an excellent way to develop a test popula-
tion of experienced users before a product is
released. By the time later field test versions
are available, these experienced users will be a
valuable source of data on longer-term usability
issues.

Instrumenting the System to Collect
Usage Data
Knowing how frequently and in what order peo-
ple use a system's functions helps engineers with
low-level design decisions. For example, engi-
neers can use usage data to order functions on
menus, putting less frequently used commands
on less accessible menus. Our group has col-
lected and analyzed usage data for text editors
and operating systems, and compared this with
data collected by other gro~ps.'3"4

We collect usage data by asking people to use
an instrumented version of a functioning system,
either an existing product or a field-test version.
We collect the most complete data by recording
and time-stamping each individual user action.
Keeping frequency counts of user actions also
provides useful usage data, but does not include
data on transitions between actions or time spent
with different functions.

For the EVE editor, we used command fre-
quency data from five different text editors to
guide the initial design of the keypad interface

and the command set. During internal field test,
we collected command frequency data from a
small set of EVE users to refine the command set.
We also used command transition data as the
basis for the arrangement of the arrow keys on
the LK20 1 keyboard into an inverted-T shape.
Usage data from an experimental text editor
showed that the transition from the down-arrow
key to the left-arrow key occurred more than
twice as often as any other transition between
arrow keys.".'3 The inverted-T arrangement also
allows three fingers of the user's hand to rest on
the three most frequently used arrow keys, with
an easy reach up to the up-arrow key.

Collectors of usage data must be concerned
about user privacy and system performance.
Users should know about the nature of the data
collection and be informed when data is being
collected. They should also have the option of
using a system that has not been instrumented
and does not collect usage data.

To inform users that data is being collected,
designers can modify the instrumented version
of the system so that a notification message is
displayed each time this version is invoked.
Users are thus reminded that all actions are
being recorded. To minimize performance prob-
lems on instrumented versions, engineers can
design the logging system so that any necessary
delays occur at the start and finish of an applica-
tion, not at random intervals while the applica-
tion is being used.

Analyzing the Impact of Design
Solutions
Designers make an impact analysis of user data
collected during evolutionary delivery to esti-
mate the effectiveness of design techniques in
meeting product goals.15 In usability engineer-
ing, design techniques are usually ideas devel-
oped after watching people use computer sys-
tems. Estimating the effectiveness of a set of
design techniques for meeting a set of usability
attributes helps to economically focus engineer-
ing effort on key issues.

Impact analysis tables contain percentage esti-
mates of the contribution of each technique to
the planned levels for each usability attribute.
Impact analysis tables list product attributes and
proposed design techniques in a matrix. Each
entry in the table estimates the percentage that
this technique will contribute toward meeting
the planned level of this attribute.

Dtgital Technical J0urnu.l
No. 6 February 1988

131

Software Usability Engineering

Our software usability group creates impact
analysis estimates in several ways, such as ana-
lyzing the videotapes made during user visits.
With laboratory tests, we have derived estimates
from the time actually spent as a result of inter-
face ,groblems encountered on a benchmark
task. Impact analysis data can also be pre-
sented graphically using Pareto charts."

Conclusion
Our group applies usability engineering in the
development of many new software products
within Digital. Software usability engineering
techniques can be used by any group of engi-
neers that designs interactive software. No spe-
cial equipment or prior experience is necessary
to start applying these techniques, although
equipment and experience can improve the
results.

As we have gained experience with usability
engineering, we have moved from laboratory
tests to field visits as the main source of usabil-
ity data. We find that field-test data provides a
richer source of ideas for user interface design.
Laboratory testing is still valuable, however,
especially for testing early prototypes. We are
now bringing some contextual interview tech-
niques to our laboratory tests, interviewing users
as they perform a task rather than observing
them as they work on their own. For more ad-
vanced prototypes, we may ask users to use the
system with their own work, which they bring
with them to the laboratory. Controlled labora-
tory experimentation techniques are still useful
for deciding some important design issues, such
as choosing screen fonts for an application.

A user-oriented approach to software design
requires a commitment to understanding and
meeting users' needs through observation of
people using systems. Software usability engi-
neering techniques, applied in whole or in part,
can produce computer systems that enrich
human experience.

Acknowledgments
The techniques described here were developed
in a group effort by present and past members of
the Software Usability Engineering Group,
including Mark Bramhall, Alana Brassard, Jim
Burrows, Elisa del Galdo, Charles Frean,
Kenneth Gaylin, Karen Holtzblatt, Sandy Jones,
Thomas Spine, Eliot Tarlin, John Whiteside,

Chauncey Wilson, Dennis Wixon, and Bill Zim-
mer. Dorey Olmer helped edit this paper.

References

1. T. Winograd and F. Flores, Understanding
Computers and Cognition: A New Foun-
dation for Design (Norwood: Ablex,
1986).

2 . J. Whiteside, "Usability Engineering," Unix
Review, vol. 4 , no. 6 (June 1986): 22-37.

3. W. Deming, Quality, Productivity, and
Competitive Position (Cambridge: MIT
Center for Advanced Engineering Study,
1982).

4 . T. Gilb, "Design By Objectives," Unpub-
lished manuscript available from the author
at Box 102, N-14 1 1 Kolbotn, Norway
(1981).

5. J. Bennett, "Managing to Meet Usability
Requirements: Establishing and Meeting
Software Development Goals," Visual Dis-
play Terminals, eds. J . Bennett, D. Case, J.
Sandelin, and M. Smith (Englewood Cliffs:
Prentice-Hall, 1984): 161- 184.

6. P. Gilbert, "Development of the VAX
NOTES System," Digital Technical Journal
(February 1988 , this issue): 1 17-1 24.

7. H. Dreyfus and S. Dreyfus, Mind over
Machine (New York: The Free Press,
1986).

8. F. Brooks, Jr., "No Silver Bullet: Essence and
Accidents of Software Engineering," IEEE
Computer, 20, no. 4 (April 1987): 10-19.

9 . M. Good, "The Iterative Design of a New
Text Editor," Proceedings of the Human
Factors Society 29th Annual Meeting, vol.
1 (1985): 571-574.

10. B. Curtis, et al., "On Building Software Pro-
cess Models Under the Lamppost," Proceed-
ings of the IEEE 9th International Confer-
ence on Software Engineering (1 987):
96-103.

1 1 . M . Good, "The Use of Logging Data in the
Design of a New Text Editor," Proceedings
of the CHI '85 Human Factors in Comput-
ing Systems (1985): 93-97.

Digital Tecbnicd Journal
No. 6 February 1988

Digital Tecbnical Journal 133
No. 6 February I988

Software
Productivity
Tools

12. M. Good, J. Whiteside, D. Wixon and S.
Jones, "Building a User-Derived Interface,"
Communications of the ACM, 27 (Octo-
ber 1984): 1032-1043.

13. J. Whiteside, et al., "How Do People Really
Use Text Editors?" SIGOA Newsletter, 3
(June 1982): 29-40.

14. D. Wixon and M. Bramhall, "How Operat-
ing Systems Are Used: A Comparison of VMS
and UNIX," Proceedings of the Human
Factors Society 29th Annual Meeting, vol.
1 (1985): 245-249.

15. T. Gilb, "The 'Impact Analysis Table'
Applied to Human Factors Design,"
Human- Computer Interaction-INTER-
ACT '84, ed. B. Shackel (Amsterdam:
North-Holland, 1985): 655-659.

16. M . Good, et al., "User-Derived Impact
Analysis as a Tool for Usability Engineer-
ing," Proceedings of the CHI '86 Human
Factors in Computing Systems (1 986):
24 1-246.

17. K. Ishikawa, Guide to Quality Control,
second revised ed. (Tokyo: Asian Productiv-
ity Organization, 1982).

-a,....r .-+:s? ?<
*'3 ".?..',.
r_->... "I- .. .T,i5*s~<

iBN 1-3.5558M)5-X

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	VAX/VMS Software Development Environment
	Sofiware Productivity Measurements
	Language-Sensitive Editor
	VAX SCAN: Rule-based Text Processing Software
	Software Productivity Features Provided by the Ada Language and the VAX Ada Compiler
	Programmer Productivity Aspects of the VAX GKS and VAX PHIGS Products
	The VAX RALLY System - A Relational Fourth-generation Language
	VTX and VALU - Software Productivity Tools for Distributed Applications Development
	Pragmatics in the Development of VAX Ada
	Development of a Graphical Program Generator
	Project Management of the VAX DEC/Test Manager Soflware Version 2.0
	Development of the VAX NOTES System
	Software Usability Engineering
	Back cover

