
VAX 6000 Model 400 System

Digital Technical Journal
Digital Equipment Corporation

Volume 2 Number 2

Spring I990

Editorial
J ~ n c (; Blake, lditor
Rarbar;~ Lindmark, Associ:rte Editor
Richard W. Hcane. Managing Editor

Cover Design
Our cover depicts some of the common equutions and terminology
used in vectorp~'(~'cssing, which is one of the featured topics in
this issue. The vir Xr ~ c c t o r r o c e extends the VAX 6000 family to
d r e s s the compuling nc,cvi.s of numerically intensiw applications.
7Be VAX 6000 h.I~~lcl~~OO systcm is a bright star in Digital S family
of midrntzge mzrltipmcesson and this isszre S main product t h e m

i%e corer u~m designed by David Comberg and Karulj Zieglw of the
Corporate Design Grotlp.

Circu la t ion
Catherine M. Phillips. Administr:ttor
Suzanne). Babineau. Secretary

P r o d u c t i o n
I lclen L. P:rttcrson. Production Editor
Nancy Jones, Typographer
Rchccca A . Barker, Typographer
I'ctcr W'oodbury, lllustraror and Design"

Advisory B o a r d
Samuel H. Fuller. Chairman
Robert M. Clorioso
John W. hlccredie
Mahendra R . Patel
E <;mnt Snviers
I<ohcrt K . Spitz
\Vllll;~m D. Strecker
Victor A . Vyssotsky

'The Oigilnl TechnicalJorrrcrl is published quarterly by Digital
Equipment Corporation. 146 Main Street ML01-3lB68. Maynartl.
~ ~ s ~ t c h u s e t t s 01754-257 I. Subscriptions to theJournal a;e
S.iO.00 for four issues and must he prepaid in [I.s. funds. Univer-
sity and college professors and Ph.D. stutlents in the electrical
engineering and computer science fields receive cornplimcn-
tary subscriptions upon rcqucst. Orders, inquiries, and address
changes should be sent to The I>igilul7krhrzicalJr,urnalat the
published-by address Inquiric!, can also be sent electronically on
NI:AHNE'I' to DIJ@CRL.DEC.COhl. Single copies and back issues are
a~ti lnhlc for S16.00 each from Digital Press of Digital Equipment
Corporation, 12 Crosby Drive. Bcdl'ord, &la 01-30- 1493.

Digital ernployces may send subscription orders on the EX~T to
RD\'AX::JOIlRNAL or by interoffice mail to mailstop Ml.0 I-JIB($%.
Orders should include badge number, cost center, site localion
code and address, and g o u p name. (1,s. engineers in Engineer-
ing nnd ~anufacturingrece&e complimen~ary subscriptions;
engfncrrs in [h u e organizations in countries outside the 1i.S.
shchld contact thefirnal office to receive their complimentary
bubscriptions. All employees must advise of changes of addrclis.

Comments on the content of any paper are welcomed ant1 may
be sent to the editor at the published-hy or network addtcjs.

Copyright 1990 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in cducntional institr~tions by hculty niembers and nre not
tlistributed for commercial :td\,ant;~ne. Abstractina with credit
of Digit" Equipment Corporation's authorship is permitted.
All rights rescrvcd.

The information in this Journal is sitbjcct to change without
notice and should not be consrrued as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation
assumes no rcsponsibiliry for any errors that may appear in
this Journal.

ISSN 0898-90 1 X

Documentation Number EI'-(: 1')71i-[)P

The following are trademarks of Digital Equ~pment Corpora-
tion: (: I , DECnet, I)E(:st;ltion 3100, Dli(:\+.inclows. Digital, the
Digit:tl logo, HSC, 1MicroVAX, 11%55. Thinwire. VAX, VAX-1 l/780.
VAX 6000, VAX 8700, VAX 8800, \:\x 9000, \ r ~ x ~ ~ , VAXcluster,
VAX FORTRAN. VAXvector6000, VYS. IILTRIX, XMI.

I l N l X is a registered trademark of American Telephone &
Telegraph Company.

dbx is :I registered trademark of dbx, Inc.

hlll'h is a trademark ofhl~l's Computer S!,srcms. Inc.

Book production was done by Difiit:ll's Educational Ser\'ices
Media Communications Group in Hedford, MA.

I Contents

9 Foreword
Pauline A . Nist

VAX 6000 Model 400 System

1 1 Vector Processing on the VAXvector 6000 Model 400
Debra L. Slater, David M. Fenwick, D. John Shakshober, and Douglas D. Williams

27 The VAX 6000 Model 400 ScalurProcessor Module
Patrick Sullivan, Michael A. Callander, Sr., James R. Lundberg, Rebecca L. Stamm,
and William J. Bowhill

36 An Overview of the VAX 6000 Mo&l 400 Chip Set
W. Hugh Durdan, William J . Bowhill, John F. Brown, William V. Herrick,
Richard C. Marcello, Sridhar Samudrala, G. Michael Uhler, and Nicholas Wade

5 2 VM 6000 Model 400 Physical Technology
John T. Bartoszek, Robert]. Hannemann, Stephen P. Hansen, Rol~ertJ. McCarty,
and John C. Sweeney

64 vAX 6000 Model 400 CPU Chip Set Functional Design Verification
Richard E . Calcagni and Will Sherwood

73 Test and Qualification of the VM 6000 Mo&l400 System
John W. Croll, Larry T. Camilli, and Anthony J. Vaccaro

84 Development of the DECstation 3100
Thomas C . Furlong, Michael J . K . Nielsen, and Neil C. Wilhelm

89 Compiler Optimization in RISC Systems
Larry R. Weber

1 Editor% Introduction

Jane C. Blake

This Spring 1990 issue marks the second issue to
be published on the new quarterly schedule of the
Digital TechnicalJournal. This is also the fust year
that the Journal is available by subscription-a
service our readers have asked for and which we are
glad to be able to offer.

The Journal will continue to focus each issue on a
product theme. In fact, two products are featured in
this issue. The main theme is the latest addition to
the VAX 6000 family, the Model 400. With its multi-
processing capabilities, this midrange family of
systems provides a highly configurable and expand-
able computing environment. Because the same
cabinet, buses, and power systems are used by all
family members, systems can easily be upgraded to
achieve higher levels of performance. Papers in this
issue describe VAX 6000 Model 400 imo\~ations and
additions, including a new vector processor and a
higher performance scalar processor module, chip
set design and verification, physical technology
advances, and system test. The second theme com-
prises two papers related to Digital's workstation
development, specifically the DECstation 3100, and
compiler optimization in RISC systems.

Opening this issue is a paper on one of Digital's
first vector processors. Dave Fenwick, John
Shakshober, Debra Slater, and Doug Williams
review the design alternatives for the VAXvector
GOO0 Model 400 processor and describe its function
units. They then give examples of how the units
combine to deliver high performance for computa-
tionally intensive applications.

The Model 400 also has a new scalar processor,
with nearly twice the performance of its prede-
cessor, the Model 300. In their paper, Pat Sullivan,
Mike Callander, Jim Lundberg, Rebecca Stamm, and

Bill Bowhill discuss the module design and give
particulars on how difficult signal integrity prob-
lems were resolved.

The five system chips that reside on the module
are the topic of our next paper by Hugh Durdan, Bill
Bowhill, John Brown, Bill Hcrrick, Rich Marccllo,
Sri Samudrala, Mike Uhler, and Nick Wade. From
their discussions of the chip designs, we learn
how the best features of the VAX 8700 ECL-based,
pipelined system and of previous VLsI designs were
incorporated in the chip set, which achieves a cycle
time of 28 nanoseconds.

This fast cycle time was one of several require-
ments that drove a significant design effort for
the physical technology. John Bartoszek, Rob
Hannemann, Steve Hansen, Bob McCarty, and
John Sweeney describe the technological advances
achieved in a number of areas, including tape-
automated bonding, semicustomized ceramic
single-chip package design, and testability.

The two papers that close this collection of papers
on the VAX 6000 Model 400 address chip design
verification and system test. Rick Calcagni and
Will Sherwood explain the engineers' multipronged
approach to design verification, an approach neces-
sitated by the complexity of the chip set. Then,
John Croll, Larry Camilli, and Tony Vaccaro present
a paper on the methods and tools designed to com-
pletely test the interaction of VAX 6000 Model 400
system's hardware and softwarc.

In the last two papers, the topic turns to work-
stations. Tom Furlong, Mike Nielsen, and Neil
Wilhelm provide an overview of the successful
project undertaken to build a fast, competitively
priced, RJSC-based, ULTRIX workstation, called the
DECstation 3100. The Journal is fortunate also to
have a related paper on compiler optimization in
MSC systems by Larry Weber, vice president, MIPS
Systems, Inc. MIPS Systems built the RISC chip set
incorporated in the DECstation 3100 workstation.

I thank Steve Holrnes of the Midrange Systems
Business Group for his help in selecting topics on
the Model 400, and Gillian Scholes of Digital and
Joanne Hasegawa of MIPS Systems, Inc., for their
help in obtaining the workstation and RlSC papers in
this issue.

Biographies

M
William J. Bowhill As a principal engineer with the Semiconductor Engineer-
ing Group, William Bowhill is project leader for an engineering team that is
designing an execution unit section of a large CMOS-based microprocessor. He
has applied for two patents for his design work on the vector interface and
backup control chip on the VAx 6000 Model 400 system. Bill also holds a patent
for his work in relation to the Model 400's floating point accelerator chip. He
joined Digital in 1985. Bill was educated in Great Britain and received a B.Eng.
(honors) in electronic engineering from Liverpool University.

John T. Bartoszek John Bartoszek currently manages the Physical Technology
Group within the SDE that is responsible for physical technology applications
and product designs. John previously managed the PTG physical technology pro-
gram that spawned the physical technology used on the VAX 6000 Model 400
CPU module. He joined Digital in 1981 and has a B.S. in nuclear engineering from
Lowell Technological Institute. He holds two patents for thermal control devices.
John has authored several papers on spacecraft thermal control, solar energy, and
electronics cooling and interconnect technologies.

John F. Brown After receiving an M.S.E.E. from Cornell University in 1980,
John Brown joined Digital's engineering staff. At present, he is a principal engi-
neer and design team manager for the instruction decode section of the next
generation CMOS-based VAX microprocessor. John's previous responsibilities
include technical contributions to both the VAx 6000 Model 400 and the Model
200 chip sets. He was also the hardware engineer for the extended floating point
data type enhancement to the VAX-111780 system. John currently holds one
patent, has two patent applications pending, and has authored technical papers
for several publications.

Richard E. Calcagni A member of the Semiconductor Engineering Group's
VLSI microprocessor verification group, Richard Calcagni has contributed to the
design of several VLSI microprocessors in the areas of microcode, verification,
and prototype system debugging. He has published several papers on CPU
design, modeling, and verification. Prior to his work with microprocessors, he
worked on module test process development for Digital's Customer Services
Manufacturing organization. Before joining Digital in 1979, Rick worked for
Burroughs Corporation. He received a B.S. (1976) in electrical engineering
from the University of Rhode Island.

Michael A. Callander, Sr. Michael Callander is a principal engineer in Digital's
Semiconductor Engineering Group. At present, he is responsible for the archi-
tecture of a future VAX CPU module. Mike led the VAX 6000 Model 400 system's
REXMI chip set design project. His previous experience with Digital includes
the design and verification of the CPU module for the VAX 8200 system and
the VAX 8300 system. Mike received his B.S.E.E. degree from the University of
Massachusetts in 1982. He joined Digital upon graduation.

Biographies

A
Larry T. Carnilli Since joining Digital in 1979, Larry Camilli has been a member
of several product clrvelopMent projects. He is currently a software engineering
supervisor and project I u d a - for the architecture verification software
development project, which fontsw on the development and maintenance of
test &ate for mf and future architectures. Larry's previous responsi-
bilities include the deyelopment of components for a microcode compiler,
and a sdmare Wacs and analysis package. He holds a B.S.E.E. from Clarkson
UnivfX'siQ and 14 a student in the M S C.S. degree program at Worcester Poly-
technical Institute.

Joha Croll John Croll is a principal software engineer in the Midrange Systems
Engineering Group. In this position, he is responsible for devefoplng systcms test
tools for a fwurc hardware product. John was a team l&r in the Systems
Integration Group for the VAX 6000 Model 400 system. He was also a project
leader for thc ckvelopment of the VAX 6000 Model 400 console software. John
joined Digital in 1978, and his previous responsibilities include the dwclopmcnt
of device dr ivrrs and other system software. He received a B.S.E E. (1978) from
Drexel University and is a member of IEEE and ACM.

W. Hugh Durdan A graduate of the Rensselaer Polytechnical Institute, Hugh
Durdan is a consulting e m in the Semiconductor Engineering Group. In this
position, his major r a p m b i l i t y is management of chip development. Hugh
became involved in the VAX 6000 Model 400's chip design at its earliest begin-
nings in 1984. He led the behnvioral modeling effort and the cache controller
chlp design projcct. Hc ah0 managed the development of the custom chip set for
theViLXvector proccsvnc and wchitected and specified the vector i n t e r k e bus.
Hugh joined Digital in 1M and worked on the chip design of the VAX 8200
processor.

David M. Fenwick Tknrcbitect of the VAXvector 6000 Model 400 processor,
David Fenwick joined W t a l ' s United Kingdom office in 1980 and transferred to
the United States in 1983. He Is a principal engineer for the Low find Midrange
Systems Group. His wvlaur experience with Digital includes field service
regional support in t k Uniced Kingdom and project leadership for the DMB32
commuolurians c o n t m k far the European engineering office. He also worked
on the VAXW and XIM programs in the United States. Dave received a B.Sc.
fw) Ftnrn Laughborough University of Technology in England.

Thomas C. Furlong The development of Digital's RISC-based workstations is
the responsibility of Engineering Manager Thomas Furlong. It was Tom's Palo
Altebased design group that brought the MIPS RISC technology into Digital and
developed the DECstation 3100 workstation. Tom has been with Digital for ten
years. In d i r i o n to his work with RISC-based workstations, he was a member of
the start-up team for the VAxstation group. Tom is originally from Detroit,
~Michlgm, 4 eamed a B.S.E E from Michigan State University. He holds two
patents related to graphics workstation design and has three patents pending on
the next-generation products.

--

Robert J. Hannemm Robert Hannemann is group manager of the SCIT
Design and Engineering Physical Technology Group. His group is responsible
for the delivery of IC packaging, module, physical design and test technology
for Digital's microprocessor-based systems. A senior consultant engineer, Rob
joined Digital in 1978. His prior experience includes positions at Bell Telephone
Laboratories and the University of Maryland, where he was a member of the
faculty. Rob holds the Sc.D. degree in mechanical engineering from MIT. He also
holds two patents and has published several papers on heat transfer engineering
and electronics packaging.

Stephen P. Hansen Senior Manager Stephen Hansen manages the SDEIPTG
Technical Office. In this position, he coordinates programs related to cost-
effective packaging for future CMOS-based products, defines technical solutions
for the next generation of semiconductor packaging, and provides technical
coordination for external packaging and intercomect-related activities. In his
twelve years with Digital, Steve has developed several packages and assembly
processes for internally manufactured CMOS products, including the tape-
automated bonding process. He holds two patents in the areas of tape-automated
bonding and packaging.

William V. Herrick Senior Consultant Engineer William Herrick is currently
managing a new generation VAX chip design project in the Semiconductor
Engineering Group. He joined Digital in 1977 and has been a member of many
ZMOS- and CMOS-based product development projects, including the PDP-11/23
system and the VAX 8200 system. Before coming to Digital, Bill worked for
Raytheon and GTE Sylvania. He has coauthored several papers on solid-state
physics and tvIOS chip design. Bill received a B.S.E.E. (1969, magna cum laude)
from Tufts University, and an S.M.E.E. (1971) and E.E. (197 1) from MIT and is a
member of TAU Beta Pi, Eta Kappa Nu, and Sigma Xi.

James R. Lundberg James Lundberg joined Digital in 1985. Initially, he was a
product engineer with the MOS Product Engineering Group and worked on
many projects, including BIlC and CQBIC. Jim is currently a senior engineer in
Digital's Semiconductor Engineering Group. He was responsible for the signal
integrity on the \/AX 6000 Model 400 system and is now working on the signal
integrity for an advanced CMOS CPU chip set and module. Before coming to
Digital, Jim operated his own business. He is a member of Tau Beta Pi and Phi
Kappa Phi. He received a B.S.E.E. (1985, honors) from the University of Illinois.

Richard C. Marcello A contributor to the design of the vAx 6000 Model 400
system, Richard Marcello is currently an engineering manager for a new-
generation VAX chip design project. Rich was involved with reliability analysis of
semiconductor devices before moving into design five years ago. He worked for
Fairchild Semiconductor before joining Digital in 1981. Rich coauthored the
paper "System, Process and Design Implications of a Reduced Supply Voltage
Microprocessor," which he recently presented at the ISSCC. He received B.B.A.
and B.S.E.E. (1980) degrees from the University of Notre Dame and a M.S.C.S.
(1985) degree from Boston University.

Biographies

Robert J. McCarty Since joining Digital in 1982, Robert McCarty has been
involved in several major product development efforts. He managed the
VAX 6000 Model 400 system's physical design project and M31 console and
instn~mentntion module development, and led the PDP-11/84 system engineer-
ing project. Before coming to Digital, Bob worked for AM International as the
project leader for a laser-based document printer that was part of a document
communication system. He holds a B.S. in electrical engineering from the
University of Michigan and an M.B.A. in marketing from the University of
Chicago. He is a member of Tau Beta Pi and Eta Kappa Nu.

Mlchael J. K. Nielsen A consultant engineer in the Workstation Systems
Englneering Group, Michael Nielsen is presently completing his responsibilities
as architect and chief designer of the DECstation 5000 Model 200 workstation
base platform. Mike joined Digital in 1984. Among the many projects he has
worked on since that time are the DECstation 3100 workstation, for which he
was the architect and chief designer, and the VAXstation 352013540, for which he
was a member of the architecture and design team. Mike holds B.S.E.E., M.S.E.E. ,
and Ph.D.E.1. degrees from Stanford University. He is a member of Tau Beta Pi
and Phi Beta Kappa.

Sridhar Samudrala Currently acting as project leader for a floating point
unit, Sridhar Samudrala is a principal hardware engineer in the Semiconductor
Engineering Group. Sd joined Digital in 1977. Since that time, he has worked on
testing and diagnostics, as well as the VAX 8200 system microcode, and floating
point architecture and design. He holds two patents for his work in floating
point design. Sri has an M.Sc. (Technology) from Andhra University in India and
an M.S.E.E. from the University of Wisconsin.

D. John Shakshober John Shakshober is a senior hardware engineer in the
Low End Midrange Systems Group. Previously involved in the hardware design
of M31, a VAX parallel processor, John is now a member of the VAx GOO0
Model 400 hardware group, where his particular focus is vector processor
design. He joined Digital in 1984 after receiving a B s in computer engineering
from the Rochester Institute of Technology. John received a M.S.E.E. from
Carnell University in 1988. He is a member of IEEE and Tau Beta Pi. John's latest
published technical paper, "Parallel Algorithms for Super Performance," was
presented at Supercomputing 89.

Will Sherwood As a software consulting engineer, Will Sherwood manages
the Semiconductor Engineering Group's VLSI microprocessor verification group.
Previously, he managed the DECSIM logic simulation group. Will joined Digital in
1975 after receiving B.S.E.E. and M.S.E.E. degrees from Carnegie-Mellon
University. In addition to his contribution to the Digital Technical Journal, he
has published 15 technical papers and is a contributing author to three books.
Will is a member of the IFIPS 10.2 working group on computer hardware descrip-
tion languages and has sewed as publicity chairman and program committee
member for several international conferences.

Debra L. Slater In her position as principal software engineer, Debra Slater
leads a group that provides performance modeling and analysis support to hard-
ware development teams. She and her group were integral members of the
VAXvector 6000 Model 400 vector processor design team. Prior to joining Digital
in 1987, Debra worked for the Montreal Engineering Company, initially as a pro-
gramrnertanalyst and later as an independent consultant. She received a B.Sc. in
mathematics and computer science in 1980 from Bishop's University in Quebec.
In 1981, Debra received a master's degree in applied mathematics from the
University of Waterloo in Ontario.

Rebecca L. Stamm Rebecca Stamm is a principal hardware engineer in the
Semiconductor Engineering Group. She is currently leading the design of the
backup cache, bus interface, and pin bus for a new VAX CPU chip. Rebecca was
the architect of the backup cache controller chip for the VAX 6000 Model 400

5 system. She has also worked on design and verification of a RISC microprocessor.
Rebecca joined Digital in 1983. She is a member of Eta Kappa Nu and IEEE, holds
one patent, and has coauthored several technical papers for the ISSCC. She

'

received a B.A. (1979) in history from Swanhmore College and a B.S.E.E. (1983)
from MIT.

Patrick Sullivan The project leader for the VAX 6000 Model 400 CPU module
development, Patrick Sullivan is a hardware consultant engineer in Digital's
Semiconductor Engineering Group. Pat is now managing a new CPU module
development project. Before his work on the VAX 6000 Model 400, he led the
group effort that brought MCA emitter-coupled logic (ECL) into the corporation.
He is also responsible for the development of a number of Digital's main memory
products and participated in the development of several 36-bit CPUs. Pat holds a
patent for a memory controller interface. He received his B.S. and M.S. degrees
from Northeastern University.

John C. Sweeney Currently a principal engineer, John Sweeney is working on
the testability and test process development for a future Digital product. His
previous experience includes being part of the test process development for the
VAX 8600 and VAX 8800 systems. John was an application engineer for GENRAD
before joining Digital in 1981. He has authored several papers on boundary scan
and fault isolation, and has one patent pending in relation to the VAX 6000 Model
400 system's test structures. John received a B.S.E.E. (1980) from Rensselaer Poly-
technical Institute and has taken graduate courses at Northeastern University.

G. Michael Uhler G. Michael Uhler is a consulting engineer in the Semi-
conductor Engineering Group, where he is currently leading the architectural
definition for a new CPU. As the CPU architect for the VAX 6000 Model 400
system, Mike was responsible for the CPU architecture, performance evaluation,
and CPU microcode. Since joining Digital in 1978, he has also worked on the
development of symmetric multiprocessing in the TOPS-10 operating system, and
on the microcode and hardware development for PDP-10 CPUs. Mike received a
B.S.E.E. (1975) and M.S.C.S. (1977) from the University of Arizona and is a member
of IEEE, ACM, Tau Beta Pi, and Phi Kappa Phi.

Biographies

Anthony J. Vaccaro A senior engineer in the Midrange Systems Evaluation
Group, Anthony Vaccaro is at present responsible for several evaluation projects.
These projects include the F v ~ ~ A VAX 6000 Model 400 vector processor and
KDM70 mass storage controller. Tony joined Digital in 1976 as a field engineer.
Some of his earlier project responsibilities include product evaluations for the
CIBCA-B VAXcluster C1 adapter and KA825 VAX processor. He was also a member
of the team that developed a certification process for new VAXBI adapters. Tony
holds a B.S. (1975, cum laude) from Suffolk University and is studying for an
M.S.C.S. at Rivier College.

Nicholas Wade The implementation of the backup cache control for the next-
generation VAX CPU chip is being led by Nicholas Wade. Nick is a senior engineer
in the Semiconductor Engineering Group. He joined Digital in 1786 and has
worked on several projects, including the VAX 6000 Model 400 chip set. He
performed the engineering evaluation and debugging for the system support
chip on the VAX 3500 and VAX 6000 Model 200 systems. Nick was also a member
of the behavioral design and implementation feasibility project for a CPU-XMI
interface. He holds B.S. (1985) and M.S. (1986) degrees from Cornell University
and is a member of IEEE.

Larry B. Weber As vice president of software development for MIPS Computer
Systems, Inc., Larry Weber is responsible for the development, quality assurance,
and integration of all systems software products. Larry is one of MIPS first
employees, having joined the company in 1984. Prior to joining MIPS, he worked
for Dialogic Systems and for IBM. Larry helped develop a PASCAL compiler for
both the IBM mainframe and IBM RISC project. He has authored and coauthored a
number of articles on compilers and languages. Larry holds a B.S. in mathematics
from the State University of New York and an M.S. in computer science from the
University of Colorado.

Neil C. Wilhelm Neil Wilhelm, a senior consultant engineer, is responsible for
the development and maintenance of the Workstation Systems Engineering
Group's CAD system and the design engineering of a low-cost workstation. Neil
also designed Digital's first RISC-based system. Neil brought an extensive tech-
nical background to Digital when he joined the company in 1782. He has worked
for Hewlett-Packard and Xerox Corporation, founded Ridge Computers, and
taught at the University of Rochester. Neil holds a B.S. (1970) in engineering from
Harvey Mudd College, and an M.S. (1971) and a Ph.D. (1773) in electrical engi-
neering from Stanford University.

Douglas D. Williams MIT graduate Douglas Williams is a principal engineer
in the Midrange Systems Engineering Group. He worked on the architectural
definition of the VAXvector 6000 Model 400 processor. He also supervised
performance modeling and vector control chip development efforts for that pro-
cessor. Among the many other projects on which Doug has worked since joining

, 1 1 Digital in 1781 are the RISC processor development, memory interconnect
design, and VLSI design. He holds an S.B. and S.M. in electrical engineering and is
a member of Eta Kappa Nu and Tau Beta Pi. Doug holds a number of patents and
has several patent applications pending.

I Foreword
Model 300 was introduced. The Model 400 utilized
this newly architected chip set to provide single-
processor performance of 7 times that of the
VAX-111780 system and up to 36 times the
VAX-111780 system for six-processor systems. The
performance of the Model 400 was over twice
the single-processor performance and more than
three times the multiprocessor performance of the
Model 200 series, which had been announced only
a short 15 months earlier.

To support such aggressive product introduction
mulme A. ~ 1 s t cycles, advanced development work on the new
Group Engineering Manager generation of CMOS-2 chips began in mid-1984,
Midrange Sytems Business within months of the start of the CMOS-1 designs.

Actual design work began approximately a year
Because microprocessor-based computer systems later. During this period, Digital made a major deci-
are complex, the work to design and architect cus- sion to formally extend the VAX architecture to
tom chips must be initiated long before module and incorporate full support for vector processing into
systems work begins. the base instruction set for aU future VAX proces-

Looking back at recent history, Digital int1-0- sors. To provide this support, the chip designs
duced the VAX 6000 family of computers in April already under way had to be modified to incorpo-
1988 with the Model 200 series, which utilized the rate the new instructions.
first generation of the CMOS-based VAX micropro- The scalar chip set developed consists of five cus-
cessor. The Model 200 was fabricated in Digital's tom VLSI paas. They are the cpu chip, the floating
CMOS-1 (complementary oxide semicOnduc- point accelerator chip, the vectorlcache controller
tor) process. A single-~rocessor Model 210 Pro- chip, the system support chip, and the clock chip.
vided 2.8 times the performance of a VAX-111780 ~ h , development of the custom chips required a
system. o n e to four processor configurations Pro- team of over 40 people, including logic, circuit, and
vided up to a total of 11 times the performance of a layout designers, and verification engineers. ~h~
vAX-111780 system. discuss these and scalar CP" module design, standard cell interface
systems in the August 1988 issue of this journal.) design, and associated verification team comprised

In January 19893 Digita1 introduced the second an additional eight engineers. Additionally, the new
generation of the 6000 the 300 vector coprocessor module required three new cus-
series' The 3'' increased single~rocessor tom pans, a new gate array, and a separate module
performance from 2.8 to 3.8 times the VAX-111780 designeffort,
system and total performance for a six-processor Since the direct shrink of die from the CMOS-1 to
system to 22 times the VAX-111780 system. The

CMOS-2 process would account for only a 30 per-
30 percent increase in single-processor perfor-

cent performance increase, the processor architec-
mance was made possible by a direct shrink of the

ture had to be substantially changed to achieve
die from Digital's 2.0 micron CMOS-1 process to
Digital's 1.5 micron CMOS-2 process. The new pro- more aggressive performance. Early in the project

cess supported a 25 percent reduction in lateral and the chip design team established a clear goal to meet

key vertical dimensions and a 78 percent improve- or exceed the performance of the VAX 8700 proces-

ment in circuit density. Together, these changes sor, which has a performance of five times that of

improved chip performance by approximately the VAX-111780 system. Some of the architectural

30 percent. changes included the following:

However, a simple shrink of the existing die did . A more pipelined architecture, specifically, a six-
not permit full exploitation of the new circuit den- level pipelined engine built around three auto-
sity. Newly architected and designed parts had to nomous pipes
be tailored to take full advantage of the density and
speed available with the CMOS-2 process. A 64-bit wide data bus with 27 separate address

The VAX 6000 Model 400 series was formally lines versus a 32-bit multiplexed dataladdress
introduced in July 1989, a mere six months after the bus used for the CMOS-1 chip

Support for decode of the new VAX vector
instructions and transfer of instruction operand
information to the vector interface bus and onto
the vector coprocessor module

A 2 kilobyte (KB) primary on-chip cache with
single-cycle access supported by a 128KB off-
chip secondary cache

A 16-byte instruction prefetch queue

Two quadword write buffers in the bus interface
unit

Experience with the CMOS-1 chip showed that
the fabrication line was capable of producing a dis-
tribution of die across a performance range of 80 to
100 nanoseconds (ns). As a result, whereas all
CMOS-2 new designs supported the target of a 40 ns
CPU cycle time, it was an explicit goal to support
devices as fast as 28 ns, should chip yields produce
sufficient quantities of faster parts. The yields at
28 ns actually exceeded predictions and permitted
faster parts to be used in all products produced.

First passes of all scalar CPU chips were available
in April 1988. These chips could successfully boot
both the VMS and LILTRIX operating systems. This
success was due in large part to the aggressive use of
computer-aided design (CAD) techniques. Func-
tional design verification efforts alone represented
25 person-years of work on the scalar chip set. An
additional 39 person-years were necessary to com-
plete the scalar CPU module and the vector copro-
cessor verification efforts.

The power-on of first-pass parts represented a
significant accomplishment to those who worked
on the chips and the module. However, much
"behind the scenes" work was necessary to achieve
this milestone. The success in this area represents
the culmination of work across a number of disci-
plines. Besides the semiconductor devices, a new
224-lead multilayer ceramic package was devel-
oped. New techniques, including tape-automated
bonding (TAB), were explored to attach the die to
the package, and new specifications were necessary
for the actual printed wire board material and board
layup. Finally, new manufacturing processes were
necessary to permit surface-mount assembly and
test of these devices on both sides of the module.

Although initializing the operating system on the
f i s t CPU modules marks a key deliverable for the
chip and board designers, it is only a starting point
for the systems activity that is necessary to fully test
and qualify a new product prior to the start of high-

volume manufacturing. It is often difficult to under-
stand the time lag between the availability of the
first prototype unit running the operating system
and a product that can be shipped to the customer.
However, a substantial amount of work must be
done between these two events. As the formal qual-
ification process for new semiconductor devices
begins, a parallel effort is undertaken to build a large
number of early systems. These systems are used to
identify any problems that may occur when the
pieces of the system are assembled into configura-
tions typical of those used by actual customers.
Testing is divided across several aspects, including
actual beta test of prototype units at customer sites,
formal testing by any required government agencies
(e.g., FCC, UL, VDE), systems design verification
tests, and architectural testing that ensures that the
new system complies with the formal VAX architec-
ture standards. Once the majority of testing is in
process and the required interim milestones have
been met, manufacturing begins turning the assem-
bled inventory into finished products to support
volume availability of the system.

When a series of systems such as the VAx 6000
family has established a history in the market, it
becomes increasingly important to ensure that the
announcement of the latest family member coin-
cides with manufacturing's ability to quickly deliver
a high volume of product on a worldwide basis. If
manufacturing cannot do so, a demand will have
been created that cannot be filled. Revenue and
sales are lost. The full payback from the many per-
son-years of design, simulation, design verification,
and systems test is only finally realized when vol-
ume manufacturing has begun.

The papers in this issue of the journal will
provide insight not only into how microprocessors
and systems are designed and architected, but also
into the multidisciplinary efforts necessary to bring
a successful product to market. The design of one of
the first VAX vector coprocessors is also reviewed.
This review offers a summary of how new architec-
tural issues are resolved and how design trade-offs
are made.

Moving a product from advanced development
to engineering, through manufacturing, and into
the customer site, over a five-year period, requires
the efforts of many people around the world.
Although only the direct work of a small percentage
of those people are represented in these papers, the
credit for the success of the products goes equally
to all members of the team.

Debra L. Shter
David M. Fenwick

D. Jobn Sbaksbober
Douglas D. Williams

Vector Processing on the
VMvector 6000 Model 400

The VAXvector 6000 Model 400processor atends the VAX 6000 family of midrange
CMOS-based multiprocessm to address the computing needs of numerically inten-
sive applications. B e three function units of the vectorprocessor combine to f m an
overall vectorpipeline that operates at speeds of up to 90 MFLOB for single-precision
calculations and 45 MFLOPs for double-precision calculations. lk processor S per-
formance can also be enhanced by taking advantage of overlapping and out-of
order instruction execution, as well as chaining. Further, applications can be tuned
to the VAXvector 6000 hardware though algmithm optimizations in areas such as
equation solvers and signal processing routines to achieve optimal perfmance.
Using the VAXvector 6000 Model 400 system, p~ormance increases ranging from
3 to 35 times that of the VAX 6000 Model 400 scalar system have been realid.

Vector processing has significantly evolved over the
past two decades. In the late 1960s and early 1970s,
it was pioneered as a way to increase scientific
application computer performance over that
achieved by more traditional scalar computers.
However, the technology was limited to an elite
few who could afford multimillion-dollar super-
computer systems and who were willing to sig-
nificantly re-engineer software applications.

In the early 1980s, more sophisticated
vectorizing compiler technology was developed.
This technology allowed users to effectively pro-
gram in high-level languages, such as FORTRAN,
rather than to manually vectorize using low-level
assembly language. During this period, there
were also significant developments in computer
algorithms that were better matched to the paral-
lelism available in vector hardware.

Over the past few years, a new breed of vector
processor, the mini-supercomputer, has emerged.
This class of machine includes many of the perfor-
mance features of traditional supercomputers, but
at costs more commonly associated with super-
minicomputers. Because vector processing is now a
mainstream style of computing that is applicable to
a wide range of uses, the VAX architecture was
recently extended to include vector operations.
Further, the VAX product line has been expanded to
include vector processing in both the VAx 6000
midrange systems family and the VAX 9000 main-
frame family of systems.'

VAX Vector Processing Overview
The extension of the VAX architecture to include
vector processing features was done in a manner
that permitted a wide range of possible implemen-
tat ion~.~ The extension also allowed existing VAx
processors to execute code utilizing the new vector
instructions under software emulation.

The vector extensions to the VAx architecture
include:

The addition of 16 vector registers, each contain-
ing 64 64-bit elements

A set of loadlstore instructions used to move up
to 64 elements of a vector register to and from
memory

A set of vector register-to-register arithmetic and
logical instructions, operating on up to 64 ele-
ments at a time

A set of instructions for synchronization
between scalar and vector processing
subsystems

Conceptually, the implementation of vector
instructions within the VAX family of processors is
similar to that of floating point instructions. To
implement floating point arithmetic, some systems
use dedicated floating point hardware, some sys-
tems use microcode, and others emulate floating
point in macrocode. In vector processing, vector
instructions differ from floating point instructions

Digilal TecbnicalJournal Vol. 2 No. 2, Spring 1990 11

VAX 6000 Model 400 System

in that they are designed to be executed in a semi-
autonomous manner with scalar instructions. Thus,
vector instn~ctions can be executed in parallel with
scalar instructions or in parallel with other vector
instructions. Although the scalar and xc to r units
operate somewhat independently, the units arc
closely coupled to ensure that memory manage-
ment exceptions are precisely reported. Special
operations ensurc floating point exceptions and
coherence between vector and scalar memory ref-
erences are synchronized.

From a vector perspective, a typical VAX vector
implementation can be reduced to five basic units.
The latter four units are collectively referred to as a
vector processor or vector unit. The basic units are:

A scalar processor that executes scalar instruc-
tions, decodes vector instructions, which may
contain multiple internal function units

A vector instruction-sequencing control and reg-
ister scoreboard

A vector register file

An arithmetic pipeline or pipelines that consist
of one or more arithmeticllogic units

A loadlstore unit for memory references

The vector control and scoreboard logic accepts
instructions and operands from the scalar processor
and dispatches them to the individual function units
within the processor. It also reports exceptions and
interrupts to the scalar processor. Since multiple
vector instructions can be executed in parallel, the
unit may contain scoreboard logic to identify and
manage resource conflicts between Instructions.

The vector register f ie contains the 16 vector reg-
isters, each of which consists of 64 64-bit elements.
The register file ha$ multiple pons that permit loads
or stores to operate while operands are sent to the
arithmetic pipes and results are received.

The vector arithrnetic/logic pipelines implement
all the integer, logical, and floating point instruc-
tions. These pipelines may be composed of separate
pipelined add, multiply, and logical units. Or, they
may be composed of multiple pipes that operate in
parallel, with each pipe consisting of a pipelined
addlmultiplyllogic unit.

The lo;~d/store unit is responsible for memory
references. It generates the required virtual
addresses (VA), performs translation from v~rtual
to physical addresses, and loads or stores the data
to or from the register files to memory. The load/

store unit controls a cache memory and contains a
virtual-to-physical address translation buffer (TR).
Depending on the design of the scalar and vcctor
units, there are two ways to implement the design
memory interface for the scalar and vector
processors:

A combined scalar and vector processor that
shares a common cache, address translation
logic, and path to memory subsystem

Separate scalar and vector units with separate
caches and address translation buffers

Both of these approaches have their relative
merits and disadvantages. When significant data-
sharing between scalar and vector units exists, the
combined approach provides more favorable cache
performance because the common cache is updated
on both scalar and vector references. Separate
caches may result in additional cache misses as
data is "sloshed" between scalar and vector caches.
For limited data-sharing instances, the separate
approach may offer more favorable cache perfor-
mance. In a combined cache, vector references can
displace needed scalar data and vice versa. This
problem does not arise with separate caches
because the scalar and vector data each has a
dedicated cache. The separate cache approach also
allows scalar and vector cache operations to occur
in parallel.

In implementing a vector processor, the selection
between the above alternatives is often driven
more by technology constraints than issues of archi-
tectural elegance. The VAX 9000 system, which is
implemented in emitter-coupled logic (ECL), chose
the combined approach. This approach supported
sharing costly cache RAMS and a common path
to memory. The VAXvector 6000, which is imple-
mented in complementary metal oxide semi-
conductor (CMOS) technology, chose the separate
approach for two reasons. First, module space and
package pin count constraints made it difficult to
implement both scalar and vector functions on a
single module. Second, the cost penalties for sepa-
rate scalar and vector cache RAMS and separate
paths to memory were not prohibitive.

VAX GOO0 Vector Processor
Description

System Block Diagram
The system block diagram for a vector-capable
VAX 6000 Model 400 machine is shown in Figure 1.

12 VoI. 2 No. 2, Sprr'ng 1990 Digital TecbnicalJournal

Vector Processing on the VAXvector 6000 Model 400

I SCALAR H VECTOR
PROCESSOR PROCESSOR

SCALAR I PROCESSOR H VECTOR
PROCESSOR I

I I
XMI SYSTEM BUS

32MB 1 "' I M E M O R Y I ...
PORT CONTROL

(UP TO 256MB OR 8 MODULES) -
ETHERNET + BI PORT

RAXX
DISKS

SOLID- STATE
DISK

Figure I VAXvecttor GOO0 Model 400 System Block Diagram
with Dual Scalar and Vector Processors

The vector processor occupies a slot adjacent to the
scalar processor, and both are interconnected by a
short interface cable. The vector processor receives
all instructions from and returns status to the scalar
processor across this cable. For memory references,
the vector processor has its own independent path
to main memory. The VAX 6000 Model 400 system
supports configurations of up to six scalar proces-
sors. However, vector systems have additional
configuration constraints because of the increased
memory bandwidth and XMI slot requirements of
the scalarlvector processor. The VAXvector 6000
Model 400 system supports configurations of single
or dual scalarlvector processors, or configurations
of one scalarlvector processor and up to three addi-
tional scalar processors. To satisfy memory band-
width requirements, VAXvector 6000 systems with
a single scalar/vector processor require at least two
memory controllers. Dual scalar/\~ector systems or
single scalarlvector systems with additional scalar
processors require at least four memory controllers.

VAX 6000 ~odel400 Vector Processor
The block diagram for the vector processor is
shown in Figure 2. The machine is divided into
three separate function units that can operate in
combination or independently:

A vector controller, implemented as a single chip

Arithmetic pipelines implemented by four pairs
of chips, i.e., register file and vector data path

A loadlstore unit, implemented by one chip,
which also controls a 1 megabyte (MB) cache

Vector Control Chzp
When the scalar processor encounters a vector
opcode, it parses and fetches the operands.
The opcode and all its operands are dispatched
through the instruction bus to the vector processor.
For arithmetic instructions, the scalar processor
will proceed to decode the next opcode in the
instruction stream. However, for load and store
instructions, the scalar processor is stalled until all
address translations are completed. Stalling guaran-
tees that any memory management violations are
synchronous and that the scalar processor can
restart the faulting instruction correctly. Within the
vector unit the vector control chip is responsible
for all scalar vector communication. When instruc-
tions are received by the vector controller chip,
the vector controller buffers the instructions and
controls instructions issuing to the other function
units within the vector processor.

An important aspect of the vector control chip
is the register scoreboard logic, which identifies
potential register conflicts when vector instructions
are executed in parallel. By maintaining accurate
register usage data, the vector control chip can
optimize parallelism with the vector processor.
Optimal performance is achieved by executing
arithmetic operations in parallel with load and store
operations, chaining the results of arithmetic opera-

Digital TecbnicalJournal Vo1. 2 No. 2. Sping 1990

VAX 6000 Model 400 System

SCALAR PROCESSOR VECTOR PROCESSOR
A ,.

I \ I \

SCALAR XMI
INTERFACE

CABLE

DUPLICATE H LOAi/SLORE I
TAG XMI INTERFACE

1 M B VECTOR
REGISTER

-
DATA CACHE

FILES

XMI SYSTEM BUS

ARITHMETIC
PIPELINES

Figure 2 VAXvector 6000 Model 400 Scalar/Vector Processor Block Diagram

f

tions into store operations, and even dynamically
re-ordering the execution of arithmetic instructions
relative to load and store instructions to improve
parallelism.

The vector control chip sends all error status
and machine checks to the scalar processor. When
an error is encountered, the control chip attempts
to retry the failing transaction. If the retry is suc-
cessful, a soft error interrupt is sent to the scalar
processor. If the retry fails, either a hard error
interrupt or a machine check is sent to the scalar
processor. Read operations that fail result in
machine checks. Write operations that fail result
in hard error interrupts.

Although not part of the overall control function,
the vector control chip also contains logic to imple-
ment the IOTA instruction. The IOTA instruction
builds a set of offsets in a vector register. This func-
tion did not fit conveniently in any other vector
function. The control chip was selected because it
had the space available to contain the function.

Vector Register File and Arithmetic
Pipeline
The VAXvector 6000 processor's arithmetic pipe-
line is organized as four pipes. Each pipe consists of
a quarter of the register file (every fourth element of
the vector registers), and an associated arithmetic1
logic unit. Each individual pipeline can retire
one single-precision calculation every cycle or one

double-precision calculation every two cycles. The
four pipes collectively retire four single-precision
calculations every cycle, or two double-precision
calculations every cycle. Thus, a much higher float-
ing point performance is achieved than with only
one individual pipeline.

The register file chips receive instructions from
the vector controller and data from the cache or
loadlstore unit. The register file chip provides read
operands to the arithmetic pipeline and stores write
results and mask information. To maximize the use
of cache bus bandwidth, two 32-bit operands can
be combined into a single 64-bit transfer that is
simultaneously read or written to two separate reg-
ister file chips. The register file internally has four
64-bit ports. (One is a readlwrite port for memory
data; two are read ports for operands; and one is
a write port for results. While one instruction is
writing its results, a second can start reading its
operands. Thus, the instruction pipeline delay is
hidden. Variations in pipeline length between
instructions are smoothly handled to ensure that
no gaps exist in the flow of write data.

The register file can hold two outstanding arith-
metic instructions in its internal queue. Therefore,
the vector controller can preload the arithmetic
instruction queue with a second instruction, i.e.,
deferred instruction. Preloading allows the vector
controller to free the cache data bus, which is
also used for instruction issuance, for use by a sub-

14 Vo1.2 No. 2, Spring 1990 Dfgilal TechfcalJournal

Vector Processing on the VHXvector 6000 Model 400

sequent load or store instruction. This feature
improves performance because the arithmetic
pipeline can execute two arithmetic instructions
in the time it takes to execute one load or store
instruction.

The register file's operand and result ports are
used by the vector arithmetic pipeline chip.
Operand data is sent over a 32-bit bus that is driven
twice per cycle. Results are returned on a separate
32-bit bus that is driven once per cycle. The two
operands for single-precision instructions can be
passed in one cycle, while double-precision
operands take two cycles to transfer. Each arith-
metic pipeline chip has a throughput of one single-
precision operation per cycle, one double-precision
operation per 2 cycles, and one single-precision or
double-precision divide per 10 or 22 cycles. The
arithmetic chip has a pipeline delay of six cycles for
double-precision multiplications, and five for all
others (except divides), including the data transfer
cycles. Integer operations are recoded internally as
double-precision floating point data types. The
vector arithmetic pipeline chip is a full custom
implementation largely based on the design of the
scalar processor's floating point unit.'

Load/Store Unit
The control chip uses the vector processor's inter-
nal bus to issue instructions to the function units.
However, once a load or store instruction is issued,
the loadlstore chip becomes bus master and con-
trols the internal bus. Either the loadlstore chip,
vector register files, or the cache can drive the bus.
Once a load or store instruction starts execution,
no further instructions can be issued until it com-
pletes. This rule simplifies the control chip score-
boarding because once a load or store instruction is
started, no further instnictions can start. Therefore,
scoreboarding of these instructions against the out-
standing load or store instruction is not necessary.
Because scoreboarding of outstanding instructions
requires considerable logic complexity in the
vector control chip, it was important to keep the
complexity of this operation minimal. An addi-
tional benefit was the simplification of the internal
bus protocol. It was excessively complex to imple-
ment the capability to stop load or store instruc-
tions in progress. This alternative was not pursued
because the resulting performance benefit was
minor in comparison to the amount of work
involved.

The loadlstore chip executes the vector load,
store, scatter and gather memory reference instruc-

tions. These instructions involve virtual-to-physical
address translation, cache management, and inter-
action with the memory bus. If a load or store
instruction requires an offset register, such as
scatter or gather, the offset register is first read into
a buffer and then added to the instruction's base
address. This process eliminates turning around the
internal bus for each offset read, which would add
more overhead. For strided load or store instruc-
tions, the address is generated by adding the stride
to the instruction's base address.

Load or store instructions can operate on either
32-bit (i.e., long word, single-precision) or 64-bit
(i.e., quadword, double-precision) data types.
When executing unity-stride 32-bit load or store
instructions, the loadlstore chip operates on two
elements at a time. Two 32-bit elements are com-
bined into a single 64-bit cache reference. This
combination significantly enhances performance
enhancement in unity stride single-precision data
operations.

Virtual-to-physical address translation is per-
formed using an on-chip, 136-entry, 68-way-asso-
ciative translation buffer (TB). This configuration
maximizes address translation efficiency, which is
very important because only limited chip space was
available. To optimally service TB miss conditions,
the loadlstore chip contains dedicated logic that
directly references page table entries upon a TB
miss. A simpler alternative would have been to use
microcode in the scalar processor to fetch new
page table entries upon a TR miss. However, the
dedicated logic approach was chosen to enhance
performance for applications that exceed the size
of the TB. Under certain TB miss conditions, the
vector processor may be unable to compute a new
virtual-to-physical address translation. This situa-
tion can occur when the addressed page is invalid or
has been paged-out to disk. When such a miss
occurs, the vector unit reports an exception back
to the scalar processor. Once the scalar processor
corrects the situation, the instruction is retried from
the beginning.

Since the scalar processor must be able to restart
the faulting vector instruction, it is important to
precisely identify any vector memory management
exception with the associated vector load or store
instruction. This identification is achieved by block-
ing issuance of further instructions until the vector
unit notifies the scalar processor that the vector
instruction is free of memory management faults.
The vector unit contains memory management
prediction logic, called MMOK logic. MMOK logic

Digital TecbnicalJournal Vo1. 2 N O , Spring 1990

VAX 6000 Model 400 System

allows the scalar processor to issue additional
instructions in parallel with the execution of the
vector load or store instruction. During execution
of a strided vector load or store instruction, once
it is established that the current vector element
references the same TB entry as the last element
of the load or store instruction, and that the associ-
ated TB entry is free of memory-management
exception conditions, the load/store unit can safely
report "address translation successful," i.e., MMOK,
to the scalar processor. Early prediction of success-
ful address translation permits the scalar processor
to be released and allows it to operate asyn-
chronously with the remainder of the vector load
or store instruction.

Once a physical address is obtained, the load1
store chip references its 3213 entry tag store. The
address is delayed and passed to the 1MB cache data
store. This delay permits cache tag lookup and com-
pare to complete before data is written to the cache
on store operations. In parallel, the corresponding
register file address is presented to the four register
file chips. The data and addresses are automatically
aligned for load and store operations to permit
correct reading and writing of the register file and
cache data KAMs. Upon cache miss, the load/store
unit queues the associated 32-byte block read oper-
ation with the memory interface logic and contin-
ues processing other elements. Up to four cache
misses can be outstanding before the read data for
the first miss returns. Hits continue to be processed
while the misses are outstanding. On vector proces-
sors, the most important factor is the time required
to complete the entire load or store operation,
rather than the time needed to fetch an individdal
element. The cache miss handling feature permits
the vector processor to maximize its use of available
XMI bandwidth.

The vector cache tag and data are parity-pro-
tected. Should a cache parity error occur, the cache
is disabled and the instruction retried from the
beginning. This method was the simplest option for
soft recovery of cache parity errors. The operating
system receives a soft error interrupt and can, at
its option, re-enable the cache.

The loadlstore chip contains a 32-element write
buffer to enhance performance of store operations.
Since the vector cache operates at higher band-
widths than the system bus, the buffer isolates the
store performance from the slower XMI memory
bus. Furthermore, a subsequent load instruction
that hits in cache can execute while the write buffer

is being written to memory. If the load instruction
takes a cache miss, the load stalls until the store
completes. This simple scheme improves instruc-
tion overlap when load instructions follow store
instructions without adding undue complexity to
the loadlstore unit design.

Performance Characteristics
The interaction between the different functional
units of the vector processor creates a number of sit-
uations that affect the performance and execution
of vector instructions. These include:

Overlapping instructions

Out-of-order instructions

Chaining

Overlap of Instructions
Arithmetic and loadlstore instruction execution
may overlap because the functional units are inde-
pendent. In order to achieve this overlap, the
following conditions must be met.

The arithmetic instruction must be issued before
the load or store instruction.

There must be no register conflict between the
arithmetic and loadlstore instructions.

In the following examples of arithmetic and load1
store instruction interactions, an "I" represents
instruction issue time, and an " E " represents
instruction execution time. The "VR" represent
vector registers. The expression "std" is used to
represent the stride. A series of periods ". . ." repre-
sents wait time in the arithmetic unit for deferred
instructions. (Note: These examples are not
intended as timing diagrams.)

VVADDx VRl,VR2,VR3 IEEEEEEEE

VLDx A,std,VRl IEEEEEEEEEEEEEE

As can be seen in the example above, the execu-
tion of the vector load instruction (VLDx) can
overlap the vector add instruction (VVADDx)
because there are no register conflicts between the
two instructions. In the next example, instruction
overlap is inhibited because the WADDx instruc-
tion is writing to the register to be loaded, V R 3 .

VVADDx VRl,VR2,VR3 IEEEEEEEE

VLDx A,std,VR3 IEEEEEEEEEEEEEE

In comparing these two examples, it is clear that
the overlap of the execution of the VVADDX and the

16 Vol. 2 No. 2, Spring 1990 Digital TecbnicalJoumal

Vector Processing on the VAXuector 6000 Mod1 400

VLDx greatly reduces the total execution time of
the instruction sequence. By taking advantage of
this hardware feature, application codes can show
greatly improved performance.

Out-of order Instruction Execution
The arithmetic unit includes a deferred instruction
queue of length 1. This queue allows the vector
control and scoreboard logic to queue one instruc-
tion to the arithmetic unit while that unit is still
executing a previous instn~ction. The vector con-
troller checks the queue's status for an instruction
when it checks the function unit's availability. Both
the deferred and currently executing instructions
are checked for register availability. This queue
frees the issue unit to process another instruction
rather than waiting for the arithmetic unit to com-
plete its current instruction.

For the following instruction sequence,

VVADDx V R l , V R 2 , V R 3

VVMULx V R 3 , V R l , V R 4

VLDx A , s t d , V R 2

execution without a deferred instruction queue
would resemble this example:

I s s u e VVADDx IEEEEEEEE

I s s u e VVMULx I EEEEEEEE

I s s u e VLDx IEEEEEEEEEEEEEE

Execution with a deferred instruction queue
would look like the following:

I s s u e VVADDx I EEEEEEEE

l s s u e d e f e r r e d VVMULx I E E E E E E E E

I s s u e VLDx IEEEEEEEEEEEEEE

These examples illustrate the use of a deferred
arithmetic instruction. If a deferred instruction
queue was not implemented, the VVnlULx instruc-
tion could not be issued until the VVADDx was
either completed or nearly completed. The VLDx
instruction would not issue until after the W U L x
was issued and would complete much later than

in the deferred instruction case. Once the VLDx
instruction is issued, no other instructions may be
issued. The instruction overlap execution made
possible by the deferred instruction queue signi-
ficantly reduces total execution time.

Comparing the last two examples, in the case
where a deferred instruction queue was used, the
VLDx instruction can begin executing before the
WMULx. It also could complete before the VmlULx
instruction completes simply because the WMULx
instruction is sent to the deferred arithmetic
instruction queue. This out-of-order execution of
instructions allows increased overlap of instruc-
tions, which again reduces the total execution time
of the instruction sequence.

Chaining
Vector operands are generally read from and writ-
ten to the vector register file. An exception to this
process occurs when a store instruction is waiting
for the results of a currently executing arithmetic
instruction. (Divide instructions are not included in
this exception because they do not have the same
degree of pipelining as the other instructions.) As
results are generated by the arithmetic instruction
and are ready to be written to the register file, they
are also in~mediately available for input to the wait-
ing store instruction. Therefore, the store instruc-
tion can begin processing the data before the
arithmetic instruction has completed. This process
is called "chain into store." The store instruction
will not overrun the arithmetic instruction because
the store instruction can process data faster than the
arithmetic unit can generate results.

The following instruction sequence

VVADDx VRl ,VRE,VRB

VVMULx VRl ,VRP,VR4

VSTx V R 3 , A , s t d

would resemble the example in Figure 3 if executed
without the chain into store process.

I s s u e VVADDx [EEEEEEEE

I s s u e d e f e r r e d VVMULx I E E E E E E E E

I s s u e VSTx IEEEEEEEEEEEEEE

Figure 3 Sample lmtruction Sequence without Chain into Store

Digital TecbnlcalJournal Vol. 2 No. 2. Spring 1990 17

VAX 6000 Model 400 System

If the instruction sequence were executed with
the chain into store process, however, it would
follow this example:

I s s u e VVADDx I EEEEEEEE

I s s u e d e f e r r e d VVMULx I E E E E E E E E

I s s u e VSTx IEEEEEEEEEEEEEE

In these examples, the VSTx instruction requires
the result of the VVADDx instruction. Without the
chain into store operation, the VSTx instruction
must wait for the VVADDx to complete before
beginning. The chain into store operation allows
the VSTx instruction to begin while the VVADDx
is still executing, increasing the amount of instruc-
tion execution overlap. As a result, the instruction
sequence requires a shorter period of time to com-
plete execution.

Load and Store Unit Performance
Memory access instructions are typically slower
than arithmetic instructions and will frequently
dominate the performance of vectorized appli-
cations. Certain coding techniques help minimize
the time spent waiting for load and store instruc-
tions to complete and reduce the resulting impact
on performance.

Maximize fnstruction Execution Ovwlap Three
important hardware features help maximize
instruction execution overlap in the loadtstore unit.
First, a load or store instruction can execute in
parallel with up to two arithmetic instructions, pro-
vided the arithmetic instructions are issued first.
Second, the chain into store sequence can reduce
the perceived execution time of a store instruction.
Finally, early detection of no memory faults allows
scalar-to-vector unit communications to overlap
with load or store instruction execution.

In the instruction sequence shown in Figure 4 ,
the main loop of a SAXPY or DAXPY BLAS 1 routine,
there is very little instruction overlap.'

In the reordered instruction sequence shown in
Figure 5, the WMULx and second VLDx instruc-
tions overlap, and less total execution time is
required than in the first example.

The only real difference between the instruction
sequences in Figures 4 and 5 is the order in which
they are issued. By recogni~ing that the VVMULX
does not require the result of the second VLDx and
can precede that instruction, a significant reduction
in execution time is achieved.

The overlap of load and store instructions can
also be effectively maximized by preceding,
wherever possible, all load and store instructions by
at least two arithmetic instructions. In this way,
both the load and store pipeline and the arithmetic
pipeline are in use.

Minimize Register Conflict Waits A load instruc-
tion cannot begin execution until the register to
which it will write is free. A register conflict may
occur if the destination register of a load instruction
is the same as the register for a preceding arithmetic
instruction. I f using a different register for the load
instruction would permit instruction execution
overlap to occur, the destination register should, d
possible, be changed.

Locality of Reference of Data The locality of ref-
erence of data is important in determining the per-
formance of load and store operations. Because
unity stride load and store instructions are the most
efficient memory access instructions, whenever
possible, data should be stored in the sequential
order in which it is usually referenced.

Non-unity stride load and store operations can
have a significantly higher impact than unity stride

VLDx X , s t d , V R l IEEEEEEEEE

V L D x Y, s t d ,VR2 IEEEEEEEEE

VVMULx V R 3 , V R I , V R l I EEEEE

VVADDx V R l , V R 2 , V R 2 I E E E E E
V S T x V R 2 , Y , s t d IEEEEEEEEE

Figure 4 Sample Instruction Sequence of Main Loop of a SAXPY or DAXPY BLAS I Routine

18 Vol. 2 No. 2. Spring 1990 Digital TecbnicalJoumal

Vector Processing on the VAXvector GOO Model 400

V L D x X , s t d , V R I IEEEEEEEEE

VVMULx V R 3 , V R I , V R l I EEEEE

V L D x Y ,VR2 IEEEEEEEEE

VVADDx V R l , V R 2 , V R 2 I EEEEE

V S T x V R 2 , Y , s t d IEEEEEEEEE

Figure 5 Sample Instruction Overlap Sequence of a Main Loop
of a SAXPY or DAXPY BLAS I Routine

operations on the performance level of the XMI
memory bus. More memory references are required
for non-unity stride operations of the same vector
length. If the ratio of cache miss load and store
instructions to arithmetic instructions is sufficiently
high and non-unity stride is used, bus speed and
bandwidth can limit performance

Load and store operations that hit in cache are
less costly than those that miss cache. Any piece of
data must be loaded from memory to cache the first
time it is referenced. If data that is referenced more
than once remains in the cache, i e., is not displaced
by subsequent data accesses, other references to
that data will not incur memory access costs, and
better performance results.

On any cache fill, a 32-byte data block is read into
the cache. (Note: This is equivalent to 8 long words
or 4 quadwords. Single-precision data is a long
word; double-precision data requires a quadword.)

code. Several examples that illustrate effective opti-
mization methods are discussed in the Algorithm
Optimization section of this paper.

Arithmetic Unit P e r f o m n c e
Once an instruction begins execution in the vector
arithmetic unit, it continues executing until all
results are completed. A deferred arithmetic
instruction may only begin execution after the
instruction in the pipeline completes, or if the first
results of the deferred instruction will not complete
before the last results from the current instruction
are completed. The instruction overlap will be
particularly significant for shorter vectors because
the startup time, i.e., the time that can be
overlapped, for an arithmetic instruction is fmed
overhead that represents an increasing portion of
the execution time as vector length decreases.

When non-unity stride loads are used, performance Peak Perfomzance
can be improved by using the additional data read
in to cache. This improvement can be achieved by
following cache miss non-unity stride loads with
non-unity stride loads that reference the additional
data and will, therefore, hit in cache.

Large data arrays and strides can also have an
impact on the efficiency of the translation buffer.
For large strides, i.e., greater than 256 single-preci-
sion elements or 128 double-precision elements,
a translation buffer miss can occur for each vector
element. Even with unity stride, the translation
buffer miss rate will be higher for large data arrays.

Algorithm It is sometimes necessary to consider
the algorithm that b represented by the code to be
optimized because some algorithms are not as well
suited to vector processing as others. It may be more
effective to change the algorithm used or the way
it is implemented than to optimize the existing

The Model 4 0 0 vector processor has a cycle time
of 44.44 nanoseconds. For single-precision opera-
tions, this cycle time translates to a theoretical peak
performance of 9 0 MFLOPs. For double-precision
operations, the theoretical peak performance is 45
MFLOPs. Theoretical peak performance is calculated
from the number of results per cycle and the cycle
time as follows:

Single-precision peak =4 / (44.44 x 10")

Double-precisionpeak =2 / (44.44 x 10')

Crossover Point
For any given instruction or sequence of instruc-
tions, there is a particular vector length where both
the scalar and vector processing of equivalent oper-
ations yield the same performance. This vector
length is the crossover point between scalar and

Digital TecbnicalJournal V i f . 2 No. 2, Spring 1990

VAX 6000 Model 400 System

vector processing and is unique to the particular
instruction or sequence. Scalar operations are faster
for vector lengths below the crossover point. Vector
operations are more efficient for vector lengths
above the crossover point. A low crossover point is
considered a benefit because it indicates that it is
easier to take advantage of the power of the vector
processor. A low crossover point means that more
code can benefit from the vector processor.

For any single, isolated vector instruction, the
crossover point on the Model 400 system is quite
Low, generally about 3 or 4. However, an instruction
is not performed in isolation. In a routine or
application, other factors affect the performance of
the operations on short vectors. These effects are
particularly seen when the short vector's data is
used in several vector operations.

On the Model 400 system, performing as much
code as possible on the vector processor, including
short vector length sections, can mean higher
system performance. Performance is improved
because thc cache is used more optimally. Speci-
fically, once vector instructions have referenced a
piece of data, that data is included in the vector
unit's cache. Subsequent scalar operations on that
data will require moving the data from the vector
cache into the scalar cache. Continued code sec-
tions of vector references followed by scalar
references tend to invalidate the two caches too
frequently. Therefore, a vector operation is usually
more efficient than a scalar operation. The cross-
over point on the Model 400 system is low enough
that scalar processing is the faster alternative only
for isolated operations on short vectors.

Algorith Optimization Examples
The previous section of this paper discussed how
the characteristics of the VAXvector 4000 Model 400
system's vector processor can affect performance.
The following examples illustrate how that perfor-
mance information can be used to build optimized
routines. The examples also show how an algorithm
and its implementation can change the performance
of an application on the vector 6000 processor.

Algorithm changes can alter the data access pat-
terns to use the memorj7 subsystcm more efficiently,
can increase the average vector length, and can min-
imize the number of vector operations required.
By applying Amdahl's Law of vectorization, we can
improve performance by increasing the percentage
of code that is vectorized.

To take advantage of the processing power of the
VAxvector 6000 Model 400 system, we concen-
trated on four basic optimization methods:

Rearrange code for maximum vectorization of
the inner loop and remove data dependencies
within the loop

Vectorize across contiguous memory locations to
produce unity stride vectors for increased cache
hit rates and opti.mized cache miss handling

Reuse the data already loaded into the vector reg-
isters as frequently as possible to reduce the
number of vector load and store operations

Maximize instnlction execution overlap by pair-
ing arithmetic instructions between load and
store instructions wherever possible

(Note: Further information on optimization
techniques in FOR'TRAN can be found in the VAX
FORTRAN Performance Guide available with the
FORTRAN-High Performance tion on.^ Additional
information on macrocoding for the vavec tor
6000 Model 400 vector processor can be found in
the VAX 6000 Vector Processor ProgrammerS
Guide. ")

By analyzing the groups of applications that have
high vector processing potential, we identified two
basic arras where optimization techniques can be
most useful: equation solvers and signal process-
ing routines. For example, computational fluid
dynamics, finite element analysis, molecular
dynamics, c i rc~~i t simulation, quantum chromody-
namics, and economic modeling applications use
various types of simultaneous or differential equa-
tion solvers. Applications such as air pollution
modeling, seismic analysis, weather forecasting,
radar imaging, speech and image processing, and
many other scientific and engineering applications
use signal processing routines, such as fast Fourier
transforms, to obtain solutions.

Equation Solvers
Equation solvers generally fall into four categories:
general rectangle, symmetric, hermitian, and tri-
diagonal. The most common benchmark used to
measure a computer system's ability to solve a
general rectangular system of linear equations is
~ i n ~ a c k . ' The Linpack benchmarks, developed at
Argonne National I.aboratory, measure the perfor-
mance across different computer systems while
solving dense systems of 100, 300, and 1000 linear
equations.

VoL I No. 2, Sl~ring 1990 Digital TechnicalJournal

Vector Processing on the VHXvector 6000 iModel400

These benchmarks are currently written to call
subroutines from the Linpack library. The subrou-
tines, in turn, call the basic linear algebra subrou-
tines (BLAS) at the lowest level. For each benchmark
size, there are different optimization rules which
govern the type ofchanges permitted in the Linpack
report. Optimizations to the RLAS routines are
always allowed. Modifications can be made to the
FORTRAN source or by supplying the routine in
macrocode. Algorithm changes are only allowed for
the largest problem size, the solution to a system of
1000 linear equations.

The smallest problem size uses a two-dimensional
array that is 100 by 100. The benchmarks are writ-
ten to use Gaussian elimination for solving 100
simultaneous equations. This two-step method fea-
tures a factorization routine, x(;EFA, and a solver,
xGESL. Both are column-oriented algorithms and
use vector-vector level I BLAS routines. Column
orientation increases program efficiency because
it improves locality of data based o n the way
FORTRAN stores arrays.

As shown in Figure 6, the B1.AS level 1 routines
allow the user to schedule the instructions opti-
mally in vector macrocode. Deficiencies in BLAS 1
routines include frequent synchronization, a large
calling overhead, and more vector load and store
operations in comparison to other vector arithmetic
operations.

The performance of the Linpack 100 by 100
benchmark. which calls the Figure 3 routine, shows
how an algorithm with approximately 80 percent
vectorization can be limited by the scalar portion.
One form of Amdahl's I,aw relates the percentage of
vectorized code compared to the percentage of
scalar code to define an overall vector speedup. This
ratio between scalar runtime and vector runtime is
described by the following formula:

Vector speedup = time scalar 1 (% lscular l x
time scalar) + ([% uector 1 x time wctor)

Under Amdahl's Law, the maximum vector
speedup possible, assuming an infinitely fast vector
processor, is:

Vector speedup = 1.0 / (0.2) x 1 .O + (0.8) x 0 =
1.0/0.2 = 5.0

As shown in Figure 7, the Model 400 processor
achieves a vector speedup of approximately 3 for
the 100 by 100 Linpack benchmark when using the
BLAS 1 subroutines. It follows Amdahl's Law closely
because it is small enough to fit the vector proces-
sor's 1 Mbyte cache and, therefore, incurs very little
overhead due to memory hierarchy.

For the Linpack 300 by 300 benchmark, opti-
mizations include the use of routines that are
equivalent to matrix-vector level 2 BLAS routines.

xAXPY - compute5 Y (1) = Y (1) + a X (1)

where x = p r e c ~ s l o n = F , D, G

MSYNC

LOOP:

;synchronize w l t h s c a l a r

VLDx X (I) , s t d , V R O

VSMULx a,VRO,VRO

VLDx Y (I) , s t d , V R I

VVADDx VRO,VRI,VRI

VSTx V R l , Y (I) , s t d

I NC I

I F (I < S I Z) GOT0 LOOP

MSYNC

; X (I) 15 l o a d e d I n t o VRO

;VRO g e t s t h e p r o d u c t o f VRO

;and t h e s c a l a r v a l u e " a "

; Y (I) g e t l o a d e d i n t o VR1

;VR1 g e t s VRO summed w i t h VR1

;VR1 15 s t o r e d back I n t o Y (1)

; ~ n c r e m e n t I by v e c t o r l e n g t h

; Loop f o r a l l v a l u e s o f I

;synchronize w i t h s c a l a r

Figure 6 Core Loop ofla BLAS I Routine Using Vector- Vector Operations

Digital TecbnicalJournal Vol 2 IVO. 2, .S/)rirlg 1990 2 1

VAX 6000 Model 400 System

DIMENSION OF PROBLEM SIZE

Figure 7 Linpnck Pwfornmnce Graph,
Doubleprecision BLAS Algorithms

Figure 8 details the core loop of a BLAS 2 routine.
BLAS 2 routines make better use of cache and trans-
lation buffers than the Bl.As 1 routines do. Also,
HLAS 2 routines have a better ratio between vector
arithmetics and vector load and stores. The larger
matrix size increases the average vector length. Per-
formance is improved by amortizing the time to
decode instructions across a larger work load.

By removing one vector load and one vcctor store
from the innermo4t loop, the BLAS 2 routine has a
better ratio of arithmetic operations to load and

store operations than HLAS 1 routincs. Although the
300 by 300 array fits into the vect~)r processor's
1 MB cache, not all the cache can be mapped by its
translation buffer. By changing the sequence in
which this routine is called in the program, the data
access patterns can bc altered to better use the
vector unit's translation buffer. Thus, higher per-
formance is obtained.

The percent of vectorization increases primarily
because of tlie increase in the matrix size from 100
by 100 to 300 by 300. With a vector fraction of
approximately 95 percent, Figure 7 shows the
speedup improvement in the 300 by 300 bench-
mark when using methods based on HI.AS 2 rou-
tines. With a matrix vector algorithm, the 300 by
300 benchmark yields speedups of between 1 0 and
12 over its scalar counterpart.

There are no set rules to follow when solving the
largest problem size, a set of 1000 simultaneous
equations. One potential tool for optimizing this
benchmark is tlie LAPACK library developed by
Argonne National Laboratory, in conjunction with
the Ilniversity of Illinois Center for Supercomputing
Research and Development (<:SRD). The LAPACK

library features equation solving algorithms that
will block the data array into sections that fit into

xGEMV - computes Y(1) = Y(1) + X (J) * N (I ,J)

where x = p r e c i s i o n = F, D, G

MSYNC ;synchron ize w i t h s c a l a r

I LOOP:

VLDx Y(I) ,s td ,VRO ; Y (I) i s loaded as VRO

JLOOP.

VLDx M (I , J) , s t d , V R I ;VRI g e t s columns o f M (I , J)

VSMULx X(J),VRI,VR2 ;VR2 g e t s t h e p r o d u c t o f VRl

;and X(J) as a s c a l a r

VVADDx VRO,VR2,VRO ;VRO g e t s VRO summed w i t h VR2

I NC J
I F (J < S I Z) GOT0 JLOOP ;Loop f o r a l l v a l u e s o f J

VSTx VRO,Y(I) ,5 td ;VRO g e t s s t o r e d i n t o Y (I)

I NC

I F (I < SIZ) GOT0 ILOOP ;Loop f o r a l l v a l u e s o f 1

MSYNC ;synchron ize w l t h s c a l a r

Figure 8 Core Loop of a BLAS 2 Routine Using Matrix-Vector Operations

2 2 Vol. 2 NO. 2, Spring 1990 Digital TecbnicalJournal

Vector Processing on the VAXuector 6000 Model 400

a given cache size. The LAPACK library calls not
only the BLAS 1 and BLAS 2 routines but also a third
level of BLAS, called matrix-matrix BLAS or the BLAS

level 3:
Figure 9 shows that a matrix-matrix multiply is at

the heart of one BLAS 3 routine. The matrix multi-
plication computation can be blocked for modern
architectures with cache memories. Highly efficient
vectorized matrix multiplication routines have
been written for the VAX vector architecture. For
example, a double precision 64 by 64 matrix
multiplication achieves over 85 percent of the peak
MFLOl's on the Model 400 system.

Performance can be further improved with other
methods that increase the reuse of data while it is
contained in the vector registers. For example, loop
unrolling can be done until all the vector registers
have been fi~lly utilized. Partial results can be
formed within the innermost loop to minimize the
loads and stores required. Because both rows and
columns are traversed, the algorithm can be blocked
for cache size. The VAXvector Model 400 system

exhibits vector speedups greater than 35 for the 64
by 64 matrix multiplication described above.

Although the overall performance of the 1000 by
1000 size benchmark is less than a single 64 by 64
matrix multiplication, it does indicate the potential
performance when blocking is used. Improving the
performance of this benchmark is most challenging
because the 1000 by 1000 matrix requires about
eight times the vector cache size of I M B . Further
analysis is being conducted to determine the most
efficient block size that would maximize the use of
BLAS 3 and remain within the size of the cache for a
given block of code.

The vectorized fraction increases to approxi-
mately 98 percent for the 1000 by 1000 benchmark.
The proportion of vector arithmetics relative to
vector loads and stores is much improved for the
BLAS 3s. Although the cache is exceeded, perfor-
mance more than doubles when using a method that
can block data based on the BLAS 3 algorithms.
Therefore, the ITAXvector 6000 Model 400 pro-
cessor's performance for Linpack 1000 by 1000

xGEMM - computes Y (I , J) = Y (I , J) + X (I , K) * M (K , J)

where x = p r e c ~ s ~ o n = F , D , G

MSYNC

I JLOOP :

VLDx

KLOOP:

VLDx M (K , J) , s t d , V R l

VSMULx X (I , K) , V R I , V R l

VVADDx VRO,VR2,VRO

I NC K

I F (K < 51 2) GOT0 KLOOP

RESET K

VSTx V R O , Y (I , J) , s t d

I NC I

I F (I < 512) GOT0 IJLOOP

I NC J

RESET I

I F (J < 512) GOT0 IJLOOP

MSYNC

; s y n c h r o n i z e w ~ t h s c a l a r

; Y (l : N , J) g e t s l o a d e d I n t o VRO

; K (1 :N ,K) g e t l o a d e d I n t o VRl

;VRl g e t s VR1 summed w i t h

; X (I ,K) as a s c a l a r

;VRO g e t s VRO summed w ~ t h VR2

; I n c r e m e n t K by v e c t o r l e n g t h

; r e s e t I t o S I Z

;VRO g e t s s t o r e d i n t o Y (I , J)

; i n c r e m e n t I b y v e c t o r l e n g t h

; I n c r e m e n t J b y v e c t o r l e n g t h

; r e s e t I t o S I Z

;synchronize w ~ t h s c a l a r

Figure 9 Core Loop of a BLAS 3 Routine Using Mat*-Matrix Operations

Digital TechniculJoumal Vol 2 No 2, Spring 1990 23

VAX 6000 Model 400 System

obtained a vector speedup of approximately 25, as BIT
shown in Figure 7. REVERSAL

REORDER
CORRECT
RESULT

Signal ~ e s s ~ ' ~ g - Fast Fouriev
T r a m f m
The Fourier tramsfom decomposes a waveform,
or more generally, a collection of data, into com-
ponent sine and cosine representation. The discrete
Fourier transform (Dm) of a data set of length .V

performs the transformation following the strict
mathematical definition which requires o(iv2)
floating point operations. In 1965, the fast Fowicr
transform (FFT) was developed by Cooley and
Tukey. FFT reduced the number of operations
to O(N x L O G I N]) , which is a significant improve-
ment for computational speed.'

As shown in Figure 10, the complex data in the
bottom butterfly is multiplied in each stage by the
appropriate weight. The result is then added to the
top butterfly and subtr~cted Eron~ the bottom
butterfly. If t k algrr(t1im is left in this configura-
tion, it must use non-unity stride vectors, very short
vectors, or masked arithmetic operations to per-
form the ver). sm:~ll butterflies.

Optimized One-dimensional Fast Fourier
Transforms
The bit-reversal process that permutes the data to a
form that enables the Coolcy-Tukey algorithm to
work is also shown in Figure 10. When using
vectors, a common approach to performing the bit-
reversal reordering is to use vector gather or vector

9 scatter instructions. These instructions allow
vector loads and stores to be performed using an
index register. Vector loads and stores require a con-
stant stride. Holvever, vector g;rthcr and scatter
operations allow the user to build a vector of offsets
t o support indirect addressing in vector mode. Both
gather ancl scatter instructions are available with
VAX vectors.

A vector implementation of the I:I:T algorithm has
been developed that is well suited for the \'AX \,ector
:rrchitecture. One optimization made to the algo-
rithm involves moving the bit-reversal section of the
code t o a place where the data permutation will
benefit vector processing. By doing so, two goals
are accomplished. First, the slower vector gather
operations are moved to the center of the algorithm
such that the data will alrcady be in the vector
cache. In Figure 1 0 , the first FFI'stage starts out with
large butterfly distances. After each stage the butter-
fly tlistancc is hal\.cd. For the optirnizcd \usion

LOG (N) STAGE 1 STAGE 2 STAGE 3 STAGE 4
STAGES

Figure I 0 The Coolcy-Tdcy Ruttc'1"ji!!~ Crupb,
One-dimensional Fast Fourier
Trun.Fform for N = 16)

shown in Figure 11, the bit-reversal permutation is
performed as close to the center as possible, when
the stage number = LOG(N)I2. To complete the
algorithm, the butterfly distances now increase
again. Second, this process entirely eliminates the
need for short butterflies.

Another optimization made to the FF'I' algorithm
is the use of a table lookup method to access the sine
and cosine P~ctors, which recluccs repetitive calls to
the computationally intensive trigonometric filnc-
tions. The initialization of this trigonon~etric table
has been fully vectorized but shows only a modest
factor of 2 performance gain. To build the table, a
first-order linear recurrence loop is formed that
severely limits vector speedup. Because this calcula-
tion is only done once, it becomes negligible for
multiple calls to the one-dimensional I:~:'l's and for
all higher dimensional FF1's. The benchmark shown
in Figure 12 was looped and includes thc calculation
of the trigonometric table performed once for each
FFT data length.

Reusing data in the vector registers also saves
vector processing time. The VAX vector architecture
provides 16 vector registers. If all 16 registers are
used carefully, data can be reused by two successive
butterfly stages without storing and reloatling the
data. With half the number of loads and stores, the
vector performance almost doubles.

24 Vol. 2 IVO. 2. S/)rit~g I990 Digital TecbnicalJournal

Vector Processing on the VMi~ector 6000 Model 400

BIT
R E V E R S A L
REORDER

STAGE 1 STAGE 2 (HAS

CORRECT
RESULT

STAGE 3 STAGE 4

R E G - R E U S E)

Figure I 1 Optimized Coolty-Tz~key Butterfly
Graplj, One-dimensional Fast
Fourier Transforin for N = I6

Optimized Two-dimensional Fast Fourier
Transforms
The optimized one-dimensional FFT can be used to
compute multidimensional FFTs. Figure 13 shows
how an N by N two-dimensional FFT can be com-
puted by performing N one-dimensional column
FFTs and then N one-dimensional row FFTs. The
same routine can be called for column or row access
FFTs by simply varying the stride parameter that is
passed to the routine. (Note: In FORTRAN, the
column access is unity stride and the row access has
a stride of the dimension of the array.)

For improved performance on VAX vector
systems, the use of a matrix transpose can dra-
matically increase the vector processing perfor-
mance of two-dimensional FFTs for large values of
N, i.e., N > 256. The difference between unity stride
and non-unity stridc is the key performance issue.
Figure 14 shows that a vectorized matrix transpose
can be performed after each set of N one-dirnen-
sional FPTs. The computation will be equivalent to
F i g ~ ~ r e 10 b ~ ~ t with a matrix transpose: each one-
dimensional FFT will be column access which is
unity stride. The overhead of transposing the matrix
becomes negligible for large values of N.

When thc value of N is relatively small, i.e.,
N < 256, the two-dimensional FFT can be com-
puted by calling a one-dimensional FFT of length N'.

Dfgflal TecbnicalJournal Vol. 2 No. 2, Spring I990

I I

0 1000 2000 3000 4000 5000
LENGTH OF DATA SIZE

KEY:
r WITH REG-REUSE

0 NO REG-REUSE

Figure 12 One-dimensional Fast Fourier
Transform Performance Graph,
Optimized Single-precision
Cmnplex Transfom

The small two-dimensional FFT can achieve per-
formance equal to that of the aggregate size one-
dimensional FFT by linearizing the data array.
Figure 15 shows the trade-off between using the lin-
earized two-dimensional routine (for small N) and
the transposed method (for large N) to maintain
high performance across all data sizes.

The optimization of an algorithm that vectorizes
poorly in its original form has been shown. The
resulting algorithm yields much higher perfor-
mance on the VAXvector 6000 Model 400 processor.
High performance is due to the unique way the
algorithm touches contiguous memory locations
and its effort to maximize the vector length. The
implementation described above always uses unity
stride vectors and always results in a vector length of
64 for FFT lengths greater than 2 K (2 X 1024).

N 1-D FFTS N 1-D FFTS

C O L U M N ROW

Figure 1.3 Two-dimensional Fast Fourier
Transforms Using N Column and
N Row One-dimensionul Fast
Fourier Transforms

VAX 6000 Model 400 System

N 1 - D FFTS TRANSPOSE

COLUMN

N 1-D FFTS

COLUMN

TRANSPOSE

Figure 14 Two-dimensional Fust Fout-ier
Transforms Using a /Matrix
Transpose between Each Set of N
Column One-dimensional Fast
Fourier Transfotm

Linear algebra and signal processing applications
that utilize the various hardware features have
demonstrated vector speedups between 3 and 35
over the scalar VAX 6000 Model 400 CPL! times.
With the integrated vector processing available on
the VAXvector 6000 Model 400, the performance of
computationally intensive applications may now
approach that of supercomputers.

Acknowledgments
The authors would like to acknowledge the tech-
nical contribution of the following people: Paul
Brodeur, Doi~g Burns, Giao Dau, Bob Dickson,
Darrel Donaldson, Hugh Durdan, Bill Gist, Anil
Jain, Chandrika Kamath, Dwight Manley, Mike
Pline, John Redford, Sean Reilly, Tim Stanley, and
Mike Uhler.

References

1. J. Croll, "VAX 6000 Model 400 Multiprocessor
System Overview," Proceedings of COMPCON
'90 (IEEE, forthcoming 1990).

2. D. Bhandarkar and R. Brunner, "Vector Exten-
sions to the VAX Architecture," Proceedings of
COMPCON '90 (IEEE, forthcoming 1990).

3. M . (;avrielov et a]. "A 50 MHz Uniformly Pipe-
lined Floating-Point Arithmetic Processor,"
Proceedings of ISSCC '89 (IEEE, February 1989):
50-5 1.

4. J. Dongarra, Perfcn-nmnce of Various Computers
Using Standard Linear Equations SoJware in a
FORTRAN Enz~ironmmzt, (Argome, 1L: Argonne
National Laboratory, June 1989).

I
0 200 400 600 800 1000 1200

5. VAX FORTRAN Per@-t?zalzce Guide (Maynard:

DIMENSION OF PROBLEM SIZE Digital Equipment Corporation, Order No.
K F Y .

PLA-PB75A-TE, forthcoming 1990).
. .- .

A TRANSPOSED

LINEARIZED

Figure 15 Two-dimensional Fast Fourier
Transform Perfomnce Graph,
Optimized Single-precision
Cmplex TransJorm-

6. VAX 6000 bkctor Processor Programmer? Guide
 mayna nard: Digital Equipment Corporation,
Order No. EK6OVPLA-I-'(;, forthcoming 1990).

7. C. Bischof et al., LAPACK, (Argonne, I L : Argonne
National Laboratory, April 1989).

8. J. Cooley and J . Tukey, "An Algorithm for
Machine Calculation of Complex Fourier Series,"
Mathematical Computing, no. 19 (1965):
297-301.

Summary 9. P. Swartztrauber, "Vectorizing the FFT's,"
Parallel Computing (Academic Press, 1982):

The VAXvector 6000 Model 400 processor delivers
51-85.

high performance for computationally intensive
apilic~tions. The CMOS-based VAXvector 6000 is
capable of operating at peak speeds of 90 ,\IFLOPS
single precision and 45 MFLOPs double precision.

1/01. 2 No. 2, .S/)rin~ 090 Digital TechnicalJoumal

Patrick Sullivan
Michael A. Callander, Sr.

James R. Lundberg
Rebecca L. Stamm
WilliamJ. Bowbill

The VAX 6000 Model 400
Scalar Processor Module

The VAY 6000 filodel 400 CPIJ module is the latest generation of the crnzpatible
VAX 6000 family of computers. me Model 400 is a single-board, CI~IOS-based CPII that
signficantly extends the pwformance of the VRu 6000 series. The system provides
nearly 7 VAX units ~Jperformance (V1JP.s) in single-processm applications and up to
-36 VilPs in six-processor systems. The Model 400 module is a plug-in r e p l a c m t for
the Model 200 and ~~(Iodel300p~ocess~s. Chip set and module designers ofthis new
system cooperated closely to meet aggressive timing andperfmzance goals. Several
enhancements were made to the cache and bus intwface units to improve multipro-
cessorperfmnce. A vector intwface was included for connection to a companion
oecturprocessor module. Signal integrity was an important consideration for both
chip and module design.

When the Midrange Systems Business (MSB) Group
began to develop the \,Ax 6000 series, the Semi-
conductor Engineering Group (SEC;) had started
development of a new CMOS-based cPu chip set.'
The project's goals were the following:

Achieve (;PO performance at least equal to the
5.5 VlIPs of the VAX 8700 system

Support a 28-nanosecond (ns) module cycle time

At that time, the VAX 8700 system was the fastest
VAX available and used emitter-coupled logic (ECL)
to achieve a 45-ns cycle time. SEG designers
believed a system implemented in CMOS technology
could meet or exceed that performance level and at
a much lower manufacturing cost. With reference
to the second goal. a 28-11s cycle time would take
advantage of chip sets that could run faster than the
projected 40 11s cycle time.

In discussions with MSB, we realized our module
project could be modified to include an XMI inter-
face and, therefore, become another member of the
VAX 6000 series.' We then agreed to undertake a
joint development effort between MSB and SEG,
which resulted in the VAX 6000 Model 400 scalar
CPU. Development of this scalar processor module
is the focus of this paper.

Halfway through the project, support for a vector
processor module was included because the VAX
architecture was extended to include vector

Digital TecbnicalJournal Vo1. 2 No. 2, Spring 1990

instructions. The vector processor module, which
was developed by MSB, can provide a significant
performance boost for certain classes of vector
problems.

The first Model 400 systems were shipped in
July 1989. This delivery was made just 15 months
after the introduction of the initial 6000 Model 200
series.

Design Challenges
The aggressive 28-11s cycle time goal for the module
design required a tight coupling of the chip set and
module design efforts. With this short 28-11s cycle
time goal, the module interconnect had to be
treated as transmission lines. Consequently, signal
integrity considerations were critical to design suc-
cess and would impact all areas of the design-
chip, package, and etch board. The approach taken
to address signal integrity is described in more
detail in the Signal Integrity section.

The performance goals also dictated a change in
the VAX 6000 Model 400 data and address line (DAL)
pin bus. The older, less complex multiplexed 32-bit
bus would have to be separated into a separate
27-bit address bus (A-bus) and a 64-bit data bus
(D-bus). That decision in turn resulted in the need
for high pin count packages (224 pins) and the asso-
ciated signal integrity challenges of dealing with as
many as 90 output drivers switching simulta-

VAX 6000 Model 400 System

neousl!., while driving transmission lines with a low
effective impedance of 60 ohms.

Two new technologies were needed to meet
these challenges. First, new chip packages had to be
developed to supply the increased number of signal
pins. The packages use multilayer ceramic sub-
strates to provide signal planes, as well as separate
power and ground planes for both intern:~l logic
and pad ring power. The packages have 224 pins on
a 25-mil pitch and are surface mounted for better

controller chip (VC), a clock distribution chip
(CLK), and a system support chip (RSSC). The REXMl
interface consists of three chips: two copies of the
data path chip (XDP), and a controllerlinterface
chip (XCA).

A block diagram of the XRP module is shown
in Figure 1. The module consists of four major
sections:

CPlJ and F-chip floating point accelerator

module routability. Second, the 25-mil package pin rn VC chip and backup cache RAM array
pitch required the use of a finer geometry etch

The Rssc: system support chip
board: 13-mil module vias and 10-mil routing pitch.
This specification required the ph!,sic:~l design team rn The Xkll interface, including REXMI

to initiate a very close development ;uid qual-
ification effort with the etch hoard vendors.'

Major Module Subsections
The Model 400 n~odulc, or XHI', is a single-board
VAX CI'U implemcntccl with the Model -i00 chip set
and a REXMl interface to the X M l bus.' The chip set
includes five chips: a CPU chip (RliXSLO), a floating
point accelerator chip (F-chip), a backup cache

The RliX520 is the first VAX microprocessor chip
to implement a fully pipelined microarchitecture.
The F-chip has (5-bit-wide data paths and a pipe-
lined execution unit. These chips cooperate to
implement the base instruction group of the VAX

architecture. The two chips represent the CPU sec-
tion of the XRI' module, and both chips connect
directly to the DAL. Both chips also have a private
8-bit bus for control and status information.

VECTOR
INTERFACE XCI
BUS (CABLE)

-
REX520
CPU WITH
CACHE

DATA

< XMI . >

DAL

SYSTEM AND AUXILIARY CONSOLE

U

Figure 1 XRP Module Block Diagrunz

'ONTRoL
RSSC

I

Vol 2 /\lo 2, .S/)rir?g 1990 Digital TecbnicalJournal

F.CHIP

CLOCK

BACKUP
CACHE
RAMS

ADDRESS

DATA ROM
AND
EEPROM

I I

CONTROL
VC

I-BUS
REXMl

f i e VAX 6000 model 400 Scubr Processor Module

The REX520 provides the hardware and
microcode necessary to parse specifiers, execute
instructions, handle exceptions, and otherwise
implernent the VAX architecture. The REX520
;ilso provides hill vAx memory management, a
4-gigabyte (GB) virtual address space, and support
for 512 megabytes (Me) of physical memory. The
chip contains a (%entry, fi~lly associative transla-
tion buffer. Both process and system-space map-
pings are stored in the buffer. The chip also includes
a 2-kilobyte (KB), direct-mapped instruction and
data cache Cprimary cache) with an 8-byte block
ancl fill size.

The F-chip enhances the computation phase of
floating point and certain integer instructions in
conjunction with the REX520 chip. The F-chip exe-
cutes the F-, I) - , and (;-format floating point instruc-
tions, as well as the long word variants of integer
multiply. The chip receives operands from the
REX520, computes the result, and passes the result
ancl status back to the REX520. The REX520 chip
completes the instruction.

?'he \'C chip implements a 2K tag store and neces-
sary control for a 128KR backup cache. The cache
uses 15-ns, 16~-by-4 static random-access mem-
ories (SIUMs) on the module. The vC chip also
includes a copy o f the primary cache tag store, the
invalidate bus (I-bus), and an interface to the vector
interface bus (VIB). The I-bus connects to the REXMI
and boosts performance by doing invalidate filter-
ing. The cache design is discussed in more detail in
the Model 400 Caches section.

The RSSC chip is a modification of the SSC chip
used in a number of previous Cpus. It incorporates
the common core of h~nctions that support the chip
set in the xbll system environment. TheRSSC chip is
discussed in detail in the Model 400 System Support
Chip section.

The XMI interface consists of the standard XMI-
comer components and the REXMl chip set. The
H E X M I chip set interfaces the DAL to the xC1, which
is the user side of the XMl comer. The XiMI interface
is discussed further in the XMlr Interface and REXM[
section.

1)AL operations are synchronous on the XRP
module. Therefore, a very low skew clock distri-
bution system was required. The clock chip and
controlled, equal-length clock lines to each of the
chips provide this distribution. The clock chip
receives a 143-megahertz (hlHz) oscillator input and
provides two sets of synchronous four-phase
clocks. Each clock phase driver output can drive
four 50-ohm lines in parallel. In the XRP design,

there are eight chips that require all four phases,
and each set of clock outputs drives four chip loads.
Discrete Schottky diodes are used at the receiving
ends of all the clock lines for termination. This
design achieved a clock skew of less than 0.5 ns at
the receiving chips.

The DAL pin bus is a fully synchronous, hand-
shake protocol bus. The DAL is nonpended in that it
Ins only one transaction outstanding at a time, and
it is also nonrnultiplexed with separate address and
data lines. The design consists of a 27-bit address
bus (A-bus), a 64-bit data bus (D-bus), and associated
control signals. The DAL runs at a 28-ns cycle time,
synchronous with the Model 400 chip set. The tim-
ing is controlled by 4 overlapping 14-ns-wide clock
phases, which are separated from each other by
7 ns. The ['-chip, F-chip, VC chip, backup cache
RAMS, and the REXMl communicate through the
DAL. The P-chip is the default bus master and
contains the arbiter for the bus. The P-chip uses the
DAL to initiate reads and writes to the backup cache
and main memory through the KEXMI. The backup
cache and the REXlLlI send read data to the P-chip.

The bus master notifies other bus nodes of the
start of a transaction. The receiving node can termi-
nate a transaction in one of three ways. I t can
indicate a successful completion, indicate an error,
or request that the transaction be retried. Once the
receiver indicates one of the transaction termina-
tion signals, the bus master deactivates.

One DAL transaction takes a minimum of three
cycles. The maximum transaction time depends
upon the system response to read and write
requests. The RSSC includes a bus timeout mecha-
nism that prevents the system from hanging.
Most DAL signals are transferred in three phases,
although some control signals are transferred
in two.

As noted earlier, vector interface capability was
added after the \'Ax architecture was extended to
support vector operations. The vector h~nctionality
was added to the vC chip because that chip could
accommodate the extra pins required for the inter-
face, i.e., 224 pins versus 1 6 4 .

'The major units of the X R P module are described
in the following sections.

Model 400 Caches
The XRP module incorporates a two-level cache
hierarchy that maximizes <:PU performance. The
first-level cache is the primary cache, called the
P-cache, which is contained entirely in the P-chip.
The second-level is the backup cachc or H-cache,

VAX 6000 Model 400 System

:~nd it consists of the VC chip and 24 15-ns, 16~-by-4
static R:\>ls. Thc VC chip contains the tag store and
the control logic for the B-cache. The SRAMs store
thc cache data. The P-cache and the 6-cache contain
both instructions and data.

The 1'-cache is a 2KB cache and is direct-mapped,
with an 8-byte block size. The cache is read-
allocate, no-write-allocate, and write-through. In
write-through, writes that hit in the cache are
simultaneously written to the cache and to main
memory. The P-cache can perform a new access
once every cycle.

Each P-cache tag entry includes an 18bit tag, one
valid bit, and one parity bit. There arc 256 tags cor-
responding to 256 data blocks. Each data block con-
tains 8 data bytes and 8 parity bits, with parity was
implemented on each byte. Parity permits a byte
write to be done without the need to recalculate
parity across the other bytes. This process avoids
the performance penalty that occurs whcn all bytes
arc not written at once, as in the read-modify-write
process.

The B-cache is a 128KB cache and is direct-
mapped, with an 8-byte access size. I t has a 16-byte
sub-block size and a 64-byte block size. The cache is
also rc;id-allocate, no-write-allocate, and write-
through. Thcre are 2048 entries in the B-cache tag
store. Each entry contains a 12-bit tag, 4 valid bits,
and a parity bit.

Backup Cache Hit
Designers optimized access time to the backup
cache by connecting the cache RAMS dircctly to the
DAL. The chips, the bus, and the specialized hit sig-
nals are shown in Figure 2.

When the P-chip issues a read on the DAL, it
drives the address on the A-bus to the VC chip and
cache RAMS. The P-chip asserts memory read
(MI:hLRD-L). The VC chip uses MEM-RD-L to
enable the assertion of the cache RAM chip select
lines (BC-C'S-I.< 7:0 >). This process accomplishes
two things. 'I'he chip select lines are valid by the
time the P-chip has driven the A-bus to a valid state.
Further, the total time to perform the rrad from the
RAMS is minimized.

The RAM access begins in parallel with the tag
store access. If the vC chip finds a match in the tag
store, it asserts BC-HIT-L to notify the P-chip. By
the time BC-HI.1'-L is asserted, the data from the
cache RAMS is valid on the D-bus, and the P-chip
then accepts the data.

If the VC chip does not find a match in the tag
store, it asserts BC-MISS-L. This signal notifies the

Figure2 Backup Cache Access Di~rgrnln

R E X M I to send the read request to memory. A t thc
same time, the VC chip asserts the cache KAM write
enable (BC-WE-L) and waits for the data to return
from memory. When the REXMI returns the data, it
asserts a transaction termination signal. This signal
informs the P-chip, the VC chip, and the F-chip that
data is rcady on the bus. All three chips receive the
data simultaneously, and the data is written into the
cache RAMS. The transaction ends when the P-chip
accepts the data.

XMIlnterface and REXMI
The XRP module accesses all memory ancl 110
devices over the XMI bus. Thc REXMl interfaces the
chip set to the XMI bus by means of two data path
chips (XDPs) and one controlladdress chip (XCA).
Each XDP is responsible for 32 bits of the REXMI's
64-bit data path. The XCA is responsible for the
address data path, DAL control logic, X M [control
logic, and control of the two XDPs. Both chips are
implemented in CMOS-2 standard cells.

The primary tasks of the XMI interface are to

Forward REX520 references to the XMl

Implement a write buffer that reduces traffic to
main memory

Support control of cache fills and cache
invalidates

Support XMl interrupt logic

W'ol. 2 IVO. 2. Spring I990 Digital TecbnicalJournal

m e VAX 6000 Model 400 Scalar Processor ililodule

CMOS-2 Standard Cell Technology
Custom chips were not used to implement the XCA
and X D P chips. Instead, two alternatives were
investigated. These alternatives were to ube either
gate arrays or standard cells from external vendors,
or internally built CMOS-2 standard cells

A number of external vendors offered products
with the density and internal gate speeds needed to
implement the REXMI chips. However, none offered
the performance and flexibility needed to interface
to the DAI.. Therefore, we chose the CMOS-2 stan-
dard cells, which could Interface to the DAL

We added a number of new cells to the standard
cell library: several versions of a high-performance
3.3-volt output driver, input latch with the required
0-ns set-up time, and a low skew internal clock
buffer capable of driving over 30 picofarads of
capacitance. These new cells were largely based on
circuits designed for the custom CMOS-2 CPU chips,
whlch met the high performance goals set by the
Model 400 program.

Per-jomnce Considerations
Performance bottlenecks in high-speed computer
systems most often occur in the path to and from
main memory. The XRP's two cache levels greatly
reduce the number of reads required. However,
since both caches are write-through, all writes must
be forwarded to main memory by the REXMI. To
improve performance, the REXMI implements a
write buffer with four octaword (16-byte) entries.

The write buffer improves performance in two
ways. First, it decouples the R E X 5 2 0 write rate from
the slower XMI write rate. The R E X 5 2 0 can transfer
8 bytes of write data to the REXMI every three
cycles. This data is loaded into the write buffer and
later transferred to main memory at XMI speeds.

Second, the write buffer combines multiple
REX520 writes into a single XMI write. The most
efficient write transaction is a full octaword write.
The REXMI always tries to combine multiple
R E X 5 2 0 writes into full octaword writes. The
REXMI loads write data into a write buffer entry.
The write data is held until either a new octaword
address is received or a purge write buffer condi-
tion occurs. When the REXMI receives a write to a
new octaword address, the current write buffer
entry is marked full. A new write buffer entry is
then opened with the new octaword address. Write
buffer entries are transmitted as they are marked
full. To guarantee that the write buffer data is writ-
ten to main memory in a timely manner, the write
buffer is flushed before the following conditions:

XMI r/O space read or write

Interlock read or unlock write

Interprocessor interlock

XMI read to an octaword location that includes
data contained in the write buffer

In response to a clear write buffer command

Combining P-chip writes reduces the number of
write transactions needed by over 40 percent. This
reduction certainly improves single-processor per-
formance. However, the greatest improvement is in
n~ultiprocessor performance where the XMI band-
width required by each Cl'u is reduced.

Cache Coherence
The XRP module allows data to be shared among
multiple processors. The XRP design assures that
the most recently written copy of any data is pro-
vided to a running process. This process is called
cache coherence.

In multiprocessing systems, coherence can be
ensured in two ways. Cached copies of data that
have been written can be invalidated, or each cache
can be updated with more recent data. Since it is
simpler to invalidate than to update, an invalidation
scheme was implemented on the X R P module.

Every X R P processor write is sent to XMI mem-
ory. When an XRI' module broadcasts a write on the
XMI, the command, address, and data are captured
in memory. Other XRI' modules capture the com-
mand and address to invalidate any valid B-cache or
P-cache entries that correspond to the address.

We could have opted to broadcast all x M 1 writes
as invalidates on the DAL. However, this method
would have greatly increased the DAL traffic and
would have reduced the processor's performance.
To increase the performance of multiprocessor
systems, the V C chip provides a low-overhead
invalidate mechanism through the 1-bus. The REXMI
can determine through the I-bus if data is currently
cached. The REXMI sends an invalidate on the DAL
only if the data is cached.

The v C chip maintains a duplicate copy of the
primary cache tag store. The chip accesses the copy
in parallel with the backup cache tag store
whenever invalidate addresses are placed on the
I-bus. When an I-bus address match is detected in
either tag store, the chip notifies the REXMl of the
hit. The REXMI broadcasts the invalidate address
onto the DAL. The invalidate address notification is
recognized by both the VC chip and the R E X 5 2 0 .

Digital TecbnicalJoumnl 1/01. 2 No. 2, Spring I990 3 1

VAX 6000 Model 400 System

The I)-chip in\alidates the P-c-dche entry, and the V c
chip invalidates the w r i e s in both the 13-cache and
in the cup!! of the P-cadle tag store.

If the P-cache were a suhsct of the B-ache, we
wwlcl not havc had to Implcmcnt the P-uchc tap,
store copy on the v<: chip. In this desig~~, any
atldrciss that hit in thc H-caclie would hare been sent
to t k DAL. hut this prcxcss wwld h a l ~ caused an
in\.;rlid;rtc rcqirest to be sent to the P-c:ichc as well.
Howcver. with this apprtr~ch, the V<: chip would
havc to s c d inv:~li&tcs to t k P-cgclw whenever n
n-tack block w ~ s dispiaccd. 'The trmsmission to
the I'-ache wcn~ld have b c ~ n required becai~se the
1'-cache and U-cxhe hlcxk s i x s arc different. I t was
simpler to implcnicnt the copy of thc P.caciie tags
;~ncl its control.

Another ~ l te rmt i t~e wtn~ld havc been to use a
tluplicate copy of the R-cache and P-cichc tag stores
in~plcn~cniccl i n csrcrnal logic on the module. The
KEXMl then would h:lve interrogated the tag stores
directly. 'l'his ;~ltcm;ltivc was rcjcctrtl because it
wtnrld h:~ve used ttx) much spnce on the mdule .

The Model 400 System Support Chip
A \.aric't!. of support logic is rccluircd to complete
the functionality of a VAX <;P1! module. The Model
400 sysrcm suplwn chip (KSs(:) integrates the com-
mon corc o f functitns necessary t o support the V,\X
systcm cn\'ironrnrnt tmclro a single chip. It provides
the trpenting system with the h a r d w e primitives
nmded to iml,lcmcr~t thc boot and console roil-
tines. The chip also provides sevcnl tini-
ing mt.chiinisms. Thc R s ~ (: is tlesigned to interf-rce
directly with thc Modcl - i (~) c h i ~ s . ' It is based tm the
systcm support chip (SSt:)tbr was designed for use
with thc crrIicr CMOS-based VhX systems.'

m e Vector Interfme Bus
Thc vcyror intcrk~ce bus connects the Model 400
CHI moduk to an o p t l o d wctor module.' The
vcctor motlule c3n perform fast calcdatitnzs on
vector data. This capability greatly increases the
execution speed of certain applic-ations.

There arc two Ievcls to the interhce. The first is
the mlcrococle that implements the vector instruc-
tlons defined by the VAX architecture. 171c second is
thc hrrdwarc irnplc.mntati.on f a f u ~ s rcquirerl by
the mkrc~odr.

The REX 520's microcode vcctcir mppoft is lim-
ited to decoding vector instn~ctions, parsing the
specifiers, and passing opermd and coi~trol Infor-
mation to the vcctor unit. The sa la r CPU module
docs not ~ S S the acti~al vector elements to the

vector mo<lule through the vector intcrliicc. U:~thcr.
the vector modulc rcfcrcnccs the \,cctor d:lta
directly over the s%i1 bus. To perform this proccss.
the vector module implements the fiill \;\X memory
rnan'agemnt rtrchitccture.

The cyxodc and operand information is trans-
ferred to thc vector module through the \,ector
interface. The R E X 5 2 0 LISC?; intcrn:~l processor rcgis-
ten (IPRs) for relcl mrl write cq>cl.:~tions to tr:~nsfcr
the inftrmation to the vector intcrfiace. II'Rs are also
used to r e d and writr registcr information stored
both in the interface hardware :mcl o n the vector
rnocli~le.

T l~e vector unit executes most vcctor instructions
in parallel with the scalar c:l1r! execution o f subsc-
quent instructions. For some vcctor instn~ctions,
particularly memory transfer instructions, the
REX520 micrococlc rc;ids a vector unit register at
the end of the instruction. A t this point, the 11EX520
stalls until the vector unit responds and effectively
forces synchronous execution of instrt~ctions.

The hardware implementation of the vector
interface consists of two pieces. The first is an intcr-
face to the Moclel 400 1)AI.. l'his interface allows
microcode-generatecl opcode, opcr:lnd, ;~nd regis-
ter data to be received fro111 ant1 driven to the
RES520. The secontl piece is thc vcctor interface
bus (VIR) that connects the vector :ind scalar mod-
ulcs together over a cable. This interface and the
connection to the V I H are implemented in the V<:

chip on the scalar side and in the vl:<:'l'l. chip on the
\cctor side.

The vector module clock s).stcm is synchronous
to the scalar module. The \'IH runs synchronously
with respect to the vector module clock system for
design simplicity. The v<: chip implements all the
asynchronous control logic that is rcqi~ired to trans-
fer data between the two clocking systems.

Signul Integrity
?'he XRP design had very aggressive timing goals.
For example, 14-11s :md 21-11s d:it:i transfers were
recluired to meet the 28-11s target cycle time. These
requirements were made more difficult by the
potential noise problems th:~t could bc caused by
over 90 drivers switching simultaneously in one
package.

Consequently, signill intcgrity assumed a major
role in the xftl-' design. Signal intcgrity problems
were compoundecl by kwt <;MOS-2 edge rratcs (i.c..
1. j ns), long interconnects (LIP to 23 inches with as
many as 8 loads per signal), and impcckmce mis-
matches associated with capacitive (:MOS receivers.

The VAX 6000 Model 400 Scalar Processm Module

The XRl' signal integrity methodology was
cleveloped e:~rly in the design process. All simula-
tions were made in the SPICE program." Ideally, the
entire module would have been modclcd. However,
the complexity o f the module environment and
computer resource constraints precluded that
approach. Instead, only one driver was used in the
simulations. The effects of intersignal coupling and
parallel switching were included by appropriately
scaling interconnect and package impedances. Even
with this simplified method, an estimated 1500 CPCl
hours on a VAX 8700 system were required to per-
form the XRP signal integrity simulations.

Simulations and Models
A typical simulation included all circuits and any
accompanying parasitics from the external
enabling clock edge through to the receivers. All
simul:ations modeled a three-stage clock receiver,
on-chip resistance capacitance delay, the output
driver, package impedance models for signals and
internallexternal power, receivers, and module
interconnect.

The clock receiver model generated the on-chip
clock phases from the low-skew double phases
received from the clock chip. The model also con-
tained an internal switching model. I t swjtched
several cap:~cit:~nces that were similar to the chip
internal loading. Over a cycle, this modeling met
the chip's maximum internal power. 'The switching
model, together with the chip package impedance
model for internal power, produced worst-case
noise on the chip internal power rails and substrate.

The module interconnect was modeled ;IS trans-
mission lines. The impedance of a transmission line
accounted for the coupling of adjacent signals
switching. For example, if adjacent lines were
switching in the same direction, the effective
impedance would be increased; whereas switching
in the opposite direction would lower the effective
impedance.

Finally, the signal and external power impedance
models were scaled to reflect worst-case coupling,
and size and number of drivers switching in paral-
lel. Collectively, these models accounted for the
effects of an entire bus switching.

Worst-case Conditions
There are two distinct subsets of the simulation
motlels. One set simulates worst-case signal noise or
ringing. The other simulates worst-case, i.e., slow-
est, settling times. These subsets are, for the mc.)st
part, mutually exclusive. In other words, parame-

ters that tend to suppress ringing generally increase
settling times and vice versa.

The overall design had to satisfy the criteria for
achieving specified settling times and simulta-
neously reduce ringing to an acceptable 1eve.l.
Several modeling parameters were simulated to
worst-case status. These parameters are listed in
Table 1. The impact of these parameters can be fur-
ther understood by referring to Figure 3. This figure
represents the same simulation under worst-case
slow and fast conditions.

Table 1 Worst-case Modeling Parameters

Simulation
Worst-case Worst-case
Settling Noise Parameter

CMOS process corner Slow Fast
CMOS junction Maximum Minimum
temperature
Internal power supply Minimum Maximum
Output series resistor Maximum Minimum
Number of drivers Maximum Maximum
switching
Module interconnect Maximum Maximum
length
Interconnect Minimum Maximum
effective ZO

WORST-CASE RINGING [(FAST)

NANOSECONDS

KEY:

VIH - INPUT VOLTAGE HIGH
VIL - INPUT VOLTAGE LOW

Figure 3 Sinzulatio~z under Wo,rst-case
SLozc! and Fast Conditions

Digifal TecbnicnlJour~zal Val. 2 No. 2, .S/)ring 1000

VAX 6000 Model 400 System

Sigtzal Integrity Constraints
The signal integrity analysis had a direct impact on
the design of the scalar CPU at the chip. package,
and module levels. The impact at the chip lcvel was
seen in three areas. The first was the design of the
110 buffers. The second was the determination o f
the optimal series output resistors (on-chip) for
different drivers. The third was the segregation of
the external power buses to eliminate noise at
quiescent drivers.

At the package level, two design decisions were
made. The external power reference planes were
split to prevent coupling of asynchronous buses.
Power was dclivcred to the lower bonding tier to
reduce power supply loop inductances. At the mod-
ule level, several specifications were developed,
which included the following:

All discrete terminations and their placement

The maximum allowable etch length per signal
and order of connection

The maximum allowable package dispersion
etch length

The module etch technology to best reduce
coupling

Cross-organizational cooperation was essential
to the successful production of these design levels.
For example, a joint review of the chip packaging
technology in the design stage ensured that the
design met stringent signal integrity requirements.
Working closely with the module PC designer
ensured optimal component placement and inter-
connect routing. Cooperative efforts such as these
helped ensure the reliability and performance of the
design.

Results
Two correlations of bench versus simulation results
were used for verification purposes. The first corre-
lation was run on a test module early in the design
phase. The difference between simulated and bench
results averaged 4.4 percent. The correlation on the
final X R P implementation presented an average dis-
crepancy of 2 percent, which is less than 200 pico-
seconds @s). These results strongly validated the
modeling methodology. Figures 4 and 5 show the
results of the bench and simulation of the R E X 5 2 0
driving the D-bus. The waveforms exemplify the
excellent correlation obtained on the final module.
(Note: Thc results shown in thcse figures represent
nominal rather than worst-case conditions.)

NANOSECONDS

KEY:

VIH - INPUT VOLTAGE HIGH
VIL - INPUT VOLTAGE LOW

Figure 4 Bench Results of the REX520
Driz~ing the D-btls

NANOSECONDS

KEY:

VIH - INPUT VOLTAGE HIGH
VIL - INPUT VOLTAGE LOW

Figure 5 Simulation Results of the REX520
Driving the D-bw

Signal integrity had a major impact on the design,
performance, and reliability of the Model 400 scalar
CPIJ. All critical signals were carefully simulated
and analyzed prior to chip and module implementa-
tion. The Model 400 is currently the fastest \'AX
system in production. The Model 400 also has the
distinction of needing no revisions, from prototype
to final product, for signal integrity purposes.

Performance
The VAX 6000 Model 400 system, based on the X R P
module, represents the highest performance VAX
system yet released. Performance ranges from
nearly 7 VllPs in a single-processor system to
36 VUPs in a six-processor system. The VAX GOO0

34 Vol 2 No. 2, Spring 1990 Digital TecbnicalJottmal

The V U GOO0 Model 400 Scalar Processor Module

Model 410 system provides roughly twice the
performance of the previous generation CMOS-
based system, the VAX 6000 Model 310. It also
represents a 28 percent performance gain over the
previous generation ECL system, the VAX 8700 sys-
tem. (Note: One VUP is equal to the performance of
the VAX-111780 system.)

Table 2 compares the performance of the
VAX 6000 Model 410 system to other VAX systems.

Table 2 Single-processor Performance
Comparison

System VUPs

VAX 1 11780
VAX 6000 Model 21 0

VAX 6000 Model 31 0

VAX 8700
VAX 6000 Model 41 0

Up to six XRP modules may be configured in a
single VAX 6000 Model 400 system. These modules
deliver up to 36 VuPs. Ideally, a linear performance
increase is expected as more processors are added
to a multiprocessor system. However, a number of
factors limit the overall system performance, such
as contention for bus bandwidth, increased mem-
ory latency, and additional software overhead.

A great deal of effort was expended in the
Model 400 design to limit the amount of perfor-
mance lost in a multiprocessor system.

A number of multistream benchmarks were
assembled. 'These benchmarks were run on the
VAX 6000 Model 400 system to efficiently measure
performance by simulating real work environments
across a number of areas. The results for each
system are shown in Table 3.

Table 3 Multiprocessor Performance
Comparison

WorkArea 1 CPU 2 CPUs 4CPUs 6 CPUs

Engineering 1 .OO 1.92 3.71 5.31
Scientific 1 .OO 1.92 3.74 4.78

Commercial 1 .OO 1.98 3.80 5.25

Acknowledgments
The authors would like to acknowledge the follow-
ing people for their contributions to the XRP mod-

ule development effort: Dick Bagley, Jean Basmaji,
Rick Calcagni, Glenn Gamey, John Guildoo, Andy
Ladd, Bill LaPrade, Bob McCarty, Dina McKinney,
Curt Miller, Roland Ouellette, Dave RouiUe, John
Sweeney, Mike Uhler, mike Warren, and John
Wilson.

References

1. H. Durdan et al., "An Overview of the VAX

6000 Model 400 Chip Set," Digital Technical
Journal, vol. 2 , no. 2 (Spring 1990, this issue):
36-51.

2. B. Allison, "An Overview of the VAX 6200 Family
of Systems," Digital Technical Journal, vol. 1 ,
no. 7 (August 1988): 10-18.

3. D. Slater et al., "Vector Processing on the
VAXvector 6000 Model 400," Digital Technical
Journal, vol. 2, no. 2 (Spring 1990, this issue):
11-26.

4 . J. Bartoszek et al., "VAX 6000 Model 400 Physical
Technology," Digital Technical Journal, vol. 2,
no. 2 (Spring 1990, this issue): 52-63.

5. J. Winston, "The System Support Chip, a Multi-
function Chip for CVAX Systems," Digital
Technical Journal, vol. 1 , no. 7 (August 1988):
121-128.

6. SPICE is a general purpose circuit simulator
program developed by Lawrence Nagel and Ellis
Cohen of the Department of Electrical Engi-
neering and Computer Sciences, University of
California, Berkeley.

Digital TecbnicalJournal Vol. 2 No. 2, Spring 1990 3 5

An Overview of the VAX 6000

W Hugh Durdan
William J. Bowhill

John I;. Brown
William K Herrick

Richard C. Marcello
Sridhar Samudrala

G. Michael Uhler
Nicholas Wade

Model 400 Chip Set

The VAx GOO0 Model 400 processor is a CMOS implementation of Digitalk K4X

architecture, offSwing an average of seven times thepe$omnce of the VRY-11/780
processor at a cycle time of 28 ns. The processor c o m p e s five custom chips irnple-
rnented in Digital k proprieta y CMOS-1 and CIMOS-2 semiconductor processes. The
chg set &st@ incorporates the best features of the previous VRY 8700 and VUf V f l

designs and in addition implements new perfomnce features. Among these are a
l a w translation buffer and primary cache, a de-multiplexed 27-bit address and
64-bit data bzls, and a tight& coupled 128KB backup cache. Thefive chips, which are
designed for multiprocessing environments, are the REX520 CPU, the floating point
accelerator, the VC vector and cache controller chip, the RSSC system support chip,
and the CLK clock chip.

Introduction
The \)AX 6000 Model 400 chip set consists of five
custom VLSI (very large scale integration) chips
implemented in Digital's CMOS- 1 and CMOS-2 pro-
cesses. The five chips are the CPU chip (REX520),
the floating point accelerator chip (F-chip), the vec-
tor and cache controller chip (VC chip), the system
support chip (RSSC), and the clock chip (CLK chip).
These chips are designed to be used in multiple-
system environments, of which the vAx 6000
Model 400 series is one such example.'

The REX520 chip is a pipelined VAX CPU that
implements the VAX base instruction group and
controls the operation of all other chips.* The
design for the REX520 is an evolution of both the
previous generation CMOS processor chip and the
VAX 8800 processor.'." The REX520 is logically
divided into four sections: the I-box, E-box, M-box,
and bus interface unit (BIU). The I-box fetches and
decodes VAX instructions, and provides this infor-
mation to the E-box. The microcode-controlled
E-box parses instruction specifiers, executes VAX

instructions, and processes interrupts and excep-
tions. The M-box contains a 64-entry, fully associa-
tive translation buffer, and a 2-kilobyte (KB) on-chip
primary cache. The BIU acts as the interface
between the REX520 and the interchip environ-
ment described below.

The F-chip is a companion chip to the REX520.
It accelerates the computation phase of the VAX F-,
D-, and G-format floating point instructions, and
the longword-length integer multiply instruction.
The F-chip receives control information from the
REX520, operands from either the REX520, the
backup cache, or memory, and returns status and
results to the REX520.

The VC chip provides the tag store and necessary
control for a 128KB backup cache that is imple-
mented in external random access memory (RAJM)
on the CPU module. The chip implements a dupli-
cate tag store for the REX520 primary cache and an
interface through which the system environment
can determine if data is cached at a particular
address. Through a vector interface bus (V[B), the
VC chip also provides the control and status inter-
face between the CPLJ module and an optional
vector module.

The Rssc chip incorporates the common core
of functions required to support the VAx 6000
Model 400 chip set in a system environment. RSSC
supports read-only memory (ROM) and electri-
cally erasable programmable read-only memory
(EEPROM), and contains 1KB of battery backed-up
RAM, the console terminal universal asynchronous
receiver/transmitters (UARTs), interval and pro-
grammable timers, and a time-of-year clock.

36 Vo1. 2 1Vo. 2, Spring 1930 Digital TecbnicalJournal

An Overview o f the VAX 6000 Model 400 Chip Set

The CLK chip receives a 143-megahertz (MHz)
oscillator input. The chip provides four low-skew
clock phases to the chip set and the module
environment.

Interchip and Module Environment
The chips in the Model 400 chip set are connected
together and to the rest of the module environment
as shown in Figure 1.

Unlike the previous generation CMOS processor
design" the Model 400 chip set implements sepa-
rate 27-bit address and 64-bit data buses. Backup
cache reads, writes, and fills are done with the
address on the A-bus. The data is driven to or
received from the parity protected D-bus. Control
for the backup cache RAMS is provided by the VC
chip on dedicated control lines.

Memory, 110 space, and external processor regis-
ters are accessed by driving the address to the A-bus
and the data to the D-bus. ROM and EEPROM control
is provided by the RSSC on dedicated control .lines.

F-chip operands are driven to the D-bus from the
REX520, backup cache, or memory to the F-chip.
Results are driven back to the REX520 on the D-bus.
Control and status information for these transfers
is performed on a private bus between the REX520
and F-chip.

Vector instructions are decoded by the REX520.
The opcode and instruction operand information is
transferred from the REX520 to the VC chip. From
there, the information is transferred to the VlB cable
and then to the optional vector unit. Note that only
status and scalar operands (contained within the
instruction stream) are transferred on the VIB. Data

transfers into and out of the vector register f ie are
performed by the vector processor through a direct
port to the memory subsystem.

Interrupt requests are received by the REX520
from the module environment on nine dedicated
interrupt request lines. Five of these lines are for
requests for special purpose interrupts, such as
interval timer requests.

Per$omzance Goals and Design
Considerations
The goal of the design was to meet or exceed the
performance of the VAx 8700 processor. To meet
this goal, a 40-nanosecond (ns) cycle time was
required under worst-case conditions. As the design
progressed, it became clear that the CMOS-2 pro-
cess, in which most of the chip set is implemented,
offered enough performance to allow the target
cycle time to be decreased.

As a result, the cycle time was reduced from 40 ns
to 28 ns. At this cycle time, the VAX 6000 Model 4 10
system runs at nearly 7 vUPs in most applica-
tions, or roughly 1.3 times the performance of the
VAX 8700 processor. (The acronym VUPs stands for
VAX units of performance; 1 V U P equals the perfor-
mance of a VAX-111780 system.) The performance
of the system may be further expanded by adding
processors to the system, to a maximum of 35 VUPs
in the VAX 6000 Model 460.

To achieve the performance goals, a number of
microarchitectural trade-offs were made relative to
the \,AX 8700 and previous VLSI VAX designs. In
essence, the best features of each were incorporated
into the design of the \'AX 6000 Model 400 chip set.

A-BUS

VIB CABLE

4 A
D-BUS

INTERRUPT
1 CONTROL. 1 1 1 CONTROL, 1

Figure I VAX 6000 Model 400 Interchip Environment

Digital TechnicalJoumal VoL 2 No. 2, Spring 1990 37

RSSC ROM.
EEPROM

REQUESTS

CLOCKS ! t t " t
t

REX520
STATUS - F-CHIP

CONTROL
VC CHIP w R A M S

VAX 6000 Model 400 System

For example, the REX 520 chip and the F-chip are
fully pipelined designs that make shorter cycle
times possible and improve performance. The
RI:XjZO design also includes read-and-run and
write-and-run features. These features decouple
subsequent execution in the CPU pipeline from the
completion of references to cache and memory. As
opposed to previous VLSI designs, a larger transla-
tion buffer and primary cache and a de-multiplexed
27-bit address and 64-bit data bus in the REX520
also improve performance. The tightly coupled
128KR backup cache significantly reduces the read
latency sccn by the CPU when a read misses in the
primary cache. I t also reduces the read traffic seen
by the memory subsystem.

The chip set was designed from the beginning
with multiprocessing in mind. Becausc caches must
remain coherent across all CPUs in a system, a
method must be provided to invalidate cached loca-
tions in all other caches when one cPr: writes to
that location. One option would have been to mir-
ror all writes done by any CPU in the system onto
the A-bus of all C131's. However, mirroring is a rela-
tively expensive operation, especially when most of
these addresses are not cached in any other CPU.

Instead of the mirroring method, we chose to
implement a duplicate copy of the primary cache
tag store in the VC chip and to implement a low-
overhead port, the I-bus. The module environment
uses the I-bus to determine if the address is actually
cached by either the primary or the backup cache.
With this method, only those invalid addresses that
correspond to cached locations must be mirrored
onto the A-bus.

CMOS and Packaging Technologies
The chip set was implemented in Digital's proprie-
tary second-generation complementary metal
oxide semiconductor technology, CMOS-2. We
selected CMOS as the chip processing technology
because it offers high density, high reliability, low
power, and low-cost performance.

Table 1 Summaw of Chip Statistics

By developing the technology in-house, Digital
has gained competitive performance and tirne-to-
market advantages for its low-end and midrange
products. A summary of the transistor and pin-
count statistics for the chip set is shown in Table I .

CMOS-2 is an N-well, P-epitaxial, double-metal,
5-volt process with 1.5 micron minimum feature
sizes. With respect to CMOS-1, the first generation
process, CMOS-2 offers a 25 percent reduction in
lateral and key vertical dimensions, a 78 percent
improvement in circuit density, and nominally a
33 percent improvement in chip performance. The
VAX 6000 Model 400 chip set cycle time and cir-
cuit density requirements helped drive the develop-
ment of the process that has been optimized for
microprocessor chip performance. Details of the
process features and capabilities are shown in
Table 2.

Metal oxide semiconductor field effect tran-
sistors (MOSFETs) are built in a P-epitaxial layer
(30 ohm-cm) grown on a low-resistance P+ silicon
substrate (0.02 ohm-cm). The high resistance of the
epitaxial layer keeps parasitic junction capacitance
low and allows better transistors to be fabricated.
The low-impedance substrate dramatically reduces
latchup, a phenomenon in which parasitic bipolar
transistors are triggered into a sustained high cur-
rent mode. Latchup disrupts normal circuit opera-
tion and often destroys the chip.

The P-channel MOSFETs are made in the N-doped
well regions of the epitaxial layer. The N-channel
MOSFETs are made in the as-grown P-regions of
the epitaxial layer. This process optimizes the
mobility of the N-channel MOSFETs and overall
circuit speed.

An N+ polysilicon (polycrystalline silicon) and
tungsten-disilicide sandwich material, polycide,
forms the MOSFET gates. Polycide resistance is in
order of magnitude lower than that of the poly-
silicon used in CMOS-1. The resulting smaller para-
sitic delays across the MOSFET gates and local
interconnections help improve circuit speeds.

Transistor Count

Chip
Signal Power Control 81
Pins Die Size Dissipation Memory Data Path

-

REX520 CPU 157 12mm x 12mm 6W 180K 140K
VC cache controller 178 10.7mm x 10.8mm 2.5W 184K 34 K
F-chip floating point 103 12.7mm x 11 mm 4W - 134K

CLK clock 2W
Total:

38 Vol 2 No. 2, Spring 1330 Digital TecbnicalJo~~rnul

An Overview of the VAX 6000 Model 400 Chip Set

Table 2 CMOS-2 Process Features and Capabilities

Effective channel length
Metal 1

Metal 1 contact

Metal 2
Metal 2 contact

Gate oxide thickness
Metal 1 field oxide
Metal 2 field oxide
Polycide resistance

Typical gate delay
Polycide equivalent gate delay length

Metal 1 equivalent gate delay length

0.9 microns
3.0 micron width, 1.5 micron space

1.5 micron x 1.5 micron

3.75 micron width, 1.5 micron space
1.5 microns x 1.5 microns
225 angstroms
1.1 microns

1.9 microns
2-4 ohmslsquare

300-500 picoseconds
400 microns
5000 microns

Metal 2 equivalent gate delay length 8000 microns

Other interconnections are accomplished
through two layers of aluminum. The f i s t layer,
metal 1, can connect to either polycide or the
N+/P+ sourcetdrain regions via metal 1 contacts.
The upper layer, metal 2, can connect to metal 1
through metal 2 contacts. No other connections are
allowed. Based upon its parasitic delay charac-
teristics, polycide is used only for local interconnec-
tions. Metal 1 is used for signals communicating
across distances less than half of the chip dimen-
sions. Metal 2 is used for global signals, clock dis-
tribution, and power and ground distribution.

Because of the speeds and complexities of the
VAX 6000 Model 400 chips, noise is a particularly
difficult problem for the chip designer. CMOS-2
contains a deep P+ implant that can be used to
provide a very low resistance connection between
the top surface of the chip and the P+ substrate. The
chip designer uses this deep P+ implant to reduce
substrate noise that can upset the operation of
dynamic circuits.

The VAX 6000 Model 400 chips were packaged in
custom-designed, rigid perimeter-leaded, single-
chip ceramic packages. The packages included four
power and ground planes to help maintain inter-
chip signal integrity and allow full-speed operation
of the chip set.5

The REX520 CPU Chip
The REX520 CPU chip is a third-generation, single-
chip vAX microprocessor. The REX520 provides the
hardware and microcode sufficient to parse
operand specifiers, execute instructions, and han-
dle interrupts and exceptions. It cooperates with
the F-chip to implement the base instruction group
of the Vtuc architecture.

Although the REX520 hardware organization
and placement resemble that of the previous gener-
ation microprocessor, the REX520 performance
goals were met by tailoring the microarchitecture
more closely to the VAX 8700 processor."hny
deviations from the microarchitecture of the ECL-
based VA?i 8700 system were made in the CMOS-
based REX520 to compensate for technology
differences and to exploit the beneficial aspects of
VLSI design. A photomicrograph of the REX520 is
shown in Figure 2.

The chip employs a six-level pipelined engine
built around three autonomous pipes. These pipes
provide simultaneous instruction prefetch and
decode, instruction formatting, operand reference,
execution, address translation and result store, and
110 access.

As shown in Figure 3, the major hardware
functions of the REX520 are partitioned into the
following:

An instruction box (I-box) that contains the
instruction decoder and a 16-byte prefetch
queue (PFQ)

A microcode-controlled execution box (E-box)
that provides the capability for data manipu-
lation in a 32-bit data path

A memory box (M-box) that implements VAx

memory management by utilizing a 64-entry,
fully associative translation buffer

A 2KB write-through, direct-mapped primary
cache (P-cache) with a quadword (8 byte) fi size

A bus interface unit (BIU) that controls a fully
handshaked, synchronous chip bus

Digital TecbnicalJournal Vol. 2 .No. 2, Spring 1990

VAX 6000 Model 400 System

Figure 2 Photomicrograph of the REX520 Chip

REX520 Pipeline
The REX520 pipeline contains six functional seg-
ments that cooperate in the execution of instruc-
tions. As shown in Figure 4 , there are two segments
in the I-box, three microcode-controlled segments
in the E-box and M-box, and a single segment for the
BIU and P-cache control.

The I-box decodes the vAX instruction stream.
A 16-byte prefetch queue (PFQ) is filled with the
instruction stream asynchronously to the pipeline
control during otherwise unused bus cycles. I-box
segment 1 updates the PFQ and parses the next
piece of the instruction stream. This segment sends
microcode addresses to the E-box microsequencer.
Segment 2 formats immediate data, the opcode,

and the instruction data length for the E-box.
Collectively, this information is called the context
for the instruction.

The I-box divides each vAX instruction into a
microcode subroutine, or microflow, for each
specifier, and a microflow for the execution of the
instruction. The control programmed logic arrays
(I'LAs) in the [-box cause it to sequence through the
specifiers of each instruction, sending a microflow
address to the microsequencer, and immediate data
(if needed) to the E-box for each specifier. When the
last specifier is parsed, the I-box sends a microflow
address, the opcode, and the data length of the
instruction to the E-box for the execution of the
instruction.

40 R)I. 2 No. 2, Spring 1990 Digftal TecbnicalJournal

An Overview of the VAX 6000 Model 400 Chip Set

MICROFLOW
ADDRESS

MICROSEQUENCER

MICROINSTRUCTION 4.1- ADDRESS-'

MICROINSTRUCTION

DATA
BUS

Figure 3 REX520 Block Diagram

The I-box pipeline runs autonomously to the
E-box pipeline. That is, the I-box segments con-
tinuously parse instruction stream data, making
microflow addresses available. The 1-box pipeline
advances whenever the microsequencer accepts a
microflow address.

The microsequencer in the E-box performs a read
of the 1696 word control store each cycle, overlap-
ping in time with I-box segment 2. It presents the

fetched microinstruction to E-box segment 1. The
microinstruction is pipelined forward to E-box seg-
ments 2 and 3 in consecutive cycles.

The microsequencer fetches one or more
microinstructions of a microflow starting at the
initial microflow address supplied by the I-box.
If a microflow contains more than one micro-
instruction, the microsequencer computes subse-
quent intraflow microaddresses and fetches the
corresponding microinstructions. A field within
the microinstruction indicates the end of each
microflow.

The E-box performs all the address and data
manipulation required for the REX520 to adhere to
the VAX architecture. The three E-box segments
operate under microinstruction control; the
operand fetch segment reads operands from gen-
eral-purpose registers (GPRs) or from the memory
data (MD) file and presents them to the functional
units; the execution segment performs data manip-
ulation on the operands; and the result store seg-
ment writes results to registers or memory. The
E-box pipeline segments are fully folded, i.e., each
segment simultaneously operates on a different
microinstruction.

The performance of memory read accesses is
improved using a read-and-run technique in the
E-box. The destination for data stream memory
reads is the E-box MD file. Microinstructions that
initiate a memory read simply queue the request to
the BlU. The microflow may then continue, without
waiting for the request to complete. In this manner,

CACHEACCESS

I-BOX
SEGMENT 1

INSTRUCTION
PARSE AND
DECODE

MICROFLOW
ADDRESS
GENERATION

Figure 4 REX520 Pipeline Segments

Digital TecbnicalJournaL Vol. 2 No. 2, Spring 1990 4 1

1
BIU/P-CACHE
SEGMENT 1

E-BOX/M-BOX
SEGMENT 3

RESULT STORE

ACCESS
CHECKING

I-BOX
SEGMENT 2

INSTRUCTION
DATA AND
CONTEXT
FORMATTING

CONTROL STORE
ACCESS

E-BOX/M-BOX
SEGMENT 1

OPERAND
FETCH

4 +

E-BOX/M-BOX
SEGMENT 2

EXECUTION

VIRTUAL
ADDRESS
SELECTION A N D
TRANSLATION

VAX 6000 Model 400 System

some or all of the time required for memory
accesses is hidden during productive microflows.
The request completes when the B ~ u and memory
subsystem return data to the MD file.

Because subsequent microinstructions may refer-
ence an MD file location for which a memory read
has not yet completed, M D file accesses are syn-
chronized through a valid bit mechanism. Each MD

file location has a valid bit that is reset when a mem-
ory read is started. The bit is then set when data is
written to the file. If a microinstruction attempts to
reference an MD file location whose valid bit is not
set, the pipeline stops advancing (stalls) and waits
for the data to be returned.

The three M-box segments are microcode-
controlled and typically run synchronously with
the E-box segments. M-box segment 1 decodes the
current microinstn~ction. Segment 2 then selects
an appropriate address source and performs a vir-
tual to physical address translation if required. The
final segment issues the physical memory request to
the BIU.

During normal pipeline flow, the BIU and P-cache
operate in a single pipeline segment which is over-
lapped with segment 3 of the E-box/M-box pipeline.
The BIU acts as an arbiter for the external and some
internal buses, and supplies control to the P-cache.
The BIU receives address and memory request
information from the M-box. The BIU then decides
whether the M-box or an external reference should
receive service from the P-cache and sends the
appropriate information to the p-cache to process
the request. The BIU sends read and write requests
that cannot be serviced by the P-cache to the off-
chip memory subsystem.

Write buffers in the BIu improve the perfor-
mance of memory write operations. Microinstruc-
tions that initiate memory writes queue the request
to the BIU, and the microflow continues without
waiting for the request to complete. In this manner,
the time required for memory writes can be hidden
under productive microflows. The BIU can store up
to two quadword writes (32 bytes) in its buffers
while waiting for the memory subsystem to become
available.

Adaptations for VLSI
VLsI designs have relatively good signal integrity on
the major bus structures within a chip. However,
signal integrity diminishes when crossing a chip
boundary because off-chip bandwidth is incapable
of sustaining the internal data rates. This character-
istic of VLSl design influences microarchitecture

greatly, as demonstrated by the P-cache and control
store designs.

The \'AX 8700 system uses cache memory to
decrease the effective memory access time by
employing a 6 4 ~ ~ cache in ECL RAM with a single-
cycle access. I t was not possible to implement a
RAM of this size on the REX520, and signal integrity
constraints dictated a minimum of three cycles to
access off-chip RAM. The REX520 compensates by
using a two-level cache. The REX520 has a 2KB pri-
mary cache on the chip with a single-cycle access,
and there is a 128KB off-chip secondary cache. The
cache hierarchy reduces the effective memory
access time sufficiently to meet the performance
goals, and it keeps the off-chip bandwidth within
reasonable rates.

Similar signal integrity constraints are imposed
on the REX520 control store design. The V k Y 8700
system uses a 16K entry control store implemented
in ECL RAM. The VAX 8700 system designers use the
large control store address space to improve per-
formance and simplify hardware. The control store
access of the VLSI REX520 cannot cross a chip
boundary and keep pace with the fast internal cycle
time. Because of these limitations, an on-chip con-
trol store ROM was used. Chip area limitations con-
strained the size to 1696 entries. The designers of
the REX520 compensated for the lack of control
store address space by altering the coding style to
make microflows more serial than the VAX 8700
system microflows. Additional hardware features
also helped to absorb some of the work previously
done in microcode.

The operand specifier microflows offer an exam-
ple of microcode space compression facilitated
through hardware enhancements. The REX520
microflows group similar specifier types together
and provide a general routine for each. The general
routines are parameterized in hardware to resolve
the differences in specifier types within each group.
In this way, the size of the microflow is minimized,
and the performance characteristics of a dedicated
microflow are preserved.

Each general specifier microflow performs the
function appropriate to the specifier mode by using
a parameterized access type and data length. For
example, a microinstruction in the specifier flows
may make an access-type dependent memory
request. I f the I-box supplied a read access type, the
memory request hardware initiates a read. If the
I-box parsed a result store specifier, the write access
type parameter causes hardware to initiate a write.
Operand data length is supplied in a similar fashion.

kt)/, 2 No 2, Sp17ng I990 Digital TechnicalJoumnl

The general microflows leave operands in futed
locations in the E-box MD file. The exact location in
the MD file is also supplied by the I-box.

Parameterizing the microflows with the access
type, data length, and MD file location allows the
generalized specifier rnicroflows to be shared.
The MD file parameter creates an independence
between the specifier and execution microflows.
The same specifier microflow can then be used for
each specifier mode, independent of where it
actually appears in the instruction. The execution

y STAGE 4

An Ovm~iew of the V M 6000 rModel400 Chip Set

microflow also needs to know nothing about the
kind of specifier that supplied the operand.

me F-chip
The floating point accelerator chip, F-chip, is
the companion processor chip to the REX520 for
floating point operations in VAX 6000 Model 400
systems. A photomicrograph of the chip is shown
in Figure 5.

The F-chip implements all \rAX base instruction
group floating point instructions and the longword

ADMR [

'ERFACE =
- - .

Figzire 5 F-chip Photomicrograph

Digital TechnicalJournaI Vol. 2 No. 2, Spring 1970 4 3

VAX 6000 Model 400 System

integer multiply instruction. The data types irnple-
mented by the F-chip are F-floating (1-bit sign, 8-bit
exponent, 24-bit fraction), D-floating (I-bit sign,
8-bit exponent, 56-bit fraction), G-floating (1-bit
sign, 11-bit exponent, 53-bit fraction), and integers
(8-bits, 16-bits, and 32-bits).

Unlike the VAX 6000 Model 200 floating point
chip, the F-chip employs a uniformly pipelined
architecture that has performance which is inde-
pendent of the operand values. Early in the design it
was decided to use a pipelined microarchitecture in
order to use the same execution core in future
designs, such as the VAX 6000 Model 400 vector
processor floating point unit. Consequently, the
execution core of the F-chip was designed to
include low latency for scalar applications and high
throughput for vector processing.6 The core exe-
cutes most instructions in four cycles. Double-
precision and integer multiply instructions take
five cycles, and divide operations take 13 to 24
cycles, depending upon the data type.

Microarchitecture and Imphentation
The F-chip is composed of an interface section and a
five-stage execution core. A block diagram of the
F-chip is shown in Figure 6. The F-chip interfaces to
the rest of the VAX 6000 Model 400 system through
the D-bus, eight status and control lines, and four
bus control signals. The interface section receives
the opcode from the REX520, the operands from
the CPU chip, and cache and memory data on the
D-bus. The interface section decodes the opcode
and receives the required number of operands. It
assembles the different pieces of the operands and
supplies formatted operands to the execution core.
After the execution of the floating point operation,
the output interface transfers the formatted result
back to the CPU chip.

The execution core consists of a divider, which is
bypassed in all operations except division, and four
pipelincd stages that are uniformly utilized in the
execution of all instructions. Each stage has a frac-
tion data path, control, and sign and exponent data

INPUT IMTERFACE

t t t t
I 1

DNIDER n CONTROL

I I I I I I

4 t + 4

PI I

t t t t

Figure 6 F-chip Execution Core

t * t *

Vol. 2 No. 2, Spritig 1990 Digital TechnicalJournal

I I I I

STAGE 2

CONTROL

[a -1
NORMALIZER cc

ExpONENT
PROCESSOR

-
CONTROL -

+ -
ADDER - CONTROL o PROCESSOR

STAGE

OUTPUT INTERFACE

PROCESSOR

STAGE 1

CONTROL STAGE 3

-
-

PROCESSOR

An Overview of the VXX 6000 Model 400 Chip Set

paths. The fraction data path, the most complex
portion of the chip, is 60 bits wide.

The divider fraction data path consists of the
hardware divider array and quotient logic. The
divider array implements an iterative radix-2 SRT
nonrestoring division scheme, and generates three
signed quotient bits per cycle.' The quotient and
remainder are driven on consecutive cycles to
stage 1 of the pipeline.

The stage 1 fraction data path consists of a 60-bit
adder, the multiplier recode logic, and the fraction
detection logic. Stage 1 receives its inputs from the
interface section, or from the divider for divide
operations. In add and subtract operations, stage 1
is used primarily to compute the difference
between the exponents of the two operands. In
parallel, stage 1 is also used to determine the frac-
tion difference for exponent differences of 0 and 1.

FRACTION 1 FRACTION 2

CONTROL R
SlGN 1

EXPONENT 2

CONTROL 0
SHIFT A M O U N T

CONTROL n
SlGN A N D
EXPONENT C

FRACTION R E S U L T SIGN EXPONENT
RESULT RESULT

Figure 7 F-chip Hardware for Addition
and Subtraction

(See Figure 7.) For the effective subtract operation,
stage 1 uses an exponent difference prediction
scheme in which the least significant two bits of the
two exponents are examined to determine whether
0 or 1 bits of alignment are required.

If the actual exponent difference is 0 or 1, stage 1
selects the adder result. Otherwise, stage 1 passes
the original operands to the next stage for align-
ment. In multiplication flows, the: stage 1 adder is
used to compute three-times the multiplicand, and
the recode logic generates the recoded multiplier
bits for stage 2. In divide operations, stage 1 is used
to assimilate the redundant quotient and remainder
vectors into a two's complement form.

The stage 2 fraction data path consists of a
dynamic 57-bit right shifter, unified leading one or
sticky-bit detection logic, and a multiplier array.
(The sticky-bit indicates whether a "1" was shifted
out of the data path during alignment operations.)
The shifter is used in add-like operations for align-
ing the fractions. The leading one or sticky-bit logic
determines the normalization amount during sub-
tract operations and integer-to-floating-point con-
versions. This logic also determines the sticky-bit
during alignment in effective subtract flows. The
multiplier array implements a radix-8 modified
Booth algorithm and consists of nine carry save
adder (CSA) rows. It is traversed once for single-
precision formats and twice for integer and double-
precision formats. The hardware organization for
the multiply operation is shown in Figure 8.

Stage 3 of the pipeline consists of a 60-bit adder
and a 57-bit dynamic left shifter for normalizing the
intermediate results. The fraction adder is used in
multiply operations to assimilate the product sum
and carry vectors, and in add-like flows to add or
subtract the aligned operands.

Stage 4 of the pipeline consists of a 60-bit adder
used for rounding and negation of the final result,
and the exception detection logic. The exception
handling is done with a PLA which detects and sig-
nals overflow, underflow, zero results, and invalid
operands.

The control is hardwired (no microcode is used)
and distributed among the pipeline stages. Each
stage has autonomous control implemented with
control decoder PLAs. Each stage supplies control
information to the next stage one cycle ahead of the
data. This enables the data path control signals to
set up before the data is propagated to the input of
the stage. The distributed control scheme permits
simultaneous execution of a divide and four other
instructions in the pipeline.

Digital TecbnicalJournnl Vo1. 2 No. 2, Spring I990 4 5

VAX 6000 Model 400 System

FRACTION DATA PATH

MULTIPLICAND

ADDER

3X MULTIPLICAND

RECODER/IPPR

N SELECT
W
a
2
0

KEY:

SF. CF S U M AND CARRY OUTPUTS
TC TWO'S COMPLEMENT VECTOR
IPP INITIAL PARTIAL PRODUCT
S, C SUM A N D CARRY INPUTS
PR PRODUCT
FP FRACTION PRODUCT

Figure 8 F-chip Multiplication Fraction
Data Path

The exponent data path in each stage is 13 bits
wide. Each stage has a 13-bit adder and detection
logic for detecting zero operands, exponent differ-
ences, and exception conditions. To compute the
absolute value of the exponent difference in add,
subtract, and convert operations, the stage 1 expo-
nent data path has an additional 13-bit adder and
selection logic.

The microarchitecture and the hardware orga-
nization of the F-chip were chosen to efficiently
implement the three basic operations addtsubtract,
multiply, and divide. As an example of this effi-
ciency, the adder in stage 1 is used in both the
effective subtract flow and the multiplication and
division flows. This flow overlap permits the execu-
tion of effective subtraction in only four steps, inde-

pendent of the data, as opposed to five steps
without the overlap.

For multiplication, this organization enabled the
use of a radix-8 algorithm, which requires the
computation of three-times the multiplicand. The
implementation of all other operations was realized
with the addition of minimal logic.

The VC Chip
The VC chip, or the backup cache controller and
vector interface chip, implements the second level
of a two-level cache structure and the interface to
an optional vector processor. A photomicrograph
of the vC chip is shown in Figure 9.

Cache Control Functions
The R E X 5 2 0 contains a 2KB primary cache data and
tag store. The VC chip contains the tag store and
control logic to perform reads, writes, and invali-
dates to a 1 2 8 K B secondary, or backup, cache. The
backup cache is direct-mapped and write-through.

The VC chip backup cache tag store is organized
such that one tag and four valid bits correspond to
every four-octaword (64-byte) block of the cache.
Each valid bit corresponds to a one-octaword sub-
block, as illustrated in Figure 10. When a cache tag
miss occurs on a read, a block is allocated, a sub-
block is filled, and the corresponding valid bit is set.
When a cache tag compare is successful but the
valid bit is not set, a sub-block is filled from memory
and the corresponding valid bit is set.

The Backup Cache Data Store
The backup cache data store is built with off-the-
shelf CMOS static RAMS, which are located on the
module. The discrete cache data RAMS are orga-
nized as 8 bytes wide (the width of the D-bus) by
16,384 locations deep. In addition, there are eight
bits of parity, with one bit corresponding to each
data byte. Fourteen bits of the VAX physical address
are needed to access the cache, as shown in Fig-
ure 1 1 . When the backup cache returns data to the
R E X 5 2 0 primary cache, it returns one quadword,
the fill size of the primary cache.

The Invalidate Filter Bus, I-bus
As mentioned, the chip set implements a special-
purpose bus, the I-bus, that allows the memory
subsystem filter invalidates. In addition to this bus,
the VC chip also implements a copy of the R E X 5 2 0
primary cache tag store for invalidate filtering.

1/01. 2 No. 2 5pring 1990 Digital TecbnicalJournal

An Overview of the VHX GOO0 Model 400 Chip Set

. ' V ' '

BYTE MASK AND , .
CHlP SELECTS

CACHE
CONTROL 1
LOGIC

Figure 9 VC Chip Pbotomicrograpb

VALID BITS BACKUPCACHE

ONE SUBBLOCK
(FILL SIZE)

FOURTH VALID
BIT

OCTAWORD 3 I

SECOND VALID
BIT OCTAWORD 1

Figure 10 Tag, Valid Bits, and Backup Cache Store

VC CHlP
TAG STORE

Digital TechnicalJournal Vol 2 No. 2, S/~rr?rg I990

THIRD VALID
BIT OCTAWORD 2

ONE BLOCK - (ALLOCATION
SIZE)

VAX 6000 Model 400 System

ADDRESS BIT

I I CACHE ENTRY TAG I I1
1/0 SPACE. NOT CACHED 1 I

BACKUP CACHE INDEX

UNUSED !-I
Figure 11 VAX Pbydxzl Aliciress and Backup

Cache RAMS

When an address is sent to the VC chip on the
I-bus, the VC chip notifies the memory interface as
to whether or not the address produced a hit in
either cache. The memory subsystem broadcasts
the invalidate onto the A-bus only if a match was
detected. This mechanism significantly improves
performance in multiprocessor systems by reduc-
ing the overall traffic on the processor buses.

The Vector Interface
The VC chip implements the interface logic that
allows an optional vector unit to bc connected to
the scalar processor module. The vector unit has
the potential to significantly increase the perfor-
mance of many analytical applications.

If the vector unit is present in the system, the
R E X 5 2 0 scalar CPU chip decodes vector insuuc-
tions and passes operand and control information
to the vector module through the VC chip vector
interface. The vector unit, using its own memory
interface, accesses vector data from memory.

The vector and scalar n~odules are connected
through the vector interface bus (VIB). The VC chip
is the sole master of the VlB. The VlB is asyn-
chronous to the VC chip and synchronous to the
vector module The VC chip implenicnts the asyn-
chronous control logic required for transferring
data between the two modules. The clecision to
operate the VIB asynchronously with respect to the
VAX 6000 Model 400 mcxlule was made in order to
simplify the &sign of the vector modulc.

Xbe RSSC Chip
A variety of support logic is required to com-
plete the functionality of a VAX CPr: module. The
VAx 6000 Modcl 400 systcm support chip (RSSC)
integrates on a single chip the common core of
functions necessary to support the VAX system
environment. A photomicrograph of the RSSC is
shown in Figure 12.

The RSSC provides the operating system with the
hardware primitives needed to implement the boot
and console routines, and with several mcssary
timing mechanisms. The RSSC is designed to inter-
face directly with the VAX GOO0 Model 400 chips,
and is based on the system support chip, or ssc.'

The decision to base the RSSC chip on the previ-
ous SSC design was made because we could take
advantage of an existing core of logic which already
implemented the required functions. The SSC was
fabricated in the CMOS-1 process and had been thor-
oughly debugged and qualif~ed for the MicroVAX
3500/3600 system.' The challenge faced by the
RSSC team was to design a new pad ring and bus
interface unit (BIU) that would interface the existing
SSC core to a much different and faster interchip
environment.

RSSC Functions
The functions that the RSSC provides for the VAX
6000 Model 400 module can be grouped into two
categories: boot and console code support, and
timer functions to support the operating system.

Some of the important console and boot code
support functions contained in the RSSC are the
ROMIEEPROM interface, CPU halt-request protec-
tion, UARTs with programmable baud rates, 1 KB of
standby RAM, am! input and output ports which
interface to several console and module-level
switches and LEDs. The RSSC also implements three
timer functions: the bus timeout counter, a 10-milli-
second interval timer, and a time-of-year clock.

The CLK Chip
Clock generation for the VAX 6000 Model 400 chip
set was placed in a separate chip, the CLK chip, to
better control interchip skew. By separating the
clock, we eliminated power, pin count, area, and
noise problems from the other possible home of the
clocks, the REX520. Three main factors were taken
into account in designing the CLK chip. These fac-
tors were the number of clock edges, clock skew,
and signal integrity. A photomicrograph of the CLK
chip is shown in Figurc 13.

In determining the optimal configuration for
the number of clock edges, the CMOS micro-
architecture was examined closely. The number of
clock cdges per microcycle determines the granu-
larity available to the designer. Increased granular-
ity can simplify the design process by reducing the
need for self-timed design techniques. However,
the usefulness of partitioning the design cycle is
limited. Granularity on the order of a gate delay is of

Vol. 2 No. 2, Spring 1990 Digital Technical Journal

An Ovmieu , of the I/AX 6000 Model 400 Chip Set

Fzgz~re 12 RSSC Photomicrogruph

little use, whereas granularity on the order of a
microcycle imposes the use of self-timed circuits. A
decision was made to distribute four 14-ns pulses
phased in timc by 7 ns to facilitate the design of
regular arrays, data path structures, and 110 func-
tions. This distribution made master-slave clock
generation and single-phase generation easy, and
complementary clocks for latches more available.

Clock skcw was minimized through logic and
circuit techniques. The clocks are generated from a
1 4 3 - ~ ~ z crystal oscillator. The frequency is imme-
diately divided by two to generate an even duty
cycle 71.5-MHz signal and its complement (PHI and
PHI-BAR). The divide circuitry, which comprises

four D-type flip-flops, is shown in Figure 14. CLK is
the clock input, D is the data input, Q is the latched
true data output, and QB is the latched complement
data output.

CLK is the 143-MHZ crystal oscillator clock. The
circuit consists of a D-typc flip-flop with one mas-
ter, Dl, and three slaves D2, D3 , and ~ 4 . D2 pro-
vides local feedback for the divide-by-two function
in order for D3 and D4 to match identically. D 3 is
the Q slave and D4 is the Q B slave.

D3 allows the inversion in the feedback path to
be absorbed and the Q and QB to see the same num-
ber of gate delays. This logic technique works for
all dividers used in the design. However, the

Digital TecbnfcalJournal Vol. 2 No. 2, Swing 1990 4 c)

Fzgure I3 CLK Chip Photomicrograph

dividers feed a series of large output drivers in package, three power pins, three ground pins, and
which skew could not be controlled through logic two signal pins were used for each driver.
techniques. In these cases, skew was minimized This pin design reduced the inductance seen by
by matching the capacitance on each node. The end each driver by approximately a factor of two. In
result was a design in which the skew between any
two edges genirated by the CLK chip was ndt
greater than 0.3 ns.

Signal integrity was carefully considered in the
design. The clocks had to be distributed to eight
different loads, and the total skew between any two
edges could not exceed 0.5 ns. This design implied
that the Cl,K chip package and the clock module
interconnect could not contribute more than 0.2 ns
of skew. To mininuze the electrical impact of the F i ~ u r e 14 CLK Chip Divide Circuitry

50 I/,)/. 2 No. 2, Sl~ring l00O Digital TechnicalJournal

D

- C

--

CLK

-
Q D Q

D l D3
QB 4 c QB

-
Q D D

D2 D4
08 C 3 O C QB

rnl

PHI-BAR

An Overview of the VAX GOO0 Model 400 Chip Set

addition, the clocks were radially distributed, and
diode termination was used on each clock leg. The
length of each leg was identical.

Conclusions
The VAX 6000 Model 400 chip set represents a suc-
cessful mapping of the ECL-based VAX 8700 system
microarchitecture into a CMOS-based VLSI chip set.
The fully folded pipeline, on-chip cache and control
store, and read and runtwrite and run strategies of
the processor chip, combined with a high perfor-
mance floating point processor and a second-level
cache, enabled the VAX 6000 Model 400 to exceed
the original performance goals for the system.

Achowkdgments
The authors would like to acknowledge the follow-
ing people for their contributions to the VAx 6000
Model 400 chip set development effort: Randy
Allmon, Brad Benschneider, Mary Jo Butler, Sandy
Carroll, Gerry Cheney, Larry Commodore, Beth
Cooper, Amnon Fisher, Nannette Fitzgerald,
Annette Flohr, Moshe Gavrielov, Ed Gomes, Paul
Gronowski, Bill Grundmann, Ellen Kagan, David
Kravitz, Liam Madden, Vijay Maheshwari, Steve
Martin, Karen McFadden, Roger Meeks, George
Mills, Mike Minardi, Millind Mittal, Dave Morgan,
Victor Peng, Jeff Pickholtz, Jim Reinschmidt, Doug
Sanders, Katie Siegel, Rebecca Stamm, Pete
Starvaski, Bob Supnik, Bill Wheeler, Jeff Winston,
and Bill Upham.

References

1. P. Sullivan et al., "The VAX 6000 Model 400
Scalar Processor Module," Digital Technical
Journal, vol. 2, no. 2 (Spring 1990, this issue):
27-35.

2. T. Leonard, ed., VMX Architecture Reference
Manual (Bedford: Digital Press, Order No.
E Y - 3 4 5 9 ~ - ~ ~ , 1987).

3. T. Fox et al., "The CVAX 78034 Chip, a 32-
bit Second-generation VAX Microprocessor,"
Digital Technical Journal, vol. 1, no. 7 (August
1988): 95-108.

4. S. Mishra, "The VrU< 8800 Microarchitecture,"
Digital TechnicalJournal, vol. 1, no. 4 (February
1987): 20-33.

5. J . Bartoszek et al., "VAX 6000 Model 400 Physical
Technology," Digital Technical Journal, vol. 2 ,
no. 2 (Spring 1990, this issue): 52-63.

6. B. Benschneider et al., "A Pipelined 50-MHz
CMOS 64b Floating Point Arithmetic Processor,"
IEEE Journal of Solid State Circuits, vol. 24,
no. 5 (October 1989): 1317- 1323.

7. D. Atkins, "Higher Radix Division Using Esti-
mates of the Divisor and Partial Remainders,"
lEEE Transactions on Computers, vol. C-17
(October 1968): 925-734.

8. J. Winston, "The System Support Chip, a Multi-
function Chip for CVAX Systems," Digital
Technical Journal, vol. 1 , no. 7 (August 1988):
121-128.

9. G. Lidington, "Overview of the MicroVAX 35001
3600 Processor Module," Digital Technical
Journal, vol. 1, no. 7 (August 1988): 79-86.

Digitul TecbnicnCJoumal Vo1.2 No. 2, Sp'ng 1990 5 1

John T. Bartoszek
Robert J. Hannemann

Stephen P. H a m e n
RobertJ. McCarty
John C. Sweeney

VAX 6000 Model 400
Physical Technology

The physical realization of the VRY GOO0 Model 400 microprocessor design offered a
number of significant challenges at both the chip package and the module levels.
In meeting the req~rirements for a robust and man~lfncturable midrange imple-
mentation, the K-tY 6000 Model 400physical technology approach broke new ground
for Digital, and, in some cases, for the indmtry. New developments included
the first tape-automated bonding (W) interconnected senziconducton, extensive
board-level physical sirnz~lation, and the use of advanced testability features on
a microprocessor-based midrange product. i%ispaperprovhies details of thephysi-
cal tech?zology used in the 1IM GOO0 Model 400 project to achieve system-level
product goals.

Introduction
As shipped beginning in July 1989, the VAX 6000
Model 400 microprocessor chip set is onc of the
fastest and highest performance complex instruc-
tion set computer (CbC) CPUs offered by the indus-
try. Its microcycle time is 28 nanoseconds (ns).
Such performance makes the chip set one of the
most demanding in terms of physical technology
design at the chip package and single-board-
computer (SBC) level. This paper details the require-
ments that drove the VAX 6000 Model 400 physical
technology and describes the resulting technology
solutions. 'The range of solutions included the
dcsign process, module assembly, and advanced
test features.

The \/AX 6000 Model 400 project was the first
Digital microprocessor-based system effort that
required developers to use large-computer
design tools and processes. During the project, a
number of firsts, for either Digital or the industry,
were achieved.

The design and development of an advanced
printed wiring board (PWB) technology that
allowed over 5000 inches of interconnecting
wiring on only four routing layers of a 9-inch by
11-inch board, with two different controlled
impedance levels

The extensive use of electrical and thermal siniu-
lation at the chip package and module levels

The employment of an advanced surface-mount
technology (SMT) that allows the use of mixed
component styles (50-mil SMT devices and fine-
pitch, 25-mil devices, and a limited number o f
through-hole mounted devices); and attachment
of both active and passive components on both
sides of the board

The use of advanced test techniques, most nota-
bly an innovative continuity transistor structure
(CTS) for assembly verification and boundary
scan design for the core CPU chips

All of the project's technology developments will
The usc of advanced tape-automated bond- be employed on follow-on products, in both mid-
ing (TAB) technology in a manufacturing range and entry-level systems. Ensuring this kind of
environment technology extensibility was our explicit goal.
The development of innovative surface-mount- In the remainder of this paper, physical tech-
able chip packages that provide high lead count nology refers to the chip packaging and inter-
and a controlled electrical environment for the connection technologies at the individual device
custom CMOS CPI! and bus interface chips and module levels.

5 2 R)1. 2 No. 2, .Spring 1990 Digital TechnicalJournal

W GOO0 Mo&l400 Pbysicd 7kcbnology

Tecbnology Requirements
The physical technology requirements that drove
the VAX 6000 Model 400 technology effort arose
from two primary sources: architectural and per-
formance requirements, and manufacturing and
reliability related needs.

Architectural and Perfomzance
Requirements
The CMOS-2 semiconductor process technology
and the microarchitecture were chosen to satisfy
the system performance goal of at least six VAX units
of performance (\/UPS). That choice established the
baseline physical technology performance and elec-
trical requirements.

One processor design goal in particular had a
significant effect on the physical interconnect tech-
nology. The processor was to operate at a CPU
microcycle time of 28 ns at the SBC level. Although
the nominal target of the chip set design was opera-
tion at 40 ns, early indications were that the CMOS-2
process would allow significantly faster operation.
Therefore, the rest of the physical technology
needed to support the 28-11s goal.

Table 1 summarizes the major features of CMOS-2
and the vAx 6000 Model 400 architecture that
drove the physical technology requirements. Chip
packaging and module technology requirements
were affected in two ways:

The wide data bus could result in many drivers
switching simultaneously. Coupled with the rel-
atively fast driver rise times, simultaneous
switching significantly increased package elec-
trical performance. Our major concern was the
high current draw from local (within the pack-
age) power planes. The electrical performance
required of the chip packages clearly indicated
that simple cerquad packages would not work.
The primary shortcoming of the cerquad pack-
ages was the high inductance of the signal and
power connections. Performance levels required
multilayer ceramic packages with features that
were at the limit of available ceramic technology.

A wireability estimation technique used early in
the program indicated that four to six routing
layers would be needed in the PWB, using 5-mil
line widths and 5-mil spacing between lines, to
route the core CPU chips with associated cache.

The relatively high power dissipation require-
ments contained in the initial design specifica-
tion posed considerable development difficulty.

The core chip set was expected to be used in
low-end products with limited air-flow capabil-
ities. However, a junction temperature limit of 85
degrees Celsius at the DEC standard 102 Class B
environmental limits had to be maintained.

How we addressed these problems is described
in the later sections, Chip Packaging and Module
Technology.

Table 1 VAX 6000 Model 400 CMOS-2
Features Affecting Interconnect
Technology

-

Driver rise time
Clock cycle
- 4 phase cycle
Data bus width

1 ns
28 ns

64 bits

Cache access time 7 clock
phases
(49 ns)

Max. chip pin count 224
Max. chip power 6 watts

Table 2 lists the key CMOS-2 chips developed for
the VAX 6000 Model 400 processor and the key
characteristics of these chips that affected the
physical architecture of the design.

Table 2 VAX 6000 Model 400 Chip Se t
Characteristics

Chip

Lead Maximum Lines
Count Switching Power
(Actual) (Approximate) (W)

A more direct measure of the electrical perfor-
mance required from the vAx 6000 Model 400
physical interconnect system can be derived by
examining the timing budget allocated to some of
the signal transfers that occur within the CPU.
Three of the most critical are the clock distribution
system, the cache access loop, and the data bus
between the core CPU chips. The clock signals need
to be valid and synchronized within 0.5 ns at the
end points of all clock lines. The clock electrical
performance relied heavily on the uniformity of the
distribution system.

VAX 6000 Model 400 System

The cache access loop timing was slightly more
complicated. The cache access loop timing budget
that was established for the 28-ns version of the CPU
is shown in Table 3. The interconnect system pri-
marily affects the address bus (A-bus) settling time
(20.5 ns).

Table 3 Cache Access Loop Timing Budget

Address bus settled
Buffer

RAM access

Total

Manufacturing and Reliability
Requirements
Certain manufacturing and reliability goals estab-
lished for the VAX 6000 Model 400 product also
influenced the physical technology selection and
design. The major goals were as follows:

The use of TAB as the off-chip interconnect tech-
nology, which was viewed as an appropriate
entry point for TAB

An all surface-mount technology (SM'r) module
assembly approach

A robust test strategy, including significant use of
fault diagnosis using boundary scan and other
test features

Maintenance of the ability to perform engineer-
ing changes using etch cuts on the PwB by
restricting signal routing to the second and ninth
layers, with clock lines only on the remaining
two signal layers

Achievement of the required 85 degree Celsius
junction temperatures

Most of these goals were met:

The worst-case A-bus and data bus (D-bus)
settling times were 19.6 ns and 20.2 ns, respec-
tively. These settling times met the timing
requirements as defined in Table 3.

A nearly total surface mount assembly was
achieved, with only conncctors, oscillators, and
erasable programmable read-only memories
(EPROMs) in through-hole configurations.

Boundary scan was dcsigned into the core CPU
chips. Observe-only scan latches were used at

the chip boundaries as opposed to the original
target of full scan at all logic boundaries.

Test transistor structures for interconnect verifi-
cation at module assembly were implemented
for the custom chips.

Separate, system-specific micro heat sink designs
allow all chips to operate at a maximum of
85 degrees Celsius, with one exception: the
6.1 watt P-chip reaches 89 degrees Celsius under
absolute worst-case conditions. Although not
specifically meeting the defined goal, overall
system reliability and operations were not felt to
be impacted to any significant degree by allow-
ing this exception.

Some goals were not met.

The interchip routing included over 1000 sig-
nal nets and over 1800 routed nets within the
PWB. This large number of nets required the use
of the clock routing layer to complete the inter-
connect of the CPU module. Although the PWB
technology supported 5-mil lines and spaces, the
signal integrity constraints of the system
required more than 5-mil spaces between signal
lines. In addition, the ability to do etch cuts on a
5-mil line was determined to be too difficult and
risky to pursue. Engineering changes were per-
formed by doing cuts in the surface etch, which
connects each surface-mount pad to its associ-
ated via, which in turn connects to an internal
signal layer.

TAB tape and packages were designed, proven,
and sourced for six of the 224-pin CMOS-2 chips
in the \/Ax 6000 Model 400 processor. However,
for manufacturing logistics and line-loading rea-
sons, TAB is currently used in only a subset of
these devices. A series of wire-bonded backup
packages was designed and is now in use for the
remainder of the 224-pin devices.

Nonetheless, the physical interconnect technology
used did result in package designs and a module
design that supports 7 vUPs, 224 110, fine-pitch
devices, with associated cache, operating at 28 ns.

The details of the chip packages, the PWB tech-
nology and module design are presented in the
following sections. Also described are the test struc-
tures required to satisfy the performance needs and
other established goals of the VAX 6000 Model 400
CPU product.

Vol2 No. 2, Spring 1990 Digital TecbnicalJournal

VAX GOO0 Model 400 Pbvsical Technolo~y

Chip Packaging
In March 1989, Digital's Semiconductor Intercon-
nect Technology Group (SCIT) completed quali-
fication of the Model 400 processor advanced chip
packaging technology.

This qualification consisted of two primary ele-
ments, which are discussed in the sections below.
The first element is the initial implementation of
our internally developed perimeter tape-automated
bonding (PTAB- 1) process. The process serves as the
interconnection medium from the semiconductor
device to the chip package. The second element is
the chip package itself, which is an advanced 224-
lead multilayer ceramic (MLC) surface-mount com-
ponent. The TABIMLC combination provides an
effective chip package solution for the VAX 6000
Model 400 products. Moreover, TABIMLC serves as a
technology springboard for further TAB-based
packaging solutions currently in development for
future CMOS systems.

A fundamental decision was made early in the
TAB technology program. To reduce risk, we
wanted to introduce TAB in an environment that
allowed a convenient wire-bonded backup to be
developed in parallel. The TABIMLC solution proved
ideal for this approach, and a set of wire-bonded
packages was designed and qualified. Subsequently,
several of the VAX 6000 Model 400 chips were
moved to the backup wire-bonded packages for
manufacturing logistics and line-loading reasons.

Wire-bonded technology is not described in this
paper because the package designs are very similar
to the TABIMLC packages detailed below.

Tape-automated Bonding Technology
The connections from a semiconductor chip to the
package have traditionally been made with wire-
bonding technology. In this process, free-floating
wires are placed individually from the aluminum
chip termination pads to the package internal con-
nections. Although this technology is versatile, it
has some limitations in high pin count, high-density
applications. Bonding becomes very time-consum-
ing at high pin counts; package and manufacturing
tolerances become critical; and package choices
with wire bonding have increasingly narrowed to
newer and more expensive technologies, such as
precision thin films.

From 1980 to 1981, exploratory work was per-
formed within Digital on alternative interconnec-
tion technologies. In 1982, the decision was made to
pursue TAB technology. The rationale for this deci-
sion included TAB'S easy testability, compatibility

with a wide variety of packaging formats (both sin-
gle chip and multichip), and improved pin density.
The technology also had the potential for electrical
enhancements with multiconductor TAB tape, and
indications were that the industry as a whole would
embrace TAB technology.

Unlike the wire-bonding process, TAB utilizes
photolithographically defined copper conductors
stabilized by a dielectric film made of polyamide.

As shown in Figure 1 , the TAB tape consists of an
inner set of connections for the chip-to-tape or
inner lead bonds (ILB). External to the dielectric
material is the outer lead bond (OLB) region where
the tape-to-package connection is made. The leads
then fan out to a set of test pads. These pads permit
full electrical testing of the semiconductor device at
this level of assembly. Sprocket holes serve as han-
dling and alignment features.

Unlike wire bonding, in which the wires may be
bonded directly to the aluminized bonding pad on
the chip, the planar TAB tape requires a raised pillar,
or bump, on each bond pad. The bump, usually
made of gold, is typically 25 microns high. In addi-
tion to acting as a standoff, the bump provides a
surface that is appropriate for the bonding of the
gold-plated tape. Figure 2 shows a bumped and
bonded device. The bump process may be thought
of as an extension to the wafer fabrication process
in which the construction of the bond pads is con-
tinued vertically.

Figure I TAB Tape Configuration

Digital TecbnicalJournal Vo1. 2 No. 2, Spring 1990

VAX 6000 Model 400 System

Figure 2 TAB Bumped and Bonded Deuice

As shown in Figure 3, after the semiconductor
wafer has completed the standard diffusion, metal-
lization, and passintion steps, the wafer is metal-
lized again over the entire surface with a sputtered
barrier metallization of titanium/tungsten. In the
same process step, a top seed layer of gold is
applied. The total thickness of these f h l s is 10,000
angstroms. The barrier prevents diffusion between
the aluminum pad and the gold bump. Such diffu-
sion would, with time and temperature, seriously
degrade the mechanical strength of the interface.
The seed layer forms the base upon which the bump
will be plated during a subsequent step.

Metallization is followed by the deposition of a
thick layer, typically 30 microns of photo resist.
This layer is then photolithogrdphically patterned
with a bump mask. Subsequent etching opcns a
hole over the bond pads down to the barrier and
seed layer. At this point, the wafer is electroplated
with pure gold. The gold is deposited only in the
resist openings. Finally, the resist is stripped and a
series of etches are performed to remove the seed
and barrier metallizations from the areas between
the bumps.

After the wafer processing steps are completed,
the devices may be electrically tested by probing
the bumps. Assembly of the functional die consists

Once the TAB tape has been aligned with the
bumps, a tool supplies pressure and ultrasonic
energy to the interface and creates a strong gold-
gold metallurgical bond.

In 1985, the vAX 6000 Model 400 processor was
identified as the first product that would incorpo-
rate TAB technology. Consequently, the TAB pro-
gram's goals were set to meet the product's needs:

CMOS-2 (1.5-micron technology) compatibility

150-micron pad pitch

224 pins

35-mrn format TAR tape

Assembly in ceramic package

The program was designated PTAB 1, the first
implementation of TAB with chip pads in a peri-
meter or single row format. The PTAB l process was
formally qualified in March 1989.

VAX GOO0 Model 400 Multilayer Ceramic
Packaging
The custom semiconductor packages implemented
for SClT's ZMOS- and CMOS-1-based systems have
been either cofired multilayer ceramic (MLC)
through-hole pin grid array (PGA) packages, or the
simpler lead-frame-based cerquad surface-mount
packages. The maximum pin counts in use up
through CMOS- 1 are 132 pins for PGA style packages
and 164 pins for fine-pitch cerquads.

of sawing the wafer, selecting the good devices, and
bonding the bumped chips to the 'TAB tape. The
bonding process is very similar to wire bonding. Figure 3 Semiconductor Wafer

V o I . 2 No. 2, Spring 1990 Digital TecbnicalJournal

V M G(K)(3 Model 400 Physical Technology

The VAX 6000 Model 400 P, F, VC, XDP, and XCA SEAL RING AREA
chips require a packaging solution consistent with
their electrical and thermal performance needs as BOND FINGER SHELF

MP2
well as compatibility with a lead count of 224 pins.

The solution chosen for these components was a MP4

blend of the PGA and cerquad technologies: a multi- MP6

layer ceramic body with 25-mil pitch perimeter
Mp8

leads for surface mounting. The resulting 224-pin
MLC is depicted in Figure 4. KEY

There are several significant features in the 224 M P l - SEAL RING AND LOGO
MP2 - VSS EXTERNAL (GROUND)

MLC family of packages. In wire-bond packages, Mp3 - SIGNAL LAYER AND BOND SHELF
maximum wire span constraints require a different MP4 - VDD EXTERNAL (POWER)

MP5 - SPACER LAYER
layout for each chip configuration The TAB format, Mp6 - vss INTERNAL (GROUND), DIE ATTACH AREA

however, has more routing flexibility and permits 1:; I V , D , ~ p l ~ T , E , ~ ~ ~ k P ~ ~ L E ~ ~ R LANDS LEAD
one basic package layout. The package has five BRAZE PADS. HEAT SINK ATTACH AREA

internal interconnect layers with assignments, as
shown in Figure 5.

In cofiied MLC technology, the conductor traces Figure 5 Package Itselfwith Internal
are made with screen-printed, tungsten-filled vias. Interconnect Layers with
To specialize the package interconnect for each Assignment
chip, a programmable approach was developed in
which only one via layer would have to be changed
for each package design. The combination of TAB shown in Figure 6. The thermal performance of the
interconnect and the programmable package con- package is shown in Figure 7
cept considerably reduces design time, design com- The 224 MLC package is assembled by mounting
plexity, tooling costs, and lead times. the TAB chip into the package cavity with silver-

Another feature of the 224 MLC is the provision filled die attach epoxy. Outer lead bonding of the
for eight chip capacitors for power decoupling. The TAB film to the gold-plated package pads is accom-
heat-sink design for the 224-pin MLC package is plished with the same pressure or ultrasonic pro-

cess used for inner lead bonding. Final steps consist
of lid seal, lead plating, chip cap and heat-sink - -

attach, and lead trim. The part is then ready for
electrical testing.

1 Module Tecbnology

Printed Win'ng Board Technology
The VAX 6000 Model 400 processor's printed wir-
ing board (PWB) requirements offered a significant
challenge to board fabricators. The primary differ-
ence between the Model 400 processor's boards and
previous boards is 10-mil finished vias, resulting
in a 7 to 1 aspect ratio. We were initially very con-
cerned whether our vendors could produce boards

p7/ CHIP CAP

Figure 4 The 224-pin MLC Figure G MLC Package Heat Sink

Digital TecbnicalJoumal Vol. 2 No. 2, Spring 1990 57

VAX 6000 Model 400 System

AIR VELOCITY
(LINEAR FEET PER MINUTE)

Figure 7 Thermal Performance of Package

that met our specification in the volumes we
needed. Table 4 lists some of the primary features
of the Model 400 PwB specification.

The most severe environment the boards would
see was the asscmbly plant. Recause the module
used a variety of component types, it was put
through several process steps, each step requiring
general or localized heating to solder reflow tem-
peratures. We wanted to ensure that the boards
would survive multiple assembly and repair cycles
and still be reliable. We established a "fit for use"
plan that required the boards to undergo a series of
thermal cycles. In these cycles, temperatures and
times were set to match intended assembly process
steps. The boards were then cross-sectioned and
examined for dcfects. Once manufacturing began
building modules, a few of these were also cross-
sectioned. With this strategy, we could quickly
determine the quality of each lot of boards. More-
over, we could begin to correlate board structure
with board quality in each lot. This process allowed
us to assess each vendor's capability to provide
boards that would meet our specifications.

Because module assembly process temperatures
typically exceed 200 degrees Celsius, questions
arose over what was the appropriate board mate-
rial. 'The more commonly used F R ~ material, with

an average glass transition temperature (tg) of
120 degrees Celsius, was suspected to be incapable
of surviving the assembly process.

The alternative to FR4 was polyamide, which has
a tg of 240 degrees Celsius. In response to the con-
cern over F R ~ , a PWB material selection task force
was convened, which was composed of board
experts from throughout the company.

The task force discovered that board material
actually is not the primary consideration. Either F R ~
or polyarnide is acceptable (both were eventually
used in production). However, other board paramc-
ters become critical when F R ~ is used. Primarily,
minimum barrel copper plating thickness should be
one mil for F R ~ boards.

Variation in barrel copper should not exceed 50
percent. In addition, there can be no smearing or

Table 4 VAX 6000 Model 400 Printed Wiring
Board Specifications

Parameter Value
- -

General:
Board size 9.2 inch x 11 .O inch
Layer count 10 layers: 4 signal,

4 powerlground
Material options FR4, polyamide
Copper foil type Class I l l

Testing 100% data-driven

Electrical:
Characteristic 50 ohms ? 10% for 10-mil lines
impedance
DC resistance 4 ohms maximum

Physical:
Via type
Via size

Maximum
aspect ratio
SMT pads

Through
10 mil finished
13.5 mil drilled
7: 1

50-mil pitch: 0.030 inch x
0.076 inch
k 0.001 inch

25-mil pitch: 0.016 inch x
0.076 inch
? 0.001 inch

Etch widths Signal: 5 mils
Clock: 10 mils

Proximity to 5 mils
next feature
Solder 0.15 mil minimum
requirement
Tinllead alloy 63137 k 10%

Vol. 2 No. 2, Spring 1990 Digital TecbnfcalJournal

VXX GO00 Model 400 Physical Technology

other defects in the vias from the drilling process.
To maintain tight control over these parameters, we
included statistical process control as a vendor
requirement. Table 5 summarizes the results of the
task force findings.

Because of recent board quality problems and the
aggressive nature of the Model 400 specification,
we ran a product-specific board qualification. The
goal was to verify that each vendor could consis-
tently produce the Model 400 boards in volume
before the vendor was placed on the qualified
vendor list. The four key components of the plan
were as follows:

Incoming inspection

Electrical test

Cross-section analysis

Assembly verification

Incoming inspection testing was nondestructive
and covered plating thickness, plating composition,
and characteristic impedance.

Using an internally developed tester, we could
verify 100 percent connectivity between pads and,
thus, detect both shorts and opens. We also used
this test to verify prototype boards, ensuring that
the boards were good before valuable prototype
parts were committed to them.

Digital's Component Evaluation Laboratory
performed bare board and assembled module

Table 5 VAX 6000 Model 400 PWB Materials
Task Force Summary

Laminate:
Polyamide should be used for prototypes.
Polyamide and FR4 are acceptable for volume.
Long-term, vendor capability and cost may favor
polyamide.

Copper:
Class 3 foil should be used.
For polyamide, standard plated-through-hole (PTH)
copper is acceptable.
For FR4, minimum barrel plating thickness is 1 mil.
Barrel plating thickness variation maximum is 50
percent. Hole quality must be good.

Process Control:
Vendor should provide test coupon cross-sections
with each lot.
Vendor should institute statistical process control.
Vendor site should be monitored reaularlv.

cross-sectioning. This testing process uncovered
inadequate or nonuniform plating, pad-to-copper-
plating separations and misregistration. The infor-
mation gained from this procedure was given to the
vendor as a basis for corrective action on future
board production.

Assembly verification was final proof that the
board would make a reliable module. Each board
went through the full assembly and test process,
including burn-in, to ensure it could survive the
process and pass all functional tests.

Surjilce-mount Assembly Technology

The surface-mount assembly technology (SMT3)
used for the VAX 6000 Model 400 processor is the
latest in a series of electronic assembly technologies
developed by Digital since 1985. The S M T 3 tech-
nology allows double-sided mounting of high lead-
count and fine-pitch devices on a printed wiring
board, with surface-mounted passives and mixed
component styles. The VAX 6000 Model 400 pro-
cessor uses essentially all of the S M T 3 features.

High pin count and fine-pitch devices presented
new problems to the surface-mount attach process
team. The small, tightly spaced leads require a
smaller pad and less solder than their 50-mil pitch
predecessors. The smaller, more fragile pins can
become misaligned and no longer coplanar where
they meet the board surface.

Our primary goal was to find the correct pad size
and solder volume for attaching 25-mil pitch com-
ponents. Once the fine-pitch pad size and solder
volume were determined, it became apparent that
the correct solder amount could not be delivered to
both fine-pitch and standard pads in a single oper-
ation using the standard solder-paste screen
approach. The smaller, fine-pitch screen openings
could not consistently pass the correct amount of
solder. The solution was to use a laminated stepped
stencil that places a thinner solder deposit on the
fine-pitch pads than on the rest of the pads.

The initial approach for attaching fine-pitch
devices was to use the existing vapor-phase mass-
reflow process. However, if pin noncoplanarity
exceeded 2 mils, some pins would not be soldered
adequately. The best that could be guaranteed was
4 mils.

The development team turned to solder-in-place,
which uses a therrnode fucture to place the compo-
nent, push the pins into the paste, and reflow the
solder, forming a good solder connection for each
pin. An advantage of this process is that it does not

VAX 6000 Model 400 System

heat the entire board, and the previously attached
components, to solder-reflow temperatures.

The surface-mount module process was by
necessity developed concurrently with the Model
400 product design. As the design progressed, a
problem with the primary assembly equipment
developed. Suppliers for high-volume thermode
pick, place, and solder equipment tlid not keep pace
with our schedule req~iircments. We were then
faced with the choice to dekclop cquipnlent inter-
nally or switch the proccss to a more developed
technology.

The Midrange System Manufacturing Group's
most readily available backup process was vapor-
phasc mass-reflow. This process guards against
coplanarity problems by including carcfi~l inspec-
tion of all fine-pitch components before commit-
ting them to a board. The pins that do not solder
are manually repaired. Since it was not possible to
develop solder-in-place equipment internally in
time to meet our schedule, the program decided to
use vapor-phase mass-reflow

Module Design
Several board design requirements combined to
make the dcsign task challenging. These require-
ments included signal integrity constraints, finer
layout and routing grids, and short dispersion etch.
Figures 8 and 9 show the complete module. Most
of the module arca is composed of the six large
224-pin deviccs that form the processor core and
interface to the XMI corner. These devices had
critical placement requirements. Their 25-mil pin
pitch forced very dense etch runs.

To attain maximum use of available routing area,
the design used tenth-mil grid instead of the previ-
ously used one-mil grid. The new grid allowed opti-
mum etch channel placement. Similarly, vias were
placed on a 25-mil grid with 50-mil spacing. This
allowed the designer more flexibility in placing vias
so the available space was used most effectively.

The vAx 6000 Model 400 processor introduced
new routing parameters and stringent signal
integrity constraints. The density of the design
required 10-mil vias. Signal integrity considerations

Figure 8 Processor Mwlztle -Side One

60 Vol 2 IN. 2, Sprin,? 1990 Digital TecbntcalJournal

V M 6001) Model 400 Physical Technology

imposed component spacing and electrical connec-
tion requirements that resulted in components
being closer than suggested by current standards.
Surface etch was needed to keep connections short.
Components on side two were placed underneath
fine-pitch devices on side one for electrical prox-
imity. New manufacturability rules were generated
to cover these situations as the design progressed.

Because surface layers are not used to route sig-
nals, these layers were not designed to have good
signal integrity characteristics. However, a signal
has to travel a short distance from its pin p ~ d to its
dispersion via which connects to an inner routing
layer. Therefore, it is essential to keep surface etch
as short as possible to minimize the distance the sig-
nal travels outside a controlled impedance environ-
ment. To meet this distance requirement, each
critical component was placed very precisely and
its dispersion pattern was individually designed.

Signal integrity considerations placed other con-
straints on the design. Critical signals had to be kept

less than a specified maximum to meet perfor-
mance specifications. To avoid skew problems,
clocks were routed equal lengths to within a tight
tolerance. Table 6 details the resulting design
parameters.

Test Technology

Assembly and Test Process Development
Assembly and test process issues were tracked
throughout the development and selection of the
Model 400 physical technology. The manufacturing
impact of each physical technology choice was
quantified in a spreadsheet analysis of cost and qual-
ity metrics.

These metrics were estimated by using integrated
assembly and test process models for each possible
physical technology implementation. Two issues
became evident during the physical technology
selection process.

Figure 9 Processor Module -Side Two

Digital TechnicalJournal Vol 2 No. 2, 5pring 1990 6 1

VAX 6000 Model 400 System

Table 6 VAX 6000 Model 400 Processor
Board Design Statistics

Parameter Value

General:
Board size (inches) 9.2 x 11 .O

Board thickness (inches) .093
Layers 10
Initial route area (square inches) 99
Routing vias 1699
Dispersion vias 381 3
Total components 623
Total component pins 4976
Total used component pins 421 8
Total networks 1005
Total etch length (inches) 5002

First, the high number of signals and the fine
pitch of those signals in all of the possible product
implementations significantly increased the risk
of manufacturing defects, such as shorts between
signals or open faults along a signal. A continuity
transistor structure (CTS) is designed into each of
the VLsI (very large scale integration) devices to
help test and diagnose these open faults.

Second, high-speed operation and reduced phys-
ical access would make diagnosis of processor fail-
ures difficult. To alleviate this problem, test features
and a test system were developed. The test feature
was a form of boundary scan, called observe
boundary scan (OBS). The test system, the VAx 6000
Model 400 scan monitor, utilized the OBS in a
system test environment.

Continuity Transislor Structure
Because the devices are surface-mounted to the
module, a large percentage of the manufacturing
defects were expected to be open faults between
the module and the chips. Typically, these open
faults are difficult to detect and diagnose because
they usually require the development of a set of
complex test vectors that will be applied to the
chip. To simpllfy the test for open faults, a continu-
ity transistor structure (CTS) is designed into each
chip. The CTS tests for open faults by using simple
instruments such as voltage sources and current
meters on an in-circuit tester (ICT).

The Module 400 CPU module is placed on a bed-
of-nails f ~ ~ t u r e that gives the tester electrical access
to at least one point on each internal module signal
network. The tester then applies digital stimulus to

the internal module and verifies correct contact by
reading current flow.

The CTS is shown in Figure 10. Pins 1 through N
represent all signal pins on the chip. The design uses
minimum-sized transistors. The CTS design does
not require any dedicated pins because the test pin
is a normal device signal pin. There is no perfor-
mance penalty because the transistors are placed in
parallel to the normal system logic, which results in
a negligible load on those signals.

The use of the CTS in the processor module
manufacturing process has been very successful.
The ICT very quickly isolates open connections to
the device pin and differentiates them from device
test pattern failures. This process allows the open
connection to be repaired rather than replacing
the device.

Further, CTS testing allows prototype modules
to be fully tested for assembly defects, even if the
VLSI in-circuit test patterns are not available. This
advantage is possible because designers can fully
develop CTS tests without any knowledge of the
VLSl device internal structure or function.

Observe Boundary Scan
Modules that pass ICT testing are then tested at a
"system like" test station. Self-tests and bootable
diagnostics are run, and the VMS system is booted. If
a module fails any of these tests, skilled technicians
diagnose the failures by attaching logic analyzer
probes to the module. Because of the fine-pitch
surface-mount devices and the high-speed opera-
tion, it is very difficult to attach logic analyzer
probes to many nodes on the processor module.

OBS allows the CPU module to be observed as it
executes VAX macrocode on board self-test stimu-
lus at the module's full clock rate. This additional
observation is used by the scan monitor to help test
and diagnose module-level faults in a system test
environment in stage-one manufacturing.

TEST PIN (ALSO A N O R M A L
DEVICE SIGNAL PIN)

N-CHANNEL MOSFET

N-CHANNEL MOSFET -.. 6 :-ANNEL MOSFET

b PIN 1

Figure 10 Co~ztinuity Transistor Structure

Vol. 2 No. 2, Spring 1990 Digital TecbnicalJournal

V M 6000 Model 400 Pbpical Technology

Designing OBS into a custom VLSI device is more
complex than adding CTS, but is still relatively sim-
ple. OBS is simply a parallel-load, serial-shift register
with one bit of the register on each device pin.
Although it is not negligible, the OBS uses a rela-
tively small amount of silicon area and also does not
affect product performance. The total area used by
both the CTS and OBS was estimated at about one to
two percent of the chip area. Unlike CTS, which
does not require any dedicated device pins, OBS
uses two dedicated pins on each device in which
i t is implemented. To fully utilize the OBS test fea-
ture, the V.4X 6000 Model 400 scan monitor was
designed and built.

The scan monitor controls and reads the OBS on
the Model 400 module. A host computer system
interfaces with the monitor. The scan monitor
control program (sMCP) operates the scan monitor,
makes passtfail decisions on the data received,
and diagnoses failures. SMCP also includes many
features that allow it to perform as a virtual logic
analyzer, including waveform displays that high-
light faulty behavior, as well as full triggering
functionality.

Conclusion
The aggressive performance goals and advanced
semiconductor technology used for the VAX 6000
Model 400 processor meant a significant develop-
ment effort for packaging and interconnect techno-
logy. The technology requirements included high
lead count, electrically tailored single-chip pack-
ages, very dense controlled impedance printed
wiring boards, a state-of-the-art surface-mount
assembly process, and advanced test features.

The physical technology achievements in the
VAX 6000 Model 400 project represent an effort in
the packaging and interconnect disciplines more
akin to mainframe and supercomputer develop-
ments than to traditional microprocessor-based
system approaches. The accomplishments of the
efforts include:

Development and implementation of an
advanced TAB technology for the high lead-
count custom chips

Design of an innovative semicustomized ceramic
single-chip package that combines the best fea-
tures of surface-mount devices and traditional
pin grid arrays

Development, sourcing, and qualification of
very dense printed wiring boards with multiple
controlled impedances

Achievement of a technology set capable of
28-11s clock cycles through the use of full elec-
trical simulation at the device, package, and
module levels

Development and implementation in manufac-
turing of the SMT3 module assembly technology,
which allows double-sided mounting, high
lead-count fine-pitch surface mounting, surface-
mounted passive components, and mixed com-
ponent types

Introduction of innovative testability features,
including the continuity transistor structure for
assembly verification and observe boundary scan
for diagnosis in engineering debug and module
manufacturing

As intended at the outset of the project, these
technologies will be employed on a significant num-
ber of follow-on midrange and low-end products.

Acknowledgments
A large number of people contributed to the success
of the VAX 6000 Model 400 physical technology
program. It is not possible to name all these impor-
tant contributors in this space. Therefore, the
authors want to acknowledge that the VAX 6000
Model 400 project could not have been undertaken
nor have succeeded without significant efforts by
members of the SCIT Physical Technology Group,
Semiconductor Assembly Group, Midrange Systems
Engneering Group, Corporate PWB Group, Mid-
range Systems Integration Group, and the SClT
Semiconductor Engineering Group.

Digital TecbnicalJorrrnal Vol. 2 No. 2, Spring 1990

Richard E. Calcagni
Will Sherwood

VAX 6000 Model 400 CPU
Chip Set Functional
Design Verification

The VRY GOO0 Model 400 system is DQitulS Jirst VLSl CP (I to employ a fully micro-
pipelined architecture. The CPU chip set for this system posed rmpcation challenges
fur 6qan.d those of pwious designs. The major problem was the laqe tzumbw of
complex: contml sequences and combinations that could exhibit design errors. A
single uerrpcation strategy would not suJficient!y handle this comple,vTZ~~. 'I;berefore,
z~criJication enginews developed a multipmged approach fmsimulution modeling
and functional design verification. l B q 1 also emplo-yed CPU diagnostic programs,
I~atd-generated tests, and directed pseudo-randm techniques to verif3, that the
design conformed to the VAX architecture. These techniques helped them find bugs
prior to committing the &ign to mush. As a result, theflrst-pass versions of the CPU
chiy set s m f i u l l y booted an operating system. Simulation also minimized chip
rework and delays in bringing theproduct to market.

m e Design Verification Project
The VAX 6000 Model 400 chip set verification pro-
ject had two goals: find implementation bugs in the
design and verify that the design performed as a VAX

system. The design verification tasks involved about
25 person-years of effort in the areas of system
microcode, custom VLSI (very large scale integra-
tion) chips, and the VAX 6000 Model 400 scalar pro-
cessor module.

The chip set verification team coordinated a set
of simulation models originally written by the chip
logic designers. At various stages of the project,
models were available at the gateltransistor, behav-
ioral, and architectural performance levels. The
verification team used these models to run a wide
assortment of both basic and sophisticated tests.
The use of simulation models is described in more
detail in the next section.

The CPU design was partitioned into functional
units, and one or more units were assigned to each
member of the verification team. A list of specific
tests or testing activities w= produced for each sec-
tion of the CPU chips' specifications. This list WAS

augmented by project-wide brainstorming sessions.
These sessions were used to analyze obscure or sub-
tle combinations of events in the design. Often, the
thinking process would identify that a bug existed
before any testing had been done. Verification engi-

neers used the list to create tests for the functional
units of each chip. These tests were implemented in
either microcode, macrocode, pin-stimulus, or
somc combination of the three. Tests were imple-
mented in the priority determined by the design
team's identification of the most complex areas of
the design and those most susceptible to bugs.

Simulation Models
Functional design verification using software simu-
lation is inherently slow in a design as large and
complex as a VAX CPU.' To use resources most
efficiently, the verification team specified and coor-
dinated a project-wide modeling methodology that
incorporated a number of different modeling levels,
trading oft detail versus other factors such as speed.
These trade-offs allowed us to match the testing of
each phase of the design to a model that met its
specific needs and characteristics. Thus, sirnula-
tions were only as detailed as necessary for a parti-
cular test situation, and the overall efficiency of the
verification effort was increased. Most levels of
modeling could contain different levels of descrip-
tion detail for different areas of the design, which
further optimized simulation performance.

There were three major phases of the design:
architecture, detailed block diagram, and logic1

64 VoL 2 No. .% .Spring 1990 Digital TecbnicalJournal

Model 400 CPU Chip Set Functional Design Vmpcat ion

transistor schematic. To match these design levels,
architectural, behavioral, and structural models
were written. Each model section was written by its
designer and then integrated into a whole-chip
model, a system model, or both models for chip
and system testing. In addition the design method
ensured that the overall organization of each
modeling level was Pdithful to the hardware design
level i t represented.

Architectural Model
The architectural-level model is the highest level of
modeling for this project.'.',' This model describes
only the control algorithms and abstract data paths
in the microarchitecture. The VAX 6000 Model 400
C P u architects wrote this model in PASCAL for exe-
cution performance reasons. The PASCAL program
avoids most of the simulation-oriented overhead
because it is a standalone program.

In the architectural model, actual microcode is
used. However, because much of the detail of the
microarchitecture is abstracted in this model,
crutches (additional simulation aids) are required
to execute the microcode flows. Model simulations
are driven from instruction traces. Opcode,
operand, and address information are extracted
from user programs and system software running
on actual VAX systems. Special fields in each
microword make use of the information from these
traces and direct the flow of microcode execution
accordingly. These special fields are only used for
simulation and are not included in the actual
microcode implemented in hardware. The use of
trace data extracted from real VAX systems permits
actual machine loads to be reproduced, and the
architect can evaluate implementation trade-offs
from these reproductions.

Signals in the architectural model are correct to
within a machine cycle, which allows execution
times to be accurately measured. Microarchitec-
tural parameters, such as cache or translation buffer
size, can be easily adjusted to analyze their effects
on system performance. More complex design fea-
tures, such as bus protocols and pipeline control
algorithms, can also be modified relatively easily.

The moclel describes most of the hardware sec-
tions that will be in the final design. Therefore, it
s e n e as a prototype system debugging tool to
predict and tune system performance. The model
also uncovers design flaws before implementation
begins. About a hundred bugs were found at this
preliminary stage by using the architectural model.

- - --

Digital TecbnicalJournal Vol 2 iVo. 2, .\pritig 1000

Behavioral Model
The behavioral level model describes each chip sec-
tion's logic in detail. It is written in the DECSIM
behavioral modeling language.5."" DECSIM pro-
vides a high-level computer-hardware description
language that executes procedurally rather than
using event-driven algorithms. Models written in
such a language generally s i m p l ~ both model and
design debugging.

The modeling methodology requires that, in the
behavioral model, every signal in the design be
explicitly modeled, with its timing accurate to the
clock-phase boundary. This methodology maxi-
mizes the probability that timing problems will be
found at this level of simulation. (Note: N o addi-
tional logic timing verification was done on this
project.) Each designer writes the section's model in
parallel with writing the chip's specification. The
writing must be done before detailed schematics are
started. This method ensures that the model accu-
rately represents the real hardware behavior.

The model executes hierarchically. The system
clocks are advanced at the begiming of each phase,
then the top-level routines for each section are
called. These routines, in turn, call the routines for
each subsection. The subsection routines do the
actual work.

The DECSIM behavioral model is the basis for
many model variations. These variations range from
the simplest single-CPU module to elaborate multi-
processor versions that include peripherals and 110
adapters.

The basic version of the behavioral model is non-
ported; i.e., the model is implemented as a single,
self-contained hierarchy of procedures that does
not use or connect to any other models. The non-
ported model contains detailed descriptions of the
three custom VLSl chips: CPU processor, secondary
cache controller, and floating point accelerator.
This model also includes a representation for
backup cache RAMS connected to the DAL (data and
address lines). Also modeled are a system support
chip and a simple memory that can return data as
fast as the protocol allows.

This nonported model was used for extensive
testing of the microcode, microarchitecture, and
logic design of the VLSI chips and their interf~ces.
A majority of the verscation tests did not need
detailed memory timing or 110. Tests could be run
faster on the nonported model than on one that
simulated the actual memory access delays. These
delays would have increased the testing time with-
out adding value to the testing process.

VAX GOO0 Model 400 System

Another version of the behavioral model is
ported. This model was constructed to test the
DAL and the interaction of the core chips with the
system support chip (RSSC) and bus interface stan-
dard cell (REXMI) chips."orted models have ports
at the boundaries of procedural model compo-
nents. Ports are used where chip pins or similar
boundaries appear in the design. Ported model
components are integrated for simulation through a
structural wire list derived from module (printed
wiring board) schematics. The main ported model
consists of the core CPU chips with a ported repre-
sentation of the DAL. This model connects to ported
models of the other chips on the VAX 6000 Model
400 module, which in turn connect to memory and
110 models. Several different combinations of these
ported models were used for various specific
verification test applications as shown in Table 1.
The combined ported models run several times
slower than the less complex nonported model.
The slower time is offset by increased testing granu-
larity. The ported models also allow asynchronous

behavior, which in turn allows chip- and module-
level interactions to be tested.

Table 1 lists more usages of the ported core chip
set behavior model as compared to the nonported
architectural performance model.

Structural Models
The structural models were derived automatically
from the designers' transistor-level schematics. The
wirelists, or network descriptions, were translated
for the two simulator systems: DECSIM MOS and
the ZYCAD simulation engine."'"'." IIECSIM MOS is a
transistor-level simulator based on RSIM and ESlM
that models R-C delays, undefined-state initiali-
zation, and charge I" The hardware-
accelerated ZYCAD system abstracts transistors into
a three-state, gate-level model. The DECSIM MOS
model was used for standalone chip sections and
whole chip simulations to find initialization and
charge-sharing bugs. Both DECSIM MOS and ZYCAD
were used to find logic and schematic bugs. Both
systems used pin-level pattern stimulus that was

Table 1 Combinations of Behavioral Model Configurations

Performance
Number of Module Number and Level (Microcycles/

Ported Modules Abstraction of Memory Peripherals Applications Second)

No 1 Architectural level; 1 Abstract memory None Architecture 600
per-cycle detail module debugging and

performance
tuning

No 1 Behavioral level for 1 Abstract memory None CPU verification 7
support chips; per- module and generating
phase detail chip test patterns

Yes 1 Behavioral level for 1 Detailed memory None Self-test code 2.5
support chips module debugging and

bus interface
verification

Yes 2 Behavioral level for 2 Detailed memory None Multiprocessor 1
support chips modules verification

Yes 1 Behavioral support 1 Detailed memory 1 RL02 disk Booting V M S 2
chips module with gate- (high level) system

level bus interface
Yes 1 Gate level for 1 Detailed memory None Bus interface 1

bus interface chips module with gate- verification and
level bus interface generating chip

test patterns
Yes 1 Gate level for 1 Detailed memory None Module 1

bus interface chips module with gate- verification
level bus interface

Yes 2 Gate level for 2 Detailed memory Bus adapter System 0.5
bus interface chips modules with gate- verification in

level bus interface multiprocessor
mode

66 Val. 2 No. 2, Spring 1930 Digital Technical Journal

%i?el400 CPU Chip Set Functional Design Vmpcation

generated from the nonported behavioral model.
Signals traced in the behavioral model matched
the boundary of the section of logic or chip being
simulated at the gate level. Test results were com-
pared on a cycle-by-cycle basis. The tests uncovered
many bugs in the logic design implementation.

Gate-level Fault Simulation
In addition to ZYCAD true-value simulation, single
stuck-at fault simulation was done. Fault simulation
measured verification and manufacturing test
coverage, and provided guidance for verification
engineers to enhance tests. The fault simulation
effort for the CPU processor chip alone was almost
six months long. As a result of this effort, five new
tests were written, and manufacturing fault
coverage was subsequently increased from 83 per-
cent to 94 percent.

V ' f i c a t i o n Strategies
CPU chip set verification engineers had two
explicitly stated and somewhat overlapping goals.
We had to prove that the hardware design intent
adhered to the VAX architecture standard in every
respect, and that the logic implementation adhered
to the intent.15 We strongly believed that any bugs
in prototype hardware (first-pass silicon for the
custom VLSI chips) would negatively impact our
ability to meet time-to-market for the product. Bugs
found at a later stage of the design process are
more expensive to fii for custom VLSI chips. It is
expensive because we are severely restricted in our
ability to isolate and work around bugs in the hard-
ware. Therefore, for custom vLS1 chips, verification
explicitly meant proving the design and finding the
bugs in simulation. No single verification strategy or
technique can find all of the bugs in something as
complex as a VAX CPU. Therefore, a breadth of veri-
fication strategies were flexibly applied.

In addition to technical strategies, the verifica-
tion team cultivated a "bugs are good" philosophy
throughout the project.'(' Past experience has
shown us that bugs will always creep into the
design of something as complex as a VAX CPU.
Instead of being viewed as mistakes or failures, bugs
were celebrated because a bug found in simulation
was a bug that didn't make it into prototype hard-
ware. This subtle shift in how the finding of a bug
was regarded had, we believe, a strong motivational
impact on members of the design and verification
teams and increased the probability of finding bugs
during verification.

Existing Design Verification Tests
The VAx architecture has undergone a number of
implementations since the first VAX-lli780 system
was designed in the mid-1970s. Over the years, a
substantial body of knowledge regarding the key
areas and problems associated with designing a VAX

processor has been accumulated from various VAX
implementations. We put these past lessons to use
in the vAx 6000 Model 400 verification effort. We
actively sought out bug lists, test plans, and actual
test code used by previous VAX system design
teams. One key example of this is HCORE, a self-
checking VAX macrocoded diagnostic program.
HCORE specifically focuses on the high-risk areas
that are common across VAX designs. The HCORE
test program was originally developed from
another basic field-diagnostic program. It was Jater
modified many times, throughout several projects,
to focus on testing potential high-risk instructions
and functional areas that had been identified in past
designs. Existing design verification tests (DVT)
such as this are almost always VAX macrocoded
tests. Macrocoded tests transport more easily across
implementations than microcoded tests because
the microword formats are usually different from
implementation to implementation.

We derived three benefits from using existing
DVTs. They provided a strong level of confidence
in the basic functional operation of the design. Sec-
ond, they found any functional bugs that might be
hiding in obscure or seldom used areas of the vAx
instruction set. Third, when used with demons
(explained later), they were usefill in finding bugs in
very implementation-specific areas, such as error
recovery logic.

Custam Design Verification Tests
Although all vAX CPU designs implement the same
architecture and run the same software, the hard-
ware and firmware implementation details of each
are unique. Therefore, generic VAX diagnostic tests
did not necessarily cover the specific critical paths
and functions in the VAX 6000 Model 400 design.
Existing DVTs often could not provide a clear
picture of what had and had not been covered. To
solve these problems, we used custom DVTs to test
specific, obscure, and hard-to-get-at areas of the
design. There were several techniques for imple-
menting custom DVTs:

Handwritten macrocode

Handwritten microcode

Digital TecbnicalJournal VoL 2 No. 2. Spring 1990 67

VAX 6000 Model 400 System

Manipulation of pins and internal signals under
simulation control

These techniques could be used individually and
in combination, within a single custom DVT. For
example, although custom DvTs for the instruction
fetch and parse logic (I-box) were written primarily
in microcode, a custom macrocoded instruction
stream was written to give the 1-box something to
parse. Explicit manipulation of pins in simulation
was used to generate asynchronous events, such as
interrupts, when necessary.

Custom DvTs provided confidence in areas of the
design that could not easily be tested with existing
DVTs. We made the tests as focused and efficient as
possible. However, in doing so, the generation of
such tests required large amounts of development
time and people resources. Although these tests
uncovered several bugs in all areas of the design, we
now believe that many of these same bugs could
have been found with less labor-intensive methods,
such as pseudo-random tests At the time, the pri-
mary advantage of custom DVTs was the clear
indication they gave that specific functional areas
of the design had been tested and were working
as specified.

Pseudo-random Design Vm!jiication Tests
Each new \]AX CPU design aspires to improve on
the price or performance of the previous design.
Improvements are sought by pushing the limits of
available technology to package hardware into
smaller and, if possible, less expensive spaces. At
the same time, a decrease in the cycle time or an
increase in the work done per cycle in the func-
tional design is also sought. In particular, this last
item has substantially increased design complexity
by introducing techniques such as pipelining and
special-case hardware. As a result of this complex-
ity, we often encounter very obscure bugs when
debugging new VAX implementations. These bugs
involve unanticipated interactions in the logic,
between seemingly unrelated functional areas, and
interactions dependent on intricate combinations
and sequences of events. We were concerned about
these types of bugs because it is extremely difficult
to write tests for unanticipated problems. The
method we chose to address these problems was
pseudo-random testing.

The intent of pseudo-random testing is to exer-
cise the design in ways that are likely to find bugs
without necessarily knowing in advance what those
bugs are or where they might be. Pseudo-random

testing implies simulating many cycles and trad-
ing off test efficiency to address the problem of
unanticipated bugs.

It is absolutely necessary to automate the pseudo-
random test process, both test generation and test
scoring, as much as possible since pseudo-random
tests are much longer than focused tests.

A powerful tool already available for pseudo-
random testing VAx designs is the \!Ax architectural
exerciser tool suite (AXE and MAX)." Originally
intended as hardware prototype verification tools,
AXE and MAX have proven to be even more effec-
tive as design verification tools in a simulation
environment. They provide a virtually inex-
haustible source of unique, interesting macrocode
test cases, and require a minimum of intervention
and effort by the user.

Although AXE and MAX provide some control
over test case parameters, they still aspire to be gen-
eral, architecturally focused exercisers. We also
wanted pseudo-random test case generation that
could be targeted at specific, risky areas of the
implementation. These areas were the most likely
locations for unanticipated bugs. Custom pseudo-
random exercisers were developed for these areas.
These exercisers provided very detailed control
over test case parameters, yet retained many of the
features and advantages of AXE and MAX.

A powerful techni ue for pseudo-random test is
1 4 the use of demons. A demon is any automated

intervention of a simulation model's normal execu-
tion behavior. For example, a bus demon can inter-
ject one or more bus commands, error conditions,
or interrupts at random intervals in order to aggra-
vate normal system operation. By doing this, a
dense environment of unusual or uncommon event
combinations can be created to stimulate the design
with worst-case situations. Demons typically
slowed model execution by a factor of ten, but they
often found bugs that had not been considered by
the designers or architects. Without demons, it
could have taken many months of field testing to
find and characterize these bugs, if they would have
been found at all.

Pseudo-random testing with LYE, MAX, custom
exercisers, and demons was used throughout the
development cycle of the CpU chip set. All four
uncovered obscure interaction bugs, as expected.
Unfortunately, they did not find them all. Some
unanticipated bugs slipped through verification and
into the fist-pass silicon stage. These bugs were
eventually found after running many more cycles in
real prototype hardware. The failure to find all

Vol. 2 No. 2, Spring 1990 Digital Technical Journal

Model 400 CPU Ch@ Set Functional Design Verification

unanticipated bugs in the simulation stage illus-
trates a fundamental problem in the use of pseudo-
random testing. The effectiveness of testing is
closely coupled to the number of cycles run, and
simulation speed severely restricts this number.

Our application of pseudo-random testing to the
problem of unanticipated bugs was largely success-
ful for this project However, we learned that we
must do more in the future to increase the
efficiency and scope of these tests. To provide this
increase, we are looklng toward more directed
pseudo-random testing.

Booting the VMS Operating System
A major milestone in thc development of any new
VAX CPU is booting the vMS operating system on
prototype hardware. Not only does this demon-
strate significant functionality in the design, but it
also provides a platform from which further testing
can proceed. As previously stated, increased com-
plexity in these designs can produce very subtle
bugs. Often, such bugs do not even appear until the
hardware is run under a heavy system load in a large
multiprocessing or 110-intensive environment. Suc-
cessfiilly booting VMS on prototype hardware is
necessary before any such system load testing can
begin. The sooner such testing begins, the better the
chance of finding subtle bugs. For this reason, boot-
ing the VMS system in simulation was an important
goal of the VAX 6000 Model 400 chip development
and verification effort.

At first glancc, it would seem impossible to boot
the VMS system on a simulation model in a reason-
able amount of time. Simulation speeds on the
fastest of our models were many orders of magni-
tude slower than actual hardware. However, careful
analysis of the macrocode modules involved in the
boot process revealed that by optimizing or remov-
ing large, iterative sections of code, we could sub-
stantially reduce thc number of cycles in the boot
path without losing significant coverage for veri-
fication. For example, the primary bootstrap mod-
ule contains code that creates a bit map of all
physical memory in the system. The code tests each
memory location for errors. By reducing this code
to test fewer memory locations, the number of
cycles executed is vastly reduced.

Another key optimization involved speeding up
simulated transfers from disk. At several points dur-
ing the boot process, code and data are pulled into
memory from a mass storage device (usually a disk).
For simulation, a special "turbo" disk model was
written by the verification team. This model arti-

Digital TecbnicalJournal Vol. 2 No. 2, Spring 1990

ficially processes model requests for block data
transfers and performs the transfers instantly. This
technique eliminated wasting simulated CPU cycles
while waiting for transfers to complete.

With model and code optimizations in place,
booting the ms system to the point of printing the
VMS banner and starting the process scheduler was
actually achieved in simulation. It took approxi-
mately seven CPU days on a host VLY 8800 system.
One model bug and one real design bug were found
during this effort. Booting the ViMs system in simu-
lation required a large amount of verification
resources. The process was worthwhile in terms of
the bugs that were found and the confidence it gave
us that we could boot v M S on first-pass hardware.

Analysis of tbe Functional Bugs Found
To demonstrate where the verification project was
successful and where it needed improvement, we
discuss here the bugs that were found both before
and after the chip set fist-pass design was commit-
ted to masks. (Note: The milestone of this commit-
ment is called PC, for mask data preparation's
pattern generation.) Only the bugs pertaining to
architecture, microcode, functional design, and
logic design are discussed. Layout and circuit prob-
lems, as well as modeling and tool bugs, are outside
the scope of this paper.

During the design period, several hundred bugs,
with a variety of complexity levels, were found in
all sections of the design. These bugs were found
through the verification techniques described in
previous sections and are detailed in Table 2.

The prototype chips were first tested on a Takeda
3381 chip tester. This tester allowed prototype
chips to be tested in a standalone environment. The
chips were then inserted into a prototype CPU
module, which was part of a custom-designed engi-
neering tester. The prototype module provided a

Table 2 Methods Used to Find Design Bugs
before F i r s t - ~ a ~ S Silicon

Number of
Verification Process Bugs Found

Custom DVTs, DVT reviews,
microcode assertions
Existing macrocode test programs
Pseudo-random macrocode tests
Boot V M S operating system on the
behavioral model
Total of bugs found prior to
first-pass silicon

VAX 6000 Model 400 System

true system environment for the chip set." During
prototype debugging, 11 bugs n7ere found. The
characteristics of these bugs are shown in Table 3.

None of these bugs was a "show-stopper" in
terms of prototype debugging or field testing. In
fact, most of them were so obscure that the proba-
bility they would appear during normal use was
very low. Several generalizations and conclusions
can be drawn from the types of bugs found and how
they were found, particularly whether they could
have been found earlier.

Bugs 1, 2,6, and 9 were simple, but were missed
because of overlooked test coverage. The sim-
plest test, if identified and written, would have
found them. We learned that we needed more
discipline and thoroughness in generating lists of
tests as guided by test coverage indicators.

Bugs 4, 5, and 11 were found on the simulator
after prototypes were available. It is questionable
whether these bugs would ever have been
noticed, much less isolated, on shipped systems
because the conditions triggering them were
obscure. For example, six conditions, including
a parity error interrupt, had to happen simul-
taneously to reveal bug 4 . It was acceptable to
find these bugs after PG because the impact from
such bugs on prototype debugging was minimal.

on the hardware at-speed as opposed to using
simulation. One of the new features stimulated
the conditions for bug 3. Had this MAX feature
been available prior to PC, we would have
encountered the bug in simulation within the
first few tests. Typically, 90 percent of the bugs
uncovered by using the MAX tool are found with
the first 100 tests generated.

The verification methodology for bug 10 was
correct, but had not been followed. Appropriate
gate-level comparison testing would have found
this bug prior to PC.

Bugs 7 and 8 were extremely obscure and diffi-
cult to find. The first symptom of these bugs was
a series of unexplained system crashes over a
period of several weeks. The situation was finally
resolved by attaching a logic analyzer to a system
and waiting for days for the right combination
of events to trigger the failure. Unfortunately, it
is highly unlikely that we would have found
either bug in simulation, even with a broader
scope of directed-random verification, given the
limited amount of simulation that was done. The
architectural, microcode, and pipeline combi-
nations required to trigger these bugs were just
too complex.

Bug 3 was found using prototype hardware C O Y U : ~ J S ~ ~
rather than simulation. A new version of MAX Although there were 11 bugs in the fist-pass chip
was released during the prototype debugging set, the verification efforts were considered quite
time frame. This version had some new test successful. Prototype debugging was never stopped
coverage features, and we decided to run them because of a bug, and system field testing was able

Table 3 Bugs Found after Pattern Generation

Bug
Number Chip Type Bug Type Complexity How Found

1 CPU Microcode First order Inspection
2 CPU Microcode First order Inspection
3 CPU Logic Sequential MAX on prototype
4 CPU Microcode Second order Pseudo-random on simulator
5 CPU Microcode Second order Pseudo-random on simulator
6 CPU Microcode First order Self-test on prototype
7 CPU Logiclmicrocode Second order Field test system crash
8 CPU Microcode Second order Field test system crash
9 CPU Logic First order Prototype debugging

10 Floating point Logic Sequential Chip tester comparison
accelerator

11 Cache Logic Second order System verification test on simulator
controller

70 1/01, 2 No. 2, 5$ring 1990 Digital TecbnicalJournal

?del400 CPU Chz9 Set Functional Design Vmfication

to complete on schedule. The modeling and veri-
fication methodologies contributed to this success.

All logic, functional, and microcode bugs could
be reproduced in the behavioral model. There-
fore, the bugs found after % could have been
found with simulation had the appropriate com-
bination of events been tested.

Complex pipeline activity, an area of concern
from the beginning, was the primary problem
area in the design. Compromising design com-
plexity to make thorough verification more
achievable should be considered.

In general, the tool or test that first exercised a
chip section or functional area with a bug found
the bug. We believe this indicates that it is more
productive to first debug using existing
macrocode tests or automatically generated tests
before writing new tests.

Although the effort to boot the VMS operating
system on the simulator was comparatively
large, one bug was found that would not have
been found through other means. We had not
considered the combination of events that
caused the bug. Finding this bug clearly showed
the benefit of running this application on the
simulator. Further, it gave us confidence that the
VMS operating system would boot on the first-
pass prototype hardware to ensure that proto-
type debugging could proceed unimpeded.

The flexible and wide-ranging modeling meth-
odology served the design team well. The source
code of the CPU chip set model has been reused
in system verification and chip set application
development projects at least ten times. The cor-
porate standard DECSIM logic simulator made
this modeling effort savings possible.

Acknowledgments
The verification of the CPU chip set design was
a team effort performed by the Semiconductor
Engineering Group's microprocessor verification
team. Members of this team included David Asher,
Rick Calcagni, Liza Hudepohl, George Mills, Rick
Pekkala, Ed Rocha, Will Sherwood, and Chris
Spear. Part of our success is attributed to our CAD
tool development groups, including the SEGCAD
DECSIM team and the VAx Architecture Group AXE1
lMAX team. We would also like to thank Mike Uhler
for his technical guidance throughout the project.

References

1. J. Basmaji et al., "The Role of Computer-aided
Engineering in the Design of the VAx 6200
System ," Digital Technical Journal, vol. 1 , no. 7
(August 1988): 47-56.

2. C. Wiecek, "The Simulation of Processor
Performance for the VAX 8800 Family," Digital
Technical Journal, vol. 1 , no. 4 (February
1987): 100-110.

3. C. Wiecek and S. Steely, "Performance Simu-
lation as a Tool in Central Processing Unit
Design," Perfomnce Evaluation Review, vol.
11, no. 1 (August 1979): 41-47.

4 . B. Moses and K. DeGregory, "Performance
Evaluation of the VAx 6200 Systems," Digital
TechicalJournal, vol. 1, no. 7 (August 1988):
64-78.

5. M. Kearney, "DECSIM: A Multilevel Simulation
System for Digital Design," Proceedings of
ICCAD (October 1984).

6. R. Gries and J. Woodward, "Software Tools
Used in the Development of a VLSI vAX

Microcomputer," Proceedings of the MICRO-17
Conferme (October 1984).

7. W. Sherwood, "An Interactive Simulation
Debugging Interface," Computer Hardware
Description Languages and Tbeir Appli-
cations, Breuer and Hartenstein, editors,
(Amsterdam: North-Holland Publishing, 1981):
137-144.

8. P. Sullivan et al., "The VAX 6000 Model 400
Scalar Processor Module," Digital Technical
Journal, vol. 2, no. 2 (Spring 1990, this issue):
27-35.

9. B. Milne, "Put the Pedal to the Metal with Simu-
lation Accelerators," Electronic Design, vol. 35,
no. 21 (September 1987): 39-52.

M. McMahon, "Accelerators for Faster Logic
Simulation: The ZYCAD Approach," Proceed-
ings of VLSI and Computers, First Interna-
tional Conference on Computer Technology,
Systems and Applications (COMPEURO '87 Cat.
NO. 8 7 ~ ~ 2 4 1 7 - 4 , 1987): 981.

11. D. Jenkins and S. Morton, "Transistor-Level
Logic Simulation Using the ZYCAD Logic
Evaluator," Proceedings of the Conference
on Automated Design and Engineering for
Electronics (1985): 154-163.

Digital TechnicalJournal VoL 2 No. 2, SLn-ing 1990 7 1

VAX 6000 Model 400 System

12. C. Terman, "Timing Simulation for Large
Digital MOS Circuits," Computer-aided Design
of VLSI Circuits and S ' m , ((Greenwich:
JAI Press, 1986).

13. C. Terman, "RSIM-A Logic-Level Timing
Simulator," International Conference on
Computers and Design (1983).

14. C. Terman, "Simulation Tools for Digital LSl
Design ," Technical Report TR- 304, M ITILCS
(Cambridge: MIT Laboratory for Computer
Science, 1983).

15. T. Leonard, ed., VAX Architecture Reference
Mantlal (Bedford: Digital Press, Order No.
E Y - ~ ~ ~ ~ E - D P , 1987).

16. D. Clark, "Bugs are Good: A Problem-oriented
Approach to the Management of Design Engi-
neering," Research - Technology Management
(forthcoming 1990).

17. D. Rhandarkar, "Architecture Management
for Ensuring Software Compatibility in the
VAX Family of Computers," IEEE Cmputer
(February 1982): 87-93.

18. W. Sherwood, "The VLSI VAX Chip Set Micro-
architecture," Microarchitecture of VLSI C m -
puters, P. Antognetti, ed. (1985): 103-126.

72 Wl. 2 No. 2, Sp'r'ng 1990 Digital TecbnkalJorrnal

John W Croll
Larry T. Camilli

Anthony J. Vmcaro

Test and Qualification of the
V M 6000 Model 400 System

Computer-aided design simulation, u~hich is used in the design of the VAX 6000
family, finds most problem during the hardware design phase. Simulation,
however, cannot test a cmnpkx systenz running under system softu~are control. For
the VRY (jOO0 model 400 system, a qualification process was designed to coml~letely
test the interaction of the system S hardware and soflware components. The benefit of
such a process is clearly shown in the results. Nearly all the problems found in the
qualification stage could not have been found in the simulation process. me testing
and qual$ication of the Model 400 was a multigrotlp eflort. This paper desmMbes the
metho& and tools of three Midrange Systems Engineering groups who were involved
in theproject.

The VAX 6000 Model 400 system is the third in the
v A X 6000 series. The Model 400 is designed to
enhance CPU performance using the same platform,
that is cabinetry, buses, and power systems, as all
moclels in the VAX 6000 family. The basic architec-
ture of the VAX 6000 Model 400 is unchanged from
that of the earlier Model 200 and 300 systems.'.','
The Modcl 400 is distinguished from earlier models
primarily by two additions: a new processor design,
which offers over twice the performance of the
original VAX 6000 Model 200 processor, and by the
addition of a vector coprocessor."5 The interfaces in
the Model 400 to the common platform remain the
same. However, the processor is an entirely new
design, and is the first Digital system to use semi-
conductors designed with the CMOS-2 process."

All VAX 6000 systems use a common design pro-
cess that relies heavily upon simulation to detect
and correct design errors. This simulation process is
designed to ensure that first-pass hardware, or the
initial engineering prototypes, will run the operat-
ing system at speed.- The VAX 6000 Model 400
processor is an excellent example of the effec-
tiveness of simulation techniques. The elapsed time
from power-on of the first prototype to reliable
login under both the ViMS and [JLTKlX operating
systems was less than six weeks, which is sub-
stantially less time than has been seen for previous
v ~ x processors.

Current computer systems are very complex,
especially when hardware and software interac-
tions are considcred. Simulation cannot adequately

test hardware executing under operating system
control. A companion system test and qualification
process, executed on hardware prototypes, is
required to thoroughly test the complete system
and ensure its reliability.

A key goal of the \!Ax 6000 common-platform
design strategy was to allow new processor tech-
nology to be brought to the market quickly. To
achieve this goal, we had to minimize the time
required for system test and qualification without
compromising the quality or reliability of the final
product. By reusing common platform compo-
nents, we could primarily focus on testing the new
components.

This paper addresses the system test and qual-
ification process used for the VAX 6000 Model 400
system. This process was designed to maximize test
effectiveness and minimize test time. The fist cus-
tomcr shipments of the VAX 6000 Model 400 system
occurred only six months after the introduction of
its predecessor, the \!AX 6000 Model 300 system.

System Test and ~ l i f i i c a t i o n Process
The VAX 6000 Model 400 System Integration Group
is responsible for the overall design ancl manage-
ment of the system test and qualification process.
This group comprises engineers who reside within
the hardware design group, but havc not directly
participated in the design of the components being
tested. Therefore. any problems found during the
test period can be rapidly communicated and
resolved, whereas the possibility of "testing to

Digital TecbnicalJournal Vol. 2 I V ~ . 2, Sprit~g 1990 7 3

VAX 6000 Model 400 System

implementation" versus "testing to specification" is
avoided.

A distributed test process was developed for the
VAX 6000 Model 400 system that used the resources
and expertise of a variety of groups within Digital.
The test process also allowed many tcsts to be cxe-
cuted in parallel to minimize time. Additionally,
some of these groups have specialized test Facilities
that are required to satisfy standards imposed by
Digital and various government regulatory bodies,
e.g., the FCC and UL.

The groups that participated in testing the
Viuc 6000 Model 400 system, together with a brief
description of each group's function, are shown in
Table 1. Each group played a valuable role in testing
a particular aspect of the system. Initially, a very
aggressive test schedule of six months for the entire
test and qualification process was planned. How-
ever, due to some delays in planned prototype
availability, all testing had to be completed in about
five months to allow systems to ship as scheduled in
July 1989. The expertise of all the groups involved
was recluired to meet this schedule. However, space

limitations prohibit an in-depth discussion of each
function. Therefore, we will examine in-depth the
roles of three of the Midrange Systems Engineering
Groups- the VAX 6000 Model 400 System Integra-
tion Group; the VAX Architecture Verification
Group; and the Midrange Systems Evaluation Engi-
neering Group. We will also describe the tests and
tools used in the qualification of the vAX 6000
Model 400 system.

System Integration Group
Planning for the system test and qualification of the
Vtuc 6000 Model 400 system began approximately
one year prior to scheduled availability of the first
prototype systems. During this period, the overall
qualification plan was developed, and individual
test plans were solicited from each group that
would participate in the testing. Each plan was
reviewed by the System Integration Group for test
coverage, as well as for minimization of overlaps
and duplication in the component plans. In parallel,
the System lntegration Group developed plans for
hardware-specific system design verification tests

Table 1 Organizations Involved in System Qualification

Organization Function

System Integration

VAX System Architecture
Midrange Systems Evaluation
Engineering
VAXcluster Validation

Mechanical Technology

Electromagnetic Compatibility
Engineering
Product Safety Laboratory

Diagnostic Quality Assurance
Manufacturing Product
Verification
Central Characterization Group

System Performance Analysis
Group
Customer Services Systems
Engineering
Software Quality Maintenance

Systems Reliability Engineering

Manage qualification process; perform DVT, system test, reliability
confidence test; manage field test
Exercise new system to find discrepancies with the VAX architecture
Test a variety of system configurations for proper operation,
concentrating on 110 configurations
Test complex VAXcluster environments with new products to find
problems in new or existing VAXcluster components
Demonstrate successful product operation while exposed to specific
environmental conditions (e.g., vibration, humidity, altitude)
Test new products for electromagnetic compliance to various
government regulatory requirements (e.g., FCC, VDE)
Test various aspects of new product safety and ensure compliance
to safety standards (e.g., UL, CSA)
Test various diagnostic programs to ensure correct operation
Provide the necessary data to verify and improve the manufacturing
process to enable consistent production of a quality product
Characterize performance of industry and application-specific
workloads
Model and measure performance of midrange products

Develop service delivery and training programs, test diagnostic and
repair features of products
Test software-layered product operability with new hardware and
operating system versions
Predict, test, and analyze hardware and system reliability

74 Vol. 2 No. 2, Spring 1990 Digital TecbnicalJournal

Test and Qmlzjication of the VHX 6000 Model 400 System

(DVTs) and for external field test. Prototype plans
specified the number, distribution, and cost of the
prototyped systems that would be required during
the test period.

The System Integration Group also acted as the
problem-reporting center. In implementing a dis-
tributed test process, two functions are essential.
There must be a central focus that disseminates
information regarding observed problems to all
test groups. Second, an established method for
tracking status and resolution of these problems
must be maintained. An internally designed system
maintained a complete audit history of each prob-
lem. There were 121 problems reported during
VAx 6000 Model 400 testing. Each step in the reso-
iution process was tracked for each problem in the
problem database. This database was available to all
test groups. The database was supplemented by
weekly cross-functional meetings, at which repre-
sentatives from engineering, manufacturing, and
customer services reviewed and updated each
problem's status.

The complex VAX 6000 Model 400 project sched-
ule was developed and tracked by the group. Due to
the number of groups involved in testing and the
delays involved when problems were found, the
critical path tended to be very dynamic during the
test phase. A project management tool, which was
developed within Digital and which used PERT,
tracked status against milestones and modeled dif-
ferent scenarios to prevent overall schedule slip-
page as changes occurred.

The System Integration Group performed four
major types of test. These were system test, reli-
ability confidence test, design verification tests, and
field test The following sections describe each of
these tests.

S'tem Test
There are two forms of system testing, directed and
random. Most testing groups use directed tests,
which test hardware or software features, or follow
a strict test sequence. Directed tests seek specific
results and are well defined.

The System Integration Group performed many
directed tests on the Model 400 system. Some of
these tests were done to satisfy the requirements of
external regulatory agencies, or internal Digital
development standards. Other directed tests
include system DVT tests, which are discussed in
more detail later in this paper.

Many aspects of complex systems cannot be ade-
quately tested in a directed fashion. For example,

an operating system and a processor can operate in
a nearly infinite number of states. It is impossible to
design a series of tests to verify each of these states.

Random tests exercise the system in more com-
prehensive ways than directed tests. They do not
seek specific results. Instead, random tests attempt
to push the system into as many different states as
possible, as quickly as possible. Greater test cover-
age results from these tests, hut problem diagnosis
and isolation are more difficult.

Because random testing does not look for specific
results, it is effective only if done for extended
periods of time Even if identical test scripts are run
repeatedly, system activity becomes unpredictable
over time, due to events such as network activity or
disk fragmentation. This unpredictability is impor-
tant because it means more system states are being
exercised.

The System Integration Group developed a ran-
dom test package, called the Systems Integration
Test Package (SITP), to test the VAX 6000 Model 400
system. This package consists of a comprehensive
collection of test programs and a script-driven
mechanism that controls their execution. SlTP is
diverse and flexible. The test programs were
obtained from many sources. The System Integra-
tion Group also wrote some test programs to exer-
cise specific aspects of the Model 400 system that
were not fully exercised by other tests.

The test programs used with SlTP are high level.
Each high-level test uses many lower level functions
within the system. Many of these programs are run
together, with varying test parameters and run-
times. The programs are self-checking. If an action
does not complete properly, the program notes the
error immediately. The program does not attempt
to identlfy the cause of an error; rather, it gathers as
much information about the error as possible. This
information is later examined by a test engineer.

SlTP is easy to use, restarts automatically after
system crashes or power failures, and includes mon-
itoring tools. Periodic reports, with deta~ls about
system activity and error log data, are generated by
the test package. With this information, the test
engineer can gauge the effectiveness of the tests and
adjust them as necessary. The test engineer can
also control and monitor tests on many different
machines. Machines can be located locally and
remotely.

A number of srTP scripts were developed to
provide different workloads for testing the Model
400 system. Each set of scripts emphasized a dif-
ferent type of system activity. Some were com-

VAX 6000 Model 400 System

pute intensive, some 1 1 0 intensive, and some
stressed parallel and multiprocessing activity. The
scripts were modified to suit systcm configurations
as needed.

SITP and the test scripts were installed on all the
Model 400 system prototypes in the system integra-
tion lab. Tests under the control of SITP were run
on the prototypes as prototypes were available.
Because the prototypes were heavily used during
daytime hours for various debugging tasks, sITP
tests were run overnight and on weckcnds. l'he test
scripts were designed to run for a specific number
of hours and then stop. The prototype was then
available for the next user. This procedure allowed
otherwise idle prototype hours to be used in system
testing and ensured a clean shutdown of the tests. In
this way, test data could be retrieved without inter-
ference from other prototype users.

SITP was used on the earliest Model 400 system
prototypes and was continually uscd throughout
the qualification period, as prototype time was
available. Scripts werc tailored to cause test con-
centration in specific areas and were modified as
necessary to suit various prototype configurations.
Typical SITP runs would last for 16 or 19 hours
(overnight), or 58 or 60 hours (over weekends).
Processor, memory, and 110 configurations varied
from run to run, and depended on test nceds and
equipment availability.

The overall results from system testing were very
positive. Over 6700 CPu hours were accumulated
on various prototypes and configurations. Many
errors were encountered during this period, but
most were due to SlTP bugs (SITP was still under
development for most of this period) or to errors in
setting up test scripts. Hardware errors occurred in
peripheral devices, principally disks and com-
munications devices, and were corrected as they
occurred.

Of the more serious problems found, one was a
hardware problem that would cause a system hang.
The problem was identified as a bug in a bus inter-
face chip on the CPu module, which was operating
in an untested mode. It was resolved by mod~fying
the system console to ensure that this mode was
never used. An error was found in the VMS machine
check handler, which was corrected in a subse-
quent release of the VMS operating system.

Five other serious bugs were found in the new
CI'U modules. Although none of these bugs were
found by the System Integration Croup's testing,
each took time to investigate, resolve, and test the
fixes. As a result, there was less time available on

prototype machines for other testing. Two of these
bugs were fixed by modifications to the C p u mod-
ule. The other three required changes to the proces-
sor chip. As corrected processor chips became
available, SITJ' was used to ensure the fvtes had not
introduced further bugs.

It is interesting to note that four of these five
problems occurred in system areas not simulated
during hardware design. Of these four, two
occurred in the handling of external system events.
One was in system reset handling. The other was in
handling "control/P" interrupts. ControlIP is the
standard method an operator uses to get the atten-
tion of the system console on VAX systems.' Two
bugs were caused by interactions between the new
processor and other system components. These
interactions were not simulated during hardware
design. The fifth bug was not found during sirnula-
tion because of a deficiency in a simulation test tool.

Reliability Confidence Test
To accumulate uninterrupted run-time on the
Model 400 system, five identically configured sys-
tems were set up in an isolated area. The machines
were isolated to protect them from outside inter-
ference while the confidence test was running.

The purpose of this test was to determine the
actual reliability parameters of the Model 400
system hardware and to compare the results to the
system's actual reliability requirements. A second-
ary goal of the test was to determine the long-term
system reliability, both for the hardware and oper-
ating system software.

The duration of the test was planned for six
weeks, which was sufficient to show the hardware
reliability. Once this six-week period was over,
we planned to continue to run the machines in
the same environment with the same workload for
as long as possible to accumulate further system
run-time.

The test started at the beginning of May 1989,
when enough CPU modules became available to
populate the five machines. The formal test period
ended two months later, in late June. Three of
the machines continued to run for two and a half
months, until mid-September. Of the other two
machines, one machine was needed for other pur-
poses, and another's CpU modules were removed to
change the configurations of the remaining three.

The systems ran identical SITP scripts that con-
centrated on exercising the new CPUs. Tests
included compute-intensive programs, programs
that explicitly tested various aspects of the new

Vol. 2 No. 2 Spring 1990 Digital TecbnicalJournal

Test and Qualification of the VAX GOO0 Model 400 System

CPUs (e.g., multiprocessor cache coherency), some
decomposed parallel applications, and tests that
generated many VMS processes.

The overall results of these tests were very good.
The systems demonstrated a hardware reliability of
over a year between hardware failures.

Only two module failures occurred. One had a
bad cache tag store, which was discovered very
early in the test. As a result of this discovery, the test
process for the CPU module's cache control chip
was changed. The other module failure was a float-
ing point chip failure. One specific test program
began generating wrong answers late in the formal
period of the confidence test. This module was
removed for repair.

Of the other failures that occurred during this
test, all were attributable either to test script or
set-up errors, o r to software or hardware prob-
lems which were corrected prior to shipment to
customers.

Once the formal test period was completed, the
three machines that continued to run until mid-
September exhibited no new failures and eventu-
ally accumulated a year's run-time. The reliability of
the VAX 6000 platform and the Model 400 CPU was
successfully demonstrated.

Design Verification Tests
Part of the System Integration Group's responsibil-
ity is to ensure that parts of the system not covered
by tests from other groups are tested. In general,
these parts are specific either to the new hardware

or to how the new hardware fits into the existing
system. These tests are called design verification
tests (DVTS).

A complete test plan for the Model 400 system
DVTs was written and reviewed by the group. The
list of DVTs performed is shown in Table 2.

The Model 400 DVTs complemented those tests
performed on the new hardware components. The
parts of the system tested were those in which other
testing was weak or nonexistent. These tests were
conducted in a formal manner, with a written
sequence of events and formal reports of results.
Any problems found were noted and reported to
the relevant development groups for analysis and
eventual correction.

The DVTs executed for the Model 400 uncovered
two system bugs and some minor documentation
problems. Both bugs were related to power failure
recovery. One was in the console and one in the
VMS operating system. Both bugs were eventually
fiixed. The minor documentation problems in the
system installation guide were also fixed. All other
design verification tests found no problems with
the system.

Field Test
Field tests are made on prototypes of new products
provided to customers. The purpose of field test
is to gain experience with the new products before
production; new products are actually used as
opposed to tested.

Table 2 VAX 6000 Model 400 System Design Verification Tests

Test Function

Keyswitch
Voltage margin
Thermal
Power-faillbattery backup
Interlocks
XMI saturation
Queue contention
Multiprocessing
Load test
System installation
Boot
System configuration
Remote services console

Console input

Verifies front panel functions with new hardwarelsoftware
Verifies proper operation over allowable voltage range
Verifies proper operation over allowable temperature range
Tests battery backup operation with hardware and software
Tests memory interlock functions
Tests system operation under very heavy bus loads
Tests proper operation under very heavy worst-case memory loads
Tests proper operation of all multiprocessing features
Runs system for extended period under heavy compute and 110 load
Verifies overall manufacturing process, and installation documentation
Verifies that system boots all operating systems from all devices
Verifies that all allowable configurations work properly
Verifies that remote services console hardware and process works with
new system
Verifies that console terminal hardware and software work properly

Digital TechicalJournal Vol. 2 No. 2 Spring 1990 77

VAX 6000 Model 400 System

For VAX system products, field test historically
has lasted a minimum of four months. This period
was determined from tracking problem reports
from field test sites. Generally, a month was
required for the new product to be installed and for
usage to reach a level where meaningful testing
occurred. The next three months provided useful
data about the new system. After three months, the
amount of useful data declined.

In field testing the VAX 6000 Model 400 system,
we shortened this four-month period to three. The
plan was to check on field test results two months
into the test. If field test was not progressing well
at this point, we were prepared to extend the test
period.

The System Integration Group did two things to
eliminate the field test startup time. First, because
the Model 400 system n7as an upgrade from earlier
VAX 6000 systems, Model 200 systems were
shipped to each field test site in advance of the
Model 400 field test start. These systems were
installed and running approximately a wcck before
the official field test started. A considerable amount
of time was saved in site preparation and system
installation.

Second, the startup of the field test sites was
performed by system integration engineers, who
brought Model 400 CPU modules and new VMS
software to each site. These engineers supervised
the installation of the new CPI's in the previously
installed systems, installed the VMS operating sys-
tem, and ensured that the systems were available to
the customer before leaving the site.

A total of seven field test sites were started up in
early April 1989. Six of these sites were located in
the United States. Five of these sites were installed
and turned over to the customers within two days.
The sixth site nlas ready in four days. The seventh
site was located in Europe, and was started up by
mid-April.

Once the site systems were running, the System
Integration Group maintained regular contact with
each site. Each site was assigned a "captain" (a sys-
tem integration engineer), who polled the site
weekly, talked to the users, and received first-hand
information about machine usage. This method was
used instead of the traditional dial-up problem
reporting method for two reasons. First, technical
problems existed in making reliable connection to
the dial-up system. Second, many people are reluc-
tant to report problems, unless the problem is so
large that work stops or is severely impaired.

Overall, field test went smoothly. Most of the
problems that occurred were minor and easily cor-

rected. Two problems arose because the Model400
system was different from the other VAX systems in
use at two of the sites. One site reported minor dif-
ferences in results from a benchmark program,
which was due to differences between run-time
libraries used for full VAX architecture implementa-
tions and subset implementations,x The other prob-
lem resulted because a customer program was
referencing an internal processor register that does
not exist in subset implementations.

Field test progress was assessed two months into
the test, at the beginning ofJune. The results of field
test were then examined, together with the data
obtained from other qualification testing. Since no
major problems had been found, we decided to pro-
ceed with plans to ship the Model 400 system ns
scheduled in mid-July.

Some improvements could have been made in the
field test process. First, site audits prior to instal-
lation of the prototypes were not very thorough.
Many of the sites were not running the neces-
sary software revision levels. Therefore, the new
machines could not be immediately put into
VAXcluster environments with existing machines.
Second, some pieces of hardware were missing and
had to be supplied later. Better communications
with the site prior to shipping prototypes would
have reduced these problems.

The System Integration Group wrote some moni-
toring software that was to be installed on each field
test machine. Because this was written at the last
minute, it was not properly tested and did not work
properly. The problems were fixed, but the moni-
toring software was not nin at all the sites. Finally,
how to get data from the monitoring software back
to the engineering groups was not well defined.
Thus, usage data obtained from field test machines
was spotty. These tools and methods are being
improved for use in the field test of future products.

VAX Architecture Vmyication Group
The Architecture Verification Group ensured that
the Model 400 CrU conformed to the VAX architec-
ture specification.'

Test Process Overview
The architectural verification process consists of
running two programs- AXE (architecture exer-
ciser) and MAX (multi-instruction architecture
exerciser)- in various modes for a given number of
test cases. The tests are simple to run. However, the
test programs are quite complex and required many
years to develop. The Architecture Verification

k t . 2 No. 2, Spring 1990 Dfgllal TecbnicalJouml

Test and Qualifcation of the V M GO00 Model 400 System

Group maintains and enhances these test programs
and the databases used to verify the architecture.

When one of the tests fails, the group identifies
the problem and helps resolve i t . Once the problem
is fmed, the group repeats the tests.

AXE and MAX
The \/AX instruction set consists of over 360 instruc-
tions and 21 addressing modes. Most modes are
valid for up to six operands per instruction. Con-
ceptually, both AXE and MAX divide an instruction's
context into several components. These com-
ponents include opcode, operand specifiers, oper-
ands, page protection and validity, and processor
status long word (PSL). For each component, valid
and invalid values are pseudo-randomly selected to
create a test case. The exerciser continues to create
unique cases for as long as it is run.

The VAX architecture has a clearly defined excep-
tion and instruction restart structure. Much of the
VAX architecture's complexity is in those opera-
tions. Therefore, both AXE and MAX favor values
that cause faults. Each program establishes a situa-
tion with faults, starts the instruction or sequence,
verifies that the fault occurs, fixes the fault, restarts
the instruction, and verifies that it completes cor-
rectl y. Upon completion, AXE or m compares the
results from the unit under test to a known good
reference, and reports any differences. The known
good references contain the correct results of each
test case. These references have been accumulated
over the years of testing VAX systems and have
changed as the VAX architecture changed.

AXE AXE is the older and simpler exerciser. It cre-
ates test cases that consist of a single instruction. A
typical instruction stream would be:

When this instruction is first executed, either a
resewed operand fault (on R1) or a resewed
addressing mode fault (short literal destination)
should be reported. AXE will fix whichever fault is
reported and restart the instruction.

Assuming the reserved addressing mode fault
was reported, the instruction might then look like
this:

ADDF3 R l , R 2 , R 3 R 1 = 0 0 0 0 8 0 0 0 , R2=46246811

If the reserved operand fault is reported, AXE will
change R1 to a valid floating point value and restart.

Digital TechnicalJournal Vol. 2 No. 2, Spring 1990

When the instruction completes, AXE compares
the instruction stream and the relevant data to
reference data. In this example, the relevant data
includes the three general purpose registers.

Both AXE and MAX ignore a machine state
defined to be unpredictable for a given condition.
Therefore, allowable differences between imple-
mentations do not cause erroneous failure reports.

Limiting AXE'S testing to single instructions pre-
cludes meaningful testing of the pipelining that is
common in today's CPU designs. MAX overcomes
this limitation. IMAX currently acts as an adjunct to
AXE. However, it will eventually replace AXE.

MAX MAX is similar to a compiler in that it creates
complete instruction streams. However, MAX does
not have source code to ensure that the resultant
machine code is logically consistent.

To test how a CPU handles inter-instruction data
dependencies, MAX must create test cases with
instructions that share registers and memory loca-
tions. Creating sensible instruction streams can be
difficult. For instance, the result of one instruction
could be used as part of an address calculation for
a subsequent instruction. However, the likelihood
is slim that the result of a randomly selected arith-
metic calculation will be used within the test case's
virtual address space.

MAX f is t creates and executes sensible cases in
logical steps. It then assembles and executes each
case as a whole.

After selecting the first instruction, hIAX executes
the instruction, including fault restarts, and saves
the final results. MAX next selects and places the
second instruction in memory following the first
instruction. Where possible, it uses the results of
the first instruction for operands and operand
specifiers of the second instruction. MAX selects
new values for operands and specifiers for which
old values cannot be used.

MAX includes the new values in the initial state of
the entire case. It then executes only the second
instruction. This process repeats until an instruc-
tion stream of the desired length is created. At this
point, the entire stream is executed. Once the
stream is run, the results of all of the instructions are
compared. This comparison is made against the
results of the single-step execution and the results of
the known good reference.

Test Process
The minimum testing requirements for shipment
of VAX systems were developed from experience

VAX 6000 Model 400 System

gained from testing all previous V U systems. The
requirements are a compromise between the num-
ber of bugs likely to be found and the time required
for the tests. The testing program consists of over
200 million lest cases.

The use of AXE and MAX in the system qualifi-
cation process is a continuation from the CPU
design process. Both exercisers were used esten-
sively to test simulations of the cPr! design. How-
ever, this testing is limited by simulation speed.
Testing on hardware at speed is necessary for more
thorough coverage.

Testing of the VAX 6000 Model 400 started in late
April. To complete verification in less than two
months, four machines were used. The machines
executed different test cases in parallel.

The VAX GO00 Model 400 CPIJ was the fust \!AX
CPLJ for which no hardware bugs were found by
AXE or MAX during final qualification. This result is
a testament to the cxeful design and extensive test-
ing during the simulation and chip debug phases of
the C P U design.

However, a bug WAS found in the VMS operating
system's floating point emulation code that calcu-
lates the POLYx instr~ctions.~ Because the Model
400 CPU is the first that did not include the POLYx
instruction in the c l- '~ microcode, it was the first
CPU that required use of the VMS emulator for this
instruction. For this reason, the bug had never been
seen before.

The Architecture Verification Group traced the
bug and confirmed that a patch to the emulator
tixed the bug. The group then reran all of the test
cases that exercised the floating point emulator to
confirm that no new bugs were introduced. The
patch was included in the VMS version 5.2 manda-
tory update.

Midrange System Evaluution
Engineering Group
The Midrange System Evaluation Engineering
Group tests new products to isolate design faults
and configuration incompatihilitics. This group
examines varioi~s system configurations, tests inter-
action between components, and tests special situa-
tions, such as power failure and recovery.

Test Process Overview
System evaluation typically begins when the first
hardware and software prototypes become avail-
able and continues through to product shipment.
Evaluation planning oftcn begins six to nine months
prior to the actual process with the crcation and

review of a test plan. The test plan is based on
product specifications and information from devel-
opment groups. It identifies the test tools, configu-
rations, and strategy the System Evaluation Group
will use.

The System Evaluation Group exposes new
products to a wide range of hardware and soft-
ware configurations. This exposure is achieved by
combining a stable, well-equipped, and versatile
laboratory with specialized test software and test
procedures. These tests are done before system
shipment to customers, when modifications can be
made at minimal expense. The group complements
the qualification efforts of the product develop-
ment groups by allowing these groups to focus
attention on product-specific engineering issues.

Test Strategy and Test Software
The overall VAX 6000 Model 400 test strategy
involved the installation of the new processors in a
wide range of system configurations. The group
subjected these configurations to a series of inter-
active load experiments, which used internally
designed and developed software tools. These tools
concurrently stressed all configured processors,
memory arrays, I 1 0 adapters, and communication
devices. Stress in this context means heavy loads
in terms of 1 1 0 bandwidth used for a given data bus,
and minimal idle CPU time for processors. This test
strategy has proven successful since it was fust used
in the mid- 1970s for PDP- 1 I systems.

The processor and memory tests exercise VAX
instructions, the floating point processor, and the
cache subsystem. Configurations with large mem-
ories are tested with a specially developed memory
exerciser. This program references memory in the
least efficient manner to force high page fault and
low cache hit rates.

1 1 0 adapter tests exercise specific devices. The
tests include a system exerciser that can generate
various 110 rates to disk, tape, and terminal devices,
while verifying data integr~ty.

Communication tests include a DECnet exerciser
and an Ethernet local area network program. These
tests generate a high level of network activity and
check data integrity.

Con figuration Selection and Test
The System Evaluation Group selects configurations
according to many factors, including

vMS operating system restrictions

Bus architectures and slot placement limitations

Val. 2 No. 2, 5m.n~ 1930 Digilal TecbntkalJournal

Test and ~ l i f i c a t i o n of the V M 6000 Model 400 System

Power and packaging restrictions

Marketing requirements

The maximum number of each supported option
is tested within laboratory resource limits. Because
the Model 400 CPU is a higher performance proces-
sor for the existing VAX 6000 platform, it was tested
within established VAX 6000 family configuration
guidelines. The System Evaluation Group chose
nine Model 400 system configurations to test from
one up to six processors, 32 to 256 megabytes of
memory, and from two to six VAXBI channels.

An important part of configuration testing for a
new processor involves verification of proper sys-
tem initialization and operating system boot using
various load paths. With the Model 400 system, this
testing meant loading the operating system through
different VAXBI channels, disk or CI adapters, and
load devices. Several problems were noted with
bus adapter initialization and self-test while testing
certain VAXBl channel configurations. These con-

figuration-dependent problems were corrected by
modifying console and operating system software.

As shown in Figure 1, VAXBI channels on the
Model 400 were also configured with all currently
supported VAX 6000 system I10 adapters. Although
testing with large and diverse system configurations
poses logistical challenges, these environments will
often succeed in exposing device compatibility
problems.

The device compatibility problems found during
the Model 400 evaluation occurred either during
operating system initialization or when interactive
workloads concurrently exercised all system
devices. One such problem resulted from the
increased processing speed of the Model 400 pro-
cessor and would occur only when an adapter was
tested in a specific configuration under a certain
workload.

More specifically, this problem was due to a race
condition between a VMS application level program
issuing 110 requests and the adapter hardware pro-

MODEL 400 PROCESSORS
1 TO 6 PER SYSTEM

XMI

2 TO 6 VAXBl CHANNELS m
VAXBl

Figure I Adapters/Options Tested during VAX 6000 Model 400 Evaluation

CONSOLE
LOAD
DEVICE
1 PER SYSTEM

DECnet
COMMUNlCATlON
ADAPTERS
2 PER VAXBl
4 PER SYSTEM

Digital TecbnicalJournal VoA 2 No. 2, Spring l p o

CI
ADAPTERS
1 PER SYSTEM

I

DISK
ADAPTERS
2 PER VAXBl
12 PER SYSTEM

PARALLEL
PORT
ADAPTERS
4 PER VAXBI
8 PER SYSTEM

TAPE
ADAPTERS
2 PER VAXBl
4 PER SYSTEM

SYNCHRONOUS
COMMUNICATION
ADAPTERS
2 PER VAXBl
2 PER SYSTEM

ASYNCHRONOUS
COMMUNICATION
ADAPTERS
2 PER VAXBl
3 PER SYSTEM

UNIBUS
ADAPTER
1 PER VAXBl
1 PER SYSTEM

VAX 6000 Model 400 System

cessing and returning a response. With slower
machines, the adapter hardware won the race; but
with the faster Model 400 processor, the host won
by issuing commands faster than the adapter hard-
ware could process them. The problem was cor-
rected with a modification to the device driver
software.

Complete configuration test coverage for the
Model 400 processor also required VAXclusterAocal
area vucluster [LAVC) and DECnet/local area net-
work (LAN) c\~aluation using each of the supported
CJ and DECnet communication adapters. To accom-
plish these t a t s , a 13-node VAXcluster was estab-
lished composed of eight VAX host systems, four
HSC mass storage servers, and the VAX 6000 Model
400 system under test.

Primarily, the VAXclusterlLAVC and DI:<:net/LAN
testing verified the functional compatibility of the
Model 400 processor with the VAX (1000 series CI
and NI adapters. Cluster and LAN activity were used
simply as adapter loads. Interactive experiments
were designed to emphasize stress at the local sys-
tem level. Cluster-level verification was deferred to
another group.

Evaluation of the VAX 6000 Model 400 system
also verified the Model 400 system-level power-fail/
warm-restart capability in large configurations with
high compute and 110 loads. These tests ensured
that battery backup units wwld maintain supply
voltages for the guaranteed duration. Further, these
tests ensured that error reporting and recovery pro-
cedures operated properly.

Interactive Test Method
The interactive test method first selects test soft-
ware. It then modifies parameters such as vMS
queue 110 (Qlo) request size, number of outstand-
ing commands, and device mode of operation.
Using this method, three system workloads were
generated.

The first workload used small VMS QIo request
sizes and maximum QIO request queue lengths to
achieve high I f 0 rates. This workload minimized
idle CPU time and maximized time on the inter-
rupt stack.

The second workload used large VMS QIO request
sizes with sequential disk accesses and device loop-
back to generate high bus utilization rates (bytes
per second). This workload saturates 110 buses and
interconnects by generating large amounts of direct
memory access activity.

The third workload combined CPU/memory and
110 adapter test software with a distribution of
small, moderate, and large VMS QIO request sizes.

Memory arrays were also configured in a non-
interleaved mode to degrade memory access time
and aggravate potential bus timeout conditions.

Thc System Evaluation Group ran interactive test
experiments for a minimum of four hours and a
maximum of three days. A typical experiment
lasted 18 hours. Most long duration experiments
were performed using the combined CPLlImemory
and YO adapter workload. The longer run-times
provided adequate time for adapter exercisers
to step through a preprograrnrned range of trans-
fer sizes.

Following each test, VMS error counters, test soft-
ware status reports, and VMS error log entries were
ex:~mined for system or device errors. The group
then characterized problems in terms of their fre-
quency, repeatability, and the system environment
in which they occurred. The system environment
included detailed information regarding hardware
configuration, the software test tools and parame-
ters used, and module, operating system, device
driver, and firmware versions.

Although some of the problems noted during the
Model 400 evaluation were easy to reproduce and
occurred frequently, others were intermittent in
nature and not so easily induced. For example, the
configuration-dependent problems occurred each
time a specific configuration was tested, whereas a
particular device compatibility problem was inter-
mittent and required long duration runs before
appearing.

The detailed problem descriptions, along with
pertinent error log or crash dump data, were pro-
vided to the appropriate development groups for
analysis. Also, descriptions were logged in the pro-
ject-specific problem reporting databases to ensure
that problems were properly tracked and resolved.
The System Evaluation Group then worked with the
development group to fm the problem.

From a total of six problems noted during the
Model 400 evaluation, four were configuration-
dependent and corrected through modifications to
the VMS operating system or console microcode.
Two problems were device compatibility bugs that
occurred during operating system initialization and
interactive testing. These problems were fixed
through modifications to the VMS operating system
or device driver software.

When the VAX 6000 Model 400 system evaluation
was completed, a final report was distributed. The
report summarized the configurations and test tools
used, the specific experiments performed, and the
current status of all problems that were identified.

VoI. 2 No. 2, Spring 1990 Dfgftal TecbnicalJournal

Test and Quzlifcation of the VAx 6000 Model 400 System

Summary
System qualification is the last stage in the system
development process. The qualification process for
the Model 400 system was designed specifically to
take into account computer-aided design and simu-
lation used by the hardware design process.

As our experience with the Model 400 system has
shown, nearly all of the problems found during
system qualification were in areas of the system that
could not be simulated. As a result, the qualification
process is most effective when focusing on testing
those parts of the system that cannot be simulated
because of their complexity, which presents both a
challenge and an opportunity.

The challenge is to design test processes and
tools that can adequately test a complex system in a
reasonable time. With SITP and other test tools,
such as those used by Midrange System Evaluation
Engineering, we have made a significant start in
developing these tests. However, there is still much
room for improvement, and work is continuing in
this area.

The opportunity is to shorten the qualifica-
tion process. Because first-pass hardware is more
robust, more system testing can occur earlier. Also,
better test tools enable us to provide more test
coverage in less time and with fewer resources,
both in prototypes and number of people. We took
advantage of this opportunity in the Model 400
system qualification to cut the length of field test
by 25 percent, thereby bringing the Model 400
system's new technology to market faster.

Re fermes
1 . B. Allison, "An Overview of the VAX 6200 Family

of Systems," Digital Technical Journal, vol. 1 ,
no. 7 (August 1988): 10-18.

2. B. Allison, "The Architectural Definition Process
of the VAX 6200 Family," Digital Technical
Journal, vol. I , no. 7 (August 1988): 19-27.

3 . R . Gillett, "Interfacing a VAX Microprocessor
to a High-speed Multiprocessing Bus," Digital
Technical Journal, vol. 1 , no. 7 (August 1988):
28-46.

4 . P. Sullivan et al., "The VAX 6000 Model 400
Scalar Processor Module," Digital Technical
Journal, vol. 2 , no. 2 (Spring 1990, this issue):
27-35.

5 . D. Slater et al., "Vector Processing on the VAX
6000 Model 400 System," Digital Technical
Journal, vol. 2 , no. 2 (Spring 1990, this issue):
1 1-26.

6 . H. Durdan et al., "An Overview of the VAX 6000
Model 400 Chip Set," Digital Technical Journal,
vol. 2 , no. 2 (Spring 1990, this issue): 36-51.

7. J. Basmaji et al., "The Role of Computer-aided
Engineering in the Design of the VAX 6200
System," Digital TechnicalJournal, vol. 1 , no. 7
(August 1988): 47-56.

8 . T. Leonard, ed., VAx Architecture Reference
Manual (Bedford: Digital Press, Order No.
EY-3459~-D~, 1987).

Digital TecbnicalJournal Vol. 2 No. 2 Spring 1990 83

Thomas C. Furlong
MicbaelJ. K. Nieken

Neil C. Wilhelm

Development of the
DECstation 3100

The aECstatiotl 3100 is tbe finl member of Digitalk fanzily of high-performance
ULTRJX u~orrtttutions. Built u~iCh R2Om chip set jkm MIPS Computer Spsterns,
Inc., and highly integrated I/O andgrwhics subsystem, the WCstation 3100 iirzple-
metzts 12 mips of RISC-bad computing, workstation I/O, and excellent bit-map
grllphics m a single module. ?be LEGstation 3100 workhtzon runs Digital S IILTRIX
operating @em (compatible with U N R sopware) as well as aECu~indows somare,
TCP/IP, DECnet soflw~re, and Netutwk File Sentrices (NFS). The workstation can be
configured with 8MB to 24MB of p'ty-protected memory, monochrome or 8-plane
colrw graphics, 15-inch or lpinch monitors, and SCSI disk and tape devices. This
paper describes the LXCsMtion 3100product, the design effort, details of the system,
and measured benchmark p e r f i n c e .

System Oueruiew
Packaged in a desktop system box, the DECstation
3100 workstation is implemented as a single mod-
ule that contains CPU/FPU, separate instruction and
data caches, memory control logic, Ethernet and
small computer systems interconnect (SCSI) con-
trollers, four serial lines, and video display logic.
Connectors on the module accept as many as 12
memory modules of 2 megabytes (MB) apiece as
well as a single monochrome or color f r m e buffer
module. The box optionally contains 3.5-inch,
104MB SCSl disk drivcs. An SCSl connector on the
back of the slstem box supports the attachment of
additional SCSI devices, such as the 332MB disk
drive, thc 95MB tape drive, and the GOOMR CDROM
disk drive.

Background and Project Goals
Digital's research and development groups in
Palo Alto had used a UNIX operating system in a
clientlserver computing environmcnt for more
than three years. The clients were various VAX
workstations. The servers were VAX systems and
NSC-technology resclrch machines, called Titans,
which were developed by Digital's Western
Research 1,aboratory.

'The major frustration in this environment was
the lack of processing power at the workstation.
Computer room servers delivered up to 12 million
instructions per second (mips), but most office
workstations delivcrcd only 1 mips. This disparity

caused many workstations to be used only as rather
expensive tcrminal emulators for the larger
mdchines. The slow workstations also meant that
window applications were often bogged down in
screen update activity, and that NFS performance
was limited not by device or network spceds but by
the workstation's processing power.

The primary goal of the DE<:station 3100 project
team was to producc a fast RISC ULTRIX workstation
that would bring processingand windowing perfor-
mance to the user's desk at a competitive price. The
product would run the ULTRIX operating system,
DECwindows products, and network software for
both TCPIIP and DECnet networks.

In early May of 1988, we received approval
to build an ULTRIX workstation that featured
increased processing power. The remdining design
goals were time to market, packaging, reuse of
existing designs, and system cost and price. The
aggressive schedule called for the first workstation
to ship in mid-January 1989. We were asked to
use the new desktop system box designed for
product to be later announced as the VAXstation
3100. We were also asked to reuse any hardware
or software elements of thc VAXstation 3100 that
we possibly could. Our own view of the market-
place caused us to choose an entry-level price of
approximately O 1 0 K .

At the end of the project, we achieved all of our
goals. We shipped the First system in the desired box
on the very day we had promised. We reused most

84 Vol. 2 No. 2, Spririg 1990 Digital TecbnicalJournal

of the existing LII,TRIX, windowing, and network
software, and supported the same internal disk
drives as the VAXstation 3100. We held the entry-
level price within 20 percent of the $10K goal.

System Cost Issues
We needed to control the high-cost items of proces-
sor, caches, and memory. We also had to resist the
tendency to add things, either because other groups
requested them or because we had ourselves
wanted them.

The processor choice was based more on cost per
mips than the absolute cost of the processor chip set
itself. The cost per mips consideration led us to
select a UlSC processor instead of a VAX processor in
order to obtain at least a two-to-one performance
advantage. Since wc were building a product for
users of the LI12TRIX operating system, the lack of
vAX instruction compatibility was not an issue. We
chose the R2000 chip set from MIPS Computer
Systems as the best c:Mos uls<: technology on the
market.

Even though caches contribute significantly to
system performance, we still considered the use of
small caches to reduce cost. Simulations of system
designs indicated that the higher expense of large
caches was necessary to achicve fast desktop
performance.

Our most difficult challenge was determining
how to implement memory. We did not want to
burden the entry-level systems with more memory
than was necessary, but we did want the opportu-
nity to add memory to systems that could use it. We
considered memory on the system module, mem-
ory on daughter cards, niemory on commodity
single in-line memory modules (SIMMs), and finally
niemory on custom-designed SIMMs. In the end, we
chose the custom-designed SIMMs because of their
density, cost, and configurability.

Basic Project Rules
To succeed at this project we kept the size of the
team to the minimum and isolated the team from
outside influences. We settled on a minimal product
focus team and a minimal design team. The five-
person product focus team would manage the pro-
ject while the three-person hardware design team
would build the machine. Everyone would work
from the Palo Alto base.

The first machine was running two months
after the project start datc. By that time the design
team had expanded to about twenty people
developing the electronics package, diagnostics,

software, and documentation. Many designers,
particularly software engineers, temporarily relo-
cated from New Hampshire to participate in the
project. Researchers from Digital's two Palo Alto
research laboratories gave generously of their time
in reviewing the design, developing new software,
and testing prototype systems.

The product focus team built extended support
groups for functions such as manufacturing, mar-
keting, sales, and application development.

Basic Design Rules
From the beginning we agreed upon some basic
design guidelines. We strictly adhered to these deci-
sions throughout the design phase of the project.
We would develop all functions on one system
module. Anything that did not fit would not be part
of the product.

We would do no ASIC or other rc design; the
schedule did not allow for it. So we would use lots
of random, low-cost , standard logic functions, PALS
in particular. Opportunities for lower cost integra-
tion would be saved for follow-on products.

We would build dumb 110 controllers. This deci-
sion eliminated the use of secondary processors,
microcode, and hardware coordination of intel-
ligent devices. Various-sized buffers on every con-
troller would allow devices to run at their own
speeds independent of gener~l processor activity.
Software drivers n~nning on the general CPU w o ~ ~ l d
interact with industry- or Digital-standard con-
troller chips for the 110 subsystems.

We would build dumb graphics- no pipeline, no
graphics processors, no rendering chips, but simply
a frame buffer configured as part of the main mem-
ory address space. The only exception was to add a
color plane mask for use by the color software.

We would aim for ease of manufacturing by
keeping the option choices low. The only choices
to be made in manufacturing the system box were
how many memory modules to insert, which frame
buffer module to insert, and whether to add one
or two internal disks. This decision kept the total
manufacturing permutations down to 30. (Earlier
Digital workstations were up around 1000.)

We would try to let experiencecl computer users
upgrade and service their own workstations. The
choice of system box limited this capability since
the VAXstation 3100 box was not originally
designed for user access. We simplified the original
box design and left much of the box empty to make
the electronics more accessible.

Digital TecbnicalJoumal W>l. 2 M. 2, Spring 1990 85

VAX 6000 Model 400 System

Conflicts and Resolutions
A t project start, the derign team resisted the idea of
offcring both monochrome and color graphics
options. We hclicvcd in the value of providing color
wherever and whenever possible on workstations:
customers prefer color, and it provides additionaI
functionality. However, we were not confident
we could dcvelop both graphics options and still
remain on schedule. We decided to use a simple
frame buffer along with a single, configurdble video
output design. We would bear the cost of an unnec-
essary VI)AC in the monochrome system, but we
only had to design one system.

Although the hardware design team was confi-
dent that costlperformance trade-offs were t l x
right ones, other project members voiced their con-
cern. Some issues were memory size and 110 and
graphics performance. W u l d the rnz~imum mem-
ory size of 24MB be large enough for applications
such as computer-aided design (C A D) and model-
ing? How would Ethernet and disk performance
compare to VAXstation and competitors' work-
stations? Would the choice of frame buffer matched
with a fast RlSC processor deliver adequate graphics
performance, particularly in color systems?

Thcsc qilestions were answered once the soft-
ware development was complete and performance
mc;tsuremcnts ccll~ld be made on late prototype
systems. See the Product Qualification sectiun of
this paper.

Another topic we debated was whether to aIlow
peripheral devices in the box, which was clearly
designed for such devices. Various combinations of
disks and tapes in the box presented three prob-
lems: more complicated options in manufacturing,
a heavy drive plate and complex cabling for the user
to remove during system upgrade, and a power
problem if an internal tape drive was present.
Evcnt u;tlly we permitted only the internal 3.5-inch
disk drives and simplified the drive mounting plate
to be easier to remove.

Product Qualification
Since the entire project time was only eight
months, we needed to maximize the test time of
the DECstation 3100. The hardware was an entircl y
new design. The software was a port from a VAX

base to a KISC base, and much of the lower level
graphics software was completely new code.

To test modules and the hardware system, we
sent many early prototypes to a local testing lab-
oratory for stress testing. While running both diag-
nostics and the ULTRIX operating system, we shook

the systems, power-cycled them, tempernture-
cycled them, even submitted them to rainfall due
to an environmental failure. We recorded c\.ct-y
failure and traced it back to its source. Many of
these failures led to changes in diagnostics, compo-
nents, placement, and mechanical solutions. 'l'his
early stress testing did not uncover any problems
not seen elsewhere, but with a small number of
machines, it validated all problems seen in the other
test situations.

To test the total system with its software, we
invented a qualification team nicknamed the
"wrecking crew," a group of about twenty-five
senior engineering researchers and developers.
They agreed to accept early prototypes and to sub-
ject them to heavy use for a period of three months.
Their goal was to break the systems, as often and in
as many ways as they could. During the wrecking
period, we constantly installed the latest soft-
ware changes, replaced diagnostic KOMs, added
hardware, and moved systems from person to per-
son to allow everyone to try different configura-
tions. Each crew member was responsible for an
exhaustive test of a subset of the ULTRIX commands
and utilities.

The wrecking crew was a huge success. Team
members reported 785 problems, complained
mightily and usefully, ported C A D tools, window
applications, and compilers in their spare time.
Their constant demand for the performance they
expected exposed many bugs that were artificially
limiting performance. Best of all, the wreckers
almost doubled the number of software experts
knowledgeable about the workstation from an
early stage and thus contributed significantly to
system quality.

Processor Subsystem Details
The DECstation 3100 CPU consists of the MIPS
R2000 integer processor, the R2010 floating point
coprocessor, and four R2020 write buffers. The
chip set operates at 16.67 megahertz.

In the DECstation 3100, the R200O chip set runs
in "L~ttle Endian" mode. In other words, bits wlthin
bytes and words are counted from right to left, and
the low-order bit is the rightmost bit in a word.
"Little Endian" mode means that the integer data
format of the DECstation 3100 is identical to the
integer data format of any VAX processor. The
floating point data format is compliant with lEEE
standards.

The R2000 CPU implements the instruction set,
processor registers, virtual memory, and interrupt

Development of the DECstation 3100

system as defined by the R2000 architecture. The
CPU maintains the direct-mapped, write-through
data cache. Each cache is 64 kilobytes (KB) in capac-
ity with a 4-byte line size. The tag and data stores of
each cache are byte-parity protected, and cache
parity errors transparently generate cache misses to
reload the cache from memory.

The R2010 floating point coprocessor imple-
ments the IEEE arithmetic functions and coproces-
sor registers defined by the R2000 architecture.

The R2020 write buffer implements a four-stage
write buffer for the CPU. This write buffer allows
the CPU to write to its write-through cache without
stalling the CPU as long as the write buffer is not full.

Grapbics
Graphics on the IlECstation 3 100 is implemented in
a tightly integrated subsystem. Frame buffer mem-
ory is a region of memory in the processor address
space- 2 5 6 ~ B in a monochrome system and 1 MB
in a color system. Less than half of the monochrome
frame buffer and three quarters of the color frame
buffer are displayed on the workstation monitor.
The remaining frame buffer memory may be used
for storage of graphics data structures such as fonts.
The frame buffcr memory is not parity protected.

At boot time, the [ILTRlX operating system
detects the size of frame buffer memory and
whether the system is monochrome or color.
Because frame buffer memory is cacheable and
addressable in the same way as the dynamic ran-
dom access memory (DRAM), the software is able
to achieve extremely high performance without
any special-purpose graphics hardware.

A color plane mask allows processor writes to the
color frame buffer t o affect only specific bits of a
pixel. This design allows modification of a given
plane of the color frame buffer using only write
cycles, which increases performance significantly.

The graphics programmable cursor supports a
16-by-16 pixel, two-plane cursor. The cursor can
take two forms: a 16-by- 16 bit pattern or a crosshair
whose lines may extend to the edges of the visible
raster or may be clipped to a programmed region.
The cursor in a color system may have up to three
colors, and the cursor in a monochrome system
may have up to three gray-scale values.

Memory
The DECstation 3100 supports 8MR to 24MB of byte-
parity protected memory in 4 M B increments. The
memory system includes both the DRAM array and a
video random access memory (VRAM) frame buffer.
The video frame buffer has the same memory access

characteristics as memory and may be cached if
desired. The memory system supports byte, half-
word, word writes, and word reads.

The memory system control logic is optimized
for minimum memory read latency, at a slight cost
in memory write latency. On a memory read, the
CPU incurs a five-cycle stall in the absence of mem-
ory refresh contention. The memory system can
sustain five-cycle reads, which results in a peak read
bandwidth of 13.3MB per second.

Memory writes to an empty write buffer com-
plete in eight cycles, but do not stall the CPU. Suc-
cessive memory writes complete at the rate of six
cycles, and the CPU stalls whenever the write buffer
is full. The memory system can sustain six-cycle
writes, which results in a peak write bandwidth of
11.1 MB per second.

The DRAM and VRAM arrays are implemented
with SIMMs. Each DRAM array contains 2MB of
memory on a double-sided module. The VRAM
arrays contain either 1 megabit (Mb) (monochrome)
or 8Mb (color) of frame buffer memory on single-
sided modules.

Ethernet
The Ethernet interface on the DECstation 3100 con-
sists of a CMOS controller chip and a 6 4 ~ B buffer.
The controller chip manages transmission and
reception of packets through ring descriptors and
packet buffers located in the Ethernet buffer. The
buffer is time-multiplexed between the controller
chip and the workstation CPU.

Connection to the Ethernet is by a thick-wire or
Thinwire cable. A push-button switch on the rear of
the system box selects the appropriate connector.

SCSI
The DECstation 3100 supplies a small computer
system interconnect (SCSI) as the interconnect for
storage peripherals. The workstation's SCSl inter-
face consists of a gate array controllcr chip and a
128KB buffer. The controller chip manages the SCSI
bus through selection, DMh data transfer, and dis-
connect commands. The interface supports com-
mand disconnect/reconnect and synchronous data
transfers at ~ M B per second on the SCSI bus. The
buffer is time-multiplexed between the controller
chip and the workstation CPU.

An SCSI connector on the rear of the DECstation
3100 system box allows connection of external Scsl
peripheral devices. Digital offers a 332MB disk, a
95MB tape, and a 600MB CDROM reader. Each of
these devices is packaged with power in its own
sidecar box.

Digitul T~bnicalJournal Vol. 2 No. 2. S p ' n g 1990

VAX 6000 Model 400 System

Table 1 Comparison of RlSC System Performance

DECstation Sun Sun MIPS
31 00 411 10 41260 MI1 20-5

Dhrystoneslsecond 22.7K 12.8K

Linpack single precision 3.7 0.95
(MFLOPs)
Linpack double precision 1.6 0.57
(MFLOPs)
Stanford small integer benchmark 0.1 15 0.220 0.150 0.1 18
(seconds)
Digital Review's CPU 2 benchmark 6.91 18.99 13.71 N A
suites (seconds)
XLlB graphics performance rate 4.9K N A 0.7K N A

Serial Lines
Four serial line interfaces are present and are pro-
grammable from 50 to 9600 bits per second. The
serial transmitters arc double buffered, and the
receivers sharc a 64-entry FIFO. The workstation
uses one serial linc for the keyboard and another for
the mouse. One serial line, designed for modem
use, supports data-terminal-readylciata-set-ready
(DTR/T>.SR) control signals.

Sofiware
The DECstation 3100 runs the standard software
expected by users of UNIX operating systems as
well as software that allows easy networking and
windowing of VAX and 3100 systems. Digital's
ULTRIX operating system is compatible with
Berkeley ~ 4 . 3 , AT&T System V, and is compliant
with POSlX standards. DECwindows software runs
on the DECstation 3100 in both the monochrome
and color configurations and integrates searnlessly
with DECwindows running on VAX systems with
VMS operating systems. UL'TRIX supports DECnet,
TCPAP, and NFS. Compilers include the C,
FORTRAN, and PASCAL compilers adapted from the
compilers from MIPS Computer Systems.

Performance
Table 1 lists kcy performance measures of the
DECstation 3100 workstation. For comparison pur-
poses, the table also lists the pcrformancc of other
RlSC systems, namely the Sun 41110 and 41260 and
the MlPS M1120-5.

Ihble 2 lists the SCSl and network subsystem
peripherals 110 performance of the DEc:station 3100.

Table 2 DECstation 3100 110 Performance

Subsystem
Peripheral I10 Performance

930KB per second

33OKB per second

320KB per second

450KB per second

RZ55 file reads
(with read-ahead
microcode)'

RZ55 file reads

RZ55 writes

NFS file reads
(with read-ahead
RZ55 microcode)

NFS file reads

NFS file writes

IPIUDP 1500-byte
packets

IPIUDP 64-byte 1000 packets per second
packets

lP/TCP end-to-end 350KB per second

'RZ55 read-ahead microcode has not yet been
released by Digital Equipment Corporation.

330KB per second

320KB per second

800KB per second

Conclusion
One of the delights of the 1)ECstation 3100 project
was that we wcrc building the machine that we
ourselves had w ~ n t e d for a very long time. By using
a small, focused core design team and resisting
incremental additions, we achieved the aggressive
time-to-market goal.

88 Vol. 2 No. 2, Spring 1390 Digitul TecbnicalJournal

Compiler Optimization
in RISC Systems

Compiler optimization determines the level of RISC system pe@ormunce. De archi-
tectural design of compilers f m MIPS Computer Sytems) Inc., combined with sup-
port took facilitates compiler optimization and overall system thoughput. The
compiler design takes advantage of small and high-speed cache memory to enhame
perfomme. The cord toolpositions the program in memory to mure that the most
frequently used memory locations never compete for the same cache locatiom
Portability is crucial to compiler e f e c t i v m . iMlPS compilers implement many
industry-wide extensions to the standard languages to wake them compatible with
other implementations.

RISC (reduced instruction set computer) system
performance embodies many components. In addi-
tion to the performance of individual instructions,
the processor architect must consider how the
compiler combines the instructions, how system
vendors construct the memory system, and how the
user writes programs. Of particular importance is
how well the compiler optimizes programs for a
given hardware architecture. In addition, program
portability is essential to ease the burden of moving
applications to new systems. By considering all
such aspects of system performance, the processor
architect can use the full potential of a RlSC system.

Traditional CISC (complex instruction set com-
puter) processors were developed without signifi-
cant information on how high-level programming
languages would use them. In contrast, RISC archi-
tects make trade-offs between microprocessor
structures and compiler complexity, with the goal
being overall system performance.

The compiler is the key link between the archi-
tect and the system user. Therefore, it is essential
that the processor architect completely understand
the compiler and its capabilities.

Compilation is the process of converting high-
level source code written in a programming
language into machine code for a target machine.
This process must consider translating the instruc-
tions correctly into machine language, as well as
into optimal machine language. Often, the high-
level language masks the primitive level of the target
machine by providing programming tools that do

Reprinted with the permission of ESD Magazine, December
1989, Digital Design Publishing, Westborough. MA 01 58 1.

not directly correspond to the machine's features.
Compilers must also deal with programs that do not
take best advantage of these features. The optimizer
is the portion of the compiler that deals with perfor-
mance issues.

Optimization Boosts Performance
Optimization occurs at many stages within the
compiler. Some optimizations are best done at the
front end of the compilation process when first
processing the source program. These optimi-
zations are called language-dependent optimiza-
tions because they rely on features unique to a
specific programming language. Other optimiza-
tions, called machine-dependent optimizations, are
performed late in the process because they require
detailed information about the target machine and
how the program actually uses that machine. Still,
other optimizations are independent of both the
source language and the target machine.

Compilers from MIPS Computer Systems consist
of several independent front ends that convert
individual languages into a common intermediate
code called ucode. (See Figure 1.) MIPS currently
supports six programming languages: ADA, C ,
COBOL, FORTRAN, PASCAL, and PLI; ANSI C and C++
will be available in 1990. The common back end
performs the bulk of the optimization and generates
machine code.

The common back end of the compiler uses a
variety of optimization techniques that require
varying amounts of information. The compiler
must gather the information from the source code
and analyze it. Peephole optimizations require the

Digital TecbnfcaIJournal Vo1. 2 No. 2 Spring 1990

VAX 6000 Model 400 System

I

'ERCOMPILATION UNIT
TlMlZATlON

C

ULD

UMERGE

UOPT

UGEN

AS1

GLOBAL OPTIMIZATION

UCODE LINKER I IF
C

FUNCTION IN-LINE

GLOBAL OPTIMIZER

CODE GENERATOR

PIPELINE SCHEDULER PI

LOCAL OPTIMIZATION

FORTRAN

:PHOLE OPTIMIZATION

Figure I Cumpiler Stmctz~re

PASCAL

least amount of information-usually only an
instruction or two. Global optimization requires
the most information; it must take into account
control flow (the branching and looping structure
of a progmm) and data flow (the data usage within
each section of the program). Intercompilation unit
optimiucions represent an extreme form of global
op timintion that occ~lrs between independent
source files. Local optimization requires an interme-
diate amount of information-usually data usage
within a group of consecutive statements. Table 1
l~sts optimizations shared in the MIPS compilers.

One of four optimization levels (-00, - 0 1 , -02, or
-03) can invoke the MIPS compiler. The levels
indicate the relative compilation speed - not the
importance - of the varkn~s optimization c h e s
that the compiler can implement. For example, a
program compiled at the -00 level, which specifics
no optimization, would compile faster than a pco-
gram compiled at thc -03 level, which offers the full
range of optimintions. These optimization lcvels
also correspond closely to the components invoked
during the compilation process.

The -00 option disables the optimization nor-
mally performed by the code generator and
assembler. The -01 option (the default) designates
nlinimal and fast optimization. Under this option,
the code generator and assembler perform local
optimizations within basic blocks. Apart from tradi-
tional local optimizations such as local common
subexprcssion, expression simplification, constant
folding, dead code elimination, and peephole opti-
mizations, the code generator performs branch and
label optimization, and the assembler performs
architecture-dependent pipeline scheduling. Com-
pilation speed does not lengthen noticeably
bctween -00 and -01. Thus, -00 is seldom needed
and is used mostly for comparison studies.

Option -02 adds the uopt phase to the compi-
lation stream to perform global optimization and
register atltxation within the full range of individ-
ual procedures. Compilation time might lengthen
substantially because global data-flow analysis and
coloring rgister-allocation algorithms are invoked.

Supporting optimizations across multiple source
files is the -03 option. This option adds the uld

ANSI C

Vol. 2 No. 2, .Spring 1990 Digital TecbnicalJournal

C++. PL1 ADA COBOL

Compiler Optimization in KISC Systems

Table 1 Optimization Methods

Peephole
optimization

Local
optimization

Global
optimization

lnstruction scheduling
lnstruction selection
lnstruction substitution
Calllreturn selection
Branch-to-branch optimization
Local subexpression elimination
Constant folding
Expression simplification
Dead code elimination
Local register assignment
Short-circuit evaluation
Invariant code removal
Strength reduction
Global register assignment
Global subexpression elimination
Shrink-wrapping register saving
Linear test replacement
Loop unrolling
Tail recursion
Copy propagation
Redundant store elimination

lntercompilation Interprocedural register allocation
unit optimization In-line expansion of procedures

phase, which combines separate compilation units
into a single file at the ~lcode level. Thus the option
enables multimodule programs to achieve the same
degree of optin~izatic.)n as single-module programs.
The umerge phase selectively expands procedure
calls by in-line substitution. The resulting ucode
object is then sent into normal back-end optimi-
zation and compilation stream starting with uopt.
'The -03 option causes uopt to perform interproce-
dural register allocation; opt also benefits from the
complete information in the linked ucode file to
perform the other global optimizations normally
associated with this phase.

Local Hardware Architecture
MII'S' architectural design facilitates compiler opti-
mization and overall system throughput. Important
to system performance is the memory hierarchy. A
split cache provides intlependent access to both
instructions and data in a single cycle. A single com-
bined cache would limit the processor to obtaining
only a single instruction or data item each cycle.

The compiler design takes into consideration the
effect of cache memory. On average, instruction
references cache miss less frecluently than data ref-
erences; this observation allows the compiler to
prefer slightly longer instruction sequences if they
avoid extra data references. The instruction cache
miss rate is lower because the hardware loads multi-

ple contiguous words into the cache on a miss, and
the sequential nature of instruction execution takes
advantage of this locality.

Register optimization makes the most significant
architecturelcompiler performance enhancement
Because the optimizer knows that data allocated in
registers can be accessed without delay, it places the
most frequently used variables into registers. The
optimizer computes the lifetime of individual data
items and replaces the memory ucage with a register
usage. The relatively large number of registers
makes it likely that the optimizer can successfully
promote the most frequently referenced variables
into a register. (There are thirty two 32-bit integer
registers and sixteen 64-bit floating-point registers)

One of the most important architectural features
used to improve performance is the instruction
pipeline. Although several cycles are required to
actually complete the instruction, the processor can
be viewed as if each instruction takes only one cycle
because a new instruction is started each cycle. The
compiler is aware of several exceptions; for exam-
ple, load instructions require one instruction
between the load and the use of the data loaded.
This load-delay slot is used by the compiler for
another instruction - effectively, the cache mem-
ory access of the load executes in parallel with the
other instruction. This technique 1s called instruc-
tion scheduling. Other examples of parallel instruc-
tion execution include

Overlapping a branch instruction with another
operation

Testing for division by zero while the divide is in
progress

Executing several different floating point oper-
ations simultaneously (The MIPS processor has
separate floating point add, multiply, and divide
units.)

The MIPS architecture does not have condition
codes. Although this seems unusual compared with
many other machines, this design actually improves
performance. 'The architecture provides branch
instructions that both test a condition and then
branch. Thus, the compiler must generate only one
instruction for conditional branches rather than the
two instructions usually required (one to test for the
condition, then another to perform the branch).
Only comparisons that compare larger (or smaller)
values between two registers, or a register and
immediate value, cannot be handled this way. The

VAX 6000 Model 400 System

compiler restructures most comparisons to avoid
this case, thus decreasing average test time.

Instructions in a ClSC processor often have
widely varying execution times. This difference
makes it hard to determine which of several alterna-
tive sequences is actually fastest. Because almost all
RISC instructions take the same time, the optimizer
can select the fastest sequence with relative ease.

Program Portability
To make a system useful, programs must be ported
onto the processor. The use of U M x operat-
ing systems and standardized languages such as
FORTRAN bas tremendously improved program
portability. However, incorrect programs may have
latent bugs that are masked by a naive compiler.
Thus, an optimizing compiler tends to expose more
of these problems. A naive FORTRAN compiler may
assign all variables to memory locations, giving
variables predictable initial values. An incorrect
program that relies on these initial values will fail
when an optimizing compiler assigns a variable to a
fast register that tends to have unpredictable values.

An optimizer converts the program (as written)
into one that is identical except that it executes
faster. To do this, the optimizer must make assump-
tions about what the programmer intended. Often
the programmer depends on expericnce with previ-
ous compiler implcmcntations rather than the rules
of the 1:inguage.

The >,fIl'S compiler suite provides a number of
options to allow :I program to run without modifi-
cation in the presence of such common errors. This
permits a program to be ported quickly, giving the
programmer a choice as to when to correct the
problem.

Traditionally, system vendors have added unique
extensions to their language implementations.
While these may be a boon to a programmer when
writing the program, they can be a bane when it
comes time to port the program. The MIPS com-
pilers implement many industry-wide extensions to
the standard language$ to make them compatible
with other implementations. An important set of
extensions is the support of Digital's VAX FORTFUN
extensions. Another is the inclusion of IBM's PL1
extensions to pernlit an independent software
vendor to port a 1.8-million-line PL1 program to the
MlPS architecture.

Wherever estcnsions :Ire required, Mil's chooses
proposed extensions for similar functions that arc
being considered by the standarcis committecs. An
example of this last situation is the need to repre-

sent hardware 110 structures when bcing rcfcr-
enced by an optimizing compiler. Consider an 110
device register that is used to define the st:ctus of
the 110 device. The optimizing compiler would see
multiple references to the address without inter-
vening assignments. The compiler would cleverly
(but incorrectly) optimize all references to a proces-
sor register. MIPS has added the key word volatile to
indicate to the compiler that this variable changes in
ways that the compiler cannot detect. This exten-
sion was recently incorporated into the current
ANSI standard for C , but i t was added to the MIPS C
compiler four years ago.

Toob to Development
Fundamental to system development is a tool set
that aids in compiling, debugging, performance tun-
ing, and system construction (bring-up). MIPS' tool
set includes those tools traditionally found in UNIX
operating systems, as well as tools unique to MIPS.

The multiple front-cnd, common back-end con-
struction of the MlPS compilers provides a consis-
tent set of languages to the developer. Options and
flags are the same across all languages. In fact, cc
can usually be used to compile programs in the
other languages. All languages share a common
linkage convention that makes it easy to write or
port progr;tms written in two or more languages.

The ['NIX tool make provides a convenient
method of program development. This tool iden-
tifies which source modules of a program changed
and rccompilcs only those modules. In recom-
piling, tlrakc provides the correct compilation
options. It also provides the complete set of cornpi-
lation options; for example, the debugging option
can be en;~bled through a nzuke target to trou-
bleshoot a program. Later, the debugging options
can be disabled, and higher levels of optimization
can be spccificd in compiling the production
version of the program. The make rules file, which
accompanies the source program modules, deter-
mines how the modules are t o be combined into the
final run program. This prior determination elimi-
nates the need for detailed written documentation
or programmer support, making it simpler for
developers to exchange source programs.

Crucial to eftjcient program development is
a source-oricntecl debugger. MIPS provides an
extended version of dbx which supports all pro-
gramming languages. (ADA has a special debugger.)
The debugger provides features such as print-
ing variables = they change, or replaying a debug-
ging session to a certain point before continuing

Val. 2 No. 2. .S/)ring 1990 Digilal TecbnicalJournal

Compiler Optimization in RlSC Systems

the debug session. The user can view and edit the
source, as well as see each statement as it is
executed.

The debugger also lets the user view the program
in both the high-level language in which it was
written and in the generated machine language.
Thus, the user can set a breakpoint on a specified
statement or instruction. Full debugging facilities
are available only when the debugging option is
specified. However, the compiler (by default) main-
tains the line number tables in a compressed format
in the load module even when the option is not
specified. Retention of the line number tables per-
mits partial debugging without the need to recom-
pile the program using the debugging option. Line
number information is kept for each instruction,
permitting the instruction scheduler to move the
instruction while keeping track of the line that
originated it.

Specification of both debugging and optimization
options can create conflicts. For example, it is possi-
ble for a bug to appear only when a higher level of
optimization is specified. Moreover, optimizations
such as register allocation can confuse the debug-
ger, because variables are not at the locations that
it assumes. To avoid this situation, the MIPS compil-
ers disable any optimization that interferes with
debugging when both debugging and optimization
options are specified. To debug the problem that
shows up only in optimized code, a special option
permits both the debugger and optimization to be
enabled. This technique requires the developer to
use caution when inquiring about the contents of
a variable.

To tune a program for optimal performance, the
developer must learn where in a program the time
is spent and why. Traditional U N l X systems provide
a method called pc sampling. With this technique,
the system must interrupt a program at regular
intervals (usually 60 or 100 times per second) and
increment a per-location counter. After enough
sample points are taken, a pattern of execution time
emerges. This method has a severe flaw because
modern processors execute 10 to 20 million instruc-
tions per second; this means the number of samples
is less than 1 in 100,000. The method requires a very
long execution time to collect a statistically mean-
ingful sample.

Although MIPS provides the pc sampling tech-
nique, it also furnishes a more exacting method.
Pixie is a tool that takes an executable load module
and prepares it for measurement by inserting a
counrer in every basic block. After running the

instrumented program, the counters are dumped
to a file for analysis by several programs. Prof dis-
plays tables of interesting information such as the
following:

Number of CPU cycles for each source line

Number of times each function is called

Average number ofcycles in each call to a function

Figure 2 shows examples ofprof output listings.
A second program, pljcstats, takes the same counts
and displays information about the program in
architectural terms, such as:

Number of cycles used for each instruction

Number of unused delay slots

Number of FLOPS

A general indication of cache locality

These two programs assume a perfect memory
system, that is, no effect due to cache misses.

For a complete analysis, a cache simulator is also
available that uses pMe to provide a memory
address trace to the simulator to model the mem-
ory system. MIPS uses this technique to plan new
machine designs. Each proposed change to the
system requires a detailed simulation to exhibit its
effect. When a MIPS designer is convinced that a
balanced and optimal point has been found, iniple-
mentation begins. Experience with this technique
has shown an accuracy of better than 4 percent
when comparing predicted performance to actual
performance.

An Optimization to Improve Cache
Performance
An area seldom addressed in compilers is the opti-
mization of programs in memory to improve cache
hit rates. Modern microprocessor performance has
been increasing faster than the supporting memory
systems. Taking advantage of this higher perfor-
mance without introducing costly memories has
required the use of small and high-speed cache
memory. Cache memory contains recently used
instructions and data. Hardware substitutes cache
memory if the desired word is in the cache. This
substitution is invisible (other than performance
improvements) to the program. Each main memory
location must share a cache location with other
memory locations because the cache is smaller than
main memory. For a cache to be effective, it must
contain enough of the program or data to ensure
multiple reuse of the instructions or data.

Dlgllcrl TecbnicnlJournal Vol. 2 No. 2, Spring 1990

VAX 6000 Model 400 System

cycles 8cycles sun
lcall lllns

MI" IfI~f~nl.pl
w~l~rn-cha~. t..IL.x~a~t~)t.~l
urIte-~h*r I. . /L .~LoYCPUC.CI
w r l L . - ~ h l l I../L.XLOYIPUt.cI
rrlrn-lnr*grr I. .lr.xcourpur.cl 197

,"> v.uv avu.uv I5 9 wd I. ./L.XIOUIPUL.CI
90 0.00 100.00
81 0.00 100.00
35 0.00 100.00 u l n 1flxtonr.pl
35 0.00 100.00 rrln 1IIxIonL.pl
15 0.00 100.00 wrlt.-m~rlnq l../~=x~outpll.cl 150 44 511050 0.39 95.46
13 0.00 100.00

o,oo [open USED AN AVERAGE OF 82 ' vrltm-drars I. .lr.xrourpr .=I 48 4 561855 0.38 95.84

r 0.00 100.00 CYCLES PER CALL AND 13 BYTES
rrI~.-ch.r= l..ll.xlo~tput.~l 41 4 567035 0.38 96.22
-rl~._chars I../L.XLOUL~JL.C) 49 28 487387 0.11 96.55

s 0.00 ~oo.oo PER LINE. I I I . 18 20 348150 0.24 96.79
5 0.00 100.00 c r e r t t../str np.rgl.*l main 1flxfonr.p) 31 100 318000 0.21 91.02 I

Figure 2 Emmples of prof Oulput Listings

A valuable optimization is to position the pro-
gram in memory so that the most frecluently used
memory locations never compete for the same
cache locations. MIPS has built a tool called cord
that rearranges the program to improve instruction
cache utilization. This tool is made possible through
the existence of precise profiling tools.

To use cord, the programmer compiles the pro-
gram in the usual way. Pixie is used to add counters
to the program for each basic block. After exe-
cuting the instrumented program, prof is run with
an option that creates a file containing dynamic
execution information. That file is given to cord,
along with the original executable module.

Cord computes the density for each function
(procedure). The density is defined as the average
number of cycles executed by each instruction in
the function. Figure 3 is an example of eight
functions, their sizes, cycle counts, and density.
Cord then creates a new executable module after
sorting the functions according to density. Figure 3
also shows the order of the functions in the rear-
ranged program.

This sort improves cache hit rate because it
places the functions that use the most cycles in
memory so they do not compete for the same cache
location as other frequently executing functions.
The effectiveness of sort is helped by two other
features in the MIPS architecture. First, the caches
are direct-mapped to memory so that each memory
location corresponds to a single cache location. Sec-

ond, the MIPS operating system places virtual pages
in physical memory so that adjacent virtual pages
map to adjacent cache pages. As a result, the place-
ment of functions by cord has very predictable
effects on the cache.

Figure 3 also shows the arrangement in an
unexpected way. Rather than placing the densest
function (A) at the beginning of memory, it is placed
farthest from the start of the cache. This arrange-

MEMORY ADDRESSES

KEY.

NAME
A
B
C
D
E
F
G
H

SIZE
12K
24K
20K
8K

16K
12K
16K
20K

CYCLES
960K

1680K
1200K
400K
640K
360K
320K
200K

DENSITY
80
70
60
50
40
30
20
10

Figure 3 Cache Performance improved by cord

Val. 2 No. 2, Sp'ng 1990 Digflal TecbnicalJounual

ment has the effect of making the densest func-
tion share cache locations with the function
128 kilobytes (twice the cache size) away (H). Cord
improves performance by as much as 20 percent to
30 percent on programs exceeding the size cache. It
works solely by improving the efficiency of the
instruction cache. Methods to improve data cache
accesses are not available yet because of the more
random nature of data accesses and difficulty in get-
ting accurate data reference information.

An advanced architectural simulator, Sable mod-
els (in C) the processor, including TLB, pipeline,
register set, and system design, incorporating the
cache subsystem, main memory, and 110 interface.
Developers can customize Sable for a unique system
design. Sable has been used routinely at MIPS to
bring up the UNrX operating system before hard-
ware is available. Simulation with Sable assures that
the software is reliable and performs optimally
when the hardware is actually available. Sable can
be osed with the debugger to provide full symbolic
debugging in the simulation environment. Also,
Sable can provide the same address traces thatpixie
provides to analyze operating system performance.
After a system has been brought up using Sable,
other tools can assist in constructing the system on
the real hardware. A simple debug monitor is
available to work with the symbolic debugger to
provide a symbolic debugging environment on the
real hardware.

Compiler Optimization in RISC S p t m

Compilers are taking better advantage of the paral-
lelism in today's RISC processors. Evidence of this
can be seen in the scheduling of instructions to
capitalize on load and branch delays and multiple
floating point units. This trend will continue as it
becomes feasible to build effective multiprocessor
systems. In this area, compilers that will partition a
problem across multiple processors - each per-
forming a portion of the iterations of a loop- will
be seen. A major challenge will be to find ways to
use this kind of parallelism in nonengineering prob-
lems. These problems tend not to be loop intensive
and will require a breakthrough in compiler tech-
nology for automatic parallelism.

Over the past five to ten years, the programming
language c has come to the forefront as a major
systems language. While C offers many advantages,
it requires a user to deal with fairly primitive struc-
tures rather than abstractions. C++ will offer much
of the flexibility of C with the added capability of
data abstraction.

It is expected that future compilers will take
advantage of optimizations that reduce cache
misses. These optimizations include loop inter-
change, which reorders the accesses to an array to
improve locality of data references, and software
pipelining, which takes better advantage of over-
lapping memory accesses and computation.

Digital TechnicalJournal Vo1. 2 No. 2, Spring 1990 95

The Digital Technic:tl Journal
pub1ishesp~rf)er.s that c>.vpk)re
the tecr"nzologiccrlfi)zrthtiom
of Digital's rn~ljorproducts.
Each JozrrnalJbc~es on at leust
one prodzrcl circa andprescwts
a cotnf~il~ztiotr oJj)uf~c~rs iuritten
by the et7gitiecn u~bo de~r~elo~~ed
the product. Thr cotztc~tztfii' the
Journal is st~leclcvi b j ~ fhc> Jorrrnrrl
Adz~isor:~) Board.

li)pics covered in previous issues o f the nigir(i1
7hcL~rzical Jourrzrd are as follows:

VAX 8600 Processor
Vol. 1, No. I , Azrgzat 1985

MicroVAX I1 System
W)l. I, No. 2, hlarcb 1086

Networking Products
K)l, I . ,Vo. 3, Septen~ber I%%

VAX 8800 Family
Vol. I, No. 4, Februa?:~ I9S7

VAXcluster Systems
Vol. I, No. 5, September 198'

Software Productivity Tools
vol. I, No. 6, Februaly 1988

CVAX-based Systems
W)l. I , No. 7, Au~qmt 1988

Storage Technology
Vol. I, No. 8, Februaq, 1989

Distributed Systems
Vol. I, No. 9, June 19W)

Compound Document Architecture
%l. 2, No. I , Winter 1990

See the inside front cover of this issue for subscrip-
tion information.

Single copies and past issues o f the Digital Technical
J(~urnu1 can be ordered from Digital Press at a cost
of $16.00 per copy.

Digital Press is Digital Equipment Corpor;ttion's
international publkkr of books for computcr pro-
fessionals. Copies of the new titles now available
from Digital Press that are listed below can bc
ordercd by writing to Digital Yrcss, Departmcnt
DTJ, 12 Crosby Drive, Bedford, MA 01730, U.S.A.

COMMON LISP: The Language
Guy Steele Jr., Second lidition. 1990
(S38.95 in softcovcr. S44.95 in clothcover)

The Matrix: Computer Networks and
Confereadng Systems Worldwide
John Quarterman, 1990 (S49.95)

UNIX for VMS Users
I'hilip Bourne, 1990 (528.95)

The W User's Guide
James Peccrs and Patrick Holmay, 1990 ($23.00)

A Beginner's Guide to VAX VMS Utilities
and Applications
Ronald Sawey and Troy Stokes, 1989 (523.00)

VMS Internals and Data Structures:
Version 5 Update Xpress
Ruth Goldenberg and Lawrence Kenah,
Volumes 1, 2, and 3, 1989($35.00)

VAXNMS Internals and Data Structures:
Version 4.4
Lawrence Kenah, Ruth Goldenberg, and
Simon Bate, I988 (875.00)

Digital Guide to Software Development
Corporate User Publications Group of Digital
Equipment Corpordtion, 1990 ($27.95)

Technical Aspects of Data Communication
John McNamara, Third Edition, 1988 ($42.00)

Information Technology Standardization:
Theory, Practice, and Organizations
Carl Cargill, 1989 (924.95)

Computer Programming and Architecture:
The VAX
Henry 1-evy and Richard Eckhouse,
Second Edition, 1989 (824.95)

ABCs of MUMPS: An Introduction for Novice
and Intermediate Programmers
Richard Walters, 1989 (824.95)

Nl. 2 No 2. . \ ; /) r i t ~ 1990 Digilul TecbnicalJortmrrl

ISSN 0898-90 1X

Primed in USA. EYC197&DP190 04 02 30.0 BUO Copyright 1990 DI&id -1 W t i O n RighB Reserved

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Vector Processing on the VAXvector 6000 Model 400
	The VAX 6000 Model 400 Scalar Processor Module
	An Overview of the VAX 6000 Model 400 Chip Set
	VAX 6000 Model 400 Physical Technology
	VAX 6000 Model 400 CPU Chip Set Functional Design Verification
	Test and Qualification of the VAX 6000 Model 400 System
	Development of the DECstation 3100
	Compiler Optimization in RISC Systems
	Further Readings
	Back cover

