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1 Editor% Introduction 

Jane C. Blake 

This Spring 1990 issue marks the second issue to 
be published on the new quarterly schedule of the 
Digital TechnicalJournal. This is also the fust year 
that the Journal is available by subscription-a 
service our readers have asked for and which we are 
glad to be able to offer. 

The Journal will continue to focus each issue on a 
product theme. In fact, two products are featured in 
this issue. The main theme is the latest addition to 
the VAX 6000 family, the Model 400. With its multi- 
processing capabilities, this midrange family of 
systems provides a highly configurable and expand- 
able computing environment. Because the same 
cabinet, buses, and power systems are used by all 
family members, systems can easily be upgraded to 
achieve higher levels of performance. Papers in this 
issue describe VAX 6000 Model 400 imo\~ations and 
additions, including a new vector processor and a 
higher performance scalar processor module, chip 
set design and verification, physical technology 
advances, and system test. The second theme com- 
prises two papers related to Digital's workstation 
development, specifically the DECstation 3100, and 
compiler optimization in RISC systems. 

Opening this issue is a paper on one of Digital's 
first vector processors. Dave Fenwick, John 
Shakshober, Debra Slater, and Doug Williams 
review the design alternatives for the VAXvector 
GOO0 Model 400 processor and describe its function 
units. They then give examples of how the units 
combine to deliver high performance for computa- 
tionally intensive applications. 

The Model 400 also has a new scalar processor, 
with nearly twice the performance of its prede- 
cessor, the Model 300. In their paper, Pat Sullivan, 
Mike Callander, Jim Lundberg, Rebecca Stamm, and 

Bill Bowhill discuss the module design and give 
particulars on how difficult signal integrity prob- 
lems were resolved. 

The five system chips that reside on the module 
are the topic of our next paper by Hugh Durdan, Bill 
Bowhill, John Brown, Bill Hcrrick, Rich Marccllo, 
Sri Samudrala, Mike Uhler, and Nick Wade. From 
their discussions of the chip designs, we learn 
how the best features of the VAX 8700 ECL-based, 
pipelined system and of previous VLsI designs were 
incorporated in the chip set, which achieves a cycle 
time of 28 nanoseconds. 

This fast cycle time was one of several require- 
ments that drove a significant design effort for 
the physical technology. John Bartoszek, Rob 
Hannemann, Steve Hansen, Bob McCarty, and 
John Sweeney describe the technological advances 
achieved in a number of areas, including tape- 
automated bonding, semicustomized ceramic 
single-chip package design, and testability. 

The two papers that close this collection of papers 
on the VAX 6000 Model 400 address chip design 
verification and system test. Rick Calcagni and 
Will Sherwood explain the engineers' multipronged 
approach to design verification, an approach neces- 
sitated by the complexity of the chip set. Then, 
John Croll, Larry Camilli, and Tony Vaccaro present 
a paper on the methods and tools designed to com- 
pletely test the interaction of VAX 6000 Model 400 
system's hardware and softwarc. 

In the last two papers, the topic turns to work- 
stations. Tom Furlong, Mike Nielsen, and Neil 
Wilhelm provide an overview of the successful 
project undertaken to build a fast, competitively 
priced, RJSC-based, ULTRIX workstation, called the 
DECstation 3100. The Journal is fortunate also to 
have a related paper on compiler optimization in 
MSC systems by Larry Weber, vice president, MIPS 
Systems, Inc. MIPS Systems built the RISC chip set 
incorporated in the DECstation 3100 workstation. 

I thank Steve Holrnes of the Midrange Systems 
Business Group for his help in selecting topics on 
the Model 400, and Gillian Scholes of Digital and 
Joanne Hasegawa of MIPS Systems, Inc., for their 
help in obtaining the workstation and RlSC papers in 
this issue. 
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I Foreword 
Model 300 was introduced. The Model 400 utilized 
this newly architected chip set to provide single- 
processor performance of 7 times that of the 
VAX-111780 system and up to 36 times the 
VAX-111780 system for six-processor systems. The 
performance of the Model 400 was over twice 
the single-processor performance and more than 
three times the multiprocessor performance of the 
Model 200 series, which had been announced only 
a short 15 months earlier. 

To support such aggressive product introduction 
mulme A. ~ 1 s t  cycles, advanced development work on the new 
Group Engineering Manager generation of CMOS-2 chips began in mid-1984, 
Midrange Sytems Business within months of the start of the CMOS-1 designs. 

Actual design work began approximately a year 
Because microprocessor-based computer systems later. During this period, Digital made a major deci- 
are complex, the work to design and architect cus- sion to formally extend the VAX architecture to 
tom chips must be initiated long before module and incorporate full support for vector processing into 
systems work begins. the base instruction set for aU future VAX proces- 

Looking back at recent history, Digital int1-0- sors. To provide this support, the chip designs 
duced the VAX 6000 family of computers in April already under way had to be modified to incorpo- 
1988 with the Model 200 series, which utilized the rate the new instructions. 
first generation of the CMOS-based VAX micropro- The scalar chip set developed consists of five cus- 
cessor. The Model 200 was fabricated in Digital's tom VLSI paas. They are the cpu chip, the floating 
CMOS-1 (complementary oxide semicOnduc- point accelerator chip, the vectorlcache controller 
tor) process. A single-~rocessor Model 210 Pro- chip, the system support chip, and the clock chip. 
vided 2.8 times the performance of a VAX-111780 ~ h ,  development of the custom chips required a 
system. o n e  to four processor configurations Pro- team of over 40 people, including logic, circuit, and 
vided up to a total of 11 times the performance of a layout designers, and verification engineers. ~h~ 
vAX-111780 system. discuss these and scalar CP" module design, standard cell interface 
systems in the August 1988 issue of this journal.) design, and associated verification team comprised 

In January 19893 Digita1 introduced the second an additional eight engineers. Additionally, the new 
generation of the 6000 the 300 vector coprocessor module required three new cus- 
series' The 3'' increased single~rocessor tom pans, a new gate array, and a separate module 
performance from 2.8 to 3.8 times the VAX-111780 designeffort, 
system and total performance for a six-processor Since the direct shrink of die from the CMOS-1 to 
system to 22 times the VAX-111780 system. The 

CMOS-2 process would account for only a 30 per- 
30 percent increase in single-processor perfor- 

cent performance increase, the processor architec- 
mance was made possible by a direct shrink of the 

ture had to be substantially changed to achieve 
die from Digital's 2.0 micron CMOS-1 process to 
Digital's 1.5 micron CMOS-2 process. The new pro- more aggressive performance. Early in the project 

cess supported a 25 percent reduction in lateral and the chip design team established a clear goal to meet 

key vertical dimensions and a 78 percent improve- or exceed the performance of the VAX 8700 proces- 

ment in circuit density. Together, these changes sor, which has a performance of five times that of 

improved chip performance by approximately the VAX-111780 system. Some of the architectural 

30 percent. changes included the following: 

However, a simple shrink of the existing die did . A more pipelined architecture, specifically, a six- 
not permit full exploitation of the new circuit den- level pipelined engine built around three auto- 
sity. Newly architected and designed parts had to nomous pipes 
be tailored to take full advantage of the density and 
speed available with the CMOS-2 process. A 64-bit wide data bus with 27 separate address 

The VAX 6000 Model 400 series was formally lines versus a 32-bit multiplexed dataladdress 
introduced in July 1989, a mere six months after the bus used for the CMOS-1 chip 



Support for decode of the new VAX vector 
instructions and transfer of instruction operand 
information to the vector interface bus and onto 
the vector coprocessor module 

A 2 kilobyte (KB) primary on-chip cache with 
single-cycle access supported by a 128KB off- 
chip secondary cache 

A 16-byte instruction prefetch queue 

Two quadword write buffers in the bus interface 
unit 

Experience with the CMOS-1 chip showed that 
the fabrication line was capable of producing a dis- 
tribution of die across a performance range of 80 to 
100 nanoseconds (ns). As a result, whereas all 
CMOS-2 new designs supported the target of a 40 ns 
CPU cycle time, it was an explicit goal to support 
devices as fast as 28 ns, should chip yields produce 
sufficient quantities of faster parts. The yields at 
28 ns actually exceeded predictions and permitted 
faster parts to be used in all products produced. 

First passes of all scalar CPU chips were available 
in April 1988. These chips could successfully boot 
both the VMS and LILTRIX operating systems. This 
success was due in large part to the aggressive use of 
computer-aided design (CAD) techniques. Func- 
tional design verification efforts alone represented 
25 person-years of work on the scalar chip set. An 
additional 39 person-years were necessary to com- 
plete the scalar CPU module and the vector copro- 
cessor verification efforts. 

The power-on of first-pass parts represented a 
significant accomplishment to those who worked 
on the chips and the module. However, much 
"behind the scenes" work was necessary to achieve 
this milestone. The success in this area represents 
the culmination of work across a number of disci- 
plines. Besides the semiconductor devices, a new 
224-lead multilayer ceramic package was devel- 
oped. New techniques, including tape-automated 
bonding (TAB), were explored to attach the die to 
the package, and new specifications were necessary 
for the actual printed wire board material and board 
layup. Finally, new manufacturing processes were 
necessary to permit surface-mount assembly and 
test of these devices on both sides of the module. 

Although initializing the operating system on the 
f i s t  CPU modules marks a key deliverable for the 
chip and board designers, it is only a starting point 
for the systems activity that is necessary to fully test 
and qualify a new product prior to the start of high- 

volume manufacturing. It is often difficult to under- 
stand the time lag between the availability of the 
first prototype unit running the operating system 
and a product that can be shipped to the customer. 
However, a substantial amount of work must be 
done between these two events. As the formal qual- 
ification process for new semiconductor devices 
begins, a parallel effort is undertaken to build a large 
number of early systems. These systems are used to 
identify any problems that may occur when the 
pieces of the system are assembled into configura- 
tions typical of those used by actual customers. 
Testing is divided across several aspects, including 
actual beta test of prototype units at customer sites, 
formal testing by any required government agencies 
(e.g., FCC, UL, VDE), systems design verification 
tests, and architectural testing that ensures that the 
new system complies with the formal VAX architec- 
ture standards. Once the majority of testing is in 
process and the required interim milestones have 
been met, manufacturing begins turning the assem- 
bled inventory into finished products to support 
volume availability of the system. 

When a series of systems such as the VAx 6000 
family has established a history in the market, it 
becomes increasingly important to ensure that the 
announcement of the latest family member coin- 
cides with manufacturing's ability to quickly deliver 
a high volume of product on a worldwide basis. If 
manufacturing cannot do so, a demand will have 
been created that cannot be filled. Revenue and 
sales are lost. The full payback from the many per- 
son-years of design, simulation, design verification, 
and systems test is only finally realized when vol- 
ume manufacturing has begun. 

The papers in this issue of the journal will 
provide insight not only into how microprocessors 
and systems are designed and architected, but also 
into the multidisciplinary efforts necessary to bring 
a successful product to market. The design of one of 
the first VAX vector coprocessors is also reviewed. 
This review offers a summary of how new architec- 
tural issues are resolved and how design trade-offs 
are made. 

Moving a product from advanced development 
to engineering, through manufacturing, and into 
the customer site, over a five-year period, requires 
the efforts of many people around the world. 
Although only the direct work of a small percentage 
of those people are represented in these papers, the 
credit for the success of the products goes equally 
to all members of the team. 
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Vector Processing on the 
VMvector 6000 Model 400 

The VAXvector 6000 Model 400processor atends the VAX 6000 family of midrange 
CMOS-based multiprocessm to address the computing needs of numerically inten- 
sive applications. B e  three function units of the vectorprocessor combine to f m  an 
overall vectorpipeline that operates at speeds of up to 90 MFLOB for single-precision 
calculations and 45 MFLOPs for double-precision calculations. lk processor S per- 
formance can also be enhanced by taking advantage of overlapping and out-of 
order instruction execution, as well as chaining. Further, applications can be tuned 
to the VAXvector 6000 hardware though algmithm optimizations in areas such as 
equation solvers and signal processing routines to achieve optimal perfmance. 
Using the VAXvector 6000 Model 400 system, p~ormance increases ranging from 
3 to 35 times that of the VAX 6000 Model 400 scalar system have been realid. 

Vector processing has significantly evolved over the 
past two decades. In the late 1960s and early 1970s, 
it was pioneered as a way to increase scientific 
application computer performance over that 
achieved by more traditional scalar computers. 
However, the technology was limited to an elite 
few who could afford multimillion-dollar super- 
computer systems and who were willing to sig- 
nificantly re-engineer software applications. 

In the early 1980s, more sophisticated 
vectorizing compiler technology was developed. 
This technology allowed users to effectively pro- 
gram in high-level languages, such as FORTRAN, 
rather than to manually vectorize using low-level 
assembly language. During this period, there 
were also significant developments in computer 
algorithms that were better matched to the paral- 
lelism available in vector hardware. 

Over the past few years, a new breed of vector 
processor, the mini-supercomputer, has emerged. 
This class of machine includes many of the perfor- 
mance features of traditional supercomputers, but 
at costs more commonly associated with super- 
minicomputers. Because vector processing is now a 
mainstream style of computing that is applicable to 
a wide range of uses, the VAX architecture was 
recently extended to include vector operations. 
Further, the VAX product line has been expanded to 
include vector processing in both the VAx 6000 
midrange systems family and the VAX 9000 main- 
frame family of systems.' 

VAX Vector Processing Overview 
The extension of the VAX architecture to include 
vector processing features was done in a manner 
that permitted a wide range of possible implemen- 
tat ion~.~ The extension also allowed existing VAx 
processors to execute code utilizing the new vector 
instructions under software emulation. 

The vector extensions to the VAx architecture 
include: 

The addition of 16 vector registers, each contain- 
ing 64 64-bit elements 

A set of loadlstore instructions used to move up 
to 64 elements of a vector register to and from 
memory 

A set of vector register-to-register arithmetic and 
logical instructions, operating on up to 64 ele- 
ments at a time 

A set of instructions for synchronization 
between scalar and vector processing 
subsystems 

Conceptually, the implementation of vector 
instructions within the VAX family of processors is 
similar to that of floating point instructions. To 
implement floating point arithmetic, some systems 
use dedicated floating point hardware, some sys- 
tems use microcode, and others emulate floating 
point in macrocode. In vector processing, vector 
instructions differ from floating point instructions 
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in that they are designed to be executed in a semi- 
autonomous manner with scalar instructions. Thus, 
vector instn~ctions can be executed in parallel with 
scalar instructions or in parallel with other vector 
instructions. Although the scalar and xc to r  units 
operate somewhat independently, the units arc 
closely coupled to ensure that memory manage- 
ment exceptions are precisely reported. Special 
operations ensurc floating point exceptions and 
coherence between vector and scalar memory ref- 
erences are synchronized. 

From a vector perspective, a typical VAX vector 
implementation can be reduced to  five basic units. 
The latter four units are collectively referred to as a 
vector processor or vector unit. The basic units are: 

A scalar processor that executes scalar instruc- 
tions, decodes vector instructions, which may 
contain multiple internal function units 

A vector instruction-sequencing control and reg- 
ister scoreboard 

A vector register file 

An arithmetic pipeline or pipelines that consist 
of one or more arithmeticllogic units 

A loadlstore unit for memory references 

The vector control and scoreboard logic accepts 
instructions and operands from the scalar processor 
and dispatches them to the individual function units 
within the processor. It also reports exceptions and 
interrupts to the scalar processor. Since multiple 
vector instructions can be executed in parallel, the 
unit may contain scoreboard logic to identify and 
manage resource conflicts between Instructions. 

The vector register f ie  contains the 16 vector reg- 
isters, each of which consists of 64 64-bit elements. 
The register file ha$ multiple pons that permit loads 
or stores to operate while operands are sent to the 
arithmetic pipes and results are received. 

The vector arithrnetic/logic pipelines implement 
all the integer, logical, and floating point instruc- 
tions. These pipelines may be composed of separate 
pipelined add, multiply, and logical units. Or, they 
may be composed of multiple pipes that operate in 
parallel, with each pipe consisting of a pipelined 
addlmultiplyllogic unit. 

The lo;~d/store unit is responsible for memory 
references. It generates the required virtual 
addresses (VA), performs translation from v~rtual 
to physical addresses, and loads or stores the data 
to or from the register files to memory. The load/ 

store unit controls a cache memory and contains a 
virtual-to-physical address translation buffer (TR). 
Depending on the design of the scalar and vcctor 
units, there are two ways to implement the design 
memory interface for the scalar and vector 
processors: 

A combined scalar and vector processor that 
shares a common cache, address translation 
logic, and path to memory subsystem 

Separate scalar and vector units with separate 
caches and address translation buffers 

Both of these approaches have their relative 
merits and disadvantages. When significant data- 
sharing between scalar and vector units exists, the 
combined approach provides more favorable cache 
performance because the common cache is updated 
on both scalar and vector references. Separate 
caches may result in additional cache misses as 
data is "sloshed" between scalar and vector caches. 
For limited data-sharing instances, the separate 
approach may offer more favorable cache perfor- 
mance. In a combined cache, vector references can 
displace needed scalar data and vice versa. This 
problem does not arise with separate caches 
because the scalar and vector data each has a 
dedicated cache. The separate cache approach also 
allows scalar and vector cache operations to occur 
in parallel. 

In implementing a vector processor, the selection 
between the above alternatives is often driven 
more by technology constraints than issues of archi- 
tectural elegance. The VAX 9000 system, which is 
implemented in emitter-coupled logic (ECL), chose 
the combined approach. This approach supported 
sharing costly cache RAMS and a common path 
to memory. The VAXvector 6000, which is imple- 
mented in complementary metal oxide semi- 
conductor (CMOS) technology, chose the separate 
approach for two reasons. First, module space and 
package pin count constraints made it difficult to 
implement both scalar and vector functions on a 
single module. Second, the cost penalties for sepa- 
rate scalar and vector cache RAMS and separate 
paths to memory were not prohibitive. 

VAX GOO0 Vector Processor 
Description 

System Block Diagram 
The system block diagram for a vector-capable 
VAX 6000 Model 400 machine is shown in Figure 1. 
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Figure I VAXvecttor GOO0 Model 400 System Block Diagram 
with Dual Scalar and Vector Processors 

The vector processor occupies a slot adjacent to the 
scalar processor, and both are interconnected by a 
short interface cable. The vector processor receives 
all instructions from and returns status to the scalar 
processor across this cable. For memory references, 
the vector processor has its own independent path 
to main memory. The VAX 6000 Model 400 system 
supports configurations of up to six scalar proces- 
sors. However, vector systems have additional 
configuration constraints because of the increased 
memory bandwidth and XMI slot requirements of 
the scalarlvector processor. The VAXvector 6000 
Model 400 system supports configurations of single 
or dual scalarlvector processors, or configurations 
of one scalarlvector processor and up to three addi- 
tional scalar processors. To satisfy memory band- 
width requirements, VAXvector 6000 systems with 
a single scalar/vector processor require at least two 
memory controllers. Dual scalar/\~ector systems or 
single scalarlvector systems with additional scalar 
processors require at least four memory controllers. 

VAX 6000 ~odel400 Vector Processor 
The block diagram for the vector processor is 
shown in Figure 2. The machine is divided into 
three separate function units that can operate in 
combination or independently: 

A vector controller, implemented as a single chip 

Arithmetic pipelines implemented by four pairs 
of chips, i.e., register file and vector data path 

A loadlstore unit, implemented by one chip, 
which also controls a 1 megabyte (MB) cache 

Vector Control Chzp 
When the scalar processor encounters a vector 
opcode, it parses and fetches the operands. 
The opcode and all its operands are dispatched 
through the instruction bus to the vector processor. 
For arithmetic instructions, the scalar processor 
will proceed to decode the next opcode in the 
instruction stream. However, for load and store 
instructions, the scalar processor is stalled until all 
address translations are completed. Stalling guaran- 
tees that any memory management violations are 
synchronous and that the scalar processor can 
restart the faulting instruction correctly. Within the 
vector unit the vector control chip is responsible 
for all scalar vector communication. When instruc- 
tions are received by the vector controller chip, 
the vector controller buffers the instructions and 
controls instructions issuing to the other function 
units within the vector processor. 

An important aspect of the vector control chip 
is the register scoreboard logic, which identifies 
potential register conflicts when vector instructions 
are executed in parallel. By maintaining accurate 
register usage data, the vector control chip can 
optimize parallelism with the vector processor. 
Optimal performance is achieved by executing 
arithmetic operations in parallel with load and store 
operations, chaining the results of arithmetic opera- 
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Figure 2 VAXvector 6000 Model 400 Scalar/Vector Processor Block Diagram 

f 

tions into store operations, and even dynamically 
re-ordering the execution of arithmetic instructions 
relative to load and store instructions to improve 
parallelism. 

The vector control chip sends all error status 
and machine checks to the scalar processor. When 
an error is encountered, the control chip attempts 
to retry the failing transaction. If the retry is suc- 
cessful, a soft error interrupt is sent to the scalar 
processor. If the retry fails, either a hard error 
interrupt or a machine check is sent to the scalar 
processor. Read operations that fail result in 
machine checks. Write operations that fail result 
in hard error interrupts. 

Although not part of the overall control function, 
the vector control chip also contains logic to imple- 
ment the IOTA instruction. The IOTA instruction 
builds a set of offsets in a vector register. This func- 
tion did not fit conveniently in any other vector 
function. The control chip was selected because it 
had the space available to contain the function. 

Vector Register File and Arithmetic 
Pipeline 
The VAXvector 6000 processor's arithmetic pipe- 
line is organized as four pipes. Each pipe consists of 
a quarter of the register file (every fourth element of 
the vector registers), and an associated arithmetic1 
logic unit. Each individual pipeline can retire 
one single-precision calculation every cycle or one 

double-precision calculation every two cycles. The 
four pipes collectively retire four single-precision 
calculations every cycle, or two double-precision 
calculations every cycle. Thus, a much higher float- 
ing point performance is achieved than with only 
one individual pipeline. 

The register file chips receive instructions from 
the vector controller and data from the cache or 
loadlstore unit. The register file chip provides read 
operands to the arithmetic pipeline and stores write 
results and mask information. To maximize the use 
of cache bus bandwidth, two 32-bit operands can 
be combined into a single 64-bit transfer that is 
simultaneously read or written to two separate reg- 
ister file chips. The register file internally has four 
64-bit ports. (One is a readlwrite port for memory 
data; two are read ports for operands; and one is 
a write port for results. While one instruction is 
writing its results, a second can start reading its 
operands. Thus, the instruction pipeline delay is 
hidden. Variations in pipeline length between 
instructions are smoothly handled to ensure that 
no gaps exist in the flow of write data. 

The register file can hold two outstanding arith- 
metic instructions in its internal queue. Therefore, 
the vector controller can preload the arithmetic 
instruction queue with a second instruction, i.e., 
deferred instruction. Preloading allows the vector 
controller to free the cache data bus, which is 
also used for instruction issuance, for use by a sub- 
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sequent load or  store instruction. This feature 
improves performance because the arithmetic 
pipeline can execute two arithmetic instructions 
in the time it takes to execute one load or store 
instruction. 

The register file's operand and result ports are 
used by the vector arithmetic pipeline chip. 
Operand data is sent over a 32-bit bus that is driven 
twice per cycle. Results are returned on a separate 
32-bit bus that is driven once per cycle. The two 
operands for single-precision instructions can be 
passed in one cycle, while double-precision 
operands take two cycles to transfer. Each arith- 
metic pipeline chip has a throughput of one single- 
precision operation per cycle, one double-precision 
operation per 2 cycles, and one single-precision or 
double-precision divide per 10 or 22 cycles. The 
arithmetic chip has a pipeline delay of six cycles for 
double-precision multiplications, and five for all 
others (except divides), including the data transfer 
cycles. Integer operations are recoded internally as 
double-precision floating point data types. The 
vector arithmetic pipeline chip is a full custom 
implementation largely based on the design of the 
scalar processor's floating point unit.' 

Load/Store Unit 
The control chip uses the vector processor's inter- 
nal bus to issue instructions to the function units. 
However, once a load or store instruction is issued, 
the loadlstore chip becomes bus master and con- 
trols the internal bus. Either the loadlstore chip, 
vector register files, or the cache can drive the bus. 
Once a load or store instruction starts execution, 
no further instructions can be issued until it com- 
pletes. This rule simplifies the control chip score- 
boarding because once a load or store instruction is 
started, no further instnictions can start. Therefore, 
scoreboarding of these instructions against the out- 
standing load or store instruction is not necessary. 
Because scoreboarding of outstanding instructions 
requires considerable logic complexity in the 
vector control chip, it was important to keep the 
complexity of this operation minimal. An addi- 
tional benefit was the simplification of the internal 
bus protocol. It was excessively complex to imple- 
ment the capability to stop load or store instruc- 
tions in progress. This alternative was not pursued 
because the resulting performance benefit was 
minor in comparison to the amount of work 
involved. 

The loadlstore chip executes the vector load, 
store, scatter and gather memory reference instruc- 

tions. These instructions involve virtual-to-physical 
address translation, cache management, and inter- 
action with the memory bus. If a load or store 
instruction requires an offset register, such as 
scatter or gather, the offset register is first read into 
a buffer and then added to the instruction's base 
address. This process eliminates turning around the 
internal bus for each offset read, which would add 
more overhead. For strided load or store instruc- 
tions, the address is generated by adding the stride 
to the instruction's base address. 

Load or store instructions can operate on either 
32-bit (i.e., long word, single-precision) or 64-bit 
(i.e., quadword, double-precision) data types. 
When executing unity-stride 32-bit load or store 
instructions, the loadlstore chip operates on two 
elements at a time. Two 32-bit elements are com- 
bined into a single 64-bit cache reference. This 
combination significantly enhances performance 
enhancement in unity stride single-precision data 
operations. 

Virtual-to-physical address translation is per- 
formed using an on-chip, 136-entry, 68-way-asso- 
ciative translation buffer (TB). This configuration 
maximizes address translation efficiency, which is 
very important because only limited chip space was 
available. To optimally service TB miss conditions, 
the loadlstore chip contains dedicated logic that 
directly references page table entries upon a TB 
miss. A simpler alternative would have been to use 
microcode in the scalar processor to fetch new 
page table entries upon a TR miss. However, the 
dedicated logic approach was chosen to enhance 
performance for applications that exceed the size 
of the TB. Under certain TB miss conditions, the 
vector processor may be unable to compute a new 
virtual-to-physical address translation. This situa- 
tion can occur when the addressed page is invalid or 
has been paged-out to disk. When such a miss 
occurs, the vector unit reports an exception back 
to the scalar processor. Once the scalar processor 
corrects the situation, the instruction is retried from 
the beginning. 

Since the scalar processor must be able to restart 
the faulting vector instruction, it is important to 
precisely identify any vector memory management 
exception with the associated vector load or store 
instruction. This identification is achieved by block- 
ing issuance of further instructions until the vector 
unit notifies the scalar processor that the vector 
instruction is free of memory management faults. 
The vector unit contains memory management 
prediction logic, called MMOK logic. MMOK logic 
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allows the scalar processor to  issue additional 
instructions in parallel with the execution of the 
vector load or store instruction. During execution 
of a strided vector load or store instruction, once 
it is established that the current vector element 
references the same TB entry as the last element 
of the load or store instruction, and that the associ- 
ated TB entry is free of memory-management 
exception conditions, the load/store unit can safely 
report "address translation successful," i.e., MMOK, 
to the scalar processor. Early prediction of success- 
ful address translation permits the scalar processor 
to be released and allows it to operate asyn- 
chronously with the remainder of the vector load 
or store instruction. 

Once a physical address is obtained, the load1 
store chip references its 3213 entry tag store. The 
address is delayed and passed to the 1MB cache data 
store. This delay permits cache tag lookup and com- 
pare to complete before data is written to the cache 
on store operations. In parallel, the corresponding 
register file address is presented to the four register 
file chips. The data and addresses are automatically 
aligned for load and store operations to permit 
correct reading and writing of the register file and 
cache data KAMs. Upon cache miss, the load/store 
unit queues the associated 32-byte block read oper- 
ation with the memory interface logic and contin- 
ues processing other elements. Up to four cache 
misses can be outstanding before the read data for 
the first miss returns. Hits continue to be processed 
while the misses are outstanding. On vector proces- 
sors, the most important factor is the time required 
to complete the entire load or store operation, 
rather than the time needed to fetch an individdal 
element. The cache miss handling feature permits 
the vector processor to maximize its use of available 
XMI bandwidth. 

The vector cache tag and data are parity-pro- 
tected. Should a cache parity error occur, the cache 
is disabled and the instruction retried from the 
beginning. This method was the simplest option for 
soft recovery of cache parity errors. The operating 
system receives a soft error interrupt and can, at 
its option, re-enable the cache. 

The loadlstore chip contains a 32-element write 
buffer to enhance performance of store operations. 
Since the vector cache operates at higher band- 
widths than the system bus, the buffer isolates the 
store performance from the slower XMI memory 
bus. Furthermore, a subsequent load instruction 
that hits in cache can execute while the write buffer 

is being written to memory. If the load instruction 
takes a cache miss, the load stalls until the store 
completes. This simple scheme improves instruc- 
tion overlap when load instructions follow store 
instructions without adding undue complexity to 
the loadlstore unit design. 

Performance Characteristics 
The interaction between the different functional 
units of the vector processor creates a number of sit- 
uations that affect the performance and execution 
of vector instructions. These include: 

Overlapping instructions 

Out-of-order instructions 

Chaining 

Overlap of Instructions 
Arithmetic and loadlstore instruction execution 
may overlap because the functional units are inde- 
pendent. In order to achieve this overlap, the 
following conditions must be met. 

The arithmetic instruction must be issued before 
the load or store instruction. 

There must be no register conflict between the 
arithmetic and loadlstore instructions. 

In the following examples of arithmetic and load1 
store instruction interactions, an "I" represents 
instruction issue time, and an " E "  represents 
instruction execution time. The "VR" represent 
vector registers. The expression "std" is used to 
represent the stride. A series of periods ". . ." repre- 
sents wait time in the arithmetic unit for deferred 
instructions. (Note: These examples are not 
intended as timing diagrams.) 

VVADDx VRl,VR2,VR3 IEEEEEEEE 

VLDx A,std,VRl IEEEEEEEEEEEEEE 

As can be seen in the example above, the execu- 
tion of the vector load instruction (VLDx) can 
overlap the vector add instruction (VVADDx) 
because there are no register conflicts between the 
two instructions. In the next example, instruction 
overlap is inhibited because the WADDx instruc- 
tion is writing to the register to be loaded, V R 3 .  

VVADDx VRl,VR2,VR3 IEEEEEEEE 

VLDx A,std,VR3 IEEEEEEEEEEEEEE 

In comparing these two examples, it is clear that 
the overlap of the execution of the VVADDX and the 
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VLDx greatly reduces the total execution time of 
the instruction sequence. By taking advantage of 
this hardware feature, application codes can show 
greatly improved performance. 

Out-of order Instruction Execution 
The arithmetic unit includes a deferred instruction 
queue of length 1. This queue allows the vector 
control and scoreboard logic to queue one instruc- 
tion to the arithmetic unit while that unit is still 
executing a previous instn~ction. The vector con- 
troller checks the queue's status for an instruction 
when it checks the function unit's availability. Both 
the deferred and currently executing instructions 
are checked for register availability. This queue 
frees the issue unit to process another instruction 
rather than waiting for the arithmetic unit to com- 
plete its current instruction. 

For the following instruction sequence, 

VVADDx V R l , V R 2 , V R 3  

VVMULx V R 3 , V R l , V R 4  

VLDx A , s t d , V R 2  

execution without a deferred instruction queue 
would resemble this example: 

I s s u e  VVADDx IEEEEEEEE 

I s s u e  VVMULx I EEEEEEEE 

I s s u e  VLDx IEEEEEEEEEEEEEE 

Execution with a deferred instruction queue 
would look like the following: 

I s s u e  VVADDx I EEEEEEEE 

l s s u e  d e f e r r e d  VVMULx I . . . . . . . E E E E E E E E  

I s s u e  VLDx IEEEEEEEEEEEEEE 

These examples illustrate the use of a deferred 
arithmetic instruction. If a deferred instruction 
queue was not implemented, the VVnlULx instruc- 
tion could not be issued until the VVADDx was 
either completed or nearly completed. The VLDx 
instruction would not issue until after the W U L x  
was issued and would complete much later than 

in the deferred instruction case. Once the VLDx 
instruction is issued, no other instructions may be 
issued. The instruction overlap execution made 
possible by the deferred instruction queue signi- 
ficantly reduces total execution time. 

Comparing the last two examples, in the case 
where a deferred instruction queue was used, the 
VLDx instruction can begin executing before the 
WMULx. It also could complete before the VmlULx 
instruction completes simply because the WMULx 
instruction is sent to the deferred arithmetic 
instruction queue. This out-of-order execution of 
instructions allows increased overlap of instruc- 
tions, which again reduces the total execution time 
of the instruction sequence. 

Chaining 
Vector operands are generally read from and writ- 
ten to the vector register file. An exception to this 
process occurs when a store instruction is waiting 
for the results of a currently executing arithmetic 
instruction. (Divide instructions are not included in 
this exception because they do not have the same 
degree of pipelining as the other instructions.) As 
results are generated by the arithmetic instruction 
and are ready to be written to the register file, they 
are also in~mediately available for input to the wait- 
ing store instruction. Therefore, the store instruc- 
tion can begin processing the data before the 
arithmetic instruction has completed. This process 
is called "chain into store." The store instruction 
will not overrun the arithmetic instruction because 
the store instruction can process data faster than the 
arithmetic unit can generate results. 

The following instruction sequence 

VVADDx VRl ,VRE,VRB 

VVMULx VRl ,VRP,VR4 

VSTx V R 3 , A , s t d  

would resemble the example in Figure 3 if executed 
without the chain into store process. 

I s s u e  VVADDx [ EEEEEEEE 

I s s u e  d e f e r r e d  VVMULx I . . . . . . . E E E E E E E E  

I s s u e  VSTx IEEEEEEEEEEEEEE 

Figure 3 Sample lmtruction Sequence without Chain into Store 
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If the instruction sequence were executed with 
the chain into store process, however, it would 
follow this example: 

I s s u e  VVADDx I EEEEEEEE 

I s s u e  d e f e r r e d  VVMULx I . . . . . . . E E E E E E E E  

I s s u e  VSTx  IEEEEEEEEEEEEEE 

In these examples, the VSTx instruction requires 
the result of the VVADDx instruction. Without the 
chain into store operation, the VSTx instruction 
must wait for the VVADDx to complete before 
beginning. The chain into store operation allows 
the VSTx instruction to begin while the VVADDx 
is still executing, increasing the amount of instruc- 
tion execution overlap. As a result, the instruction 
sequence requires a shorter period of time to com- 
plete execution. 

Load and Store Unit Performance 
Memory access instructions are typically slower 
than arithmetic instructions and will frequently 
dominate the performance of vectorized appli- 
cations. Certain coding techniques help minimize 
the time spent waiting for load and store instruc- 
tions to complete and reduce the resulting impact 
on performance. 

Maximize fnstruction Execution Ovwlap Three 
important hardware features help maximize 
instruction execution overlap in the loadtstore unit. 
First, a load or store instruction can execute in 
parallel with up to two arithmetic instructions, pro- 
vided the arithmetic instructions are issued first. 
Second, the chain into store sequence can reduce 
the perceived execution time of a store instruction. 
Finally, early detection of no memory faults allows 
scalar-to-vector unit communications to overlap 
with load or store instruction execution. 

In the instruction sequence shown in Figure 4 ,  
the main loop of a SAXPY or DAXPY BLAS 1 routine, 
there is very little instruction overlap.' 

In the reordered instruction sequence shown in 
Figure 5, the WMULx and second VLDx instruc- 
tions overlap, and less total execution time is 
required than in the first example. 

The only real difference between the instruction 
sequences in Figures 4 and 5 is the order in which 
they are issued. By recogni~ing that the VVMULX 
does not require the result of the second VLDx and 
can precede that instruction, a significant reduction 
in execution time is achieved. 

The overlap of load and store instructions can 
also be effectively maximized by preceding, 
wherever possible, all load and store instructions by 
at least two arithmetic instructions. In this way, 
both the load and store pipeline and the arithmetic 
pipeline are in use. 

Minimize Register Conflict Waits A load instruc- 
tion cannot begin execution until the register to 
which it will write is free. A register conflict may 
occur if the destination register of a load instruction 
is the same as the register for a preceding arithmetic 
instruction. I f  using a different register for the load 
instruction would permit instruction execution 
overlap to occur, the destination register should, d 
possible, be changed. 

Locality of Reference of Data The locality of ref- 
erence of data is important in determining the per- 
formance of load and store operations. Because 
unity stride load and store instructions are the most 
efficient memory access instructions, whenever 
possible, data should be stored in the sequential 
order in which it is usually referenced. 

Non-unity stride load and store operations can 
have a significantly higher impact than unity stride 

VLDx  X , s t d , V R l  IEEEEEEEEE 

V L D x  Y, s  t d  ,VR2 IEEEEEEEEE 

VVMULx V R 3 , V R I , V R l  I EEEEE 

VVADDx V R l , V R 2 , V R 2  I . . . . E E E E E  
V S T x  V R 2 , Y , s t d  IEEEEEEEEE 

Figure 4 Sample Instruction Sequence of Main Loop of a SAXPY or DAXPY BLAS I Routine 
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V L D x  X , s t d , V R I  IEEEEEEEEE 

VVMULx V R 3 , V R I , V R l  I EEEEE 

V L D x  Y ,VR2 IEEEEEEEEE 

VVADDx V R l , V R 2 , V R 2  I EEEEE 

V S T x  V R 2 , Y , s t d  IEEEEEEEEE 

Figure 5 Sample Instruction Overlap Sequence of a Main Loop 
of a SAXPY or DAXPY BLAS I Routine 

operations on the performance level of the XMI 
memory bus. More memory references are required 
for non-unity stride operations of the same vector 
length. If the ratio of cache miss load and store 
instructions to arithmetic instructions is sufficiently 
high and non-unity stride is used, bus speed and 
bandwidth can limit performance 

Load and store operations that hit in cache are 
less costly than those that miss cache. Any piece of 
data must be loaded from memory to cache the first 
time it is referenced. If data that is referenced more 
than once remains in the cache, i e., is not displaced 
by subsequent data accesses, other references to 
that data will not incur memory access costs, and 
better performance results. 

On any cache fill, a 32-byte data block is read into 
the cache. (Note: This is equivalent to 8 long words 
or 4 quadwords. Single-precision data is a long 
word; double-precision data requires a quadword.) 

code. Several examples that illustrate effective opti- 
mization methods are discussed in the Algorithm 
Optimization section of this paper. 

Arithmetic Unit P e r f o m n c e  
Once an instruction begins execution in the vector 
arithmetic unit, it continues executing until all 
results are completed. A deferred arithmetic 
instruction may only begin execution after the 
instruction in the pipeline completes, or if the first 
results of the deferred instruction will not complete 
before the last results from the current instruction 
are completed. The instruction overlap will be 
particularly significant for shorter vectors because 
the startup time, i.e., the time that can be 
overlapped, for an arithmetic instruction is fmed 
overhead that represents an increasing portion of 
the execution time as vector length decreases. 

When non-unity stride loads are used, performance Peak Perfomzance 
can be improved by using the additional data read 
in to cache. This improvement can be achieved by 
following cache miss non-unity stride loads with 
non-unity stride loads that reference the additional 
data and will, therefore, hit in cache. 

Large data arrays and strides can also have an 
impact on the efficiency of the translation buffer. 
For large strides, i.e., greater than 256 single-preci- 
sion elements or 128 double-precision elements, 
a translation buffer miss can occur for each vector 
element. Even with unity stride, the translation 
buffer miss rate will be higher for large data arrays. 

Algorithm It is sometimes necessary to consider 
the algorithm that b represented by the code to be 
optimized because some algorithms are not as well 
suited to vector processing as others. It may be more 
effective to change the algorithm used or the way 
it is implemented than to optimize the existing 

The Model 4 0 0  vector processor has a cycle time 
of 44.44 nanoseconds. For single-precision opera- 
tions, this cycle time translates to a theoretical peak 
performance of 9 0  MFLOPs. For double-precision 
operations, the theoretical peak performance is 45 
MFLOPs. Theoretical peak performance is calculated 
from the number of results per cycle and the cycle 
time as follows: 

Single-precision peak =4 / (44.44 x 10") 

Double-precisionpeak =2 / (44.44 x 10') 

Crossover Point 
For any given instruction or sequence of instruc- 
tions, there is a particular vector length where both 
the scalar and vector processing of equivalent oper- 
ations yield the same performance. This vector 
length is the crossover point between scalar and 
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vector processing and is unique to the particular 
instruction or sequence. Scalar operations are faster 
for vector lengths below the crossover point. Vector 
operations are more efficient for vector lengths 
above the crossover point. A low crossover point is 
considered a benefit because it indicates that it is 
easier to take advantage of the power of the vector 
processor. A low crossover point means that more 
code can benefit from the vector processor. 

For any single, isolated vector instruction, the 
crossover point on the Model 400 system is quite 
Low, generally about 3 or 4. However, an instruction 
is not performed in isolation. In a routine or 
application, other factors affect the performance of 
the operations on short vectors. These effects are 
particularly seen when the short vector's data is 
used in several vector operations. 

On the Model 400 system, performing as much 
code as possible on the vector processor, including 
short vector length sections, can mean higher 
system performance. Performance is improved 
because thc cache is used more optimally. Speci- 
fically, once vector instructions have referenced a 
piece of data, that data is included in the vector 
unit's cache. Subsequent scalar operations on that 
data will require moving the data from the vector 
cache into the scalar cache. Continued code sec- 
tions of vector references followed by scalar 
references tend to invalidate the two caches too 
frequently. Therefore, a vector operation is usually 
more efficient than a scalar operation. The cross- 
over point on the Model 400 system is low enough 
that scalar processing is the faster alternative only 
for isolated operations on short vectors. 

Algorith Optimization Examples 
The previous section of this paper discussed how 
the characteristics of the VAXvector 4000 Model 400 
system's vector processor can affect performance. 
The following examples illustrate how that perfor- 
mance information can be used to build optimized 
routines. The examples also show how an algorithm 
and its implementation can change the performance 
of an application on the  vector 6000 processor. 

Algorithm changes can alter the data access pat- 
terns to use the memorj7 subsystcm more efficiently, 
can increase the average vector length, and can min- 
imize the number of vector operations required. 
By applying Amdahl's Law of vectorization, we can 
improve performance by increasing the percentage 
of code that is vectorized. 

To take advantage of the processing power of the 
VAxvector 6000 Model 400 system, we concen- 
trated on four basic optimization methods: 

Rearrange code for maximum vectorization of 
the inner loop and remove data dependencies 
within the loop 

Vectorize across contiguous memory locations to 
produce unity stride vectors for increased cache 
hit rates and opti.mized cache miss handling 

Reuse the data already loaded into the vector reg- 
isters as frequently as possible to reduce the 
number of vector load and store operations 

Maximize instnlction execution overlap by pair- 
ing arithmetic instructions between load and 
store instructions wherever possible 

(Note: Further information on optimization 
techniques in FOR'TRAN can be found in the VAX 
FORTRAN Performance Guide available with the 
FORTRAN-High Performance  tion on.^ Additional 
information on macrocoding for the vavec tor  
6000 Model 400 vector processor can be found in 
the VAX 6000 Vector Processor ProgrammerS 
Guide. ") 

By analyzing the groups of applications that have 
high vector processing potential, we identified two 
basic arras where optimization techniques can be 
most useful: equation solvers and signal process- 
ing routines. For example, computational fluid 
dynamics, finite element analysis, molecular 
dynamics, c i rc~~i t  simulation, quantum chromody- 
namics, and economic modeling applications use 
various types of simultaneous or differential equa- 
tion solvers. Applications such as air pollution 
modeling, seismic analysis, weather forecasting, 
radar imaging, speech and image processing, and 
many other scientific and engineering applications 
use signal processing routines, such as fast Fourier 
transforms, to obtain solutions. 

Equation Solvers 
Equation solvers generally fall into four categories: 
general rectangle, symmetric, hermitian, and tri- 
diagonal. The most common benchmark used to 
measure a computer system's ability to solve a 
general rectangular system of linear equations is 
~ i n ~ a c k . '  The Linpack benchmarks, developed at 
Argonne National I.aboratory, measure the perfor- 
mance across different computer systems while 
solving dense systems of 100, 300, and 1000 linear 
equations. 
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These benchmarks are currently written to call 
subroutines from the Linpack library. The subrou- 
tines, in turn, call the basic linear algebra subrou- 
tines (BLAS) at the lowest level. For each benchmark 
size, there are different optimization rules which 
govern the type ofchanges permitted in the Linpack 
report. Optimizations to the RLAS routines are 
always allowed. Modifications can be made to the 
FORTRAN source or by supplying the routine in 
macrocode. Algorithm changes are only allowed for 
the largest problem size, the solution to a system of 
1000 linear equations. 

The smallest problem size uses a two-dimensional 
array that is 100 by 100. The benchmarks are writ- 
ten to use Gaussian elimination for solving 100 
simultaneous equations. This two-step method fea- 
tures a factorization routine, x(;EFA, and a solver, 
xGESL. Both are column-oriented algorithms and 
use vector-vector level I BLAS routines. Column 
orientation increases program efficiency because 
it  improves locality of data based o n  the way 
FORTRAN stores arrays. 

As shown in Figure 6, the B1.AS level 1 routines 
allow the user to schedule the instructions opti- 
mally in vector macrocode. Deficiencies in BLAS 1 
routines include frequent synchronization, a large 
calling overhead, and more vector load and store 
operations in comparison to other vector arithmetic 
operations. 

The performance of the Linpack 100 by 100 
benchmark. which calls the Figure 3 routine, shows 
how an algorithm with approximately 80 percent 
vectorization can be limited by the scalar portion. 
One form of Amdahl's I,aw relates the percentage of 
vectorized code compared to the percentage of 
scalar code to define an overall vector speedup. This 
ratio between scalar runtime and vector runtime is 
described by the following formula: 

Vector speedup = time scalar 1 (% lscular l x 
time scalar) + ([ % uector 1 x time wctor) 

Under Amdahl's Law, the maximum vector 
speedup possible, assuming an infinitely fast vector 
processor, is: 

Vector speedup = 1.0 / (0.2) x 1 .O + (0.8) x 0 = 
1.0/0.2  = 5.0 

As shown in Figure 7, the Model 400 processor 
achieves a vector speedup of approximately 3 for 
the 100 by 100 Linpack benchmark when using the 
BLAS 1 subroutines. It follows Amdahl's Law closely 
because it is small enough to fit the vector proces- 
sor's 1 Mbyte cache and, therefore, incurs very little 
overhead due to memory hierarchy. 

For the Linpack 300 by 300 benchmark, opti- 
mizations include the use of routines that are 
equivalent to matrix-vector level 2 BLAS routines. 

xAXPY - compute5 Y (1 )  = Y ( 1 )  + a X ( 1 )  

where  x = p r e c ~ s l o n  = F ,  D, G 

MSYNC 

LOOP: 

;synchronize w l t h  s c a l a r  

VLDx X ( I ) , s t d , V R O  

VSMULx a,VRO,VRO 

VLDx Y ( I ) , s t d , V R I  

VVADDx VRO,VRI,VRI 

VSTx V R l , Y ( I ) , s t d  

I NC I 

I F  ( I  < S I Z )  GOT0 LOOP 

MSYNC 

; X ( I )  15 l o a d e d  I n t o  VRO 

;VRO g e t s  t h e  p r o d u c t  o f  VRO 

;and  t h e  s c a l a r  v a l u e  " a "  

; Y ( I )  g e t  l o a d e d  i n t o  VR1 

;VR1 g e t s  VRO summed w i t h  VR1 

;VR1 15 s t o r e d  back  I n t o  Y ( 1 )  

; ~ n c r e m e n t  I by v e c t o r  l e n g t h  

; Loop  f o r  a l l  v a l u e s  o f  I 

;synchronize w i t h  s c a l a r  

Figure 6 Core Loop ofla BLAS I Routine Using Vector- Vector Operations 
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DIMENSION OF PROBLEM SIZE 

Figure 7 Linpnck Pwfornmnce Graph, 
Doubleprecision BLAS Algorithms 

Figure 8 details the core loop of a BLAS 2 routine. 
BLAS 2 routines make better use of cache and trans- 
lation buffers than the Bl.As 1 routines do. Also, 
HLAS 2 routines have a better ratio between vector 
arithmetics and vector load and stores. The larger 
matrix size increases the average vector length. Per- 
formance is improved by amortizing the time to 
decode instructions across a larger work load. 

By removing one vector load and one vcctor store 
from the innermo4t loop, the BLAS 2 routine has a 
better ratio of arithmetic operations to load and 

store operations than HLAS 1 routincs. Although the 
300 by 300 array fits into the vect~)r processor's 
1 MB cache, not all the cache can be mapped by its 
translation buffer. By changing the sequence in 
which this routine is called in the program, the data 
access patterns can bc altered to better use the 
vector unit's translation buffer. Thus, higher per- 
formance is obtained. 

The percent of vectorization increases primarily 
because of tlie increase in the matrix size from 100 
by 100 to 300 by 300. With a vector fraction of 
approximately 95 percent, Figure 7 shows the 
speedup improvement in the 300 by 300 bench- 
mark when using methods based on HI.AS 2 rou- 
tines. With a matrix vector algorithm, the 300 by 
300 benchmark yields speedups of between 1 0  and 
12 over its scalar counterpart. 

There are no set rules to follow when solving the 
largest problem size, a set of 1000 simultaneous 
equations. One potential tool for optimizing this 
benchmark is tlie LAPACK library developed by 
Argonne National Laboratory, in conjunction with 
the Ilniversity of Illinois Center for Supercomputing 
Research and Development (<:SRD). The LAPACK 

library features equation solving algorithms that 
will block the data array into sections that fit into 

xGEMV - computes Y(1) = Y(1) + X ( J ) * N ( I  ,J) 

where x  = p r e c i s i o n  = F,  D,  G  

MSYNC ;synchron ize  w i t h  s c a l a r  

I LOOP: 

VLDx Y( I ) ,s td ,VRO ; Y ( I )  i s  loaded as VRO 

JLOOP. 

VLDx M ( I , J ) , s t d , V R I  ;VRI g e t s  columns o f  M (  I , J )  

VSMULx X(J),VRI,VR2 ;VR2 g e t s  t h e  p r o d u c t  o f  VRl 

;and X(J)  as a  s c a l a r  

VVADDx VRO,VR2,VRO ;VRO g e t s  VRO summed w i t h  VR2 

I NC J  
I F  ( J  < S I Z )  GOT0 JLOOP ;Loop f o r  a l l  v a l u e s  o f  J  

VSTx VRO,Y( I ) ,5 td  ;VRO g e t s  s t o r e d  i n t o  Y ( I )  

I NC 

I F  ( I  < SIZ)  GOT0 ILOOP ;Loop f o r  a l l  v a l u e s  o f  1 

MSYNC ;synchron ize  w l t h  s c a l a r  

Figure 8 Core Loop of a BLAS 2 Routine Using Matrix-Vector Operations 
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a given cache size. The LAPACK library calls not 
only the BLAS 1 and BLAS 2 routines but also a third 
level of BLAS, called matrix-matrix BLAS or the BLAS 

level 3: 
Figure 9 shows that a matrix-matrix multiply is at 

the heart of one BLAS 3 routine. The matrix multi- 
plication computation can be blocked for modern 
architectures with cache memories. Highly efficient 
vectorized matrix multiplication routines have 
been written for the VAX vector architecture. For 
example, a double precision 64 by 64 matrix 
multiplication achieves over 85 percent of the peak 
MFLOl's on the Model 400 system. 

Performance can be further improved with other 
methods that increase the reuse of data while it is 
contained in the vector registers. For example, loop 
unrolling can be done until all the vector registers 
have been fi~lly utilized. Partial results can be 
formed within the innermost loop to minimize the 
loads and stores required. Because both rows and 
columns are traversed, the algorithm can be blocked 
for cache size. The VAXvector Model 400 system 

exhibits vector speedups greater than 35 for the 64 
by 64 matrix multiplication described above. 

Although the overall performance of the 1000 by 
1000 size benchmark is less than a single 64 by 64 
matrix multiplication, it does indicate the potential 
performance when blocking is used. Improving the 
performance of this benchmark is most challenging 
because the 1000 by 1000 matrix requires about 
eight times the vector cache size of I M B .  Further 
analysis is being conducted to determine the most 
efficient block size that would maximize the use of 
BLAS 3 and remain within the size of the cache for a 
given block of code. 

The vectorized fraction increases to  approxi- 
mately 98 percent for the 1000 by 1000 benchmark. 
The proportion of vector arithmetics relative to 
vector loads and stores is much improved for the 
BLAS 3s. Although the cache is exceeded, perfor- 
mance more than doubles when using a method that 
can block data based on the BLAS 3 algorithms. 
Therefore, the ITAXvector 6000 Model 400 pro- 
cessor's performance for Linpack 1000 by 1000 

xGEMM - computes Y ( I , J )  = Y ( I , J )  + X ( I , K ) * M ( K , J )  

where  x = p r e c ~ s ~ o n  = F ,  D ,  G  

MSYNC 

I JLOOP : 

VLDx 

KLOOP: 

VLDx M ( K , J ) , s t d , V R l  

VSMULx X ( I , K ) , V R I , V R l  

VVADDx VRO,VR2,VRO 

I NC K 

I F  (K < 51 2 )  GOT0 KLOOP 

RESET K  

VSTx V R O , Y ( I , J ) , s t d  

I NC I 

I F  ( I  < 512 )  GOT0 IJLOOP 

I NC J  

RESET I 

I F  ( J  < 512 )  GOT0 IJLOOP 

MSYNC 

; s y n c h r o n i z e  w ~ t h  s c a l a r  

; Y ( l : N , J )  g e t s  l o a d e d  I n t o  VRO 

; K ( 1  :N ,K )  g e t  l o a d e d  I n t o  VRl 

;VRl g e t s  VR1 summed w i t h  

; X ( I  ,K)  as  a  s c a l a r  

;VRO g e t s  VRO summed w ~ t h  VR2 

; I n c r e m e n t  K  by  v e c t o r  l e n g t h  

; r e s e t  I t o  S I Z  

;VRO g e t s  s t o r e d  i n t o  Y ( I  , J )  

; i n c r e m e n t  I b y  v e c t o r  l e n g t h  

; I n c r e m e n t  J  b y  v e c t o r  l e n g t h  

; r e s e t  I t o  S I Z  

;synchronize w ~ t h  s c a l a r  

Figure 9 Core Loop of a BLAS 3 Routine Using Mat*-Matrix Operations 
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obtained a vector speedup of approximately 25, as BIT 
shown in Figure 7. REVERSAL 

REORDER 
CORRECT 
RESULT 

Signal ~ e s s ~ ' ~ g -  Fast Fouriev 
T r a m f m  
The Fourier tramsfom decomposes a waveform, 
or more generally, a collection of data, into com- 
ponent sine and cosine representation. The discrete 
Fourier transform (Dm) of a data set of length .V 

performs the transformation following the strict 
mathematical definition which requires o(iv2) 
floating point operations. In 1965, the fast Fowicr 
transform (FFT) was developed by Cooley and 
Tukey. FFT reduced the number of operations 
to O(N x L O G I N ] ) ,  which is a significant improve- 
ment for computational speed.' 

As shown in Figure 10, the complex data in the 
bottom butterfly is multiplied in each stage by the 
appropriate weight. The result is then added to the 
top butterfly and subtr~cted Eron~ the bottom 
butterfly. If t k  algrr(t1im is left in this configura- 
tion, it must use non-unity stride vectors, very short 
vectors, or masked arithmetic operations to per- 
form the ver). sm:~ll butterflies. 

Optimized One-dimensional Fast Fourier 
Transforms 
The bit-reversal process that permutes the data to a 
form that enables the Coolcy-Tukey algorithm to 
work is also shown in Figure 10. When using 
vectors, a common approach to performing the bit- 
reversal reordering is to use vector gather or vector 

9 scatter instructions. These instructions allow 
vector loads and stores to be performed using an 
index register. Vector loads and stores require a con- 
stant stride. Holvever, vector g;rthcr and scatter 
operations allow the user to build a vector of offsets 
t o  support indirect addressing in vector mode. Both 
gather ancl scatter instructions are available with 
VAX vectors. 

A vector implementation of the I:I:T algorithm has 
been developed that is well suited for the \'AX \,ector 
:rrchitecture. One optimization made to the algo- 
rithm involves moving the bit-reversal section of the 
code t o  a place where the data permutation will 
benefit vector processing. By doing so, two goals 
are accomplished. First, the slower vector gather 
operations are moved to the center of the algorithm 
such that the data will alrcady be in the vector 
cache. In Figure 1 0 ,  the first FFI'stage starts out with 
large butterfly distances. After each stage the butter- 
fly tlistancc is hal\.cd. For the optirnizcd \usion 

LOG (N) STAGE 1 STAGE 2 STAGE 3 STAGE 4 
STAGES 

Figure I 0  The Coolcy-Tdcy Ruttc'1"ji!!~ Crupb, 
One-dimensional Fast Fourier 
Trun.Fform for N = 16) 

shown in Figure 11, the bit-reversal permutation is 
performed as close to the center as possible, when 
the stage number = LOG(N)I2. To complete the 
algorithm, the butterfly distances now increase 
again. Second, this process entirely eliminates the 
need for short butterflies. 

Another optimization made to the FF'I' algorithm 
is the use of a table lookup method to access the sine 
and cosine P~ctors, which recluccs repetitive calls to 
the computationally intensive trigonometric filnc- 
tions. The initialization of this trigonon~etric table 
has been fully vectorized but shows only a modest 
factor of 2 performance gain. To build the table, a 
first-order linear recurrence loop is formed that 
severely limits vector speedup. Because this calcula- 
tion is only done once, it becomes negligible for 
multiple calls to the one-dimensional I:~:'l's and for 
all higher dimensional FF1's. The benchmark shown 
in Figure 12 was looped and includes thc calculation 
of the trigonometric table performed once for each 
FFT data length. 

Reusing data in the vector registers also saves 
vector processing time. The VAX vector architecture 
provides 16 vector registers. If  all 16 registers are 
used carefully, data can be reused by two successive 
butterfly stages without storing and reloatling the 
data. With half the number of loads and stores, the 
vector performance almost doubles. 
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BIT 
R E V E R S A L  
REORDER 

STAGE 1 STAGE 2 (HAS 

CORRECT 
RESULT 

STAGE 3 STAGE 4 

R E G - R E U S E )  

Figure I 1  Optimized Coolty-Tz~key Butterfly 
Graplj, One-dimensional Fast 
Fourier Transforin for N = I6 

Optimized Two-dimensional Fast Fourier 
Transforms 
The optimized one-dimensional FFT can be used to 
compute multidimensional FFTs. Figure 13 shows 
how an N by N two-dimensional FFT can be com- 
puted by performing N one-dimensional column 
FFTs and then N one-dimensional row FFTs. The 
same routine can be called for column or row access 
FFTs by simply varying the stride parameter that is 
passed to the routine. (Note: In FORTRAN, the 
column access is unity stride and the row access has 
a stride of the dimension of the array.) 

For improved performance on VAX vector 
systems, the use of a matrix transpose can dra- 
matically increase the vector processing perfor- 
mance of two-dimensional FFTs for large values of 
N, i.e., N > 256. The difference between unity stride 
and non-unity stridc is the key performance issue. 
Figure 14 shows that a vectorized matrix transpose 
can be performed after each set of N one-dirnen- 
sional FPTs. The computation will be equivalent to 
F i g ~ ~ r e  10 b ~ ~ t  with a matrix transpose: each one- 
dimensional FFT will be column access which is 
unity stride. The overhead of transposing the matrix 
becomes negligible for large values of N. 

When thc value of N is relatively small, i.e., 
N < 256, the two-dimensional FFT can be com- 
puted by calling a one-dimensional FFT of length N'. 
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Figure 12 One-dimensional Fast Fourier 
Transform Performance Graph, 
Optimized Single-precision 
Cmnplex Transfom 

The small two-dimensional FFT can achieve per- 
formance equal to that of the aggregate size one- 
dimensional FFT by linearizing the data array. 
Figure 15 shows the trade-off between using the lin- 
earized two-dimensional routine (for small N )  and 
the transposed method (for large N )  to maintain 
high performance across all data sizes. 

The optimization of an algorithm that vectorizes 
poorly in its original form has been shown. The 
resulting algorithm yields much higher perfor- 
mance on the VAXvector 6000 Model 400 processor. 
High performance is due to the unique way the 
algorithm touches contiguous memory locations 
and its effort to maximize the vector length. The 
implementation described above always uses unity 
stride vectors and always results in a vector length of 
64 for FFT lengths greater than 2 K  ( 2  X 1024). 

N 1-D FFTS N 1-D FFTS 

C O L U M N  ROW 

Figure 1.3 Two-dimensional Fast Fourier 
Transforms Using N Column and 
N Row One-dimensionul Fast 
Fourier Transforms 
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N 1 - D  FFTS TRANSPOSE 

COLUMN 

N 1-D FFTS 

COLUMN 

TRANSPOSE 

Figure 14 Two-dimensional Fust Fout-ier 
Transforms Using a /Matrix 
Transpose between Each Set of N 
Column One-dimensional Fast 
Fourier Transfotm 

Linear algebra and signal processing applications 
that utilize the various hardware features have 
demonstrated vector speedups between 3 and 35 
over the scalar VAX 6000 Model 400 CPL! times. 
With the integrated vector processing available on 
the VAXvector 6000 Model 400, the performance of 
computationally intensive applications may now 
approach that of supercomputers. 
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The VAX 6000 Model 400 
Scalar Processor Module 

The VAY 6000 filodel 400 CPIJ module is the latest generation of the crnzpatible 
VAX 6000 family of computers. me Model 400 is a single-board, CI~IOS-based CPII that 
signficantly extends the pwformance of the VRu 6000 series. The system provides 
nearly 7 VAX units ~Jperformance (V1JP.s) in single-processm applications and up to 
-36 VilPs in six-processor systems. The Model 400 module is a plug-in r e p l a c m t  for 
the Model 200 and ~~(Iodel300p~ocess~s. Chip set and module designers ofthis new 
system cooperated closely to meet aggressive timing andperfmzance goals. Several 
enhancements were made to the cache and bus intwface units to improve multipro- 
cessorperfmnce. A vector intwface was included for connection to a companion 
oecturprocessor module. Signal integrity was an important consideration for both 
chip and module design. 

When the Midrange Systems Business (MSB) Group 
began to develop the \,Ax 6000 series, the Semi- 
conductor Engineering Group (SEC;) had started 
development of a new CMOS-based cPu chip set.' 
The project's goals were the following: 

Achieve (;PO performance at least equal to the 
5.5 VlIPs of the VAX 8700 system 

Support a 28-nanosecond (ns) module cycle time 

At that time, the VAX 8700 system was the fastest 
VAX available and used emitter-coupled logic (ECL) 
to achieve a 45-ns cycle time. SEG designers 
believed a system implemented in CMOS technology 
could meet or exceed that performance level and at 
a much lower manufacturing cost. With reference 
to the second goal. a 28-11s cycle time would take 
advantage of chip sets that could run faster than the 
projected 40  11s cycle time. 

In discussions with MSB, we realized our module 
project could be modified to include an XMI inter- 
face and, therefore, become another member of the 
VAX 6000 series.' We then agreed to undertake a 
joint development effort between MSB and SEG, 
which resulted in the VAX 6000 Model 400 scalar 
CPU. Development of this scalar processor module 
is the focus of this paper. 

Halfway through the project, support for a vector 
processor module was included because the VAX 
architecture was extended to include vector 
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instructions. The vector processor module, which 
was developed by MSB, can provide a significant 
performance boost for certain classes of vector 
problems. 

The first Model 400 systems were shipped in 
July 1989. This delivery was made just 15 months 
after the introduction of the initial 6000 Model 200 
series. 

Design Challenges 
The aggressive 28-11s cycle time goal for the module 
design required a tight coupling of the chip set and 
module design efforts. With this short 28-11s cycle 
time goal, the module interconnect had to be 
treated as transmission lines. Consequently, signal 
integrity considerations were critical to design suc- 
cess and would impact all areas of the design- 
chip, package, and etch board. The approach taken 
to address signal integrity is described in more 
detail in the Signal Integrity section. 

The performance goals also dictated a change in 
the VAX 6000 Model 400 data and address line (DAL) 
pin bus. The older, less complex multiplexed 32-bit 
bus would have to be separated into a separate 
27-bit address bus (A-bus) and a 64-bit data bus 
(D-bus). That decision in turn resulted in the need 
for high pin count packages (224 pins) and the asso- 
ciated signal integrity challenges of dealing with as 
many as 90 output drivers switching simulta- 
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neousl!., while driving transmission lines with a low 
effective impedance of 60 ohms. 

Two new technologies were needed to meet 
these challenges. First, new chip packages had to be 
developed to supply the increased number of signal 
pins. The packages use multilayer ceramic sub- 
strates to provide signal planes, as well as separate 
power and ground planes for both intern:~l logic 
and pad ring power. The packages have 224 pins on 
a 25-mil pitch and are surface mounted for better 

controller chip (VC), a clock distribution chip 
(CLK), and a system support chip (RSSC). The REXMl  
interface consists of three chips: two copies of the 
data path chip (XDP), and a controllerlinterface 
chip (XCA). 

A block diagram of the XRP module is shown 
in Figure 1.  The module consists of four major 
sections: 

CPlJ and F-chip floating point accelerator 

module routability. Second, the 25-mil package pin rn VC chip and backup cache RAM array 
pitch required the use of a finer geometry etch 

The Rssc: system support chip 
board: 13-mil module vias and 10-mil routing pitch. 
This specification required the ph!,sic:~l design team rn The Xkll interface, including REXMI 

to initiate a very close development ;uid qual- 
ification effort with the etch hoard vendors.' 

Major Module Subsections 
The Model 400 n~odulc,  or XHI', is a single-board 
VAX CI'U implemcntccl with the Model -i00 chip set 
and a REXMl interface to the X M l  bus.' The chip set 
includes five chips: a CPU chip (RliXSLO), a floating 
point accelerator chip (F-chip), a backup cache 

The RliX520 is the first VAX microprocessor chip 
to implement a fully pipelined microarchitecture. 
The F-chip has (5-bit-wide data paths and a pipe- 
lined execution unit. These chips cooperate to 
implement the base instruction group of the VAX 

architecture. The two chips represent the CPU sec- 
tion of the XRI' module, and both chips connect 
directly to the DAL. Both chips also have a private 
8-bit bus for control and status information. 

VECTOR 
INTERFACE XCI 
BUS (CABLE) 

- 
REX520 
CPU WITH 
CACHE 

DATA 

< XMI . > 

DAL 

SYSTEM AND AUXILIARY CONSOLE 

U 

Figure 1 XRP Module Block Diagrunz 
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The REX520 provides the hardware and 
microcode necessary to parse specifiers, execute 
instructions, handle exceptions, and otherwise 
implernent the VAX architecture. The REX520 
;ilso provides hill vAx memory management, a 
4-gigabyte (GB) virtual address space, and support 
for 512 megabytes (Me) of physical memory. The 
chip contains a (%entry, fi~lly associative transla- 
tion buffer. Both process and system-space map- 
pings are stored in the buffer. The chip also includes 
a 2-kilobyte (KB), direct-mapped instruction and 
data cache Cprimary cache) with an 8-byte block 
ancl fill size. 

The F-chip enhances the computation phase of 
floating point and certain integer instructions in 
conjunction with the REX520 chip. The F-chip exe- 
cutes the F-, I ) - ,  and (;-format floating point instruc- 
tions, as well as the long word variants of integer 
multiply. The chip receives operands from the 
REX520, computes the result, and passes the result 
ancl status back to the REX520. The REX520 chip 
completes the instruction. 

?'he \'C chip implements a 2K tag store and neces- 
sary control for a 128KR backup cache. The cache 
uses 15-ns, 16~-by-4 static random-access mem- 
ories (SIUMs) on the module. The vC chip also 
includes a copy o f  the primary cache tag store, the 
invalidate bus (I-bus), and an interface to the vector 
interface bus (VIB). The I-bus connects to the REXMI 
and boosts performance by doing invalidate filter- 
ing. The cache design is discussed in more detail in 
the Model 400 Caches section. 

The RSSC chip is a modification of the SSC chip 
used in a number of previous Cpus. It incorporates 
the common core of h~nctions that support the chip 
set in the xbll system environment. TheRSSC chip is 
discussed in detail in the Model 400 System Support 
Chip section. 

The XMI interface consists of the standard XMI- 
comer components and the REXMl chip set. The 
H E X M I  chip set interfaces the DAL to the xC1, which 
is the user side of the XMl comer. The XiMI interface 
is discussed further in the XMlr Interface and REXM[ 
section. 

1)AL operations are synchronous on the XRP 
module. Therefore, a very low skew clock distri- 
bution system was required. The clock chip and 
controlled, equal-length clock lines to each of the 
chips provide this distribution. The clock chip 
receives a 143-megahertz (hlHz) oscillator input and 
provides two sets of synchronous four-phase 
clocks. Each clock phase driver output can drive 
four 50-ohm lines in parallel. In the XRP design, 

there are eight chips that require all four phases, 
and each set of clock outputs drives four chip loads. 
Discrete Schottky diodes are used at the receiving 
ends of all the clock lines for termination. This 
design achieved a clock skew of less than 0.5 ns at 
the receiving chips. 

The DAL pin bus is a fully synchronous, hand- 
shake protocol bus. The DAL is nonpended in that it 
Ins only one transaction outstanding at a time, and 
it is also nonrnultiplexed with separate address and 
data lines. The design consists of a 27-bit address 
bus (A-bus), a 64-bit data bus (D-bus), and associated 
control signals. The DAL runs at a 28-ns cycle time, 
synchronous with the Model 400 chip set. The tim- 
ing is controlled by 4 overlapping 14-ns-wide clock 
phases, which are separated from each other by 
7 ns. The ['-chip, F-chip, VC chip, backup cache 
RAMS, and the REXMl communicate through the 
DAL. The P-chip is the default bus master and 
contains the arbiter for the bus. The P-chip uses the 
DAL to initiate reads and writes to the backup cache 
and main memory through the KEXMI. The backup 
cache and the REXlLlI send read data to the P-chip. 

The bus master notifies other bus nodes of the 
start of a transaction. The receiving node can termi- 
nate a transaction in one of three ways. I t  can 
indicate a successful completion, indicate an error, 
or request that the transaction be retried. Once the 
receiver indicates one of the transaction termina- 
tion signals, the bus master deactivates. 

One DAL transaction takes a minimum of three 
cycles. The maximum transaction time depends 
upon the system response to  read and write 
requests. The RSSC includes a bus timeout mecha- 
nism that prevents the system from hanging. 
Most DAL signals are transferred in three phases, 
although some control signals are transferred 
in two. 

As noted earlier, vector interface capability was 
added after the \'Ax architecture was extended to 
support vector operations. The vector h~nctionality 
was added to the vC chip because that chip could 
accommodate the extra pins required for the inter- 
face, i.e., 224 pins versus 1 6 4 .  

'The major units of the X R P  module are described 
in the following sections. 

Model 400 Caches 
The XRP module incorporates a two-level cache 
hierarchy that maximizes <:PU performance. The 
first-level cache is the primary cache, called the 
P-cache, which is contained entirely in the P-chip. 
The second-level is the backup cachc or H-cache, 
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:~nd it consists of the VC chip and 24 15-ns, 16~-by-4 
static R:\>ls. Thc VC chip contains the tag store and 
the control logic for the B-cache. The SRAMs store 
thc cache data. The P-cache and the 6-cache contain 
both instructions and data. 

The 1'-cache is a 2KB cache and is direct-mapped, 
with an 8-byte block size. The cache is read- 
allocate, no-write-allocate, and write-through. In 
write-through, writes that hit in the cache are 
simultaneously written to the cache and to main 
memory. The P-cache can perform a new access 
once every cycle. 

Each P-cache tag entry includes an 18bit tag, one 
valid bit, and one parity bit. There arc 256 tags cor- 
responding to 256 data blocks. Each data block con- 
tains 8 data bytes and 8 parity bits, with parity was 
implemented on each byte. Parity permits a byte 
write to be done without the need to recalculate 
parity across the other bytes. This process avoids 
the performance penalty that occurs whcn all bytes 
arc not written at once, as in the read-modify-write 
process. 

The B-cache is a 128KB cache and is direct- 
mapped, with an 8-byte access size. I t  has a 16-byte 
sub-block size and a 64-byte block size. The cache is 
also rc;id-allocate, no-write-allocate, and write- 
through. Thcre are 2048 entries in the B-cache tag 
store. Each entry contains a 12-bit tag, 4 valid bits, 
and a parity bit. 

Backup Cache Hit 
Designers optimized access time to  the backup 
cache by connecting the cache RAMS dircctly to the 
DAL. The chips, the bus, and the specialized hit sig- 
nals are shown in Figure 2. 

When the P-chip issues a read on the DAL, it 
drives the address on the A-bus to the VC chip and 
cache RAMS. The P-chip asserts memory read 
(MI:hLRD-L). The VC chip uses MEM-RD-L to 
enable the assertion of the cache RAM chip select 
lines (BC-C'S-I.< 7:0 > ). This process accomplishes 
two things. 'I'he chip select lines are valid by the 
time the P-chip has driven the A-bus to a valid state. 
Further, the total time to perform the rrad from the 
RAMS is minimized. 

The RAM access begins in parallel with the tag 
store access. If  the vC chip finds a match in the tag 
store, it asserts BC-HIT-L to notify the P-chip. By 
the time BC-HI.1'-L is asserted, the data from the 
cache RAMS is valid on the D-bus, and the P-chip 
then accepts the data. 

If the VC chip does not find a match in the tag 
store, it asserts BC-MISS-L. This signal notifies the 

Figure2 Backup Cache Access Di~rgrnln 

R E X M I  to send the read request to memory. A t  thc 
same time, the VC chip asserts the cache KAM write 
enable (BC-WE-L) and waits for the data to return 
from memory. When the REXMI returns the data, it 
asserts a transaction termination signal. This signal 
informs the P-chip, the VC chip, and the F-chip that 
data is rcady on the bus. All three chips receive the 
data simultaneously, and the data is written into the 
cache RAMS. The transaction ends when the P-chip 
accepts the data. 

XMIlnterface and REXMI 
The XRP module accesses all memory ancl 110 
devices over the XMI bus. Thc REXMl  interfaces the 
chip set to the XMI bus by means of two data path 
chips (XDPs) and one controlladdress chip (XCA). 
Each XDP is responsible for 32 bits of the REXMI's 
64-bit data path. The XCA is responsible for the 
address data path, DAL control logic, X M [  control 
logic, and control of the two XDPs. Both chips are 
implemented in CMOS-2 standard cells. 

The primary tasks of the XMI interface are to 

Forward REX520 references to the XMl  

Implement a write buffer that reduces traffic to 
main memory 

Support control of cache fills and cache 
invalidates 

Support XMl interrupt logic 
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CMOS-2 Standard Cell Technology 
Custom chips were not used to implement the XCA 
and X D P  chips. Instead, two alternatives were 
investigated. These alternatives were to ube either 
gate arrays or standard cells from external vendors, 
or internally built CMOS-2  standard cells 

A number of external vendors offered products 
with the density and internal gate speeds needed to 
implement the REXMI chips. However, none offered 
the performance and flexibility needed to interface 
to the DAI.. Therefore, we chose the CMOS-2  stan- 
dard cells, which could Interface to the DAL 

We added a number of new cells to the standard 
cell library: several versions of a high-performance 
3.3-volt output driver, input latch with the required 
0-ns set-up time, and a low skew internal clock 
buffer capable of driving over 30 picofarads of 
capacitance. These new cells were largely based on 
circuits designed for the custom CMOS-2  CPU chips, 
whlch met the high performance goals set by the 
Model 400 program. 

Per-jomnce Considerations 
Performance bottlenecks in high-speed computer 
systems most often occur in the path to and from 
main memory. The XRP's two cache levels greatly 
reduce the number of reads required. However, 
since both caches are write-through, all writes must 
be forwarded to main memory by the REXMI. To 
improve performance, the REXMI implements a 
write buffer with four octaword (16-byte) entries. 

The write buffer improves performance in two 
ways. First, it decouples the R E X 5 2 0  write rate from 
the slower XMI write rate. The R E X 5 2 0  can transfer 
8 bytes of write data to the REXMI every three 
cycles. This data is loaded into the write buffer and 
later transferred to main memory at XMI speeds. 

Second, the write buffer combines multiple 
REX520 writes into a single XMI write. The most 
efficient write transaction is a full octaword write. 
The REXMI always tries to combine multiple 
R E X 5 2 0  writes into full octaword writes. The 
REXMI loads write data into a write buffer entry. 
The write data is held until either a new octaword 
address is received or a purge write buffer condi- 
tion occurs. When the REXMI receives a write to a 
new octaword address, the current write buffer 
entry is marked full. A new write buffer entry is 
then opened with the new octaword address. Write 
buffer entries are transmitted as they are marked 
full. To guarantee that the write buffer data is writ- 
ten to main memory in a timely manner, the write 
buffer is flushed before the following conditions: 

XMI r/O space read or write 

Interlock read or unlock write 

Interprocessor interlock 

XMI read to an octaword location that includes 
data contained in the write buffer 

In response to a clear write buffer command 

Combining P-chip writes reduces the number of 
write transactions needed by over 40 percent. This 
reduction certainly improves single-processor per- 
formance. However, the greatest improvement is in 
n~ultiprocessor performance where the XMI band- 
width required by each Cl'u is reduced. 

Cache Coherence 
The XRP module allows data to be shared among 
multiple processors. The XRP design assures that 
the most recently written copy of any data is pro- 
vided to a running process. This process is called 
cache coherence. 

In multiprocessing systems, coherence can be 
ensured in two ways. Cached copies of data that 
have been written can be invalidated, or each cache 
can be updated with more recent data. Since it is 
simpler to invalidate than to update, an invalidation 
scheme was implemented on the X R P  module. 

Every X R P  processor write is sent to XMI mem- 
ory. When an XRI' module broadcasts a write on the 
XMI,  the command, address, and data are captured 
in memory. Other XRI' modules capture the com- 
mand and address to invalidate any valid B-cache or 
P-cache entries that correspond to the address. 

We could have opted to broadcast all x M 1  writes 
as invalidates on the DAL. However, this method 
would have greatly increased the DAL traffic and 
would have reduced the processor's performance. 
To increase the performance of multiprocessor 
systems, the V C  chip provides a low-overhead 
invalidate mechanism through the 1-bus. The REXMI 
can determine through the I-bus if data is currently 
cached. The REXMI sends an invalidate on the DAL 
only if the data is cached. 

The v C  chip maintains a duplicate copy of the 
primary cache tag store. The chip accesses the copy 
in parallel with the backup cache tag store 
whenever invalidate addresses are placed on the 
I-bus. When an I-bus address match is detected in 
either tag store, the chip notifies the REXMl of the 
hit. The REXMI broadcasts the invalidate address 
onto the DAL. The invalidate address notification is 
recognized by both the VC chip and the R E X 5 2 0 .  
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The I)-chip in\alidates the P-c-dche entry, and the V c  
chip invalidates the w r i e s  in both the 13-cache and 
in the cup!! of the P-cadle tag store. 

If  the P-cache were a suhsct of the B-ache, we 
wwlcl not havc had to  Implcmcnt the P-uchc tap, 
store copy on the v<: chip. In this desig~~, any 
atldrciss that hit in thc H-caclie would hare been sent 
to t k  DAL. hut this prcxcss wwld h a l ~  caused an 
in\.;rlid;rtc rcqirest to be sent to the P-c:ichc as well. 
Howcver. with this apprtr~ch, the V<: chip would 
havc to s c d  inv:~li&tcs to t k  P-cgclw whenever n 
n-tack block w ~ s  dispiaccd. 'The trmsmission to 
the I'-ache wcn~ld have b c ~ n  required becai~se the 
1'-cache and U-cxhe hlcxk s i x s  arc different. I t  was 
simpler to implcnicnt the copy of thc P.caciie tags 
;~ncl its control. 

Another ~ l te rmt i t~e  wtn~ld havc been to use a 
tluplicate copy of the R-cache and P-cichc tag stores 
in~plcn~cniccl i n  csrcrnal logic on the module. The 
KEXMl then would h:lve interrogated the tag stores 
directly. 'l'his ;~ltcm;ltivc was rcjcctrtl because it 
wtnrld h:~ve used ttx) much spnce on the mdule .  

The Model 400 System Support Chip 
A \.aric't!. of support logic is rccluircd to complete 
the functionality of a VAX <;P1! module. The Model 
400 sysrcm suplwn chip (KSs(:) integrates the com- 
mon corc o f  functitns necessary t o  support the V,\X 
systcm cn\'ironrnrnt tmclro a single chip. It provides 
the trpenting system with the h a r d w e  primitives 
nmded to iml,lcmcr~t thc boot and console roil- 
tines. The chip also provides sevcnl tini- 
ing mt.chiinisms. Thc R s ~ ( :  is  tlesigned to interf-rce 
directly with thc Modcl - i ( ~ ) c h i ~ s . '  It is based tm the 
systcm support chip (SSt:)tbr was designed for use 
with thc crrIicr CMOS-based VhX systems.' 

m e  Vector Interfme Bus 
Thc vcyror intcrk~ce bus connects the Model 400 
CHI moduk to an o p t l o d  wctor module.' The 
vcctor motlule c3n perform fast calcdatitnzs on 
vector data. This capability greatly increases the 
execution speed of certain applic-ations. 

There arc two Ievcls to the interhce. The first is 
the mlcrococle that implements the vector instruc- 
tlons defined by the VAX architecture. 171c second is 
thc hrrdwarc irnplc.mntati.on f a f u ~ s  rcquirerl by 
the mkrc~odr. 

The REX 520's microcode vcctcir mppoft is lim- 
ited to decoding vector instn~ctions, parsing the 
specifiers, and passing opermd and coi~trol Infor- 
mation to the vcctor unit. The sa la r  CPU module 
docs not ~ S S  the acti~al vector elements to the 

vector mo<lule through the vector intcrliicc. U:~thcr. 
the vector modulc rcfcrcnccs the \,cctor d:lta 
directly over the s%i1 bus. To perform this proccss. 
the vector module implements the fiill \;\X memory 
rnan'agemnt rtrchitccture. 

The cyxodc and operand information is trans- 
ferred to thc vector module through the \,ector 
interface. The R E X 5 2 0  LISC?; intcrn:~l processor rcgis- 
ten (IPRs) for relcl mrl write cq>cl.:~tions to tr:~nsfcr 
the inftrmation to the vector intcrfiace. II'Rs are also 
used to r e d  and writr registcr information stored 
both in the interface hardware :mcl o n  the vector 
rnocli~le. 

T l~e  vector unit executes most vcctor instructions 
in parallel with the scalar c:l1r! execution o f  subsc- 
quent instructions. For some vcctor instn~ctions, 
particularly memory transfer instructions, the 
REX520 micrococlc rc;ids a vector unit register at 
the end of the instruction. A t  this point, the 11EX520 
stalls until the vector unit responds and effectively 
forces synchronous execution of instrt~ctions. 

The hardware implementation of the vector 
interface consists of two pieces. The first is an intcr- 
face to the Moclel 400  1)AI.. l'his interface allows 
microcode-generatecl opcode, opcr:lnd, ;~nd  regis- 
ter data to be received fro111 ant1 driven to the 
RES520. The secontl piece is thc vcctor interface 
bus (VIR) that connects the vector :ind scalar mod- 
ulcs together over a cable. This interface and the 
connection to the V I H  are implemented in the V<: 

chip on the scalar side and in the vl:<:'l'l. chip on the 
\cctor side. 

The vector module clock s).stcm is  synchronous 
to the scalar module. The \'IH runs synchronously 
with respect to the vector module clock system for 
design simplicity. The v<: chip implements all the 
asynchronous control logic that is rcqi~ired to trans- 
fer data between the two clocking systems. 

Signul Integrity 
?'he XRP design had very aggressive timing goals. 
For example, 14-11s :md 21-11s d:it:i transfers were 
recluired to meet the 28-11s target cycle time. These 
requirements were made more difficult by the 
potential noise problems th:~t could bc caused by 
over 90 drivers switching simultaneously in one 
package. 

Consequently, signill intcgrity assumed a major 
role in the xftl-' design. Signal intcgrity problems 
were compoundecl by kwt <;MOS-2 edge rratcs (i.c.. 
1.  j ns), long interconnects (LIP to 23 inches with as 
many as 8 loads per signal), and impcckmce mis- 
matches associated with capacitive (:MOS receivers. 



The VAX 6000 Model 400 Scalar Processm Module 

The XRl'  signal integrity methodology was 
cleveloped e:~rly in the design process. All simula- 
tions were made in the SPICE program." Ideally, the 
entire module would have been modclcd. However, 
the complexity o f  the module environment and 
computer resource constraints precluded that 
approach. Instead, only one driver was used in the 
simulations. The effects of intersignal coupling and 
parallel switching were included by appropriately 
scaling interconnect and package impedances. Even 
with this simplified method, an estimated 1500 CPCl 
hours on a VAX 8700 system were required to per- 
form the XRP signal integrity simulations. 

Simulations and Models 
A typical simulation included all circuits and any 
accompanying parasitics from the external 
enabling clock edge through to the receivers. All 
simul:ations modeled a three-stage clock receiver, 
on-chip resistance capacitance delay, the output 
driver, package impedance models for signals and 
internallexternal power, receivers, and module 
interconnect. 

The clock receiver model generated the on-chip 
clock phases from the low-skew double phases 
received from the clock chip. The model also con- 
tained an internal switching model. I t  swjtched 
several cap:~cit:~nces that were similar to the chip 
internal loading. Over a cycle, this modeling met 
the chip's maximum internal power. 'The switching 
model, together with the chip package impedance 
model for internal power, produced worst-case 
noise on the chip internal power rails and substrate. 

The module interconnect was modeled ;IS trans- 
mission lines. The impedance of a transmission line 
accounted for the coupling of adjacent signals 
switching. For example, if adjacent lines were 
switching in the same direction, the effective 
impedance would be increased; whereas switching 
in the opposite direction would lower the effective 
impedance. 

Finally, the signal and external power impedance 
models were scaled to reflect worst-case coupling, 
and size and number of drivers switching in paral- 
lel. Collectively, these models accounted for the 
effects of an entire bus switching. 

Worst-case Conditions 
There are two distinct subsets of the simulation 
motlels. One set simulates worst-case signal noise or 
ringing. The other simulates worst-case, i.e., slow- 
est, settling times. These subsets are, for the mc.)st 
part, mutually exclusive. In other words, parame- 

ters that tend to suppress ringing generally increase 
settling times and vice versa. 

The overall design had to satisfy the criteria for 
achieving specified settling times and simulta- 
neously reduce ringing to an acceptable 1eve.l. 
Several modeling parameters were simulated to 
worst-case status. These parameters are listed in 
Table 1. The impact of these parameters can be fur- 
ther understood by referring to Figure 3. This figure 
represents the same simulation under worst-case 
slow and fast conditions. 

Table 1 Worst-case Modeling Parameters 

Simulation 
Worst-case Worst-case 
Settling Noise Parameter 

CMOS process corner Slow Fast 
CMOS junction Maximum Minimum 
temperature 
Internal power supply Minimum Maximum 
Output series resistor Maximum Minimum 
Number of drivers Maximum Maximum 
switching 
Module interconnect Maximum Maximum 
length 
Interconnect Minimum Maximum 
effective ZO 

WORST-CASE RINGING [ (FAST) 

NANOSECONDS 

KEY: 

VIH - INPUT VOLTAGE HIGH 
VIL - INPUT VOLTAGE LOW 

Figure 3 Sinzulatio~z under Wo,rst-case 
SLozc! and Fast Conditions 
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Sigtzal Integrity Constraints 
The signal integrity analysis had a direct impact on 
the design of the scalar CPU at the chip. package, 
and module levels. The impact at the chip lcvel was 
seen in three areas. The first was the design of the 
110 buffers. The second was the determination o f  
the optimal series output resistors (on-chip) for 
different drivers. The third was the segregation of 
the external power buses to eliminate noise at 
quiescent drivers. 

At the package level, two design decisions were 
made. The external power reference planes were 
split to prevent coupling of asynchronous buses. 
Power was dclivcred to the lower bonding tier to 
reduce power supply loop inductances. At the mod- 
ule level, several specifications were developed, 
which included the following: 

All discrete terminations and their placement 

The maximum allowable etch length per signal 
and order of connection 

The maximum allowable package dispersion 
etch length 

The module etch technology to best reduce 
coupling 

Cross-organizational cooperation was essential 
to the successful production of these design levels. 
For example, a joint review of the chip packaging 
technology in the design stage ensured that the 
design met stringent signal integrity requirements. 
Working closely with the module PC designer 
ensured optimal component placement and inter- 
connect routing. Cooperative efforts such as these 
helped ensure the reliability and performance of the 
design. 

Results 
Two correlations of bench versus simulation results 
were used for verification purposes. The first corre- 
lation was run on a test module early in the design 
phase. The difference between simulated and bench 
results averaged 4.4 percent. The correlation on the 
final X R P  implementation presented an average dis- 
crepancy of 2 percent, which is less than 200 pico- 
seconds @s). These results strongly validated the 
modeling methodology. Figures 4 and 5 show the 
results of the bench and simulation of the R E X 5 2 0  
driving the D-bus. The waveforms exemplify the 
excellent correlation obtained on the final module. 
(Note: Thc results shown in thcse figures represent 
nominal rather than worst-case conditions.) 

NANOSECONDS 

KEY: 

VIH - INPUT VOLTAGE HIGH 
VIL - INPUT VOLTAGE LOW 

Figure 4 Bench Results of the REX520 
Driz~ing the D-btls 

NANOSECONDS 

KEY: 

VIH - INPUT VOLTAGE HIGH 
VIL - INPUT VOLTAGE LOW 

Figure 5 Simulation Results of the REX520 
Driving the D-bw 

Signal integrity had a major impact on the design, 
performance, and reliability of the Model 400 scalar 
CPIJ. All critical signals were carefully simulated 
and analyzed prior to chip and module implementa- 
tion. The Model 400 is currently the fastest \'AX 
system in production. The Model 400 also has the 
distinction of needing no revisions, from prototype 
to final product, for signal integrity purposes. 

Performance 
The VAX 6000 Model 400 system, based on the X R P  
module, represents the highest performance VAX 
system yet released. Performance ranges from 
nearly 7 VllPs in a single-processor system to 
36 VUPs in a six-processor system. The VAX GOO0 
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Model 410 system provides roughly twice the 
performance of the previous generation CMOS- 
based system, the VAX 6000 Model 310. It also 
represents a 28 percent performance gain over the 
previous generation ECL system, the VAX 8700 sys- 
tem. (Note: One VUP is equal to the performance of 
the VAX-111780 system.) 

Table 2 compares the performance of the 
VAX 6000 Model 410 system to other VAX systems. 

Table 2 Single-processor Performance 
Comparison 

System VUPs 

VAX 1 11780 
VAX 6000 Model 21 0 

VAX 6000 Model 31 0 

VAX 8700 
VAX 6000 Model 41 0 

Up to six XRP modules may be configured in a 
single VAX 6000 Model 400 system. These modules 
deliver up to 36 VuPs. Ideally, a linear performance 
increase is expected as more processors are added 
to a multiprocessor system. However, a number of 
factors limit the overall system performance, such 
as contention for bus bandwidth, increased mem- 
ory latency, and additional software overhead. 

A great deal of effort was expended in the 
Model 400 design to limit the amount of perfor- 
mance lost in a multiprocessor system. 

A number of multistream benchmarks were 
assembled. 'These benchmarks were run on the 
VAX 6000 Model 400 system to efficiently measure 
performance by simulating real work environments 
across a number of areas. The results for each 
system are shown in Table 3. 

Table 3 Multiprocessor Performance 
Comparison 

WorkArea 1 CPU 2 CPUs 4CPUs 6 CPUs 

Engineering 1 .OO 1.92 3.71 5.31 
Scientific 1 .OO 1.92 3.74 4.78 

Commercial 1 .OO 1.98 3.80 5.25 
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Model 400 Chip Set 

The VAx GOO0 Model 400 processor is a CMOS implementation of Digitalk K4X 

architecture, offSwing an average of seven times thepe$omnce of the VRY-11/780 
processor at a cycle time of 28 ns. The processor c o m p e s  five custom chips irnple- 
rnented in Digital k proprieta y CMOS-1 and CIMOS-2 semiconductor processes. The 
chg set &st@ incorporates the best features of the previous VRY 8700 and VUf V f l  

designs and in addition implements new perfomnce features. Among these are a 
l a w  translation buffer and primary cache, a de-multiplexed 27-bit address and 
64-bit data bzls, and a tight& coupled 128KB backup cache. Thefive chips, which are 
designed for multiprocessing environments, are the REX520 CPU, the floating point 
accelerator, the VC vector and cache controller chip, the RSSC system support chip, 
and the CLK clock chip. 

Introduction 
The \)AX 6000 Model 400 chip set consists of five 
custom VLSI (very large scale integration) chips 
implemented in Digital's CMOS- 1 and CMOS-2 pro- 
cesses. The five chips are the CPU chip (REX520), 
the floating point accelerator chip (F-chip), the vec- 
tor and cache controller chip (VC chip), the system 
support chip (RSSC), and the clock chip (CLK chip). 
These chips are designed to be used in multiple- 
system environments, of which the vAx 6000 
Model 400 series is one such example.' 

The REX520 chip is a pipelined VAX CPU that 
implements the VAX base instruction group and 
controls the operation of all other chips.* The 
design for the REX520 is an evolution of both the 
previous generation CMOS processor chip and the 
VAX 8800 processor.'." The REX520 is logically 
divided into four sections: the I-box, E-box, M-box, 
and bus interface unit (BIU). The I-box fetches and 
decodes VAX instructions, and provides this infor- 
mation to the E-box. The microcode-controlled 
E-box parses instruction specifiers, executes VAX 

instructions, and processes interrupts and excep- 
tions. The M-box contains a 64-entry, fully associa- 
tive translation buffer, and a 2-kilobyte (KB) on-chip 
primary cache. The BIU acts as the interface 
between the REX520 and the interchip environ- 
ment described below. 

The F-chip is a companion chip to the REX520. 
It accelerates the computation phase of the VAX F-, 
D-, and G-format floating point instructions, and 
the longword-length integer multiply instruction. 
The F-chip receives control information from the 
REX520, operands from either the REX520, the 
backup cache, or memory, and returns status and 
results to the REX520. 

The VC chip provides the tag store and necessary 
control for a 128KB backup cache that is imple- 
mented in external random access memory (RAJM) 
on the CPU module. The chip implements a dupli- 
cate tag store for the REX520 primary cache and an 
interface through which the system environment 
can determine if data is cached at a particular 
address. Through a vector interface bus (V[ B), the 
VC chip also provides the control and status inter- 
face between the CPLJ module and an optional 
vector module. 

The Rssc chip incorporates the common core 
of functions required to support the VAx 6000 
Model 400 chip set in a system environment. RSSC 
supports read-only memory (ROM) and electri- 
cally erasable programmable read-only memory 
(EEPROM), and contains 1KB of battery backed-up 
RAM, the console terminal universal asynchronous 
receiver/transmitters (UARTs), interval and pro- 
grammable timers, and a time-of-year clock. 
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The CLK chip receives a 143-megahertz (MHz) 
oscillator input. The chip provides four low-skew 
clock phases to the chip set and the module 
environment. 

Interchip and Module Environment 
The chips in the Model 400 chip set are connected 
together and to the rest of the module environment 
as shown in Figure 1. 

Unlike the previous generation CMOS processor 
design" the Model 400 chip set implements sepa- 
rate 27-bit address and 64-bit data buses. Backup 
cache reads, writes, and fills are done with the 
address on the A-bus. The data is driven to or 
received from the parity protected D-bus. Control 
for the backup cache RAMS is provided by the VC 
chip on dedicated control lines. 

Memory, 110 space, and external processor regis- 
ters are accessed by driving the address to the A-bus 
and the data to the D-bus. ROM and EEPROM control 
is provided by the RSSC on dedicated control .lines. 

F-chip operands are driven to the D-bus from the 
REX520, backup cache, or memory to the F-chip. 
Results are driven back to the REX520 on the D-bus. 
Control and status information for these transfers 
is performed on a private bus between the REX520 
and F-chip. 

Vector instructions are decoded by the REX520. 
The opcode and instruction operand information is 
transferred from the REX520 to the VC chip. From 
there, the information is transferred to the VlB cable 
and then to the optional vector unit. Note that only 
status and scalar operands (contained within the 
instruction stream) are transferred on the VIB. Data 

transfers into and out of the vector register f ie  are 
performed by the vector processor through a direct 
port to the memory subsystem. 

Interrupt requests are received by the REX520 
from the module environment on nine dedicated 
interrupt request lines. Five of these lines are for 
requests for special purpose interrupts, such as 
interval timer requests. 

Per$omzance Goals and Design 
Considerations 
The goal of the design was to meet or exceed the 
performance of the VAx 8700 processor. To meet 
this goal, a 40-nanosecond (ns) cycle time was 
required under worst-case conditions. As the design 
progressed, it became clear that the CMOS-2 pro- 
cess, in which most of the chip set is implemented, 
offered enough performance to allow the target 
cycle time to be decreased. 

As a result, the cycle time was reduced from 40 ns 
to 28 ns. At this cycle time, the VAX 6000 Model 4 10 
system runs at nearly 7 vUPs in most applica- 
tions, or roughly 1.3 times the performance of the 
VAX 8700 processor. (The acronym VUPs stands for 
VAX units of performance; 1 V U P  equals the perfor- 
mance of a VAX-111780 system.) The performance 
of the system may be further expanded by adding 
processors to the system, to a maximum of 35 VUPs 
in the VAX 6000 Model 460. 

To achieve the performance goals, a number of 
microarchitectural trade-offs were made relative to 
the \,AX 8700 and previous VLSI VAX designs. In 
essence, the best features of each were incorporated 
into the design of the \'AX 6000 Model 400 chip set. 

A-BUS 

VIB CABLE 

4 A 
D-BUS 

INTERRUPT 
1 CONTROL. 1 1 1 CONTROL, 1 

Figure I VAX 6000 Model 400 Interchip Environment 
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For example, the REX 520 chip and the F-chip are 
fully pipelined designs that make shorter cycle 
times possible and improve performance. The 
RI:XjZO design also includes read-and-run and 
write-and-run features. These features decouple 
subsequent execution in the CPU pipeline from the 
completion of references to cache and memory. As 
opposed to previous VLSI designs, a larger transla- 
tion buffer and primary cache and a de-multiplexed 
27-bit address and 64-bit data bus in the REX520 
also improve performance. The tightly coupled 
128KR backup cache significantly reduces the read 
latency sccn by the CPU when a read misses in the 
primary cache. I t  also reduces the read traffic seen 
by the memory subsystem. 

The chip set was designed from the beginning 
with multiprocessing in mind. Becausc caches must 
remain coherent across all CPUs in a system, a 
method must be provided to invalidate cached loca- 
tions in all other caches when one cPr: writes to 
that location. One option would have been to mir- 
ror all writes done by any CPU in the system onto 
the A-bus of all C131's. However, mirroring is a rela- 
tively expensive operation, especially when most of 
these addresses are not cached in any other CPU. 

Instead of the mirroring method, we chose to 
implement a duplicate copy of the primary cache 
tag store in the VC chip and to implement a low- 
overhead port, the I-bus. The module environment 
uses the I-bus to determine if the address is actually 
cached by either the primary or the backup cache. 
With this method, only those invalid addresses that 
correspond to cached locations must be mirrored 
onto the A-bus. 

CMOS and Packaging Technologies 
The chip set was implemented in Digital's proprie- 
tary second-generation complementary metal 
oxide semiconductor technology, CMOS-2. We 
selected CMOS as the chip processing technology 
because it offers high density, high reliability, low 
power, and low-cost performance. 

Table 1 Summaw of Chip Statistics 

By developing the technology in-house, Digital 
has gained competitive performance and tirne-to- 
market advantages for its low-end and midrange 
products. A summary of the transistor and pin- 
count statistics for the chip set is shown in Table I .  

CMOS-2 is an N-well, P-epitaxial, double-metal, 
5-volt process with 1.5 micron minimum feature 
sizes. With respect to CMOS-1, the first generation 
process, CMOS-2 offers a 25 percent reduction in 
lateral and key vertical dimensions, a 78 percent 
improvement in circuit density, and nominally a 
33 percent improvement in chip performance. The 
VAX 6000 Model 400 chip set cycle time and cir- 
cuit density requirements helped drive the develop- 
ment of the process that has been optimized for 
microprocessor chip performance. Details of the 
process features and capabilities are shown in 
Table 2. 

Metal oxide semiconductor field effect tran- 
sistors (MOSFETs) are built in a P-epitaxial layer 
(30 ohm-cm) grown on a low-resistance P+ silicon 
substrate (0.02 ohm-cm). The high resistance of the 
epitaxial layer keeps parasitic junction capacitance 
low and allows better transistors to be fabricated. 
The low-impedance substrate dramatically reduces 
latchup, a phenomenon in which parasitic bipolar 
transistors are triggered into a sustained high cur- 
rent mode. Latchup disrupts normal circuit opera- 
tion and often destroys the chip. 

The P-channel MOSFETs are made in the N-doped 
well regions of the epitaxial layer. The N-channel 
MOSFETs are made in the as-grown P-regions of 
the epitaxial layer. This process optimizes the 
mobility of the N-channel MOSFETs and overall 
circuit speed. 

An N+ polysilicon (polycrystalline silicon) and 
tungsten-disilicide sandwich material, polycide, 
forms the MOSFET gates. Polycide resistance is in 
order of magnitude lower than that of the poly- 
silicon used in CMOS-1. The resulting smaller para- 
sitic delays across the MOSFET gates and local 
interconnections help improve circuit speeds. 

Transistor Count 

Chip 
Signal Power Control 81 
Pins Die Size Dissipation Memory Data Path 

- 

REX520 CPU 157 12mm x 12mm 6W 180K 140K 
VC cache controller 178 10.7mm x 10.8mm 2.5W 184K 34 K 
F-chip floating point 103 12.7mm x 11 mm 4W - 134K 

CLK clock 2W 
Total: 
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Table 2 CMOS-2 Process Features and Capabilities 

Effective channel length 
Metal 1 

Metal 1 contact 

Metal 2 
Metal 2 contact 

Gate oxide thickness 
Metal 1 field oxide 
Metal 2 field oxide 
Polycide resistance 

Typical gate delay 
Polycide equivalent gate delay length 

Metal 1 equivalent gate delay length 

0.9 microns 
3.0 micron width, 1.5 micron space 

1.5 micron x 1.5 micron 

3.75 micron width, 1.5 micron space 
1.5 microns x 1.5 microns 
225 angstroms 
1.1 microns 

1.9 microns 
2-4 ohmslsquare 

300-500 picoseconds 
400 microns 
5000 microns 

Metal 2 equivalent gate delay length 8000 microns 

Other interconnections are accomplished 
through two layers of aluminum. The f i s t  layer, 
metal 1, can connect to either polycide or the 
N+/P+ sourcetdrain regions via metal 1 contacts. 
The upper layer, metal 2, can connect to metal 1 
through metal 2 contacts. No other connections are 
allowed. Based upon its parasitic delay charac- 
teristics, polycide is used only for local interconnec- 
tions. Metal 1 is used for signals communicating 
across distances less than half of the chip dimen- 
sions. Metal 2 is used for global signals, clock dis- 
tribution, and power and ground distribution. 

Because of the speeds and complexities of the 
VAX 6000 Model 400 chips, noise is a particularly 
difficult problem for the chip designer. CMOS-2 
contains a deep P+ implant that can be used to 
provide a very low resistance connection between 
the top surface of the chip and the P+ substrate. The 
chip designer uses this deep P+ implant to reduce 
substrate noise that can upset the operation of 
dynamic circuits. 

The VAX 6000 Model 400 chips were packaged in 
custom-designed, rigid perimeter-leaded, single- 
chip ceramic packages. The packages included four 
power and ground planes to help maintain inter- 
chip signal integrity and allow full-speed operation 
of the chip set.5 

The REX520 CPU Chip 
The REX520 CPU chip is a third-generation, single- 
chip vAX microprocessor. The REX520 provides the 
hardware and microcode sufficient to parse 
operand specifiers, execute instructions, and han- 
dle interrupts and exceptions. It cooperates with 
the F-chip to implement the base instruction group 
of the Vtuc architecture. 

Although the REX520 hardware organization 
and placement resemble that of the previous gener- 
ation microprocessor, the REX520 performance 
goals were met by tailoring the microarchitecture 
more closely to the VAX 8700 processor."hny 
deviations from the microarchitecture of the ECL- 
based VA?i 8700 system were made in the CMOS- 
based REX520 to compensate for technology 
differences and to exploit the beneficial aspects of 
VLSI design. A photomicrograph of the REX520 is 
shown in Figure 2. 

The chip employs a six-level pipelined engine 
built around three autonomous pipes. These pipes 
provide simultaneous instruction prefetch and 
decode, instruction formatting, operand reference, 
execution, address translation and result store, and 
110 access. 

As shown in Figure 3, the major hardware 
functions of the REX520 are partitioned into the 
following: 

An instruction box (I-box) that contains the 
instruction decoder and a 16-byte prefetch 
queue (PFQ) 

A microcode-controlled execution box (E-box) 
that provides the capability for data manipu- 
lation in a 32-bit data path 

A memory box (M-box) that implements VAx 

memory management by utilizing a 64-entry, 
fully associative translation buffer 

A 2KB write-through, direct-mapped primary 
cache (P-cache) with a quadword (8 byte) fi size 

A bus interface unit (BIU) that controls a fully 
handshaked, synchronous chip bus 
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Figure 2 Photomicrograph of the REX520 Chip 

REX520 Pipeline 
The REX520 pipeline contains six functional seg- 
ments that cooperate in the execution of instruc- 
tions. As shown in Figure 4 ,  there are two segments 
in the I-box, three microcode-controlled segments 
in the E-box and M-box, and a single segment for the 
BIU and P-cache control. 

The I-box decodes the vAX instruction stream. 
A 16-byte prefetch queue (PFQ) is filled with the 
instruction stream asynchronously to the pipeline 
control during otherwise unused bus cycles. I-box 
segment 1 updates the PFQ and parses the next 
piece of the instruction stream. This segment sends 
microcode addresses to the E-box microsequencer. 
Segment 2 formats immediate data, the opcode, 

and the instruction data length for the E-box. 
Collectively, this information is called the context 
for the instruction. 

The I-box divides each vAX instruction into a 
microcode subroutine, or microflow, for each 
specifier, and a microflow for the execution of the 
instruction. The control programmed logic arrays 
(I'LAs) in the [-box cause it to sequence through the 
specifiers of each instruction, sending a microflow 
address to the microsequencer, and immediate data 
(if needed) to the E-box for each specifier. When the 
last specifier is parsed, the I-box sends a microflow 
address, the opcode, and the data length of the 
instruction to the E-box for the execution of the 
instruction. 
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Figure 3 REX520 Block Diagram 

The I-box pipeline runs autonomously to the 
E-box pipeline. That is, the I-box segments con- 
tinuously parse instruction stream data, making 
microflow addresses available. The 1-box pipeline 
advances whenever the microsequencer accepts a 
microflow address. 

The microsequencer in the E-box performs a read 
of the 1696 word control store each cycle, overlap- 
ping in time with I-box segment 2. It presents the 

fetched microinstruction to E-box segment 1.  The 
microinstruction is pipelined forward to E-box seg- 
ments 2 and 3 in consecutive cycles. 

The microsequencer fetches one or more 
microinstructions of a microflow starting at the 
initial microflow address supplied by the I-box. 
If a microflow contains more than one micro- 
instruction, the microsequencer computes subse- 
quent intraflow microaddresses and fetches the 
corresponding microinstructions. A field within 
the microinstruction indicates the end of each 
microflow. 

The E-box performs all the address and data 
manipulation required for the REX520 to adhere to 
the VAX architecture. The three E-box segments 
operate under microinstruction control; the 
operand fetch segment reads operands from gen- 
eral-purpose registers (GPRs) or from the memory 
data (MD) file and presents them to the functional 
units; the execution segment performs data manip- 
ulation on the operands; and the result store seg- 
ment writes results to registers or memory. The 
E-box pipeline segments are fully folded, i.e., each 
segment simultaneously operates on a different 
microinstruction. 

The performance of memory read accesses is 
improved using a read-and-run technique in the 
E-box. The destination for data stream memory 
reads is the E-box MD file. Microinstructions that 
initiate a memory read simply queue the request to 
the BlU. The microflow may then continue, without 
waiting for the request to complete. In this manner, 
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Figure 4 REX520 Pipeline Segments 
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some or all of the time required for memory 
accesses is hidden during productive microflows. 
The request completes when the B ~ u  and memory 
subsystem return data to the MD file. 

Because subsequent microinstructions may refer- 
ence an MD file location for which a memory read 
has not yet completed, M D  file accesses are syn- 
chronized through a valid bit mechanism. Each MD 

file location has a valid bit that is reset when a mem- 
ory read is started. The bit is then set when data is 
written to the file. If a microinstruction attempts to 
reference an MD file location whose valid bit is not 
set, the pipeline stops advancing (stalls) and waits 
for the data to be returned. 

The three M-box segments are microcode- 
controlled and typically run synchronously with 
the E-box segments. M-box segment 1 decodes the 
current microinstn~ction. Segment 2 then selects 
an appropriate address source and performs a vir- 
tual to physical address translation if required. The 
final segment issues the physical memory request to 
the BIU.  

During normal pipeline flow, the BIU and P-cache 
operate in a single pipeline segment which is over- 
lapped with segment 3 of the E-box/M-box pipeline. 
The BIU acts as an arbiter for the external and some 
internal buses, and supplies control to the P-cache. 
The BIU receives address and memory request 
information from the M-box. The BIU then decides 
whether the M-box or an external reference should 
receive service from the P-cache and sends the 
appropriate information to the p-cache to process 
the request. The BIU sends read and write requests 
that cannot be serviced by the P-cache to the off- 
chip memory subsystem. 

Write buffers in the BIu improve the perfor- 
mance of memory write operations. Microinstruc- 
tions that initiate memory writes queue the request 
to the BIU,  and the microflow continues without 
waiting for the request to complete. In this manner, 
the time required for memory writes can be hidden 
under productive microflows. The BIU can store up 
to two quadword writes (32 bytes) in its buffers 
while waiting for the memory subsystem to become 
available. 

Adaptations for VLSI 
VLsI designs have relatively good signal integrity on 
the major bus structures within a chip. However, 
signal integrity diminishes when crossing a chip 
boundary because off-chip bandwidth is incapable 
of sustaining the internal data rates. This character- 
istic of VLSl design influences microarchitecture 

greatly, as demonstrated by the P-cache and control 
store designs. 

The \'AX 8700 system uses cache memory to 
decrease the effective memory access time by 
employing a 6 4 ~ ~  cache in ECL RAM with a single- 
cycle access. I t  was not possible to implement a 
RAM of this size on the REX520, and signal integrity 
constraints dictated a minimum of three cycles to 
access off-chip RAM. The REX520 compensates by 
using a two-level cache. The REX520 has a 2KB pri- 
mary cache on the chip with a single-cycle access, 
and there is a 128KB off-chip secondary cache. The 
cache hierarchy reduces the effective memory 
access time sufficiently to meet the performance 
goals, and it keeps the off-chip bandwidth within 
reasonable rates. 

Similar signal integrity constraints are imposed 
on the REX520 control store design. The V k Y  8700 
system uses a 16K entry control store implemented 
in ECL RAM. The VAX 8700 system designers use the 
large control store address space to improve per- 
formance and simplify hardware. The control store 
access of the VLSI REX520 cannot cross a chip 
boundary and keep pace with the fast internal cycle 
time. Because of these limitations, an on-chip con- 
trol store ROM was used. Chip area limitations con- 
strained the size to 1696 entries. The designers of 
the REX520 compensated for the lack of control 
store address space by altering the coding style to 
make microflows more serial than the VAX 8700 
system microflows. Additional hardware features 
also helped to absorb some of the work previously 
done in microcode. 

The operand specifier microflows offer an exam- 
ple of microcode space compression facilitated 
through hardware enhancements. The REX520 
microflows group similar specifier types together 
and provide a general routine for each. The general 
routines are parameterized in hardware to resolve 
the differences in specifier types within each group. 
In this way, the size of the microflow is minimized, 
and the performance characteristics of a dedicated 
microflow are preserved. 

Each general specifier microflow performs the 
function appropriate to the specifier mode by using 
a parameterized access type and data length. For 
example, a microinstruction in the specifier flows 
may make an access-type dependent memory 
request. I f  the I-box supplied a read access type, the 
memory request hardware initiates a read. If  the 
I-box parsed a result store specifier, the write access 
type parameter causes hardware to initiate a write. 
Operand data length is supplied in a similar fashion. 

kt)/, 2 No 2, Sp17ng I990 Digital TechnicalJoumnl 



The general microflows leave operands in futed 
locations in the E-box MD file. The exact location in 
the MD file is also supplied by the I-box. 

Parameterizing the microflows with the access 
type, data length, and MD file location allows the 
generalized specifier rnicroflows to be shared. 
The MD file parameter creates an independence 
between the specifier and execution microflows. 
The same specifier microflow can then be used for 
each specifier mode, independent of where it 
actually appears in the instruction. The execution 

y STAGE 4 

An Ovm~iew of the V M  6000 rModel400 Chip Set 

microflow also needs to know nothing about the 
kind of specifier that supplied the operand. 

me F-chip 
The floating point accelerator chip, F-chip, is 
the companion processor chip to the REX520 for 
floating point operations in VAX 6000 Model 400 
systems. A photomicrograph of the chip is shown 
in Figure 5. 

The F-chip implements all \rAX base instruction 
group floating point instructions and the longword 

ADMR [ 

'ERFACE = 
- - .  

Figzire 5 F-chip Photomicrograph 
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integer multiply instruction. The data types irnple- 
mented by the F-chip are F-floating (1-bit sign, 8-bit 
exponent, 24-bit fraction), D-floating (I-bit sign, 
8-bit exponent, 56-bit fraction), G-floating (1-bit 
sign, 11-bit exponent, 53-bit fraction), and integers 
(8-bits, 16-bits, and 32-bits). 

Unlike the VAX 6000 Model 200 floating point 
chip, the F-chip employs a uniformly pipelined 
architecture that has performance which is inde- 
pendent of the operand values. Early in the design it 
was decided to use a pipelined microarchitecture in 
order to use the same execution core in future 
designs, such as the VAX 6000 Model 400 vector 
processor floating point unit. Consequently, the 
execution core of the F-chip was designed to 
include low latency for scalar applications and high 
throughput for vector processing.6 The core exe- 
cutes most instructions in four cycles. Double- 
precision and integer multiply instructions take 
five cycles, and divide operations take 13 to 24 
cycles, depending upon the data type. 

Microarchitecture and Imphentation 
The F-chip is composed of an interface section and a 
five-stage execution core. A block diagram of the 
F-chip is shown in Figure 6. The F-chip interfaces to 
the rest of the VAX 6000 Model 400 system through 
the D-bus, eight status and control lines, and four 
bus control signals. The interface section receives 
the opcode from the REX520, the operands from 
the CPU chip, and cache and memory data on the 
D-bus. The interface section decodes the opcode 
and receives the required number of operands. It 
assembles the different pieces of the operands and 
supplies formatted operands to the execution core. 
After the execution of the floating point operation, 
the output interface transfers the formatted result 
back to the CPU chip. 

The execution core consists of a divider, which is 
bypassed in all operations except division, and four 
pipelincd stages that are uniformly utilized in the 
execution of all instructions. Each stage has a frac- 
tion data path, control, and sign and exponent data 
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Figure 6 F-chip Execution Core 
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paths. The fraction data path, the most complex 
portion of the chip, is 60 bits wide. 

The divider fraction data path consists of the 
hardware divider array and quotient logic. The 
divider array implements an iterative radix-2 SRT 
nonrestoring division scheme, and generates three 
signed quotient bits per cycle.' The quotient and 
remainder are driven on consecutive cycles to 
stage 1 of the pipeline. 

The stage 1 fraction data path consists of a 60-bit 
adder, the multiplier recode logic, and the fraction 
detection logic. Stage 1 receives its inputs from the 
interface section, or from the divider for divide 
operations. In add and subtract operations, stage 1 
is used primarily to compute the difference 
between the exponents of the two operands. In 
parallel, stage 1 is also used to determine the frac- 
tion difference for exponent differences of 0 and 1. 

FRACTION 1 FRACTION 2 

CONTROL R 
SlGN 1 

EXPONENT 2 

CONTROL 0 
SHIFT A M O U N T  

CONTROL n 
SlGN A N D  
EXPONENT C 

FRACTION R E S U L T  SIGN EXPONENT 
RESULT RESULT 

Figure 7 F-chip Hardware for Addition 
and Subtraction 

(See Figure 7.) For the effective subtract operation, 
stage 1 uses an exponent difference prediction 
scheme in which the least significant two bits of the 
two exponents are examined to determine whether 
0 or 1 bits of alignment are required. 

If the actual exponent difference is 0 or 1, stage 1 
selects the adder result. Otherwise, stage 1 passes 
the original operands to the next stage for align- 
ment. In multiplication flows, the: stage 1 adder is 
used to compute three-times the multiplicand, and 
the recode logic generates the recoded multiplier 
bits for stage 2. In divide operations, stage 1 is used 
to assimilate the redundant quotient and remainder 
vectors into a two's complement form. 

The stage 2 fraction data path consists of a 
dynamic 57-bit right shifter, unified leading one or 
sticky-bit detection logic, and a multiplier array. 
(The sticky-bit indicates whether a "1" was shifted 
out of the data path during alignment operations.) 
The shifter is used in add-like operations for align- 
ing the fractions. The leading one or sticky-bit logic 
determines the normalization amount during sub- 
tract operations and integer-to-floating-point con- 
versions. This logic also determines the sticky-bit 
during alignment in effective subtract flows. The 
multiplier array implements a radix-8 modified 
Booth algorithm and consists of nine carry save 
adder (CSA) rows. It is traversed once for single- 
precision formats and twice for integer and double- 
precision formats. The hardware organization for 
the multiply operation is shown in Figure 8. 

Stage 3 of the pipeline consists of a 60-bit adder 
and a 57-bit dynamic left shifter for normalizing the 
intermediate results. The fraction adder is used in 
multiply operations to assimilate the product sum 
and carry vectors, and in add-like flows to add or 
subtract the aligned operands. 

Stage 4 of the pipeline consists of a 60-bit adder 
used for rounding and negation of the final result, 
and the exception detection logic. The exception 
handling is done with a PLA which detects and sig- 
nals overflow, underflow, zero results, and invalid 
operands. 

The control is hardwired (no microcode is used) 
and distributed among the pipeline stages. Each 
stage has autonomous control implemented with 
control decoder PLAs. Each stage supplies control 
information to the next stage one cycle ahead of the 
data. This enables the data path control signals to 
set up before the data is propagated to the input of 
the stage. The distributed control scheme permits 
simultaneous execution of a divide and four other 
instructions in the pipeline. 

Digital TecbnicalJournnl Vo1. 2 No. 2, Spring I990 4 5 



VAX 6000 Model 400 System 

FRACTION DATA PATH 

MULTIPLICAND 

ADDER 

3X MULTIPLICAND 

RECODER/IPPR 

N SELECT 
W 
a 
2 
0 

KEY: 

SF. CF S U M  AND CARRY OUTPUTS 
TC TWO'S COMPLEMENT VECTOR 
IPP INITIAL PARTIAL PRODUCT 
S, C SUM A N D  CARRY INPUTS 
PR PRODUCT 
FP FRACTION PRODUCT 

Figure 8 F-chip Multiplication Fraction 
Data Path 

The exponent data path in each stage is 13 bits 
wide. Each stage has a 13-bit adder and detection 
logic for detecting zero operands, exponent differ- 
ences, and exception conditions. To compute the 
absolute value of the exponent difference in add, 
subtract, and convert operations, the stage 1 expo- 
nent data path has an additional 13-bit adder and 
selection logic. 

The microarchitecture and the hardware orga- 
nization of the F-chip were chosen to efficiently 
implement the three basic operations addtsubtract, 
multiply, and divide. As an example of this effi- 
ciency, the adder in stage 1 is used in both the 
effective subtract flow and the multiplication and 
division flows. This flow overlap permits the execu- 
tion of effective subtraction in only four steps, inde- 

pendent of the data, as opposed to five steps 
without the overlap. 

For multiplication, this organization enabled the 
use of a radix-8 algorithm, which requires the 
computation of three-times the multiplicand. The 
implementation of all other operations was realized 
with the addition of minimal logic. 

The VC Chip 
The VC chip, or the backup cache controller and 
vector interface chip, implements the second level 
of a two-level cache structure and the interface to 
an optional vector processor. A photomicrograph 
of the vC chip is shown in Figure 9. 

Cache Control Functions 
The R E X 5 2 0  contains a 2KB primary cache data and 
tag store. The VC chip contains the tag store and 
control logic to perform reads, writes, and invali- 
dates to a 1 2 8 K B  secondary, or backup, cache. The 
backup cache is direct-mapped and write-through. 

The VC chip backup cache tag store is organized 
such that one tag and four valid bits correspond to 
every four-octaword (64-byte) block of the cache. 
Each valid bit corresponds to a one-octaword sub- 
block, as illustrated in Figure 10. When a cache tag 
miss occurs on a read, a block is allocated, a sub- 
block is filled, and the corresponding valid bit is set. 
When a cache tag compare is successful but the 
valid bit is not set, a sub-block is filled from memory 
and the corresponding valid bit is set. 

The Backup Cache Data Store 
The backup cache data store is built with off-the- 
shelf CMOS static RAMS, which are located on the 
module. The discrete cache data RAMS are orga- 
nized as 8 bytes wide (the width of the D-bus) by 
16,384 locations deep. In addition, there are eight 
bits of parity, with one bit corresponding to each 
data byte. Fourteen bits of the VAX physical address 
are needed to access the cache, as shown in Fig- 
ure 1 1 .  When the backup cache returns data to the 
R E X 5 2 0  primary cache, it returns one quadword, 
the fill size of the primary cache. 

The Invalidate Filter Bus, I-bus 
As mentioned, the chip set implements a special- 
purpose bus, the I-bus, that allows the memory 
subsystem filter invalidates. In addition to this bus, 
the VC chip also implements a copy of the R E X 5 2 0  
primary cache tag store for invalidate filtering. 
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When an address is sent to the VC chip on the 
I-bus, the VC chip notifies the memory interface as 
to whether or not the address produced a hit in 
either cache. The memory subsystem broadcasts 
the invalidate onto the A-bus only if a match was 
detected. This mechanism significantly improves 
performance in multiprocessor systems by reduc- 
ing the overall traffic on the processor buses. 

The Vector Interface 
The VC chip implements the interface logic that 
allows an optional vector unit to bc connected to 
the scalar processor module. The vector unit has 
the potential to significantly increase the perfor- 
mance of many analytical applications. 

If the vector unit is present in the system, the 
R E X 5 2 0  scalar CPU chip decodes vector insuuc- 
tions and passes operand and control information 
to the vector module through the VC chip vector 
interface. The vector unit, using its own memory 
interface, accesses vector data from memory. 

The vector and scalar n~odules are connected 
through the vector interface bus (VIB). The VC chip 
is the sole master of the VlB. The VlB is asyn- 
chronous to the VC chip and synchronous to the 
vector module The VC chip implenicnts the asyn- 
chronous control logic required for transferring 
data between the two modules. The clecision to 
operate the VIB asynchronously with respect to the 
VAX 6000 Model 400 mcxlule was made in order to 
simplify the &sign of the vector modulc. 

Xbe RSSC Chip 
A variety of support logic is required to com- 
plete the functionality of a VAX CPr: module. The 
VAx 6000 Modcl 400 systcm support chip (RSSC) 
integrates on a single chip the common core of 
functions necessary to support the VAX system 
environment. A photomicrograph of the RSSC is 
shown in Figure 12. 

The RSSC provides the operating system with the 
hardware primitives needed to implement the boot 
and console routines, and with several mcssary 
timing mechanisms. The RSSC is designed to inter- 
face directly with the VAX GOO0 Model 400 chips, 
and is based on the system support chip, or ssc.' 

The decision to base the RSSC chip on the previ- 
ous SSC design was made because we could take 
advantage of an existing core of logic which already 
implemented the required functions. The SSC was 
fabricated in the CMOS-1 process and had been thor- 
oughly debugged and qualif~ed for the MicroVAX 
3500/3600 system.' The challenge faced by the 
RSSC team was to design a new pad ring and bus 
interface unit (BIU) that would interface the existing 
SSC core to a much different and faster interchip 
environment. 

RSSC Functions 
The functions that the RSSC provides for the VAX 
6000 Model 400 module can be grouped into two 
categories: boot and console code support, and 
timer functions to support the operating system. 

Some of the important console and boot code 
support functions contained in the RSSC are the 
ROMIEEPROM interface, CPU halt-request protec- 
tion, UARTs with programmable baud rates, 1 KB of 
standby RAM, am! input and output ports which 
interface to several console and module-level 
switches and LEDs. The RSSC also implements three 
timer functions: the bus timeout counter, a 10-milli- 
second interval timer, and a time-of-year clock. 

The CLK Chip 
Clock generation for the VAX 6000 Model 400 chip 
set was placed in a separate chip, the CLK chip, to 
better control interchip skew. By separating the 
clock, we eliminated power, pin count, area, and 
noise problems from the other possible home of the 
clocks, the REX520. Three main factors were taken 
into account in designing the CLK chip. These fac- 
tors were the number of clock edges, clock skew, 
and signal integrity. A photomicrograph of the CLK 
chip is shown in Figurc 13. 

In determining the optimal configuration for 
the number of clock edges, the CMOS micro- 
architecture was examined closely. The number of 
clock cdges per microcycle determines the granu- 
larity available to the designer. Increased granular- 
ity can simplify the design process by reducing the 
need for self-timed design techniques. However, 
the usefulness of partitioning the design cycle is 
limited. Granularity on the order of a gate delay is of 
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Fzgz~re 12 RSSC Photomicrogruph 

little use, whereas granularity on the order of a 
microcycle imposes the use of self-timed circuits. A 
decision was made to distribute four 14-ns pulses 
phased in timc by 7 ns to facilitate the design of 
regular arrays, data path structures, and 110 func- 
tions. This distribution made master-slave clock 
generation and single-phase generation easy, and 
complementary clocks for latches more available. 

Clock skcw was minimized through logic and 
circuit techniques. The clocks are generated from a 
1 4 3 - ~ ~ z  crystal oscillator. The frequency is imme- 
diately divided by two to generate an even duty 
cycle 71.5-MHz signal and its complement (PHI and 
PHI-BAR). The divide circuitry, which comprises 

four D-type flip-flops, is shown in Figure 14. CLK is 
the clock input, D is the data input, Q is the latched 
true data output, and QB is the latched complement 
data output. 

CLK is the 143-MHZ crystal oscillator clock. The 
circuit consists of a D-typc flip-flop with one mas- 
ter, Dl, and three slaves D2, D3 ,  and ~ 4 .  D2 pro- 
vides local feedback for the divide-by-two function 
in order for D3 and D4 to match identically. D 3  is 
the Q slave and D4 is the Q B  slave. 

D3 allows the inversion in the feedback path to 
be absorbed and the Q and QB to see the same num- 
ber of gate delays. This logic technique works for 
all dividers used in the design. However, the 
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dividers feed a series of large output drivers in package, three power pins, three ground pins, and 
which skew could not be controlled through logic two signal pins were used for each driver. 
techniques. In these cases, skew was minimized This pin design reduced the inductance seen by 
by matching the capacitance on each node. The end each driver by approximately a factor of two. In 
result was a design in which the skew between any 
two edges genirated by the CLK chip was ndt 
greater than 0.3 ns. 

Signal integrity was carefully considered in the 
design. The clocks had to be distributed to  eight 
different loads, and the total skew between any two 
edges could not exceed 0.5 ns. This design implied 
that the Cl,K chip package and the clock module 
interconnect could not contribute more than 0.2 ns 
of skew. To mininuze the electrical impact of the F i ~ u r e  14 CLK Chip Divide Circuitry 
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An Overview of the VAX GOO0 Model 400 Chip Set 

addition, the clocks were radially distributed, and 
diode termination was used on each clock leg. The 
length of each leg was identical. 

Conclusions 
The VAX 6000 Model 400 chip set represents a suc- 
cessful mapping of the ECL-based VAX 8700 system 
microarchitecture into a CMOS-based VLSI chip set. 
The fully folded pipeline, on-chip cache and control 
store, and read and runtwrite and run strategies of 
the processor chip, combined with a high perfor- 
mance floating point processor and a second-level 
cache, enabled the VAX 6000 Model 400 to exceed 
the original performance goals for the system. 
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VAX 6000 Model 400 
Physical Technology 

The physical realization of the VRY GOO0 Model 400 microprocessor design offered a 
number of significant challenges at both the chip package and the module levels. 
In meeting the req~rirements for a robust and man~lfncturable midrange imple- 
mentation, the K-tY 6000 Model 400physical technology approach broke new ground 
for Digital, and, in some cases, for the indmtry. New developments included 
the first tape-automated bonding (W) interconnected senziconducton, extensive 
board-level physical sirnz~lation, and the use of advanced testability features on 
a microprocessor-based midrange product. i%ispaperprovhies details of thephysi- 
cal tech?zology used in the 1IM GOO0 Model 400 project to achieve system-level 
product goals. 

Introduction 
As shipped beginning in July 1989, the VAX 6000 
Model 400 microprocessor chip set is onc of the 
fastest and highest performance complex instruc- 
tion set computer (CbC) CPUs offered by the indus- 
try. Its microcycle time is 28 nanoseconds (ns). 
Such performance makes the chip set one of the 
most demanding in terms of physical technology 
design at the chip package and single-board- 
computer (SBC) level. This paper details the require- 
ments that drove the VAX 6000 Model 400 physical 
technology and describes the resulting technology 
solutions. 'The range of solutions included the 
dcsign process, module assembly, and advanced 
test features. 

The \/AX 6000 Model 400 project was the first 
Digital microprocessor-based system effort that 
required developers to use large-computer 
design tools and processes. During the project, a 
number of firsts, for either Digital or the industry, 
were achieved. 

The design and development of an advanced 
printed wiring board (PWB) technology that 
allowed over 5000 inches of interconnecting 
wiring on only four routing layers of a 9-inch by 
11-inch board, with two different controlled 
impedance levels 

The extensive use of electrical and thermal siniu- 
lation at the chip package and module levels 

The employment of an advanced surface-mount 
technology (SMT) that allows the use of mixed 
component styles (50-mil SMT devices and fine- 
pitch, 25-mil devices, and a limited number o f  
through-hole mounted devices); and attachment 
of both active and passive components on both 
sides of the board 

The use of advanced test techniques, most nota- 
bly an innovative continuity transistor structure 
(CTS) for assembly verification and boundary 
scan design for the core CPU chips 

All of the project's technology developments will 
The usc of advanced tape-automated bond- be employed on follow-on products, in both mid- 
ing (TAB) technology in a manufacturing range and entry-level systems. Ensuring this kind of 
environment technology extensibility was our explicit goal. 
The development of innovative surface-mount- In the remainder of this paper, physical tech- 
able chip packages that provide high lead count nology refers to  the chip packaging and inter- 
and a controlled electrical environment for the connection technologies at the individual device 
custom CMOS CPI! and bus interface chips and module levels. 
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Tecbnology Requirements 
The physical technology requirements that drove 
the VAX 6000 Model 400 technology effort arose 
from two primary sources: architectural and per- 
formance requirements, and manufacturing and 
reliability related needs. 

Architectural and Perfomzance 
Requirements 
The CMOS-2 semiconductor process technology 
and the microarchitecture were chosen to satisfy 
the system performance goal of at least six VAX units 
of performance (\/UPS). That choice established the 
baseline physical technology performance and elec- 
trical requirements. 

One processor design goal in particular had a 
significant effect on the physical interconnect tech- 
nology. The processor was to operate at a CPU 
microcycle time of 28 ns at the SBC level. Although 
the nominal target of the chip set design was opera- 
tion at 40 ns, early indications were that the CMOS-2 
process would allow significantly faster operation. 
Therefore, the rest of the physical technology 
needed to support the 28-11s goal. 

Table 1 summarizes the major features of CMOS-2 
and the vAx 6000 Model 400 architecture that 
drove the physical technology requirements. Chip 
packaging and module technology requirements 
were affected in two ways: 

The wide data bus could result in many drivers 
switching simultaneously. Coupled with the rel- 
atively fast driver rise times, simultaneous 
switching significantly increased package elec- 
trical performance. Our major concern was the 
high current draw from local (within the pack- 
age) power planes. The electrical performance 
required of the chip packages clearly indicated 
that simple cerquad packages would not work. 
The primary shortcoming of the cerquad pack- 
ages was the high inductance of the signal and 
power connections. Performance levels required 
multilayer ceramic packages with features that 
were at the limit of available ceramic technology. 

A wireability estimation technique used early in 
the program indicated that four to six routing 
layers would be needed in the PWB, using 5-mil 
line widths and 5-mil spacing between lines, to 
route the core CPU chips with associated cache. 

The relatively high power dissipation require- 
ments contained in the initial design specifica- 
tion posed considerable development difficulty. 

The core chip set was expected to be used in 
low-end products with limited air-flow capabil- 
ities. However, a junction temperature limit of 85 
degrees Celsius at the DEC standard 102 Class B 
environmental limits had to be maintained. 

How we addressed these problems is described 
in the later sections, Chip Packaging and Module 
Technology. 

Table 1 VAX 6000 Model 400 CMOS-2 
Features Affecting Interconnect 
Technology 

- 

Driver rise time 
Clock cycle 
- 4 phase cycle 
Data bus width 

1 ns 
28 ns 

64 bits 

Cache access time 7 clock 
phases 
(49 ns) 

Max. chip pin count 224 
Max. chip power 6 watts 

Table 2 lists the key CMOS-2 chips developed for 
the VAX 6000 Model 400 processor and the key 
characteristics of these chips that affected the 
physical architecture of the design. 

Table 2 VAX 6000 Model 400 Chip Se t  
Characteristics 

Chip 

Lead Maximum Lines 
Count Switching Power 
(Actual) (Approximate) (W) 

A more direct measure of the electrical perfor- 
mance required from the vAx 6000 Model 400 
physical interconnect system can be derived by 
examining the timing budget allocated to some of 
the signal transfers that occur within the CPU.  
Three of the most critical are the clock distribution 
system, the cache access loop, and the data bus 
between the core CPU chips. The clock signals need 
to be valid and synchronized within 0.5 ns at the 
end points of all clock lines. The clock electrical 
performance relied heavily on the uniformity of the 
distribution system. 
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The cache access loop timing was slightly more 
complicated. The cache access loop timing budget 
that was established for the 28-ns version of the CPU 
is shown in Table 3. The interconnect system pri- 
marily affects the address bus (A-bus) settling time 
(20.5 ns). 

Table 3 Cache Access Loop Timing Budget 

Address bus settled 
Buffer 

RAM access 

Total 

Manufacturing and Reliability 
Requirements 
Certain manufacturing and reliability goals estab- 
lished for the VAX 6000 Model 400 product also 
influenced the physical technology selection and 
design. The major goals were as follows: 

The use of TAB as the off-chip interconnect tech- 
nology, which was viewed as an appropriate 
entry point for TAB 

An all surface-mount technology (SM'r) module 
assembly approach 

A robust test strategy, including significant use of 
fault diagnosis using boundary scan and other 
test features 

Maintenance of the ability to perform engineer- 
ing changes using etch cuts on the PwB by 
restricting signal routing to the second and ninth 
layers, with clock lines only on the remaining 
two signal layers 

Achievement of the required 85 degree Celsius 
junction temperatures 

Most of these goals were met: 

The worst-case A-bus and data bus (D-bus) 
settling times were 19.6 ns and 20.2 ns, respec- 
tively. These settling times met the timing 
requirements as defined in Table 3. 

A nearly total surface mount assembly was 
achieved, with only conncctors, oscillators, and 
erasable programmable read-only memories 
(EPROMs) in through-hole configurations. 

Boundary scan was dcsigned into the core CPU 
chips. Observe-only scan latches were used at 

the chip boundaries as opposed to the original 
target of full scan at all logic boundaries. 

Test transistor structures for interconnect verifi- 
cation at module assembly were implemented 
for the custom chips. 

Separate, system-specific micro heat sink designs 
allow all chips to operate at a maximum of 
85 degrees Celsius, with one exception: the 
6.1 watt P-chip reaches 89  degrees Celsius under 
absolute worst-case conditions. Although not 
specifically meeting the defined goal, overall 
system reliability and operations were not felt to 
be impacted to any significant degree by allow- 
ing this exception. 

Some goals were not met. 

The interchip routing included over 1000 sig- 
nal nets and over 1800 routed nets within the 
PWB. This large number of nets required the use 
of the clock routing layer to complete the inter- 
connect of the CPU module. Although the PWB 
technology supported 5-mil lines and spaces, the 
signal integrity constraints of the system 
required more than 5-mil spaces between signal 
lines. In addition, the ability to do etch cuts on a 
5-mil line was determined to be too difficult and 
risky to pursue. Engineering changes were per- 
formed by doing cuts in the surface etch, which 
connects each surface-mount pad to its associ- 
ated via, which in turn connects to an internal 
signal layer. 

TAB tape and packages were designed, proven, 
and sourced for six of the 224-pin CMOS-2 chips 
in the \/Ax 6000 Model 400 processor. However, 
for manufacturing logistics and line-loading rea- 
sons, TAB is currently used in only a subset of 
these devices. A series of wire-bonded backup 
packages was designed and is now in use for the 
remainder of the 224-pin devices. 

Nonetheless, the physical interconnect technology 
used did result in package designs and a module 
design that supports 7 vUPs, 224 110, fine-pitch 
devices, with associated cache, operating at 28 ns. 

The details of the chip packages, the PWB tech- 
nology and module design are presented in the 
following sections. Also described are the test struc- 
tures required to satisfy the performance needs and 
other established goals of the VAX 6000 Model 400 
CPU product. 
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Chip Packaging 
In March 1989, Digital's Semiconductor Intercon- 
nect Technology Group (SCIT) completed quali- 
fication of the Model 400 processor advanced chip 
packaging technology. 

This qualification consisted of two primary ele- 
ments, which are discussed in the sections below. 
The first element is the initial implementation of 
our internally developed perimeter tape-automated 
bonding (PTAB- 1) process. The process serves as the 
interconnection medium from the semiconductor 
device to the chip package. The second element is 
the chip package itself, which is an advanced 224- 
lead multilayer ceramic (MLC) surface-mount com- 
ponent. The TABIMLC combination provides an 
effective chip package solution for the VAX 6000 
Model 400 products. Moreover, TABIMLC serves as a 
technology springboard for further TAB-based 
packaging solutions currently in development for 
future CMOS systems. 

A fundamental decision was made early in the 
TAB technology program. To reduce risk, we 
wanted to introduce TAB in an environment that 
allowed a convenient wire-bonded backup to be 
developed in parallel. The TABIMLC solution proved 
ideal for this approach, and a set of wire-bonded 
packages was designed and qualified. Subsequently, 
several of the VAX 6000 Model 400 chips were 
moved to the backup wire-bonded packages for 
manufacturing logistics and line-loading reasons. 

Wire-bonded technology is not described in this 
paper because the package designs are very similar 
to the TABIMLC packages detailed below. 

Tape-automated Bonding Technology 
The connections from a semiconductor chip to the 
package have traditionally been made with wire- 
bonding technology. In this process, free-floating 
wires are placed individually from the aluminum 
chip termination pads to the package internal con- 
nections. Although this technology is versatile, it 
has some limitations in high pin count, high-density 
applications. Bonding becomes very time-consum- 
ing at high pin counts; package and manufacturing 
tolerances become critical; and package choices 
with wire bonding have increasingly narrowed to 
newer and more expensive technologies, such as 
precision thin films. 

From 1980 to 1981, exploratory work was per- 
formed within Digital on alternative interconnec- 
tion technologies. In 1982, the decision was made to 
pursue TAB technology. The rationale for this deci- 
sion included TAB'S easy testability, compatibility 

with a wide variety of packaging formats (both sin- 
gle chip and multichip), and improved pin density. 
The technology also had the potential for electrical 
enhancements with multiconductor TAB tape, and 
indications were that the industry as a whole would 
embrace TAB technology. 

Unlike the wire-bonding process, TAB utilizes 
photolithographically defined copper conductors 
stabilized by a dielectric film made of polyamide. 

As shown in Figure 1 ,  the TAB tape consists of an 
inner set of connections for the chip-to-tape or  
inner lead bonds (ILB). External to the dielectric 
material is the outer lead bond (OLB) region where 
the tape-to-package connection is made. The leads 
then fan out to a set of test pads. These pads permit 
full electrical testing of the semiconductor device at 
this level of assembly. Sprocket holes serve as han- 
dling and alignment features. 

Unlike wire bonding, in which the wires may be 
bonded directly to the aluminized bonding pad on 
the chip, the planar TAB tape requires a raised pillar, 
or bump, on each bond pad. The bump, usually 
made of gold, is typically 25 microns high. In addi- 
tion to acting as a standoff, the bump provides a 
surface that is appropriate for the bonding of the 
gold-plated tape. Figure 2 shows a bumped and 
bonded device. The bump process may be thought 
of as an extension to the wafer fabrication process 
in which the construction of the bond pads is con- 
tinued vertically. 

Figure I TAB Tape Configuration 
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Figure 2 TAB Bumped and Bonded Deuice 

As shown in Figure 3, after the semiconductor 
wafer has completed the standard diffusion, metal- 
lization, and passintion steps, the wafer is metal- 
lized again over the entire surface with a sputtered 
barrier metallization of titanium/tungsten. In the 
same process step, a top seed layer of gold is 
applied. The total thickness of these f h l s  is 10,000 
angstroms. The barrier prevents diffusion between 
the aluminum pad and the gold bump. Such diffu- 
sion would, with time and temperature, seriously 
degrade the mechanical strength of the interface. 
The seed layer forms the base upon which the bump 
will be plated during a subsequent step. 

Metallization is followed by the deposition of a 
thick layer, typically 30 microns of photo resist. 
This layer is then photolithogrdphically patterned 
with a bump mask. Subsequent etching opcns a 
hole over the bond pads down to the barrier and 
seed layer. At this point, the wafer is electroplated 
with pure gold. The gold is deposited only in the 
resist openings. Finally, the resist is stripped and a 
series of etches are performed to remove the seed 
and barrier metallizations from the areas between 
the bumps. 

After the wafer processing steps are completed, 
the devices may be electrically tested by probing 
the bumps. Assembly of the functional die consists 

Once the TAB tape has been aligned with the 
bumps, a tool supplies pressure and ultrasonic 
energy to the interface and creates a strong gold- 
gold metallurgical bond. 

In 1985, the vAX 6000 Model 400 processor was 
identified as the first product that would incorpo- 
rate TAB technology. Consequently, the TAB pro- 
gram's goals were set to meet the product's needs: 

CMOS-2 (1.5-micron technology) compatibility 

150-micron pad pitch 

224 pins 

35-mrn format TAR tape 

Assembly in ceramic package 

The program was designated PTAB 1, the first 
implementation of TAB with chip pads in a peri- 
meter or single row format. The PTAB l process was 
formally qualified in March 1989. 

VAX GOO0 Model 400 Multilayer Ceramic 
Packaging 
The custom semiconductor packages implemented 
for SClT's ZMOS- and CMOS-1-based systems have 
been either cofired multilayer ceramic (MLC) 
through-hole pin grid array (PGA) packages, or the 
simpler lead-frame-based cerquad surface-mount 
packages. The maximum pin counts in use up 
through CMOS- 1 are 132 pins for PGA style packages 
and 164 pins for fine-pitch cerquads. 

of sawing the wafer, selecting the good devices, and 
bonding the bumped chips to the 'TAB tape. The 
bonding process is very similar to wire bonding. Figure 3 Semiconductor Wafer 
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The VAX 6000 Model 400 P, F, VC, XDP, and XCA SEAL RING AREA 
chips require a packaging solution consistent with 
their electrical and thermal performance needs as BOND FINGER SHELF 

MP2 
well as compatibility with a lead count of 224 pins. 

The solution chosen for these components was a MP4 

blend of the PGA and cerquad technologies: a multi- MP6 

layer ceramic body with 25-mil pitch perimeter 
Mp8 

leads for surface mounting. The resulting 224-pin 
MLC is depicted in Figure 4. KEY 

There are several significant features in the 224 M P l  - SEAL RING AND LOGO 
MP2 - VSS EXTERNAL (GROUND) 

MLC family of packages. In wire-bond packages, Mp3 - SIGNAL LAYER AND BOND SHELF 
maximum wire span constraints require a different MP4 - VDD EXTERNAL (POWER) 

MP5 - SPACER LAYER 
layout for each chip configuration The TAB format, Mp6 - vss INTERNAL (GROUND), DIE ATTACH AREA 

however, has more routing flexibility and permits 1:; I V , D , ~ p l ~ T , E , ~ ~ ~ k P ~ ~ L E ~ ~ R  LANDS LEAD 
one basic package layout. The package has five BRAZE PADS. HEAT SINK ATTACH AREA 

internal interconnect layers with assignments, as 
shown in Figure 5. 

In cofiied MLC technology, the conductor traces Figure 5 Package Itselfwith Internal 
are made with screen-printed, tungsten-filled vias. Interconnect Layers with 
To specialize the package interconnect for each Assignment 
chip, a programmable approach was developed in 
which only one via layer would have to be changed 
for each package design. The combination of TAB shown in Figure 6. The thermal performance of the 
interconnect and the programmable package con- package is shown in Figure 7 
cept considerably reduces design time, design com- The 224 MLC package is assembled by mounting 
plexity, tooling costs, and lead times. the TAB chip into the package cavity with silver- 

Another feature of the 224 MLC is the provision filled die attach epoxy. Outer lead bonding of the 
for eight chip capacitors for power decoupling. The TAB film to the gold-plated package pads is accom- 
heat-sink design for the 224-pin MLC package is plished with the same pressure or ultrasonic pro- 

cess used for inner lead bonding. Final steps consist 
of lid seal, lead plating, chip cap and heat-sink - - 

attach, and lead trim. The part is then ready for 
electrical testing. 

1 Module Tecbnology 

Printed Win'ng Board Technology 
The VAX 6000 Model 400 processor's printed wir- 
ing board (PWB) requirements offered a significant 
challenge to board fabricators. The primary differ- 
ence between the Model 400 processor's boards and 
previous boards is 10-mil finished vias, resulting 
in a 7 to 1 aspect ratio. We were initially very con- 
cerned whether our vendors could produce boards 

p7/ CHIP CAP 

Figure 4 The 224-pin MLC Figure G MLC Package Heat Sink 
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AIR VELOCITY 
(LINEAR FEET PER MINUTE) 

Figure 7 Thermal Performance of Package 

that met our specification in the volumes we 
needed. Table 4 lists some of the primary features 
of the Model 400 PwB specification. 

The most severe environment the boards would 
see was the asscmbly plant. Recause the module 
used a variety of component types, it was put 
through several process steps, each step requiring 
general or localized heating to solder reflow tem- 
peratures. We wanted to ensure that the boards 
would survive multiple assembly and repair cycles 
and still be reliable. We established a "fit for use" 
plan that required the boards to undergo a series of 
thermal cycles. In these cycles, temperatures and 
times were set to match intended assembly process 
steps. The boards were then cross-sectioned and 
examined for dcfects. Once manufacturing began 
building modules, a few of these were also cross- 
sectioned. With this strategy, we could quickly 
determine the quality of each lot of boards. More- 
over, we could begin to correlate board structure 
with board quality in each lot. This process allowed 
us to assess each vendor's capability to provide 
boards that would meet our specifications. 

Because module assembly process temperatures 
typically exceed 200  degrees Celsius, questions 
arose over what was the appropriate board mate- 
rial. 'The more commonly used F R ~  material, with 

an average glass transition temperature (tg) of 
120 degrees Celsius, was suspected to be incapable 
of surviving the assembly process. 

The alternative to FR4 was polyamide, which has 
a tg of 240 degrees Celsius. In response to the con- 
cern over F R ~ ,  a PWB material selection task force 
was convened, which was composed of board 
experts from throughout the company. 

The task force discovered that board material 
actually is not the primary consideration. Either F R ~  
or polyarnide is acceptable (both were eventually 
used in production). However, other board paramc- 
ters become critical when F R ~  is used. Primarily, 
minimum barrel copper plating thickness should be 
one mil for F R ~  boards. 

Variation in barrel copper should not exceed 50 
percent. In addition, there can be no smearing or 

Table 4 VAX 6000 Model 400 Printed Wiring 
Board Specifications 

Parameter Value 
- - 

General: 
Board size 9.2 inch x 11 .O inch 
Layer count 10 layers: 4 signal, 

4 powerlground 
Material options FR4, polyamide 
Copper foil type Class I l l  

Testing 100% data-driven 

Electrical: 
Characteristic 50 ohms ? 10% for 10-mil lines 
impedance 
DC resistance 4 ohms maximum 

Physical: 
Via type 
Via size 

Maximum 
aspect ratio 
SMT pads 

Through 
10 mil finished 
13.5 mil drilled 
7: 1 

50-mil pitch: 0.030 inch x 
0.076 inch 
k 0.001 inch 

25-mil pitch: 0.016 inch x 
0.076 inch 
? 0.001 inch 

Etch widths Signal: 5 mils 
Clock: 10 mils 

Proximity to 5 mils 
next feature 
Solder 0.15 mil minimum 
requirement 
Tinllead alloy 63137 k 10% 
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other defects in the vias from the drilling process. 
To maintain tight control over these parameters, we 
included statistical process control as a vendor 
requirement. Table 5 summarizes the results of the 
task force findings. 

Because of recent board quality problems and the 
aggressive nature of the Model 400 specification, 
we ran a product-specific board qualification. The 
goal was to verify that each vendor could consis- 
tently produce the Model 400 boards in volume 
before the vendor was placed on the qualified 
vendor list. The four key components of the plan 
were as follows: 

Incoming inspection 

Electrical test 

Cross-section analysis 

Assembly verification 

Incoming inspection testing was nondestructive 
and covered plating thickness, plating composition, 
and characteristic impedance. 

Using an internally developed tester, we could 
verify 100 percent connectivity between pads and, 
thus, detect both shorts and opens. We also used 
this test to verify prototype boards, ensuring that 
the boards were good before valuable prototype 
parts were committed to them. 

Digital's Component Evaluation Laboratory 
performed bare board and assembled module 

Table 5 VAX 6000 Model 400 PWB Materials 
Task Force Summary 

Laminate: 
Polyamide should be used for prototypes. 
Polyamide and FR4 are acceptable for volume. 
Long-term, vendor capability and cost may favor 
polyamide. 

Copper: 
Class 3 foil should be used. 
For polyamide, standard plated-through-hole (PTH) 
copper is acceptable. 
For FR4, minimum barrel plating thickness is 1 mil. 
Barrel plating thickness variation maximum is 50 
percent. Hole quality must be good. 

Process Control: 
Vendor should provide test coupon cross-sections 
with each lot. 
Vendor should institute statistical process control. 
Vendor site should be monitored reaularlv. 

cross-sectioning. This testing process uncovered 
inadequate or nonuniform plating, pad-to-copper- 
plating separations and misregistration. The infor- 
mation gained from this procedure was given to the 
vendor as a basis for corrective action on future 
board production. 

Assembly verification was final proof that the 
board would make a reliable module. Each board 
went through the full assembly and test process, 
including burn-in, to ensure it could survive the 
process and pass all functional tests. 

Surjilce-mount Assembly Technology 

The surface-mount assembly technology (SMT3) 
used for the VAX 6000 Model 400 processor is the 
latest in a series of electronic assembly technologies 
developed by Digital since 1985. The S M T 3  tech- 
nology allows double-sided mounting of high lead- 
count and fine-pitch devices on a printed wiring 
board, with surface-mounted passives and mixed 
component styles. The VAX 6000 Model 400 pro- 
cessor uses essentially all of the S M T 3  features. 

High pin count and fine-pitch devices presented 
new problems to the surface-mount attach process 
team. The small, tightly spaced leads require a 
smaller pad and less solder than their 50-mil pitch 
predecessors. The smaller, more fragile pins can 
become misaligned and no longer coplanar where 
they meet the board surface. 

Our primary goal was to find the correct pad size 
and solder volume for attaching 25-mil pitch com- 
ponents. Once the fine-pitch pad size and solder 
volume were determined, it became apparent that 
the correct solder amount could not be delivered to 
both fine-pitch and standard pads in a single oper- 
ation using the standard solder-paste screen 
approach. The smaller, fine-pitch screen openings 
could not consistently pass the correct amount of 
solder. The solution was to use a laminated stepped 
stencil that places a thinner solder deposit on the 
fine-pitch pads than on the rest of the pads. 

The initial approach for attaching fine-pitch 
devices was to use the existing vapor-phase mass- 
reflow process. However, if pin noncoplanarity 
exceeded 2 mils, some pins would not be soldered 
adequately. The best that could be guaranteed was 
4 mils. 

The development team turned to solder-in-place, 
which uses a therrnode fucture to place the compo- 
nent, push the pins into the paste, and reflow the 
solder, forming a good solder connection for each 
pin. An advantage of this process is that it does not 
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heat the entire board, and the previously attached 
components, to solder-reflow temperatures. 

The surface-mount module process was by 
necessity developed concurrently with the Model 
400 product design. As the design progressed, a 
problem with the primary assembly equipment 
developed. Suppliers for high-volume thermode 
pick, place, and solder equipment tlid not keep pace 
with our schedule req~iircments. We were then 
faced with the choice to dekclop cquipnlent inter- 
nally or switch the proccss to a more developed 
technology. 

The Midrange System Manufacturing Group's 
most readily available backup process was vapor- 
phasc mass-reflow. This process guards against 
coplanarity problems by including carcfi~l inspec- 
tion of all fine-pitch components before commit- 
ting them to a board. The pins that do not solder 
are manually repaired. Since it was not possible to 
develop solder-in-place equipment internally in 
time to meet our schedule, the program decided to 
use vapor-phase mass-reflow 

Module Design 
Several board design requirements combined to 
make the dcsign task challenging. These require- 
ments included signal integrity constraints, finer 
layout and routing grids, and short dispersion etch. 
Figures 8 and 9 show the complete module. Most 
of the module arca is composed of the six large 
224-pin deviccs that form the processor core and 
interface to the XMI corner. These devices had 
critical placement requirements. Their 25-mil pin 
pitch forced very dense etch runs. 

To attain maximum use of available routing area, 
the design used tenth-mil grid instead of the previ- 
ously used one-mil grid. The new grid allowed opti- 
mum etch channel placement. Similarly, vias were 
placed on a 25-mil grid with 50-mil spacing. This 
allowed the designer more flexibility in placing vias 
so the available space was used most effectively. 

The vAx 6000 Model 400 processor introduced 
new routing parameters and stringent signal 
integrity constraints. The density of the design 
required 10-mil vias. Signal integrity considerations 

Figure 8 Processor Mwlztle -Side One 
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imposed component spacing and electrical connec- 
tion requirements that resulted in components 
being closer than suggested by current standards. 
Surface etch was needed to keep connections short. 
Components on side two were placed underneath 
fine-pitch devices on side one for electrical prox- 
imity. New manufacturability rules were generated 
to cover these situations as the design progressed. 

Because surface layers are not used to route sig- 
nals, these layers were not designed to have good 
signal integrity characteristics. However, a signal 
has to travel a short distance from its pin p ~ d  to its 
dispersion via which connects to an inner routing 
layer. Therefore, it is essential to keep surface etch 
as short as possible to minimize the distance the sig- 
nal travels outside a controlled impedance environ- 
ment. To meet this distance requirement, each 
critical component was placed very precisely and 
its dispersion pattern was individually designed. 

Signal integrity considerations placed other con- 
straints on the design. Critical signals had to be kept 

less than a specified maximum to meet perfor- 
mance specifications. To avoid skew problems, 
clocks were routed equal lengths to within a tight 
tolerance. Table 6 details the resulting design 
parameters. 

Test Technology 

Assembly and Test Process Development 
Assembly and test process issues were tracked 
throughout the development and selection of the 
Model 400 physical technology. The manufacturing 
impact of each physical technology choice was 
quantified in a spreadsheet analysis of cost and qual- 
ity metrics. 

These metrics were estimated by using integrated 
assembly and test process models for each possible 
physical technology implementation. Two issues 
became evident during the physical technology 
selection process. 

Figure 9 Processor Module -Side Two 
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Table 6 VAX 6000 Model 400 Processor 
Board Design Statistics 

Parameter Value 

General: 
Board size (inches) 9.2 x 11 .O 

Board thickness (inches) .093 
Layers 10 
Initial route area (square inches) 99 
Routing vias 1699 
Dispersion vias 381 3 
Total components 623 
Total component pins 4976 
Total used component pins 421 8 
Total networks 1005 
Total etch length (inches) 5002 

First, the high number of signals and the fine 
pitch of those signals in all of the possible product 
implementations significantly increased the risk 
of manufacturing defects, such as shorts between 
signals or open faults along a signal. A continuity 
transistor structure (CTS) is designed into each of 
the VLsI (very large scale integration) devices to  
help test and diagnose these open faults. 

Second, high-speed operation and reduced phys- 
ical access would make diagnosis of processor fail- 
ures difficult. To alleviate this problem, test features 
and a test system were developed. The test feature 
was a form of boundary scan, called observe 
boundary scan (OBS). The test system, the VAx 6000 
Model 400 scan monitor, utilized the OBS in a 
system test environment. 

Continuity Transislor Structure 
Because the devices are surface-mounted to the 
module, a large percentage of the manufacturing 
defects were expected to be open faults between 
the module and the chips. Typically, these open 
faults are difficult to detect and diagnose because 
they usually require the development of a set of 
complex test vectors that will be applied to the 
chip. To simpllfy the test for open faults, a continu- 
ity transistor structure (CTS) is designed into each 
chip. The CTS tests for open faults by using simple 
instruments such as voltage sources and current 
meters on an in-circuit tester (ICT). 

The Module 400 CPU module is placed on a bed- 
of-nails f ~ ~ t u r e  that gives the tester electrical access 
to at least one point on each internal module signal 
network. The tester then applies digital stimulus to 

the internal module and verifies correct contact by 
reading current flow. 

The CTS is shown in Figure 10. Pins 1 through N 
represent all signal pins on the chip. The design uses 
minimum-sized transistors. The CTS design does 
not require any dedicated pins because the test pin 
is a normal device signal pin. There is no perfor- 
mance penalty because the transistors are placed in 
parallel to the normal system logic, which results in 
a negligible load on those signals. 

The use of the CTS in the processor module 
manufacturing process has been very successful. 
The ICT very quickly isolates open connections to 
the device pin and differentiates them from device 
test pattern failures. This process allows the open 
connection to be repaired rather than replacing 
the device. 

Further, CTS testing allows prototype modules 
to be fully tested for assembly defects, even if the 
VLSI in-circuit test patterns are not available. This 
advantage is possible because designers can fully 
develop CTS tests without any knowledge of the 
VLSl device internal structure or function. 

Observe Boundary Scan 
Modules that pass ICT testing are then tested at a 
"system like" test station. Self-tests and bootable 
diagnostics are run, and the VMS system is booted. If 
a module fails any of these tests, skilled technicians 
diagnose the failures by attaching logic analyzer 
probes to the module. Because of the fine-pitch 
surface-mount devices and the high-speed opera- 
tion, it is very difficult to attach logic analyzer 
probes to many nodes on the processor module. 

OBS allows the CPU module to be observed as it 
executes VAX macrocode on board self-test stimu- 
lus at the module's full clock rate. This additional 
observation is used by the scan monitor to help test 
and diagnose module-level faults in a system test 
environment in stage-one manufacturing. 

TEST PIN (ALSO A N O R M A L  
DEVICE SIGNAL PIN) 

N-CHANNEL MOSFET 

N-CHANNEL MOSFET -.. 6 :-ANNEL MOSFET 

b PIN 1 

Figure 10 Co~ztinuity Transistor Structure 
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Designing OBS into a custom VLSI device is more 
complex than adding CTS, but is still relatively sim- 
ple. OBS is simply a parallel-load, serial-shift register 
with one bit of the register on each device pin. 
Although it is not negligible, the OBS uses a rela- 
tively small amount of silicon area and also does not 
affect product performance. The total area used by 
both the CTS and OBS was estimated at about one to 
two percent of the chip area. Unlike CTS, which 
does not require any dedicated device pins, OBS 
uses two dedicated pins on each device in which 
i t  is implemented. To fully utilize the OBS test fea- 
ture, the V.4X 6000 Model 400 scan monitor was 
designed and built. 

The scan monitor controls and reads the OBS on 
the Model 400 module. A host computer system 
interfaces with the monitor. The scan monitor 
control program (sMCP) operates the scan monitor, 
makes passtfail decisions on the data received, 
and diagnoses failures. SMCP also includes many 
features that allow it to perform as a virtual logic 
analyzer, including waveform displays that high- 
light faulty behavior, as well as full triggering 
functionality. 

Conclusion 
The aggressive performance goals and advanced 
semiconductor technology used for the VAX 6000 
Model 400 processor meant a significant develop- 
ment effort for packaging and interconnect techno- 
logy. The technology requirements included high 
lead count, electrically tailored single-chip pack- 
ages, very dense controlled impedance printed 
wiring boards, a state-of-the-art surface-mount 
assembly process, and advanced test features. 

The physical technology achievements in the 
VAX 6000 Model 400 project represent an effort in 
the packaging and interconnect disciplines more 
akin to mainframe and supercomputer develop- 
ments than to traditional microprocessor-based 
system approaches. The accomplishments of the 
efforts include: 

Development and implementation of an 
advanced TAB technology for the high lead- 
count custom chips 

Design of an innovative semicustomized ceramic 
single-chip package that combines the best fea- 
tures of surface-mount devices and traditional 
pin grid arrays 

Development, sourcing, and qualification of 
very dense printed wiring boards with multiple 
controlled impedances 

Achievement of a technology set capable of 
28-11s clock cycles through the use of full elec- 
trical simulation at the device, package, and 
module levels 

Development and implementation in manufac- 
turing of the SMT3 module assembly technology, 
which allows double-sided mounting, high 
lead-count fine-pitch surface mounting, surface- 
mounted passive components, and mixed com- 
ponent types 

Introduction of innovative testability features, 
including the continuity transistor structure for 
assembly verification and observe boundary scan 
for diagnosis in engineering debug and module 
manufacturing 

As intended at the outset of the project, these 
technologies will be employed on a significant num- 
ber of follow-on midrange and low-end products. 
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VAX 6000 Model 400 CPU 
Chip Set Functional 
Design Verification 

The VRY GOO0 Model 400 system is DQitulS Jirst VLSl CP (I to employ a fully micro- 
pipelined architecture. The CPU chip set for this system posed rmpcation challenges 
fur 6qan.d those of pwious designs. The major problem was the laqe tzumbw of 
complex: contml sequences and combinations that could exhibit design errors. A 
single uerrpcation strategy would not suJficient!y handle this comple,vTZ~~. 'I;berefore, 
z~criJication enginews developed a multipmged approach fmsimulution modeling 
and functional design verification. l B q 1  also emplo-yed CPU diagnostic programs, 
I~atd-generated tests, and directed pseudo-randm techniques to verif3, that the 
design conformed to the VAX architecture. These techniques helped them find bugs 
prior to committing the &ign to mush. As a result, theflrst-pass versions of the CPU 
chiy set s m f i u l l y  booted an operating system. Simulation also minimized chip 
rework and delays in bringing theproduct to market. 

m e  Design Verification Project 
The VAX 6000 Model 400 chip set verification pro- 
ject had two goals: find implementation bugs in the 
design and verify that the design performed as a VAX 

system. The design verification tasks involved about 
25 person-years of effort in the areas of system 
microcode, custom VLSI (very large scale integra- 
tion) chips, and the VAX 6000 Model 400 scalar pro- 
cessor module. 

The chip set verification team coordinated a set 
of simulation models originally written by the chip 
logic designers. At various stages of the project, 
models were available at the gateltransistor, behav- 
ioral, and architectural performance levels. The 
verification team used these models to run a wide 
assortment of both basic and sophisticated tests. 
The use of simulation models is described in more 
detail in the next section. 

The CPU design was partitioned into functional 
units, and one or more units were assigned to each 
member of the verification team. A list of specific 
tests or testing activities w= produced for each sec- 
tion of the CPU chips' specifications. This list WAS 

augmented by project-wide brainstorming sessions. 
These sessions were used to analyze obscure or sub- 
tle combinations of events in the design. Often, the 
thinking process would identify that a bug existed 
before any testing had been done. Verification engi- 

neers used the list to create tests for the functional 
units of each chip. These tests were implemented in 
either microcode, macrocode, pin-stimulus, or 
somc combination of the three. Tests were imple- 
mented in the priority determined by the design 
team's identification of the most complex areas of 
the design and those most susceptible to bugs. 

Simulation Models  
Functional design verification using software simu- 
lation is inherently slow in a design as large and 
complex as a VAX CPU.'  To use resources most 
efficiently, the verification team specified and coor- 
dinated a project-wide modeling methodology that 
incorporated a number of different modeling levels, 
trading oft detail versus other factors such as speed. 
These trade-offs allowed us to match the testing of 
each phase of the design to  a model that met its 
specific needs and characteristics. Thus, sirnula- 
tions were only as detailed as necessary for a parti- 
cular test situation, and the overall efficiency of the 
verification effort was increased. Most levels of 
modeling could contain different levels of descrip- 
tion detail for different areas of the design, which 
further optimized simulation performance. 

There were three major phases of the design: 
architecture, detailed block diagram, and logic1 
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transistor schematic. To match these design levels, 
architectural, behavioral, and structural models 
were written. Each model section was written by its 
designer and then integrated into a whole-chip 
model, a system model, or both models for chip 
and system testing. In addition the design method 
ensured that the overall organization of each 
modeling level was Pdithful to the hardware design 
level i t  represented. 

Architectural Model 
The architectural-level model is the highest level of 
modeling for this project.'.',' This model describes 
only the control algorithms and abstract data paths 
in the microarchitecture. The VAX 6000 Model 400 
C P u  architects wrote this model in PASCAL for exe- 
cution performance reasons. The PASCAL program 
avoids most of the simulation-oriented overhead 
because it is a standalone program. 

In the architectural model, actual microcode is 
used. However, because much of the detail of the 
microarchitecture is abstracted in this model, 
crutches (additional simulation aids) are required 
to execute the microcode flows. Model simulations 
are driven from instruction traces. Opcode, 
operand, and address information are extracted 
from user programs and system software running 
on actual VAX systems. Special fields in each 
microword make use of the information from these 
traces and direct the flow of microcode execution 
accordingly. These special fields are only used for 
simulation and are not included in the actual 
microcode implemented in hardware. The use of 
trace data extracted from real VAX systems permits 
actual machine loads to be reproduced, and the 
architect can evaluate implementation trade-offs 
from these reproductions. 

Signals in the architectural model are correct to 
within a machine cycle, which allows execution 
times to be accurately measured. Microarchitec- 
tural parameters, such as cache or translation buffer 
size, can be easily adjusted to analyze their effects 
on system performance. More complex design fea- 
tures, such as bus protocols and pipeline control 
algorithms, can also be modified relatively easily. 

The moclel describes most of the hardware sec- 
tions that will be in the final design. Therefore, it 
s e n e  as a prototype system debugging tool to 
predict and tune system performance. The model 
also uncovers design flaws before implementation 
begins. About a hundred bugs were found at this 
preliminary stage by using the architectural model. 

- - -- 
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Behavioral Model 
The behavioral level model describes each chip sec- 
tion's logic in detail. It is written in the DECSIM 
behavioral modeling language.5."" DECSIM pro- 
vides a high-level computer-hardware description 
language that executes procedurally rather than 
using event-driven algorithms. Models written in 
such a language generally s i m p l ~  both model and 
design debugging. 

The modeling methodology requires that, in the 
behavioral model, every signal in the design be 
explicitly modeled, with its timing accurate to the 
clock-phase boundary. This methodology maxi- 
mizes the probability that timing problems will be 
found at this level of simulation. (Note: N o  addi- 
tional logic timing verification was done on this 
project.) Each designer writes the section's model in 
parallel with writing the chip's specification. The 
writing must be done before detailed schematics are 
started. This method ensures that the model accu- 
rately represents the real hardware behavior. 

The model executes hierarchically. The system 
clocks are advanced at the begiming of each phase, 
then the top-level routines for each section are 
called. These routines, in turn, call the routines for 
each subsection. The subsection routines do the 
actual work. 

The DECSIM behavioral model is the basis for 
many model variations. These variations range from 
the simplest single-CPU module to elaborate multi- 
processor versions that include peripherals and 110 
adapters. 

The basic version of the behavioral model is non- 
ported; i.e., the model is implemented as a single, 
self-contained hierarchy of procedures that does 
not use or connect to any other models. The non- 
ported model contains detailed descriptions of the 
three custom VLSl chips: CPU processor, secondary 
cache controller, and floating point accelerator. 
This model also includes a representation for 
backup cache RAMS connected to the DAL (data and 
address lines). Also modeled are a system support 
chip and a simple memory that can return data as 
fast as the protocol allows. 

This nonported model was used for extensive 
testing of the microcode, microarchitecture, and 
logic design of the VLSI chips and their interf~ces. 
A majority of the verscation tests did not need 
detailed memory timing or 110. Tests could be run 
faster on the nonported model than on one that 
simulated the actual memory access delays. These 
delays would have increased the testing time with- 
out adding value to the testing process. 
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Another version of the behavioral model is 
ported. This model was constructed to test the 
DAL and the interaction of the core chips with the 
system support chip (RSSC) and bus interface stan- 
dard cell (REXMI) chips."orted models have ports 
at the boundaries of procedural model compo- 
nents. Ports are used where chip pins or similar 
boundaries appear in the design. Ported model 
components are integrated for simulation through a 
structural wire list derived from module (printed 
wiring board) schematics. The main ported model 
consists of the core CPU chips with a ported repre- 
sentation of the DAL. This model connects to ported 
models of the other chips on the VAX 6000 Model 
400 module, which in turn connect to memory and 
110 models. Several different combinations of these 
ported models were used for various specific 
verification test applications as shown in Table 1. 
The combined ported models run several times 
slower than the less complex nonported model. 
The slower time is offset by increased testing granu- 
larity. The ported models also allow asynchronous 

behavior, which in turn allows chip- and module- 
level interactions to be tested. 

Table 1 lists more usages of the ported core chip 
set behavior model as compared to the nonported 
architectural performance model. 

Structural Models 
The structural models were derived automatically 
from the designers' transistor-level schematics. The 
wirelists, or network descriptions, were translated 
for the two simulator systems: DECSIM MOS and 
the ZYCAD simulation engine."'"'." IIECSIM MOS is a 
transistor-level simulator based on RSIM and ESlM 
that models R-C delays, undefined-state initiali- 
zation, and charge I" The hardware- 
accelerated ZYCAD system abstracts transistors into 
a three-state, gate-level model. The DECSIM MOS 
model was used for standalone chip sections and 
whole chip simulations to find initialization and 
charge-sharing bugs. Both DECSIM MOS and ZYCAD 
were used to find logic and schematic bugs. Both 
systems used pin-level pattern stimulus that was 

Table 1 Combinations of Behavioral Model Configurations 

Performance 
Number of Module Number and Level (Microcycles/ 

Ported Modules Abstraction of Memory Peripherals Applications Second) 

No 1 Architectural level; 1 Abstract memory None Architecture 600 
per-cycle detail module debugging and 

performance 
tuning 

No 1 Behavioral level for 1 Abstract memory None CPU verification 7 
support chips; per- module and generating 
phase detail chip test patterns 

Yes 1 Behavioral level for 1 Detailed memory None Self-test code 2.5 
support chips module debugging and 

bus interface 
verification 

Yes 2 Behavioral level for 2 Detailed memory None Multiprocessor 1 
support chips modules verification 

Yes 1 Behavioral support 1 Detailed memory 1 RL02 disk Booting V M S  2 
chips module with gate- (high level) system 

level bus interface 
Yes 1 Gate level for 1 Detailed memory None Bus interface 1 

bus interface chips module with gate- verification and 
level bus interface generating chip 

test patterns 
Yes 1 Gate level for 1 Detailed memory None Module 1 

bus interface chips module with gate- verification 
level bus interface 

Yes 2 Gate level for 2 Detailed memory Bus adapter System 0.5 
bus interface chips modules with gate- verification in 

level bus interface multiprocessor 
mode 

66 Val. 2 No. 2, Spring 1930 Digital Technical Journal 



%i?el400 CPU Chip Set Functional Design Vmpcation 

generated from the nonported behavioral model. 
Signals traced in the behavioral model matched 
the boundary of the section of logic or chip being 
simulated at the gate level. Test results were com- 
pared on a cycle-by-cycle basis. The tests uncovered 
many bugs in the logic design implementation. 

Gate-level Fault Simulation 
In addition to ZYCAD true-value simulation, single 
stuck-at fault simulation was done. Fault simulation 
measured verification and manufacturing test 
coverage, and provided guidance for verification 
engineers to enhance tests. The fault simulation 
effort for the CPU processor chip alone was almost 
six months long. As a result of this effort, five new 
tests were written, and manufacturing fault 
coverage was subsequently increased from 83 per- 
cent to 94 percent. 

V ' f i c a t i o n  Strategies 
CPU chip set verification engineers had two 
explicitly stated and somewhat overlapping goals. 
We had to prove that the hardware design intent 
adhered to the VAX architecture standard in every 
respect, and that the logic implementation adhered 
to the intent.15 We strongly believed that any bugs 
in prototype hardware (first-pass silicon for the 
custom VLSI chips) would negatively impact our 
ability to meet time-to-market for the product. Bugs 
found at a later stage of the design process are 
more expensive to fii for custom VLSI chips. It is 
expensive because we are severely restricted in our 
ability to isolate and work around bugs in the hard- 
ware. Therefore, for custom vLS1 chips, verification 
explicitly meant proving the design and finding the 
bugs in simulation. No single verification strategy or 
technique can find all of the bugs in something as 
complex as a VAX CPU. Therefore, a breadth of veri- 
fication strategies were flexibly applied. 

In addition to technical strategies, the verifica- 
tion team cultivated a "bugs are good" philosophy 
throughout the project.'(' Past experience has 
shown us that bugs will always creep into the 
design of something as complex as a VAX CPU. 
Instead of being viewed as mistakes or failures, bugs 
were celebrated because a bug found in simulation 
was a bug that didn't make it into prototype hard- 
ware. This subtle shift in how the finding of a bug 
was regarded had, we believe, a strong motivational 
impact on members of the design and verification 
teams and increased the probability of finding bugs 
during verification. 

Existing Design Verification Tests 
The VAx architecture has undergone a number of 
implementations since the first VAX-lli780 system 
was designed in the mid-1970s. Over the years, a 
substantial body of knowledge regarding the key 
areas and problems associated with designing a VAX 

processor has been accumulated from various VAX 
implementations. We put these past lessons to use 
in the vAx 6000 Model 400 verification effort. We 
actively sought out bug lists, test plans, and actual 
test code used by previous VAX system design 
teams. One key example of this is HCORE, a self- 
checking VAX macrocoded diagnostic program. 
HCORE specifically focuses on the high-risk areas 
that are common across VAX designs. The HCORE 
test program was originally developed from 
another basic field-diagnostic program. It was Jater 
modified many times, throughout several projects, 
to focus on testing potential high-risk instructions 
and functional areas that had been identified in past 
designs. Existing design verification tests (DVT) 
such as this are almost always VAX macrocoded 
tests. Macrocoded tests transport more easily across 
implementations than microcoded tests because 
the microword formats are usually different from 
implementation to implementation. 

We derived three benefits from using existing 
DVTs. They provided a strong level of confidence 
in the basic functional operation of the design. Sec- 
ond, they found any functional bugs that might be 
hiding in obscure or seldom used areas of the vAx 
instruction set. Third, when used with demons 
(explained later), they were usefill in finding bugs in 
very implementation-specific areas, such as error 
recovery logic. 

Custam Design Verification Tests 
Although all vAX CPU designs implement the same 
architecture and run the same software, the hard- 
ware and firmware implementation details of each 
are unique. Therefore, generic VAX diagnostic tests 
did not necessarily cover the specific critical paths 
and functions in the VAX 6000 Model 400 design. 
Existing DVTs often could not provide a clear 
picture of what had and had not been covered. To 
solve these problems, we used custom DVTs to test 
specific, obscure, and hard-to-get-at areas of the 
design. There were several techniques for imple- 
menting custom DVTs: 

Handwritten macrocode 

Handwritten microcode 
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Manipulation of pins and internal signals under 
simulation control 

These techniques could be used individually and 
in combination, within a single custom DVT. For 
example, although custom DvTs for the instruction 
fetch and parse logic (I-box) were written primarily 
in microcode, a custom macrocoded instruction 
stream was written to give the 1-box something to 
parse. Explicit manipulation of pins in simulation 
was used to generate asynchronous events, such as 
interrupts, when necessary. 

Custom DvTs provided confidence in areas of the 
design that could not easily be tested with existing 
DVTs. We made the tests as focused and efficient as 
possible. However, in doing so, the generation of 
such tests required large amounts of development 
time and people resources. Although these tests 
uncovered several bugs in all areas of the design, we 
now believe that many of these same bugs could 
have been found with less labor-intensive methods, 
such as pseudo-random tests At  the time, the pri- 
mary advantage of custom DVTs was the clear 
indication they gave that specific functional areas 
of the design had been tested and were working 
as specified. 

Pseudo-random Design Vm!jiication Tests 
Each new \]AX CPU design aspires to improve on 
the price or performance of the previous design. 
Improvements are sought by pushing the limits of 
available technology to package hardware into 
smaller and, if possible, less expensive spaces. At 
the same time, a decrease in the cycle time or an 
increase in the work done per cycle in the func- 
tional design is also sought. In particular, this last 
item has substantially increased design complexity 
by introducing techniques such as pipelining and 
special-case hardware. As a result of this complex- 
ity, we often encounter very obscure bugs when 
debugging new VAX implementations. These bugs 
involve unanticipated interactions in the logic, 
between seemingly unrelated functional areas, and 
interactions dependent on intricate combinations 
and sequences of events. We were concerned about 
these types of bugs because it is extremely difficult 
to write tests for unanticipated problems. The 
method we chose to address these problems was 
pseudo-random testing. 

The intent of pseudo-random testing is to exer- 
cise the design in ways that are likely to find bugs 
without necessarily knowing in advance what those 
bugs are or where they might be. Pseudo-random 

testing implies simulating many cycles and trad- 
ing off test efficiency to address the problem of 
unanticipated bugs. 

It is absolutely necessary to automate the pseudo- 
random test process, both test generation and test 
scoring, as much as possible since pseudo-random 
tests are much longer than focused tests. 

A powerful tool already available for pseudo- 
random testing VAx designs is the \!Ax architectural 
exerciser tool suite (AXE and MAX)." Originally 
intended as hardware prototype verification tools, 
AXE and MAX have proven to be even more effec- 
tive as design verification tools in a simulation 
environment. They provide a virtually inex- 
haustible source of unique, interesting macrocode 
test cases, and require a minimum of intervention 
and effort by the user. 

Although AXE and MAX provide some control 
over test case parameters, they still aspire to be gen- 
eral, architecturally focused exercisers. We also 
wanted pseudo-random test case generation that 
could be targeted at specific, risky areas of the 
implementation. These areas were the most likely 
locations for unanticipated bugs. Custom pseudo- 
random exercisers were developed for these areas. 
These exercisers provided very detailed control 
over test case parameters, yet retained many of the 
features and advantages of AXE and MAX. 

A powerful techni ue for pseudo-random test is 
1 4  the use of demons. A demon is any automated 

intervention of a simulation model's normal execu- 
tion behavior. For example, a bus demon can inter- 
ject one or more bus commands, error conditions, 
or interrupts at random intervals in order to aggra- 
vate normal system operation. By doing this, a 
dense environment of unusual or uncommon event 
combinations can be created to stimulate the design 
with worst-case situations. Demons typically 
slowed model execution by a factor of ten, but they 
often found bugs that had not been considered by 
the designers or architects. Without demons, it 
could have taken many months of field testing to 
find and characterize these bugs, if they would have 
been found at all. 

Pseudo-random testing with LYE, MAX, custom 
exercisers, and demons was used throughout the 
development cycle of the CpU chip set. All four 
uncovered obscure interaction bugs, as expected. 
Unfortunately, they did not find them all. Some 
unanticipated bugs slipped through verification and 
into the fist-pass silicon stage. These bugs were 
eventually found after running many more cycles in 
real prototype hardware. The failure to find all 
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unanticipated bugs in the simulation stage illus- 
trates a fundamental problem in the use of pseudo- 
random testing. The effectiveness of testing is 
closely coupled to the number of cycles run, and 
simulation speed severely restricts this number. 

Our application of pseudo-random testing to the 
problem of unanticipated bugs was largely success- 
ful for this project However, we learned that we 
must do more in the future to increase the 
efficiency and scope of these tests. To provide this 
increase, we are looklng toward more directed 
pseudo-random testing. 

Booting the VMS Operating System 
A major milestone in thc development of any new 
VAX CPU is booting the vMS operating system on 
prototype hardware. Not only does this demon- 
strate significant functionality in the design, but it 
also provides a platform from which further testing 
can proceed. As previously stated, increased com- 
plexity in these designs can produce very subtle 
bugs. Often, such bugs do not even appear until the 
hardware is run under a heavy system load in a large 
multiprocessing or 110-intensive environment. Suc- 
cessfiilly booting VMS on prototype hardware is 
necessary before any such system load testing can 
begin. The sooner such testing begins, the better the 
chance of finding subtle bugs. For this reason, boot- 
ing the VMS system in simulation was an important 
goal of the VAX 6000 Model 400 chip development 
and verification effort. 

At first glancc, it would seem impossible to boot 
the VMS system on a simulation model in a reason- 
able amount of time. Simulation speeds on the 
fastest of our models were many orders of magni- 
tude slower than actual hardware. However, careful 
analysis of the macrocode modules involved in the 
boot process revealed that by optimizing or remov- 
ing large, iterative sections of code, we could sub- 
stantially reduce thc number of cycles in the boot 
path without losing significant coverage for veri- 
fication. For example, the primary bootstrap mod- 
ule contains code that creates a bit map of all 
physical memory in the system. The code tests each 
memory location for errors. By reducing this code 
to test fewer memory locations, the number of 
cycles executed is vastly reduced. 

Another key optimization involved speeding up 
simulated transfers from disk. At several points dur- 
ing the boot process, code and data are pulled into 
memory from a mass storage device (usually a disk). 
For simulation, a special "turbo" disk model was 
written by the verification team. This model arti- 
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ficially processes model requests for block data 
transfers and performs the transfers instantly. This 
technique eliminated wasting simulated CPU cycles 
while waiting for transfers to complete. 

With model and code optimizations in place, 
booting the ms system to the point of printing the 
VMS banner and starting the process scheduler was 
actually achieved in simulation. It took approxi- 
mately seven CPU days on a host VLY 8800 system. 
One model bug and one real design bug were found 
during this effort. Booting the ViMs system in simu- 
lation required a large amount of verification 
resources. The process was worthwhile in terms of 
the bugs that were found and the confidence it gave 
us that we could boot v M S  on first-pass hardware. 

Analysis of tbe Functional Bugs Found 
To demonstrate where the verification project was 
successful and where it needed improvement, we 
discuss here the bugs that were found both before 
and after the chip set fist-pass design was commit- 
ted to masks. (Note: The milestone of this commit- 
ment is called PC, for mask data preparation's 
pattern generation.) Only the bugs pertaining to 
architecture, microcode, functional design, and 
logic design are discussed. Layout and circuit prob- 
lems, as well as modeling and tool bugs, are outside 
the scope of this paper. 

During the design period, several hundred bugs, 
with a variety of complexity levels, were found in 
all sections of the design. These bugs were found 
through the verification techniques described in 
previous sections and are detailed in Table 2. 

The prototype chips were first tested on a Takeda 
3381 chip tester. This tester allowed prototype 
chips to be tested in a standalone environment. The 
chips were then inserted into a prototype CPU 
module, which was part of a custom-designed engi- 
neering tester. The prototype module provided a 

Table 2 Methods Used to Find Design Bugs 
before F i r s t - ~ a ~ S  Silicon 

Number of 
Verification Process Bugs Found 

Custom DVTs, DVT reviews, 
microcode assertions 
Existing macrocode test programs 
Pseudo-random macrocode tests 
Boot V M S  operating system on the 
behavioral model 
Total of bugs found prior to 
first-pass silicon 



VAX 6000 Model 400 System 

true system environment for the chip set." During 
prototype debugging, 11 bugs n7ere found. The 
characteristics of these bugs are shown in Table 3.  

None of these bugs was a "show-stopper" in 
terms of prototype debugging or field testing. In 
fact, most of them were so obscure that the proba- 
bility they would appear during normal use was 
very low. Several generalizations and conclusions 
can be drawn from the types of bugs found and how 
they were found, particularly whether they could 
have been found earlier. 

Bugs 1, 2,6,  and 9 were simple, but were missed 
because of overlooked test coverage. The sim- 
plest test, if identified and written, would have 
found them. We learned that we needed more 
discipline and thoroughness in generating lists of 
tests as guided by test coverage indicators. 

Bugs 4, 5, and 11 were found on the simulator 
after prototypes were available. It is questionable 
whether these bugs would ever have been 
noticed, much less isolated, on shipped systems 
because the conditions triggering them were 
obscure. For example, six conditions, including 
a parity error interrupt, had to happen simul- 
taneously to reveal bug 4 .  It was acceptable to 
find these bugs after PG because the impact from 
such bugs on prototype debugging was minimal. 

on the hardware at-speed as opposed to using 
simulation. One of the new features stimulated 
the conditions for bug 3. Had this MAX feature 
been available prior to PC, we would have 
encountered the bug in simulation within the 
first few tests. Typically, 90 percent of the bugs 
uncovered by using the MAX tool are found with 
the first 100 tests generated. 

The verification methodology for bug 10 was 
correct, but had not been followed. Appropriate 
gate-level comparison testing would have found 
this bug prior to PC. 

Bugs 7 and 8 were extremely obscure and diffi- 
cult to find. The first symptom of these bugs was 
a series of unexplained system crashes over a 
period of several weeks. The situation was finally 
resolved by attaching a logic analyzer to a system 
and waiting for days for the right combination 
of events to trigger the failure. Unfortunately, it 
is highly unlikely that we would have found 
either bug in simulation, even with a broader 
scope of directed-random verification, given the 
limited amount of simulation that was done. The 
architectural, microcode, and pipeline combi- 
nations required to trigger these bugs were just 
too complex. 

Bug 3 was found using prototype hardware C O Y U : ~ J S ~ ~  
rather than simulation. A new version of MAX Although there were 11 bugs in the fist-pass chip 
was released during the prototype debugging set, the verification efforts were considered quite 
time frame. This version had some new test successful. Prototype debugging was never stopped 
coverage features, and we decided to run them because of a bug, and system field testing was able 

Table 3 Bugs Found after Pattern Generation 

Bug 
Number Chip Type Bug Type Complexity How Found 

1 CPU Microcode First order Inspection 
2 CPU Microcode First order Inspection 
3 CPU Logic Sequential MAX on prototype 
4 CPU Microcode Second order Pseudo-random on simulator 
5 CPU Microcode Second order Pseudo-random on simulator 
6 CPU Microcode First order Self-test on prototype 
7 CPU Logiclmicrocode Second order Field test system crash 
8 CPU Microcode Second order Field test system crash 
9 CPU Logic First order Prototype debugging 

10 Floating point Logic Sequential Chip tester comparison 
accelerator 

11 Cache Logic Second order System verification test on simulator 
controller 
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to complete on schedule. The modeling and veri- 
fication methodologies contributed to this success. 

All logic, functional, and microcode bugs could 
be reproduced in the behavioral model. There- 
fore, the bugs found after % could have been 
found with simulation had the appropriate com- 
bination of events been tested. 

Complex pipeline activity, an area of concern 
from the beginning, was the primary problem 
area in the design. Compromising design com- 
plexity to make thorough verification more 
achievable should be considered. 

In general, the tool or test that first exercised a 
chip section or functional area with a bug found 
the bug. We believe this indicates that it is more 
productive to  first debug using existing 
macrocode tests or automatically generated tests 
before writing new tests. 

Although the effort to boot the VMS operating 
system on the simulator was comparatively 
large, one bug was found that would not have 
been found through other means. We had not 
considered the combination of events that 
caused the bug. Finding this bug clearly showed 
the benefit of running this application on the 
simulator. Further, it gave us confidence that the 
VMS operating system would boot on the first- 
pass prototype hardware to ensure that proto- 
type debugging could proceed unimpeded. 

The flexible and wide-ranging modeling meth- 
odology served the design team well. The source 
code of the CPU chip set model has been reused 
in system verification and chip set application 
development projects at least ten times. The cor- 
porate standard DECSIM logic simulator made 
this modeling effort savings possible. 
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Test and Qualification of the 
V M  6000 Model 400 System 

Computer-aided design simulation, u~hich is used in the design of the VAX 6000 
family, finds most problem during the hardware design phase. Simulation, 
however, cannot test a cmnpkx systenz running under system softu~are control. For 
the VRY (jOO0  model 400 system, a qualification process was designed to coml~letely 
test the interaction of the system S hardware and soflware components. The benefit of 
such a process is clearly shown in the results. Nearly all the problems found in the 
qualification stage could not have been found in the simulation process. me testing 
and qual$ication of the Model 400 was a multigrotlp eflort. This paper desmMbes the 
metho& and tools of three Midrange Systems Engineering groups who were involved 
in theproject. 

The VAX 6000 Model 400 system is the third in the 
v A X  6000 series. The Model 400 is designed to 
enhance CPU performance using the same platform, 
that is cabinetry, buses, and power systems, as all 
moclels in the VAX 6000 family. The basic architec- 
ture of the VAX 6000 Model 400 is unchanged from 
that of the earlier Model 200 and 300 systems.'.',' 
The Modcl 400 is distinguished from earlier models 
primarily by two additions: a new processor design, 
which offers over twice the performance of the 
original VAX 6000 Model 200 processor, and by the 
addition of a vector coprocessor."5 The interfaces in 
the Model 400 to the common platform remain the 
same. However, the processor is an entirely new 
design, and is the first Digital system to use semi- 
conductors designed with the CMOS-2 process." 

All VAX 6000 systems use a common design pro- 
cess that relies heavily upon simulation to detect 
and correct design errors. This simulation process is 
designed to ensure that first-pass hardware, or the 
initial engineering prototypes, will run the operat- 
ing system at speed.- The VAX 6000 Model 400 
processor is an excellent example of the effec- 
tiveness of simulation techniques. The elapsed time 
from power-on of the first prototype to reliable 
login under both the ViMS and [JLTKlX operating 
systems was less than six weeks, which is sub- 
stantially less time than has been seen for previous 
v ~ x  processors. 

Current computer systems are very complex, 
especially when hardware and software interac- 
tions are considcred. Simulation cannot adequately 

test hardware executing under operating system 
control. A companion system test and qualification 
process, executed on hardware prototypes, is 
required to thoroughly test the complete system 
and ensure its reliability. 

A key goal of the \!Ax 6000 common-platform 
design strategy was to allow new processor tech- 
nology to be brought to the market quickly. To 
achieve this goal, we had to minimize the time 
required for system test and qualification without 
compromising the quality or reliability of the final 
product. By reusing common platform compo- 
nents, we could primarily focus on testing the new 
components. 

This paper addresses the system test and qual- 
ification process used for the VAX 6000 Model 400 
system. This process was designed to maximize test 
effectiveness and minimize test time. The fist  cus- 
tomcr shipments of the VAX 6000 Model 400 system 
occurred only six months after the introduction of 
its predecessor, the \!AX 6000 Model 300 system. 

System Test and ~ l i f i i c a t i o n  Process 
The VAX 6000 Model 400 System Integration Group 
is responsible for the overall design ancl manage- 
ment of the system test and qualification process. 
This group comprises engineers who reside within 
the hardware design group, but havc not directly 
participated in the design of the components being 
tested. Therefore. any problems found during the 
test period can be rapidly communicated and 
resolved, whereas the possibility of "testing to 
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implementation" versus "testing to specification" is 
avoided. 

A distributed test process was developed for the 
VAX 6000 Model 400 system that used the resources 
and expertise of a variety of groups within Digital. 
The test process also allowed many tcsts to be cxe- 
cuted in parallel to minimize time. Additionally, 
some of these groups have specialized test Facilities 
that are required to satisfy standards imposed by 
Digital and various government regulatory bodies, 
e.g., the FCC and UL. 

The groups that participated in testing the 
Viuc 6000 Model 400 system, together with a brief 
description of each group's function, are shown in 
Table 1. Each group played a valuable role in testing 
a particular aspect of the system. Initially, a very 
aggressive test schedule of six months for the entire 
test and qualification process was planned. How- 
ever, due to some delays in planned prototype 
availability, all testing had to be completed in about 
five months to allow systems to ship as scheduled in 
July 1989. The expertise of all the groups involved 
was recluired to meet this schedule. However, space 

limitations prohibit an in-depth discussion of each 
function. Therefore, we will examine in-depth the 
roles of three of the Midrange Systems Engineering 
Groups- the VAX 6000 Model 400 System Integra- 
tion Group; the VAX Architecture Verification 
Group; and the Midrange Systems Evaluation Engi- 
neering Group. We will also describe the tests and 
tools used in the qualification of the vAX 6000 
Model 400 system. 

System Integration Group 
Planning for the system test and qualification of the 
Vtuc 6000 Model 400 system began approximately 
one year prior to scheduled availability of the first 
prototype systems. During this period, the overall 
qualification plan was developed, and individual 
test plans were solicited from each group that 
would participate in the testing. Each plan was 
reviewed by the System Integration Group for test 
coverage, as well as for minimization of overlaps 
and duplication in the component plans. In parallel, 
the System lntegration Group developed plans for 
hardware-specific system design verification tests 

Table 1 Organizations Involved in  System Qualification 

Organization Function 

System Integration 

VAX System Architecture 
Midrange Systems Evaluation 
Engineering 
VAXcluster Validation 

Mechanical Technology 

Electromagnetic Compatibility 
Engineering 
Product Safety Laboratory 

Diagnostic Quality Assurance 
Manufacturing Product 
Verification 
Central Characterization Group 

System Performance Analysis 
Group 
Customer Services Systems 
Engineering 
Software Quality Maintenance 

Systems Reliability Engineering 

Manage qualification process; perform DVT, system test, reliability 
confidence test; manage field test 
Exercise new system to find discrepancies with the VAX architecture 
Test a variety of system configurations for proper operation, 
concentrating on 110 configurations 
Test complex VAXcluster environments with new products to find 
problems in new or existing VAXcluster components 
Demonstrate successful product operation while exposed to specific 
environmental conditions (e.g., vibration, humidity, altitude) 
Test new products for electromagnetic compliance to various 
government regulatory requirements (e.g., FCC, VDE) 
Test various aspects of new product safety and ensure compliance 
to safety standards (e.g., UL, CSA) 
Test various diagnostic programs to ensure correct operation 
Provide the necessary data to verify and improve the manufacturing 
process to enable consistent production of a quality product 
Characterize performance of industry and application-specific 
workloads 
Model and measure performance of midrange products 

Develop service delivery and training programs, test diagnostic and 
repair features of products 
Test software-layered product operability with new hardware and 
operating system versions 
Predict, test, and analyze hardware and system reliability 
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(DVTs) and for external field test. Prototype plans 
specified the number, distribution, and cost of the 
prototyped systems that would be required during 
the test period. 

The System Integration Group also acted as the 
problem-reporting center. In implementing a dis- 
tributed test process, two functions are essential. 
There must be a central focus that disseminates 
information regarding observed problems to all 
test groups. Second, an established method for 
tracking status and resolution of these problems 
must be maintained. An internally designed system 
maintained a complete audit history of each prob- 
lem. There were 121 problems reported during 
VAx 6000 Model 400 testing. Each step in the reso- 
iution process was tracked for each problem in the 
problem database. This database was available to all 
test groups. The database was supplemented by 
weekly cross-functional meetings, at which repre- 
sentatives from engineering, manufacturing, and 
customer services reviewed and updated each 
problem's status. 

The complex VAX 6000 Model 400 project sched- 
ule was developed and tracked by the group. Due to 
the number of groups involved in testing and the 
delays involved when problems were found, the 
critical path tended to be very dynamic during the 
test phase. A project management tool, which was 
developed within Digital and which used PERT, 
tracked status against milestones and modeled dif- 
ferent scenarios to prevent overall schedule slip- 
page as changes occurred. 

The System Integration Group performed four 
major types of test. These were system test, reli- 
ability confidence test, design verification tests, and 
field test The following sections describe each of 
these tests. 

S'tem Test 
There are two forms of system testing, directed and 
random. Most testing groups use directed tests, 
which test hardware or software features, or follow 
a strict test sequence. Directed tests seek specific 
results and are well defined. 

The System Integration Group performed many 
directed tests on the Model 400 system. Some of 
these tests were done to satisfy the requirements of 
external regulatory agencies, or internal Digital 
development standards. Other directed tests 
include system DVT tests, which are discussed in 
more detail later in this paper. 

Many aspects of complex systems cannot be ade- 
quately tested in a directed fashion. For example, 

an operating system and a processor can operate in 
a nearly infinite number of states. It is impossible to 
design a series of tests to verify each of these states. 

Random tests exercise the system in more com- 
prehensive ways than directed tests. They do not 
seek specific results. Instead, random tests attempt 
to push the system into as many different states as 
possible, as quickly as possible. Greater test cover- 
age results from these tests, hut problem diagnosis 
and isolation are more difficult. 

Because random testing does not look for specific 
results, it is effective only if done for extended 
periods of time Even if identical test scripts are run 
repeatedly, system activity becomes unpredictable 
over time, due to events such as network activity or 
disk fragmentation. This unpredictability is impor- 
tant because it means more system states are being 
exercised. 

The System Integration Group developed a ran- 
dom test package, called the Systems Integration 
Test Package (SITP), to test the VAX 6000 Model 400 
system. This package consists of a comprehensive 
collection of test programs and a script-driven 
mechanism that controls their execution. SlTP is 
diverse and flexible. The test programs were 
obtained from many sources. The System Integra- 
tion Group also wrote some test programs to exer- 
cise specific aspects of the Model 400 system that 
were not fully exercised by other tests. 

The test programs used with SlTP are high level. 
Each high-level test uses many lower level functions 
within the system. Many of these programs are run 
together, with varying test parameters and run- 
times. The programs are self-checking. If an action 
does not complete properly, the program notes the 
error immediately. The program does not attempt 
to identlfy the cause of an error; rather, it gathers as 
much information about the error as possible. This 
information is later examined by a test engineer. 

SlTP is easy to use, restarts automatically after 
system crashes or power failures, and includes mon- 
itoring tools. Periodic reports, with deta~ls about 
system activity and error log data, are generated by 
the test package. With this information, the test 
engineer can gauge the effectiveness of the tests and 
adjust them as necessary. The test engineer can 
also control and monitor tests on many different 
machines. Machines can be located locally and 
remotely. 

A number of srTP scripts were developed to 
provide different workloads for testing the Model 
400 system. Each set of scripts emphasized a dif- 
ferent type of system activity. Some were com- 
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pute intensive, some 1 1 0  intensive, and some 
stressed parallel and multiprocessing activity. The 
scripts were modified to suit systcm configurations 
as needed. 

SITP and the test scripts were installed on all the 
Model 400 system prototypes in the system integra- 
tion lab. Tests under the control of SITP were run 
on the prototypes as prototypes were available. 
Because the prototypes were heavily used during 
daytime hours for various debugging tasks, sITP 
tests were run overnight and on weckcnds. l'he test 
scripts were designed to run for a specific number 
of hours and then stop. The prototype was then 
available for the next user. This procedure allowed 
otherwise idle prototype hours to be used in system 
testing and ensured a clean shutdown of the tests. In 
this way, test data could be retrieved without inter- 
ference from other prototype users. 

SITP was used on the earliest Model 400 system 
prototypes and was continually uscd throughout 
the qualification period, as prototype time was 
available. Scripts werc tailored to cause test con- 
centration in specific areas and were modified as 
necessary to suit various prototype configurations. 
Typical SITP runs would last for 16 or 19 hours 
(overnight), or 58 or 60 hours (over weekends). 
Processor, memory, and 110 configurations varied 
from run to run, and depended on test nceds and 
equipment availability. 

The overall results from system testing were very 
positive. Over 6700 CPu hours were accumulated 
on various prototypes and configurations. Many 
errors were encountered during this period, but 
most were due to SlTP bugs (SITP was still under 
development for most of this period) or to errors in 
setting up test scripts. Hardware errors occurred in 
peripheral devices, principally disks and com- 
munications devices, and were corrected as they 
occurred. 

Of the more serious problems found, one was a 
hardware problem that would cause a system hang. 
The problem was identified as a bug in a bus inter- 
face chip on the CPu  module, which was operating 
in an untested mode. It  was resolved by mod~fying 
the system console to ensure that this mode was 
never used. An error was found in the VMS machine 
check handler, which was corrected in a subse- 
quent release of the VMS operating system. 

Five other serious bugs were found in the new 
CI'U modules. Although none of these bugs were 
found by the System Integration Croup's testing, 
each took time to investigate, resolve, and test the 
fixes. As a result, there was less time available on 

prototype machines for other testing. Two of these 
bugs were fixed by modifications to the C p u  mod- 
ule. The other three required changes to the proces- 
sor chip. As corrected processor chips became 
available, SITJ' was used to ensure the fvtes had not 
introduced further bugs. 

It is interesting to note that four of these five 
problems occurred in system areas not simulated 
during hardware design. Of these four, two 
occurred in the handling of external system events. 
One was in system reset handling. The other was in 
handling "control/P" interrupts. ControlIP is the 
standard method an operator uses to get the atten- 
tion of the system console on VAX systems.' Two 
bugs were caused by interactions between the new 
processor and other system components. These 
interactions were not simulated during hardware 
design. The fifth bug was not found during sirnula- 
tion because of a deficiency in a simulation test tool. 

Reliability Confidence Test 
To accumulate uninterrupted run-time on  the 
Model 400 system, five identically configured sys- 
tems were set up in an isolated area. The machines 
were isolated to protect them from outside inter- 
ference while the confidence test was running. 

The purpose of this test was to determine the 
actual reliability parameters of the Model 400 
system hardware and to compare the results to the 
system's actual reliability requirements. A second- 
ary goal of the test was to determine the long-term 
system reliability, both for the hardware and oper- 
ating system software. 

The duration of the test was planned for six 
weeks, which was sufficient to show the hardware 
reliability. Once this six-week period was over, 
we planned to continue to run the machines in 
the same environment with the same workload for 
as long as possible to accumulate further system 
run-time. 

The test started at the beginning of May 1989, 
when enough CPU modules became available to 
populate the five machines. The formal test period 
ended two months later, in late June. Three of 
the machines continued to run for two and a half 
months, until mid-September. Of the other two 
machines, one machine was needed for other pur- 
poses, and another's CpU modules were removed to 
change the configurations of the remaining three. 

The systems ran identical SITP scripts that con- 
centrated on  exercising the new CPUs. Tests 
included compute-intensive programs, programs 
that explicitly tested various aspects of the new 
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CPUs (e.g., multiprocessor cache coherency), some 
decomposed parallel applications, and tests that 
generated many VMS processes. 

The overall results of these tests were very good. 
The systems demonstrated a hardware reliability of 
over a year between hardware failures. 

Only two module failures occurred. One had a 
bad cache tag store, which was discovered very 
early in the test. As a result of this discovery, the test 
process for the CPU module's cache control chip 
was changed. The other module failure was a float- 
ing point chip failure. One specific test program 
began generating wrong answers late in the formal 
period of the confidence test. This module was 
removed for repair. 

Of the other failures that occurred during this 
test, all were attributable either to test script or 
set-up errors, o r  to  software or  hardware prob- 
lems which were corrected prior to shipment to 
customers. 

Once the formal test period was completed, the 
three machines that continued to run until mid- 
September exhibited no new failures and eventu- 
ally accumulated a year's run-time. The reliability of 
the VAX 6000 platform and the Model 400 CPU was 
successfully demonstrated. 

Design Verification Tests 
Part of the System Integration Group's responsibil- 
ity is to ensure that parts of the system not covered 
by tests from other groups are tested. In general, 
these parts are specific either to the new hardware 

or to how the new hardware fits into the existing 
system. These tests are called design verification 
tests (DVTS). 

A complete test plan for the Model 400 system 
DVTs was written and reviewed by the group. The 
list of DVTs performed is shown in Table 2.  

The Model 400 DVTs complemented those tests 
performed on the new hardware components. The 
parts of the system tested were those in which other 
testing was weak or nonexistent. These tests were 
conducted in a formal manner, with a written 
sequence of events and formal reports of results. 
Any problems found were noted and reported to 
the relevant development groups for analysis and 
eventual correction. 

The DVTs executed for the Model 400 uncovered 
two system bugs and some minor documentation 
problems. Both bugs were related to power failure 
recovery. One was in the console and one in the 
VMS operating system. Both bugs were eventually 
fiixed. The minor documentation problems in the 
system installation guide were also fixed. All other 
design verification tests found no problems with 
the system. 

Field Test 
Field tests are made on prototypes of new products 
provided to customers. The purpose of field test 
is to gain experience with the new products before 
production; new products are actually used as 
opposed to tested. 

Table 2 VAX 6000 Model 400 System Design Verification Tests 

Test Function 

Keyswitch 
Voltage margin 
Thermal 
Power-faillbattery backup 
Interlocks 
XMI saturation 
Queue contention 
Multiprocessing 
Load test 
System installation 
Boot 
System configuration 
Remote services console 

Console input 

Verifies front panel functions with new hardwarelsoftware 
Verifies proper operation over allowable voltage range 
Verifies proper operation over allowable temperature range 
Tests battery backup operation with hardware and software 
Tests memory interlock functions 
Tests system operation under very heavy bus loads 
Tests proper operation under very heavy worst-case memory loads 
Tests proper operation of all multiprocessing features 
Runs system for extended period under heavy compute and 110 load 
Verifies overall manufacturing process, and installation documentation 
Verifies that system boots all operating systems from all devices 
Verifies that all allowable configurations work properly 
Verifies that remote services console hardware and process works with 
new system 
Verifies that console terminal hardware and software work properly 
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For VAX system products, field test historically 
has lasted a minimum of four months. This period 
was determined from tracking problem reports 
from field test sites. Generally, a month was 
required for the new product to be installed and for 
usage to reach a level where meaningful testing 
occurred. The next three months provided useful 
data about the new system. After three months, the 
amount of useful data declined. 

In field testing the VAX 6000 Model 400 system, 
we shortened this four-month period to three. The 
plan was to check on field test results two months 
into the test. If field test was not progressing well 
at this point, we were prepared to extend the test 
period. 

The System Integration Group did two things to 
eliminate the field test startup time. First, because 
the Model 400 system n7as an upgrade from earlier 
VAX 6000 systems, Model 200 systems were 
shipped to each field test site in advance of the 
Model 400 field test start. These systems were 
installed and running approximately a wcck before 
the official field test started. A considerable amount 
of time was saved in site preparation and system 
installation. 

Second, the startup of the field test sites was 
performed by system integration engineers, who 
brought Model 400 CPU modules and new VMS 
software to each site. These engineers supervised 
the installation of the new CPI's in the previously 
installed systems, installed the VMS operating sys- 
tem, and ensured that the systems were available to 
the customer before leaving the site. 

A total of seven field test sites were started up in 
early April 1989. Six of these sites were located in 
the United States. Five of these sites were installed 
and turned over to the customers within two days. 
The sixth site nlas ready in four days. The seventh 
site was located in Europe, and was started up by 
mid-April. 

Once the site systems were running, the System 
Integration Group maintained regular contact with 
each site. Each site was assigned a "captain" (a sys- 
tem integration engineer), who polled the site 
weekly, talked to the users, and received first-hand 
information about machine usage. This method was 
used instead of the traditional dial-up problem 
reporting method for two reasons. First, technical 
problems existed in making reliable connection to 
the dial-up system. Second, many people are reluc- 
tant to report problems, unless the problem is so 
large that work stops or is severely impaired. 

Overall, field test went smoothly. Most of the 
problems that occurred were minor and easily cor- 

rected. Two problems arose because the Model400 
system was different from the other VAX systems in 
use at two of the sites. One site reported minor dif- 
ferences in results from a benchmark program, 
which was due to differences between run-time 
libraries used for full VAX architecture implementa- 
tions and subset implementations,x The other prob- 
lem resulted because a customer program was 
referencing an internal processor register that does 
not exist in subset implementations. 

Field test progress was assessed two months into 
the test, at the beginning ofJune. The results of field 
test were then examined, together with the data 
obtained from other qualification testing. Since no 
major problems had been found, we decided to pro- 
ceed with plans to ship the Model 400 system ns 
scheduled in mid-July. 

Some improvements could have been made in the 
field test process. First, site audits prior to instal- 
lation of the prototypes were not very thorough. 
Many of the sites were not running the neces- 
sary software revision levels. Therefore, the new 
machines could not be immediately put into 
VAXcluster environments with existing machines. 
Second, some pieces of hardware were missing and 
had to be supplied later. Better communications 
with the site prior to shipping prototypes would 
have reduced these problems. 

The System Integration Group wrote some moni- 
toring software that was to be installed on each field 
test machine. Because this was written at the last 
minute, it was not properly tested and did not work 
properly. The problems were fixed, but the moni- 
toring software was not nin at all the sites. Finally, 
how to get data from the monitoring software back 
to the engineering groups was not well defined. 
Thus, usage data obtained from field test machines 
was spotty. These tools and methods are being 
improved for use in the field test of future products. 

VAX Architecture Vmyication Group 
The Architecture Verification Group ensured that 
the Model 400 CrU conformed to the VAX architec- 
ture specification.' 

Test Process Overview 
The architectural verification process consists of 
running two programs- AXE (architecture exer- 
ciser) and MAX (multi-instruction architecture 
exerciser)- in various modes for a given number of 
test cases. The tests are simple to run. However, the 
test programs are quite complex and required many 
years to develop. The Architecture Verification 
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Group maintains and enhances these test programs 
and the databases used to verify the architecture. 

When one of the tests fails, the group identifies 
the problem and helps resolve i t .  Once the problem 
is fmed, the group repeats the tests. 

AXE and MAX 
The \/AX instruction set consists of over 360 instruc- 
tions and 21 addressing modes. Most modes are 
valid for up to six operands per instruction. Con- 
ceptually, both AXE and MAX divide an instruction's 
context into several components. These com- 
ponents include opcode, operand specifiers, oper- 
ands, page protection and validity, and processor 
status long word (PSL). For each component, valid 
and invalid values are pseudo-randomly selected to 
create a test case. The exerciser continues to create 
unique cases for as long as it is run. 

The VAX architecture has a clearly defined excep- 
tion and instruction restart structure. Much of the 
VAX architecture's complexity is in those opera- 
tions. Therefore, both AXE and MAX favor values 
that cause faults. Each program establishes a situa- 
tion with faults, starts the instruction or sequence, 
verifies that the fault occurs, fixes the fault, restarts 
the instruction, and verifies that it completes cor- 
rectl y. Upon completion, AXE or m compares the 
results from the unit under test to a known good 
reference, and reports any differences. The known 
good references contain the correct results of each 
test case. These references have been accumulated 
over the years of testing VAX systems and have 
changed as the VAX architecture changed. 

AXE AXE is the older and simpler exerciser. It cre- 
ates test cases that consist of a single instruction. A 
typical instruction stream would be: 

When this instruction is first executed, either a 
resewed operand fault (on R1) or a resewed 
addressing mode fault (short literal destination) 
should be reported. AXE will fix whichever fault is 
reported and restart the instruction. 

Assuming the reserved addressing mode fault 
was reported, the instruction might then look like 
this: 

ADDF3 R l ,  R 2 ,  R 3  R 1 = 0 0 0 0 8 0 0 0 ,  R2=46246811 

If  the reserved operand fault is reported, AXE will 
change R1 to a valid floating point value and restart. 
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When the instruction completes, AXE compares 
the instruction stream and the relevant data to  
reference data. In this example, the relevant data 
includes the three general purpose registers. 

Both AXE and MAX ignore a machine state 
defined to be unpredictable for a given condition. 
Therefore, allowable differences between imple- 
mentations do not cause erroneous failure reports. 

Limiting AXE'S testing to single instructions pre- 
cludes meaningful testing of the pipelining that is 
common in today's CPU designs. MAX overcomes 
this limitation. IMAX currently acts as an adjunct to 
AXE. However, it will eventually replace AXE. 

MAX MAX is similar to a compiler in that it creates 
complete instruction streams. However, MAX does 
not have source code to ensure that the resultant 
machine code is logically consistent. 

To test how a CPU handles inter-instruction data 
dependencies, MAX must create test cases with 
instructions that share registers and memory loca- 
tions. Creating sensible instruction streams can be 
difficult. For instance, the result of one instruction 
could be used as part of an address calculation for 
a subsequent instruction. However, the likelihood 
is slim that the result of a randomly selected arith- 
metic calculation will be used within the test case's 
virtual address space. 

MAX f is t  creates and executes sensible cases in 
logical steps. It then assembles and executes each 
case as a whole. 

After selecting the first instruction, hIAX executes 
the instruction, including fault restarts, and saves 
the final results. MAX next selects and places the 
second instruction in memory following the first 
instruction. Where possible, it uses the results of 
the first instruction for operands and operand 
specifiers of the second instruction. MAX selects 
new values for operands and specifiers for which 
old values cannot be used. 

MAX includes the new values in the initial state of 
the entire case. It then executes only the second 
instruction. This process repeats until an instruc- 
tion stream of the desired length is created. At this 
point, the entire stream is executed. Once the 
stream is run, the results of all of the instructions are 
compared. This comparison is made against the 
results of the single-step execution and the results of 
the known good reference. 

Test Process 
The minimum testing requirements for shipment 
of VAX systems were developed from experience 
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gained from testing all previous V U  systems. The 
requirements are a compromise between the num- 
ber of bugs likely to be found and the time required 
for the tests. The testing program consists of over 
200 million lest cases. 

The use of AXE and MAX in the system qualifi- 
cation process is a continuation from the CPU 
design process. Both exercisers were used esten- 
sively to test simulations of the cPr! design. How- 
ever, this testing is limited by simulation speed. 
Testing on hardware at speed is necessary for more 
thorough coverage. 

Testing of the VAX 6000 Model 400 started in late 
April. To complete verification in less than two 
months, four machines were used. The machines 
executed different test cases in parallel. 

The VAX GO00 Model 400 CPIJ was the fust \!AX 
CPLJ for which no hardware bugs were found by 
AXE or MAX during final qualification. This result is 
a testament to the cxeful design and extensive test- 
ing during the simulation and chip debug phases of 
the C P U  design. 

However, a bug WAS found in the VMS operating 
system's floating point emulation code that calcu- 
lates the POLYx instr~ctions.~ Because the Model 
400 CPU is the first that did not include the POLYx 
instruction in the c l- '~ microcode, it was the first 
CPU that required use of the VMS emulator for this 
instruction. For this reason, the bug had never been 
seen before. 

The Architecture Verification Group traced the 
bug and confirmed that a patch to the emulator 
tixed the bug. The group then reran all of the test 
cases that exercised the floating point emulator to 
confirm that no new bugs were introduced. The 
patch was included in the VMS version 5.2 manda- 
tory update. 

Midrange System Evaluution 
Engineering Group 
The Midrange System Evaluation Engineering 
Group tests new products to isolate design faults 
and configuration incompatihilitics. This group 
examines varioi~s system configurations, tests inter- 
action between components, and tests special situa- 
tions, such as power failure and recovery. 

Test Process Overview 
System evaluation typically begins when the first 
hardware and software prototypes become avail- 
able and continues through to product shipment. 
Evaluation planning oftcn begins six to nine months 
prior to the actual process with the crcation and 

review of a test plan. The test plan is based on 
product specifications and information from devel- 
opment groups. It identifies the test tools, configu- 
rations, and strategy the System Evaluation Group 
will use. 

The System Evaluation Group exposes new 
products to a wide range of hardware and soft- 
ware configurations. This exposure is achieved by 
combining a stable, well-equipped, and versatile 
laboratory with specialized test software and test 
procedures. These tests are done before system 
shipment to customers, when modifications can be 
made at minimal expense. The group complements 
the qualification efforts of the product develop- 
ment groups by allowing these groups to focus 
attention on product-specific engineering issues. 

Test Strategy and Test Software 
The overall VAX 6000 Model 400 test strategy 
involved the installation of the new processors in a 
wide range of system configurations. The group 
subjected these configurations to a series of inter- 
active load experiments, which used internally 
designed and developed software tools. These tools 
concurrently stressed all configured processors, 
memory arrays, I 1 0  adapters, and communication 
devices. Stress in this context means heavy loads 
in terms of 1 1 0  bandwidth used for a given data bus, 
and minimal idle CPU time for processors. This test 
strategy has proven successful since it was fust used 
in the mid- 1970s for PDP- 1 I systems. 

The processor and memory tests exercise VAX 
instructions, the floating point processor, and the 
cache subsystem. Configurations with large mem- 
ories are tested with a specially developed memory 
exerciser. This program references memory in the 
least efficient manner to force high page fault and 
low cache hit rates. 

1 1 0  adapter tests exercise specific devices. The 
tests include a system exerciser that can generate 
various 110 rates to disk, tape, and terminal devices, 
while verifying data integr~ty. 

Communication tests include a DECnet exerciser 
and an Ethernet local area network program. These 
tests generate a high level of network activity and 
check data integrity. 

Con figuration Selection and Test 
The System Evaluation Group selects configurations 
according to many factors, including 

vMS operating system restrictions 

Bus architectures and slot placement limitations 
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Power and packaging restrictions 

Marketing requirements 

The maximum number of each supported option 
is tested within laboratory resource limits. Because 
the Model 400 CPU is a higher performance proces- 
sor for the existing VAX 6000 platform, it was tested 
within established VAX 6000 family configuration 
guidelines. The System Evaluation Group chose 
nine Model 400 system configurations to test from 
one up to six processors, 32 to 256 megabytes of 
memory, and from two to six VAXBI channels. 

An important part of configuration testing for a 
new processor involves verification of proper sys- 
tem initialization and operating system boot using 
various load paths. With the Model 400 system, this 
testing meant loading the operating system through 
different VAXBI channels, disk or CI adapters, and 
load devices. Several problems were noted with 
bus adapter initialization and self-test while testing 
certain VAXBl channel configurations. These con- 

figuration-dependent problems were corrected by 
modifying console and operating system software. 

As shown in Figure 1, VAXBI channels on the 
Model 400 were also configured with all currently 
supported VAX 6000 system I10 adapters. Although 
testing with large and diverse system configurations 
poses logistical challenges, these environments will 
often succeed in exposing device compatibility 
problems. 

The device compatibility problems found during 
the Model 400 evaluation occurred either during 
operating system initialization or when interactive 
workloads concurrently exercised all system 
devices. One such problem resulted from the 
increased processing speed of the Model 400 pro- 
cessor and would occur only when an adapter was 
tested in a specific configuration under a certain 
workload. 

More specifically, this problem was due to a race 
condition between a VMS application level program 
issuing 110 requests and the adapter hardware pro- 

MODEL 400 PROCESSORS 
1 TO 6 PER SYSTEM 

XMI 

2 TO 6 VAXBl CHANNELS m 
VAXBl 

Figure I Adapters/Options Tested during VAX 6000 Model 400 Evaluation 
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cessing and returning a response. With slower 
machines, the adapter hardware won the race; but 
with the faster Model 400 processor, the host won 
by issuing commands faster than the adapter hard- 
ware could process them. The problem was cor- 
rected with a modification to the device driver 
software. 

Complete configuration test coverage for the 
Model 400 processor also required VAXclusterAocal 
area vucluster [LAVC) and DECnet/local area net- 
work (LAN) c\~aluation using each of the supported 
CJ and DECnet communication adapters. To accom- 
plish these t a t s ,  a 13-node VAXcluster was estab- 
lished composed of eight VAX host systems, four 
HSC mass storage servers, and the VAX 6000 Model 
400 system under test. 

Primarily, the VAXclusterlLAVC and DI:<:net/LAN 
testing verified the functional compatibility of the 
Model 400 processor with the VAX (1000 series CI 
and NI adapters. Cluster and LAN activity were used 
simply as adapter loads. Interactive experiments 
were designed to emphasize stress at the local sys- 
tem level. Cluster-level verification was deferred to 
another group. 

Evaluation of the VAX 6000 Model 400 system 
also verified the Model 400 system-level power-fail/ 
warm-restart capability in large configurations with 
high compute and 110 loads. These tests ensured 
that battery backup units wwld  maintain supply 
voltages for the guaranteed duration. Further, these 
tests ensured that error reporting and recovery pro- 
cedures operated properly. 

Interactive Test Method 
The interactive test method first selects test soft- 
ware. It then modifies parameters such as vMS 
queue 110 (Qlo) request size, number of outstand- 
ing commands, and device mode of operation. 
Using this method, three system workloads were 
generated. 

The first workload used small VMS QIo request 
sizes and maximum QIO request queue lengths to 
achieve high I f 0  rates. This workload minimized 
idle CPU time and maximized time on the inter- 
rupt stack. 

The second workload used large VMS QIO request 
sizes with sequential disk accesses and device loop- 
back to generate high bus utilization rates (bytes 
per second). This workload saturates 110 buses and 
interconnects by generating large amounts of direct 
memory access activity. 

The third workload combined CPU/memory and 
110 adapter test software with a distribution of 
small, moderate, and large VMS QIO request sizes. 

Memory arrays were also configured in a non- 
interleaved mode to degrade memory access time 
and aggravate potential bus timeout conditions. 

Thc System Evaluation Group ran interactive test 
experiments for a minimum of four hours and a 
maximum of three days. A typical experiment 
lasted 18 hours. Most long duration experiments 
were performed using the combined CPLlImemory 
and YO adapter workload. The longer run-times 
provided adequate time for adapter exercisers 
to step through a preprograrnrned range of trans- 
fer sizes. 

Following each test, VMS error counters, test soft- 
ware status reports, and VMS error log entries were 
ex:~mined for system or device errors. The group 
then characterized problems in terms of their fre- 
quency, repeatability, and the system environment 
in which they occurred. The system environment 
included detailed information regarding hardware 
configuration, the software test tools and parame- 
ters used, and module, operating system, device 
driver, and firmware versions. 

Although some of the problems noted during the 
Model 400 evaluation were easy to reproduce and 
occurred frequently, others were intermittent in 
nature and not so easily induced. For example, the 
configuration-dependent problems occurred each 
time a specific configuration was tested, whereas a 
particular device compatibility problem was inter- 
mittent and required long duration runs before 
appearing. 

The detailed problem descriptions, along with 
pertinent error log or crash dump data, were pro- 
vided to the appropriate development groups for 
analysis. Also, descriptions were logged in the pro- 
ject-specific problem reporting databases to ensure 
that problems were properly tracked and resolved. 
The System Evaluation Group then worked with the 
development group to fm the problem. 

From a total of six problems noted during the 
Model 400 evaluation, four were configuration- 
dependent and corrected through modifications to 
the VMS operating system or console microcode. 
Two problems were device compatibility bugs that 
occurred during operating system initialization and 
interactive testing. These problems were fixed 
through modifications to the VMS operating system 
or device driver software. 

When the VAX 6000 Model 400 system evaluation 
was completed, a final report was distributed. The 
report summarized the configurations and test tools 
used, the specific experiments performed, and the 
current status of all problems that were identified. 
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Summary 
System qualification is the last stage in the system 
development process. The qualification process for 
the Model 400 system was designed specifically to 
take into account computer-aided design and simu- 
lation used by the hardware design process. 

As our experience with the Model 400 system has 
shown, nearly all of the problems found during 
system qualification were in areas of the system that 
could not be simulated. As a result, the qualification 
process is most effective when focusing on testing 
those parts of the system that cannot be simulated 
because of their complexity, which presents both a 
challenge and an opportunity. 

The challenge is to  design test processes and 
tools that can adequately test a complex system in a 
reasonable time. With SITP and other test tools, 
such as those used by Midrange System Evaluation 
Engineering, we have made a significant start in 
developing these tests. However, there is still much 
room for improvement, and work is continuing in 
this area. 

The opportunity is to shorten the qualifica- 
tion process. Because first-pass hardware is more 
robust, more system testing can occur earlier. Also, 
better test tools enable us to provide more test 
coverage in less time and with fewer resources, 
both in prototypes and number of people. We took 
advantage of this opportunity in the Model 400 
system qualification to cut the length of field test 
by 25 percent, thereby bringing the Model 400 
system's new technology to market faster. 
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Development of the 
DECstation 3100 

The aECstatiotl 3100 is tbe finl member of Digitalk fanzily of high-performance 
ULTRJX u~orrtttutions. Built u~iCh R2Om chip set jkm MIPS Computer Spsterns, 
Inc., and highly integrated I/O andgrwhics subsystem, the WCstation 3100 iirzple- 
metzts 12 mips of RISC-bad computing, workstation I/O, and excellent bit-map 
grllphics m a single module. ?be LEGstation 3100 workhtzon runs Digital S IILTRIX 
operating @em (compatible with U N R  sopware) as well as aECu~indows somare, 
TCP/IP, DECnet soflw~re, and Netutwk File Sentrices (NFS). The workstation can be 
configured with 8MB to 24MB of p'ty-protected memory, monochrome or 8-plane 
colrw graphics, 15-inch or lpinch monitors, and SCSI disk and tape devices. This 
paper describes the LXCsMtion 3100product, the design effort, details of the system, 
and measured benchmark p e r f i n c e .  

System Oueruiew 
Packaged in a desktop system box, the DECstation 
3100 workstation is implemented as a single mod- 
ule that contains CPU/FPU, separate instruction and 
data caches, memory control logic, Ethernet and 
small computer systems interconnect (SCSI) con- 
trollers, four serial lines, and video display logic. 
Connectors on the module accept as many as 12 
memory modules of 2 megabytes (MB) apiece as 
well as a single monochrome or color f r m e  buffer 
module. The box optionally contains 3.5-inch, 
104MB SCSl disk drivcs. An SCSl connector on the 
back of the slstem box supports the attachment of 
additional SCSI devices, such as the 332MB disk 
drive, thc 95MB tape drive, and the GOOMR CDROM 
disk drive. 

Background and Project Goals 
Digital's research and development groups in 
Palo Alto had used a UNIX operating system in a 
clientlserver computing environmcnt for more 
than three years. The clients were various VAX 
workstations. The servers were VAX systems and 
NSC-technology resclrch machines, called Titans, 
which were developed by Digital's Western 
Research 1,aboratory. 

'The major frustration in this environment was 
the lack of processing power at the workstation. 
Computer room servers delivered up to 12 million 
instructions per second (mips), but most office 
workstations delivcrcd only 1 mips. This disparity 

caused many workstations to be used only as rather 
expensive tcrminal emulators for the larger 
mdchines. The slow workstations also meant that 
window applications were often bogged down in 
screen update activity, and that NFS performance 
was limited not by device or network spceds but by 
the workstation's processing power. 

The primary goal of the DE<:station 3100 project 
team was to producc a fast RISC ULTRIX workstation 
that would bring processingand windowing perfor- 
mance to the user's desk at a competitive price. The 
product would run the ULTRIX operating system, 
DECwindows products, and network software for 
both TCPIIP and DECnet networks. 

In early May of 1988, we received approval 
to build an ULTRIX workstation that featured 
increased processing power. The remdining design 
goals were time to market, packaging, reuse of 
existing designs, and system cost and price. The 
aggressive schedule called for the first workstation 
to  ship in mid-January 1989. We were asked to  
use the new desktop system box designed for 
product to be later announced as the VAXstation 
3100. We were also asked to reuse any hardware 
or software elements of thc VAXstation 3100 that 
we possibly could. Our own view of the market- 
place caused us to choose an entry-level price of 
approximately O 1 0 K .  

At the end of the project, we achieved all of our 
goals. We shipped the First system in the desired box 
on the very day we had promised. We reused most 
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of the existing LII,TRIX, windowing, and network 
software, and supported the same internal disk 
drives as the VAXstation 3100. We held the entry- 
level price within 20 percent of the $10K goal. 

System Cost Issues 
We needed to control the high-cost items of proces- 
sor, caches, and memory. We also had to resist the 
tendency to add things, either because other groups 
requested them or because we had ourselves 
wanted them. 

The processor choice was based more on cost per 
mips than the absolute cost of the processor chip set 
itself. The cost per mips consideration led us to 
select a UlSC processor instead of a VAX processor in 
order to obtain at least a two-to-one performance 
advantage. Since wc were building a product for 
users of the LI12TRIX operating system, the lack of 
vAX instruction compatibility was not an issue. We 
chose the R2000 chip set from MIPS Computer 
Systems as the best c:Mos uls<: technology on the 
market. 

Even though caches contribute significantly to 
system performance, we still considered the use of 
small caches to reduce cost. Simulations of system 
designs indicated that the higher expense of large 
caches was necessary to achicve fast desktop 
performance. 

Our most difficult challenge was determining 
how to implement memory. We did not want to 
burden the entry-level systems with more memory 
than was necessary, but we did want the opportu- 
nity to add memory to systems that could use it. We 
considered memory on the system module, mem- 
ory on daughter cards, niemory on commodity 
single in-line memory modules (SIMMs), and finally 
niemory on custom-designed SIMMs. In the end, we 
chose the custom-designed SIMMs because of their 
density, cost, and configurability. 

Basic Project Rules 
To succeed at this project we kept the size of the 
team to the minimum and isolated the team from 
outside influences. We settled on a minimal product 
focus team and a minimal design team. The five- 
person product focus team would manage the pro- 
ject while the three-person hardware design team 
would build the machine. Everyone would work 
from the Palo Alto base. 

The first machine was running two months 
after the project start datc. By that time the design 
team had expanded to about twenty people 
developing the electronics package, diagnostics, 

software, and documentation. Many designers, 
particularly software engineers, temporarily relo- 
cated from New Hampshire to participate in the 
project. Researchers from Digital's two Palo Alto 
research laboratories gave generously of their time 
in reviewing the design, developing new software, 
and testing prototype systems. 

The product focus team built extended support 
groups for functions such as manufacturing, mar- 
keting, sales, and application development. 

Basic Design Rules 
From the beginning we agreed upon some basic 
design guidelines. We strictly adhered to these deci- 
sions throughout the design phase of the project. 
We would develop all functions on one system 
module. Anything that did not fit would not be part 
of the product. 

We would do  no ASIC or other rc design; the 
schedule did not allow for it. So we would use lots 
of random, low-cost , standard logic functions, PALS 
in particular. Opportunities for lower cost integra- 
tion would be saved for follow-on products. 

We would build dumb 110 controllers. This deci- 
sion eliminated the use of secondary processors, 
microcode, and hardware coordination of intel- 
ligent devices. Various-sized buffers on every con- 
troller would allow devices to run at their own 
speeds independent of gener~l processor activity. 
Software drivers n~nning on the general CPU w o ~ ~ l d  
interact with industry- or Digital-standard con- 
troller chips for the 110 subsystems. 

We would build dumb graphics- no pipeline, no 
graphics processors, no rendering chips, but simply 
a frame buffer configured as part of the main mem- 
ory address space. The only exception was to add a 
color plane mask for use by the color software. 

We would aim for ease of manufacturing by 
keeping the option choices low. The only choices 
to be made in manufacturing the system box were 
how many memory modules to insert, which frame 
buffer module to insert, and whether to add one 
or two internal disks. This decision kept the total 
manufacturing permutations down to 30. (Earlier 
Digital workstations were up around 1000.) 

We would try to let experiencecl computer users 
upgrade and service their own workstations. The 
choice of system box limited this capability since 
the VAXstation 3100 box was not originally 
designed for user access. We simplified the original 
box design and left much of the box empty to make 
the electronics more accessible. 
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Conflicts and Resolutions 
A t  project start, the derign team resisted the idea of 
offcring both monochrome and color graphics 
options. We hclicvcd in the value of providing color 
wherever and whenever possible on workstations: 
customers prefer color, and it provides additionaI 
functionality. However, we were not confident 
we could dcvelop both graphics options and still 
remain on schedule. We decided to use a simple 
frame buffer along with a single, configurdble video 
output design. We would bear the cost of an unnec- 
essary VI)AC in the monochrome system, but we 
only had to design one system. 

Although the hardware design team was confi- 
dent that costlperformance trade-offs were t l x  
right ones, other project members voiced their con- 
cern. Some issues were memory size and 110 and 
graphics performance. W u l d  the rnz~imum mem- 
ory size of 24MB be large enough for applications 
such as computer-aided design ( C A D )  and model- 
ing? How would Ethernet and disk performance 
compare to VAXstation and competitors' work- 
stations? Would the choice of frame buffer matched 
with a fast RlSC processor deliver adequate graphics 
performance, particularly in color systems? 

Thcsc qilestions were answered once the soft- 
ware development was complete and performance 
mc;tsuremcnts ccll~ld be made on late prototype 
systems. See the Product Qualification sectiun of 
this paper. 

Another topic we debated was whether to aIlow 
peripheral devices in the box, which was clearly 
designed for such devices. Various combinations of 
disks and tapes in the box presented three prob- 
lems: more complicated options in manufacturing, 
a heavy drive plate and complex cabling for the user 
to remove during system upgrade, and a power 
problem if an internal tape drive was present. 
Evcnt u;tlly we permitted only the internal 3.5-inch 
disk drives and simplified the drive mounting plate 
to be easier to remove. 

Product Qualification 
Since the entire project time was only eight 
months, we  needed to maximize the test time of 
the DECstation 3100. The hardware was an entircl y 
new design. The software was a port from a VAX 

base to a KISC base, and much of the lower level 
graphics software was completely new code. 

To test modules and the hardware system, we 
sent many early prototypes to a local testing lab- 
oratory for stress testing. While running both diag- 
nostics and the ULTRIX operating system, we shook 

the systems, power-cycled them, tempernture- 
cycled them, even submitted them to rainfall due 
to an environmental failure. We recorded c\.ct-y 
failure and traced it back to its source. Many of 
these failures led to changes in diagnostics, compo- 
nents, placement, and mechanical solutions. 'l'his 
early stress testing did not uncover any problems 
not seen elsewhere, but with a small number of 
machines, it validated all problems seen in the other 
test situations. 

To test the total system with its software, we 
invented a qualification team nicknamed the 
"wrecking crew," a group of about twenty-five 
senior engineering researchers and developers. 
They agreed to accept early prototypes and to sub- 
ject them to heavy use for a period of three months. 
Their goal was to break the systems, as often and in 
as many ways as they could. During the wrecking 
period, we constantly installed the latest soft- 
ware changes, replaced diagnostic KOMs, added 
hardware, and moved systems from person to per- 
son to allow everyone to try different configura- 
tions. Each crew member was responsible for an 
exhaustive test of a subset of the ULTRIX commands 
and utilities. 

The wrecking crew was a huge success. Team 
members reported 785 problems, complained 
mightily and usefully, ported C A D  tools, window 
applications, and compilers in their spare time. 
Their constant demand for the performance they 
expected exposed many bugs that were artificially 
limiting performance. Best of all, the wreckers 
almost doubled the number of software experts 
knowledgeable about the workstation from an 
early stage and thus contributed significantly to 
system quality. 

Processor Subsystem Details 
The DECstation 3100 CPU consists of the MIPS 
R2000 integer processor, the R2010 floating point 
coprocessor, and four R2020 write buffers. The 
chip set operates at 16.67 megahertz. 

In the DECstation 3100, the R200O chip set runs 
in "L~ttle Endian" mode. In other words, bits wlthin 
bytes and words are counted from right to left, and 
the low-order bit is the rightmost bit in a word. 
"Little Endian" mode means that the integer data 
format of the DECstation 3100 is identical to the 
integer data format of any VAX processor. The 
floating point data format is compliant with lEEE 
standards. 

The R2000 CPU implements the instruction set, 
processor registers, virtual memory, and interrupt 
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system as defined by the R2000 architecture. The 
CPU maintains the direct-mapped, write-through 
data cache. Each cache is 64 kilobytes (KB) in capac- 
ity with a 4-byte line size. The tag and data stores of 
each cache are byte-parity protected, and cache 
parity errors transparently generate cache misses to 
reload the cache from memory. 

The R2010 floating point coprocessor imple- 
ments the IEEE arithmetic functions and coproces- 
sor registers defined by the R2000 architecture. 

The R2020 write buffer implements a four-stage 
write buffer for the CPU. This write buffer allows 
the CPU to write to its write-through cache without 
stalling the CPU as long as the write buffer is not full. 

Grapbics 
Graphics on the IlECstation 3 100 is implemented in 
a tightly integrated subsystem. Frame buffer mem- 
ory is a region of memory in the processor address 
space- 2 5 6 ~ B  in a monochrome system and 1 MB 
in a color system. Less than half of the monochrome 
frame buffer and three quarters of the color frame 
buffer are displayed on the workstation monitor. 
The remaining frame buffer memory may be used 
for storage of graphics data structures such as fonts. 
The frame buffcr memory is not parity protected. 

At boot time, the [ ILTRlX operating system 
detects the size of frame buffer memory and 
whether the system is monochrome or color. 
Because frame buffer memory is cacheable and 
addressable in the same way as the dynamic ran- 
dom access memory (DRAM), the software is able 
to achieve extremely high performance without 
any special-purpose graphics hardware. 

A color plane mask allows processor writes to the 
color frame buffer t o  affect only specific bits of a 
pixel. This design allows modification of a given 
plane of the color frame buffer using only write 
cycles, which increases performance significantly. 

The graphics programmable cursor supports a 
16-by-16 pixel, two-plane cursor. The cursor can 
take two forms: a 16-by- 16 bit pattern or a crosshair 
whose lines may extend to the edges of the visible 
raster or may be clipped to a programmed region. 
The cursor in a color system may have up to three 
colors, and the cursor in a monochrome system 
may have up to three gray-scale values. 

Memory 
The DECstation 3100 supports 8MR to 24MB of byte- 
parity protected memory in 4 M B  increments. The 
memory system includes both the DRAM array and a 
video random access memory (VRAM) frame buffer. 
The video frame buffer has the same memory access 

characteristics as memory and may be cached if 
desired. The memory system supports byte, half- 
word, word writes, and word reads. 

The memory system control logic is optimized 
for minimum memory read latency, at a slight cost 
in memory write latency. On a memory read, the 
CPU incurs a five-cycle stall in the absence of mem- 
ory refresh contention. The memory system can 
sustain five-cycle reads, which results in a peak read 
bandwidth of 13.3MB per second. 

Memory writes to an empty write buffer com- 
plete in eight cycles, but do not stall the CPU. Suc- 
cessive memory writes complete at the rate of six 
cycles, and the CPU stalls whenever the write buffer 
is full. The memory system can sustain six-cycle 
writes, which results in a peak write bandwidth of 
11.1 MB per second. 

The DRAM and VRAM arrays are implemented 
with SIMMs. Each DRAM array contains 2MB of 
memory on a double-sided module. The VRAM 
arrays contain either 1 megabit (Mb) (monochrome) 
or 8Mb (color) of frame buffer memory on single- 
sided modules. 

Ethernet 
The Ethernet interface on the DECstation 3100 con- 
sists of a CMOS controller chip and a 6 4 ~ B  buffer. 
The controller chip manages transmission and 
reception of packets through ring descriptors and 
packet buffers located in the Ethernet buffer. The 
buffer is time-multiplexed between the controller 
chip and the workstation CPU. 

Connection to the Ethernet is by a thick-wire or 
Thinwire cable. A push-button switch on the rear of 
the system box selects the appropriate connector. 

SCSI 
The DECstation 3100 supplies a small computer 
system interconnect (SCSI) as the interconnect for 
storage peripherals. The workstation's SCSl inter- 
face consists of a gate array controllcr chip and a 
128KB buffer. The controller chip manages the SCSI 
bus through selection, DMh data transfer, and dis- 
connect commands. The interface supports com- 
mand disconnect/reconnect and synchronous data 
transfers at ~ M B  per second on the SCSI bus. The 
buffer is time-multiplexed between the controller 
chip and the workstation CPU. 

An SCSI connector on the rear of the DECstation 
3100 system box allows connection of external Scsl 
peripheral devices. Digital offers a 332MB disk, a 
95MB tape, and a 600MB CDROM reader. Each of 
these devices is packaged with power in its own 
sidecar box. 
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Table 1 Comparison of RlSC System Performance 

DECstation Sun Sun MIPS 
31 00 411 10 41260 MI1 20-5 

Dhrystoneslsecond 22.7K 12.8K 

Linpack single precision 3.7 0.95 
(MFLOPs) 
Linpack double precision 1.6 0.57 
(MFLOPs) 
Stanford small integer benchmark 0.1 15 0.220 0.150 0.1 18 
(seconds) 
Digital Review's CPU 2 benchmark 6.91 18.99 13.71 N A 
suites (seconds) 
XLlB graphics performance rate 4.9K N A 0.7K N A 

Serial Lines 
Four serial line interfaces are present and are pro- 
grammable from 50 to 9600 bits per second. The 
serial transmitters arc double buffered, and the 
receivers sharc a 64-entry FIFO. The workstation 
uses one serial linc for the keyboard and another for 
the mouse. One serial line, designed for modem 
use, supports data-terminal-readylciata-set-ready 
(DTR/T>.SR) control signals. 

Sofiware 
The DECstation 3100 runs the standard software 
expected by users of UNIX operating systems as 
well as software that allows easy networking and 
windowing of VAX and 3100 systems. Digital's 
ULTRIX operating system is compatible with 
Berkeley ~ 4 . 3 ,  AT&T System V, and is compliant 
with POSlX standards. DECwindows software runs 
on the DECstation 3100 in both the monochrome 
and color configurations and integrates searnlessly 
with DECwindows running on VAX systems with 
VMS operating systems. UL'TRIX supports DECnet, 
TCPAP, and NFS. Compilers include the C, 
FORTRAN, and PASCAL compilers adapted from the 
compilers from MIPS Computer Systems. 

Performance 
Table 1 lists kcy performance measures of the 
DECstation 3100 workstation. For comparison pur- 
poses, the table also lists the pcrformancc of  other 
RlSC systems, namely the Sun 41110 and 41260 and 
the MlPS M1120-5. 

Ihble 2 lists the SCSl and network subsystem 
peripherals 110 performance of the DEc:station 3100. 

Table 2 DECstation 3100 110 Performance 

Subsystem 
Peripheral I10 Performance 

930KB per second 

33OKB per second 

320KB per second 

450KB per second 

RZ55 file reads 
(with read-ahead 
microcode)' 

RZ55 file reads 

RZ55 writes 

NFS file reads 
(with read-ahead 
RZ55 microcode) 

NFS file reads 

NFS file writes 

IPIUDP 1500-byte 
packets 

IPIUDP 64-byte 1000 packets per second 
packets 

lP/TCP end-to-end 350KB per second 

'RZ55 read-ahead microcode has not yet been 
released by Digital Equipment Corporation. 

330KB per second 

320KB per second 

800KB per second 

Conclusion 
One of the delights of the 1)ECstation 3100 project 
was that we wcrc building the machine that we 
ourselves had w ~ n t e d  for a very long time. By using 
a small, focused core design team and resisting 
incremental additions, we achieved the aggressive 
time-to-market goal. 
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Compiler Optimization 
in RISC Systems 

Compiler optimization determines the level of RISC system pe@ormunce. De archi- 
tectural design of compilers f m  MIPS Computer Sytems) Inc., combined with sup- 
port took facilitates compiler optimization and overall system thoughput. The 
compiler design takes advantage of small and high-speed cache memory to enhame 
perfomme. The cord toolpositions the program in memory to mure that the most 
frequently used memory locations never compete for the same cache locatiom 
Portability is crucial to compiler e f e c t i v m .  iMlPS compilers implement many 
industry-wide extensions to the standard languages to wake them compatible with 
other implementations. 

RISC (reduced instruction set computer) system 
performance embodies many components. In addi- 
tion to the performance of individual instructions, 
the processor architect must consider how the 
compiler combines the instructions, how system 
vendors construct the memory system, and how the 
user writes programs. Of particular importance is 
how well the compiler optimizes programs for a 
given hardware architecture. In addition, program 
portability is essential to ease the burden of moving 
applications to new systems. By considering all 
such aspects of system performance, the processor 
architect can use the full potential of a RlSC system. 

Traditional CISC (complex instruction set com- 
puter) processors were developed without signifi- 
cant information on how high-level programming 
languages would use them. In contrast, RISC archi- 
tects make trade-offs between microprocessor 
structures and compiler complexity, with the goal 
being overall system performance. 

The compiler is the key link between the archi- 
tect and the system user. Therefore, it is essential 
that the processor architect completely understand 
the compiler and its capabilities. 

Compilation is the process of converting high- 
level source code written in a programming 
language into machine code for a target machine. 
This process must consider translating the instruc- 
tions correctly into machine language, as well as 
into optimal machine language. Often, the high- 
level language masks the primitive level of the target 
machine by providing programming tools that do 
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1989, Digital Design Publishing, Westborough. MA 01 58 1.  

not directly correspond to the machine's features. 
Compilers must also deal with programs that do not 
take best advantage of these features. The optimizer 
is the portion of the compiler that deals with perfor- 
mance issues. 

Optimization Boosts Performance 
Optimization occurs at many stages within the 
compiler. Some optimizations are best done at the 
front end of the compilation process when first 
processing the source program. These optimi- 
zations are called language-dependent optimiza- 
tions because they rely on features unique to a 
specific programming language. Other optimiza- 
tions, called machine-dependent optimizations, are 
performed late in the process because they require 
detailed information about the target machine and 
how the program actually uses that machine. Still, 
other optimizations are independent of both the 
source language and the target machine. 

Compilers from MIPS Computer Systems consist 
of several independent front ends that convert 
individual languages into a common intermediate 
code called ucode. (See Figure 1.) MIPS currently 
supports six programming languages: ADA, C ,  
COBOL, FORTRAN, PASCAL, and PLI; ANSI C and C++ 
will be available in 1990. The common back end 
performs the bulk of the optimization and generates 
machine code. 

The common back end of the compiler uses a 
variety of optimization techniques that require 
varying amounts of information. The compiler 
must gather the information from the source code 
and analyze it. Peephole optimizations require the 
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least amount of information-usually only an 
instruction or two. Global optimization requires 
the most information; it must take into account 
control flow (the branching and looping structure 
of  a progmm) and data flow (the data usage within 
each section of the program). Intercompilation unit 
optimiucions represent an extreme form of global 
op  timintion that occ~lrs between independent 
source files. Local optimization requires an interme- 
diate amount of information-usually data usage 
within a group of consecutive statements. Table 1 
l~sts optimizations shared in the MIPS compilers. 

One of four optimization levels (-00, - 0 1 ,  -02, or 
-03) can invoke the MIPS compiler. The levels 
indicate the relative compilation speed - not the 
importance - of the varkn~s optimization c h e s  
that the compiler can implement. For example, a 
program compiled at the -00 level, which specifics 
no optimization, would compile faster than a pco- 
gram compiled at thc -03 level, which offers the full 
range of optimintions. These optimization lcvels 
also correspond closely to the components invoked 
during the compilation process. 

The -00 option disables the optimization nor- 
mally performed by the code generator and 
assembler. The -01 option (the default) designates 
nlinimal and fast optimization. Under this option, 
the code generator and assembler perform local 
optimizations within basic blocks. Apart from tradi- 
tional local optimizations such as local common 
subexprcssion, expression simplification, constant 
folding, dead code elimination, and peephole opti- 
mizations, the code generator performs branch and 
label optimization, and the assembler performs 
architecture-dependent pipeline scheduling. Com- 
pilation speed does not lengthen noticeably 
bctween -00 and -01. Thus, -00 is seldom needed 
and is used mostly for comparison studies. 

Option -02 adds the uopt phase to the compi- 
lation stream to perform global optimization and 
register atltxation within the full range of individ- 
ual procedures. Compilation time might lengthen 
substantially because global data-flow analysis and 
coloring rgister-allocation algorithms are invoked. 

Supporting optimizations across multiple source 
files is the -03 option. This option adds the uld 
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Table 1 Optimization Methods 

Peephole 
optimization 

Local 
optimization 

Global 
optimization 

lnstruction scheduling 
lnstruction selection 
lnstruction substitution 
Calllreturn selection 
Branch-to-branch optimization 
Local subexpression elimination 
Constant folding 
Expression simplification 
Dead code elimination 
Local register assignment 
Short-circuit evaluation 
Invariant code removal 
Strength reduction 
Global register assignment 
Global subexpression elimination 
Shrink-wrapping register saving 
Linear test replacement 
Loop unrolling 
Tail recursion 
Copy propagation 
Redundant store elimination 

lntercompilation Interprocedural register allocation 
unit optimization In-line expansion of procedures 

phase, which combines separate compilation units 
into a single file at the ~lcode level. Thus the option 
enables multimodule programs to achieve the same 
degree of optin~izatic.)n as single-module programs. 
The umerge phase selectively expands procedure 
calls by in-line substitution. The resulting ucode 
object is then sent into normal back-end optimi- 
zation and compilation stream starting with uopt. 
'The -03 option causes uopt to perform interproce- 
dural register allocation;  opt also benefits from the 
complete information in the linked ucode file to 
perform the other global optimizations normally 
associated with this phase. 

Local Hardware Architecture 
MII'S' architectural design facilitates compiler opti- 
mization and overall system throughput. Important 
to system performance is the memory hierarchy. A 
split cache provides intlependent access to both 
instructions and data in a single cycle. A single com- 
bined cache would limit the processor to obtaining 
only a single instruction or data item each cycle. 

The compiler design takes into consideration the 
effect of cache memory. On average, instruction 
references cache miss less frecluently than data ref- 
erences; this observation allows the compiler to 
prefer slightly longer instruction sequences if they 
avoid extra data references. The instruction cache 
miss rate is lower because the hardware loads multi- 

ple contiguous words into the cache on a miss, and 
the sequential nature of instruction execution takes 
advantage of this locality. 

Register optimization makes the most significant 
architecturelcompiler performance enhancement 
Because the optimizer knows that data allocated in 
registers can be accessed without delay, it places the 
most frequently used variables into registers. The 
optimizer computes the lifetime of individual data 
items and replaces the memory ucage with a register 
usage. The relatively large number of registers 
makes it likely that the optimizer can successfully 
promote the most frequently referenced variables 
into a register. (There are thirty two 32-bit integer 
registers and sixteen 64-bit floating-point registers ) 

One of the most important architectural features 
used to improve performance is the instruction 
pipeline. Although several cycles are required to 
actually complete the instruction, the processor can 
be viewed as if each instruction takes only one cycle 
because a new instruction is started each cycle. The 
compiler is aware of several exceptions; for exam- 
ple, load instructions require one instruction 
between the load and the use of the data loaded. 
This load-delay slot is used by the compiler for 
another instruction - effectively, the cache mem- 
ory access of the load executes in parallel with the 
other instruction. This technique 1s called instruc- 
tion scheduling. Other examples of parallel instruc- 
tion execution include 

Overlapping a branch instruction with another 
operation 

Testing for division by zero while the divide is in 
progress 

Executing several different floating point oper- 
ations simultaneously (The MIPS processor has 
separate floating point add, multiply, and divide 
units.) 

The MIPS architecture does not have condition 
codes. Although this seems unusual compared with 
many other machines, this design actually improves 
performance. 'The architecture provides branch 
instructions that both test a condition and then 
branch. Thus, the compiler must generate only one 
instruction for conditional branches rather than the 
two instructions usually required (one to test for the 
condition, then another to perform the branch). 
Only comparisons that compare larger (or smaller) 
values between two registers, or a register and 
immediate value, cannot be handled this way. The 



VAX 6000 Model 400 System 

compiler restructures most comparisons to avoid 
this case, thus decreasing average test time. 

Instructions in a ClSC processor often have 
widely varying execution times. This difference 
makes it hard to determine which of several alterna- 
tive sequences is actually fastest. Because almost all 
RISC instructions take the same time, the optimizer 
can select the fastest sequence with relative ease. 

Program Portability 
To make a system useful, programs must be ported 
onto the processor. The use of U M x  operat- 
ing systems and standardized languages such as 
FORTRAN bas tremendously improved program 
portability. However, incorrect programs may have 
latent bugs that are masked by a naive compiler. 
Thus, an optimizing compiler tends to expose more 
of these problems. A naive FORTRAN compiler may 
assign all variables to memory locations, giving 
variables predictable initial values. An incorrect 
program that relies on these initial values will fail 
when an optimizing compiler assigns a variable to a 
fast register that tends to have unpredictable values. 

An optimizer converts the program (as written) 
into one that is identical except that it executes 
faster. To do this, the optimizer must make assump- 
tions about what the programmer intended. Often 
the programmer depends on expericnce with previ- 
ous compiler implcmcntations rather than the rules 
of the 1:inguage. 

The >,fIl'S compiler suite provides a number of 
options to allow :I program to run without modifi- 
cation in the presence of such common errors. This 
permits a program to be ported quickly, giving the 
programmer a choice as to when to correct the 
problem. 

Traditionally, system vendors have added unique 
extensions to their language implementations. 
While these may be a boon to a programmer when 
writing the program, they can be a bane when it 
comes time to port the program. The MIPS com- 
pilers implement many industry-wide extensions to 
the standard language$ to make them compatible 
with other implementations. An important set of 
extensions is the support of Digital's VAX FORTFUN 
extensions. Another is the inclusion of IBM's PL1 
extensions to pernlit an independent software 
vendor to port a 1.8-million-line PL1 program to the 
MlPS architecture. 

Wherever estcnsions :Ire required, Mil's chooses 
proposed extensions for similar functions that arc 
being considered by the standarcis committecs. An 
example of this last situation is the need to repre- 

sent hardware 110 structures when bcing rcfcr- 
enced by an optimizing compiler. Consider an 110 
device register that is used to define the st:ctus of 
the 110 device. The optimizing compiler would see 
multiple references to the address without inter- 
vening assignments. The compiler would cleverly 
(but incorrectly) optimize all references to a proces- 
sor register. MIPS has added the key word volatile to 
indicate to the compiler that this variable changes in 
ways that the compiler cannot detect. This exten- 
sion was recently incorporated into the current 
ANSI standard for C ,  but i t  was added to the MIPS C 
compiler four years ago. 

Toob to Development 
Fundamental to  system development is a tool set 
that aids in compiling, debugging, performance tun- 
ing, and system construction (bring-up). MIPS' tool 
set includes those tools traditionally found in UNIX 
operating systems, as well as tools unique to MIPS. 

The multiple front-cnd, common back-end con- 
struction of the MlPS compilers provides a consis- 
tent set of languages to the developer. Options and 
flags are the same across all languages. In fact, cc 
can usually be used to compile programs in the 
other languages. All languages share a common 
linkage convention that makes it easy to write or 
port progr;tms written in two or more languages. 

The ['NIX tool make provides a convenient 
method of program development. This tool iden- 
tifies which source modules of a program changed 
and rccompilcs only those modules. In recom- 
piling, tlrakc provides the correct compilation 
options. It also provides the complete set of cornpi- 
lation options; for example, the debugging option 
can be en;~bled through a nzuke target to trou- 
bleshoot a program. Later, the debugging options 
can be disabled, and higher levels of optimization 
can be spccificd in compiling the production 
version of the program. The make rules file, which 
accompanies the source program modules, deter- 
mines how the modules are t o  be combined into the 
final run program. This prior determination elimi- 
nates the need for detailed written documentation 
or programmer support, making it simpler for 
developers to exchange source programs. 

Crucial to eftjcient program development is 
a source-oricntecl debugger. MIPS provides an 
extended version of dbx which supports all pro- 
gramming languages. (ADA has a special debugger.) 
The debugger provides features such as print- 
ing variables = they change, or replaying a debug- 
ging session to a certain point before continuing 
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the debug session. The user can view and edit the 
source, as well as see each statement as it is 
executed. 

The debugger also lets the user view the program 
in both the high-level language in which it was 
written and in the generated machine language. 
Thus, the user can set a breakpoint on a specified 
statement or instruction. Full debugging facilities 
are available only when the debugging option is 
specified. However, the compiler (by default) main- 
tains the line number tables in a compressed format 
in the load module even when the option is not 
specified. Retention of the line number tables per- 
mits partial debugging without the need to recom- 
pile the program using the debugging option. Line 
number information is kept for each instruction, 
permitting the instruction scheduler to move the 
instruction while keeping track of the line that 
originated it. 

Specification of both debugging and optimization 
options can create conflicts. For example, it is possi- 
ble for a bug to appear only when a higher level of 
optimization is specified. Moreover, optimizations 
such as register allocation can confuse the debug- 
ger, because variables are not at the locations that 
it assumes. To avoid this situation, the MIPS compil- 
ers disable any optimization that interferes with 
debugging when both debugging and optimization 
options are specified. To debug the problem that 
shows up only in optimized code, a special option 
permits both the debugger and optimization to be 
enabled. This technique requires the developer to 
use caution when inquiring about the contents of 
a variable. 

To tune a program for optimal performance, the 
developer must learn where in a program the time 
is spent and why. Traditional U N l X  systems provide 
a method called pc sampling. With this technique, 
the system must interrupt a program at regular 
intervals (usually 60 or 100 times per second) and 
increment a per-location counter. After enough 
sample points are taken, a pattern of execution time 
emerges. This method has a severe flaw because 
modern processors execute 10 to 20 million instruc- 
tions per second; this means the number of samples 
is less than 1 in 100,000. The method requires a very 
long execution time to collect a statistically mean- 
ingful sample. 

Although MIPS provides the pc sampling tech- 
nique, it also furnishes a more exacting method. 
Pixie is a tool that takes an executable load module 
and prepares it for measurement by inserting a 
counrer in every basic block. After running the 

instrumented program, the counters are dumped 
to a file for analysis by several programs. Prof dis- 
plays tables of interesting information such as the 
following: 

Number of CPU cycles for each source line 

Number of times each function is called 

Average number ofcycles in each call to a function 

Figure 2 shows examples ofprof output listings. 
A second program, pljcstats, takes the same counts 
and displays information about the program in 
architectural terms, such as: 

Number of cycles used for each instruction 

Number of unused delay slots 

Number of FLOPS 

A general indication of cache locality 

These two programs assume a perfect memory 
system, that is, no effect due to cache misses. 

For a complete analysis, a cache simulator is also 
available that uses pMe to provide a memory 
address trace to the simulator to model the mem- 
ory system. MIPS uses this technique to plan new 
machine designs. Each proposed change to the 
system requires a detailed simulation to exhibit its 
effect. When a MIPS designer is convinced that a 
balanced and optimal point has been found, iniple- 
mentation begins. Experience with this technique 
has shown an accuracy of better than 4 percent 
when comparing predicted performance to actual 
performance. 

An Optimization to Improve Cache 
Performance 
An area seldom addressed in compilers is the opti- 
mization of programs in memory to improve cache 
hit rates. Modern microprocessor performance has 
been increasing faster than the supporting memory 
systems. Taking advantage of this higher perfor- 
mance without introducing costly memories has 
required the use of small and high-speed cache 
memory. Cache memory contains recently used 
instructions and data. Hardware substitutes cache 
memory if the desired word is in the cache. This 
substitution is invisible (other than performance 
improvements) to the program. Each main memory 
location must share a cache location with other 
memory locations because the cache is smaller than 
main memory. For a cache to be effective, it must 
contain enough of the program or data to ensure 
multiple reuse of the instructions or data. 
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cycles 8cycles sun 
lcall lllns 

MI" IfI~f~nl.pl 
w~l~rn-cha~. t..IL.x~a~t~)t.~l 
urIte-~h*r I. . /L .~LoYCPUC.CI  
w r l L . - ~ h l l  I../L.XLOYIPUt.cI 
rrlrn-lnr*grr I. .lr.xcourpur.cl 197 

,"> v.uv avu.uv I5 9 wd I. ./L.XIOUIPUL.CI 
90 0.00 100.00 
81 0.00 100.00 
35 0.00 100.00 u l n  1flxtonr.pl 
35 0.00 100.00 rrln 1IIxIonL.pl 
15 0.00 100.00 wrlt.-m~rlnq l../~=x~outpll.cl 150 44 511050 0.39 95.46 
13 0.00 100.00 

o,oo [open USED AN AVERAGE OF 82 ' vrltm-drars I. .lr.xrourpr .=I 48 4 561855 0.38 95.84 

r 0.00 100.00 CYCLES PER CALL AND 13 BYTES 
rrI~.-ch.r= l..ll.xlo~tput.~l 41 4 567035 0.38 96.22 
-rl~._chars I../L.XLOUL~JL.C) 49 28 487387 0.11 96.55 

s 0.00 ~oo.oo PER LINE. I I I .  18 20 348150 0.24 96.79 
5 0.00 100.00 c r e r t  t../str np.rgl.*l main 1flxfonr.p) 31 100 318000 0.21 91.02 I 

Figure 2 Emmples of prof Oulput Listings 

A valuable optimization is to position the pro- 
gram in memory so that the most frecluently used 
memory locations never compete for the same 
cache locations. MIPS has built a tool called cord 
that rearranges the program to improve instruction 
cache utilization. This tool is made possible through 
the existence of precise profiling tools. 

To use cord, the programmer compiles the pro- 
gram in the usual way. Pixie is used to add counters 
to the program for each basic block. After exe- 
cuting the instrumented program, prof is run with 
an option that creates a file containing dynamic 
execution information. That file is given to cord, 
along with the original executable module. 

Cord computes the density for each function 
(procedure). The density is defined as the average 
number of cycles executed by each instruction in 
the function. Figure 3 is an example of eight 
functions, their sizes, cycle counts, and density. 
Cord then creates a new executable module after 
sorting the functions according to density. Figure 3 
also shows the order of the functions in the rear- 
ranged program. 

This sort improves cache hit rate because it 
places the functions that use the most cycles in 
memory so they do not compete for the same cache 
location as other frequently executing functions. 
The effectiveness of sort is helped by two other 
features in the MIPS architecture. First, the caches 
are direct-mapped to memory so that each memory 
location corresponds to a single cache location. Sec- 

ond, the MIPS operating system places virtual pages 
in physical memory so that adjacent virtual pages 
map to adjacent cache pages. As a result, the place- 
ment of functions by cord has very predictable 
effects on the cache. 

Figure 3 also shows the arrangement in an 
unexpected way. Rather than placing the densest 
function (A) at the beginning of memory, it is placed 
farthest from the start of the cache. This arrange- 

MEMORY ADDRESSES 

KEY. 

NAME 
A 
B 
C 
D 
E 
F 
G 
H 

SIZE 
12K 
24K 
20K 
8K 

16K 
12K 
16K 
20K 

CYCLES 
960K 

1680K 
1200K 
400K 
640K 
360K 
320K 
200K 

DENSITY 
80 
70 
60 
50 
40 
30 
20 
10 

Figure 3 Cache Performance improved by cord 
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ment has the effect of making the densest func- 
tion share cache locations with the function 
128 kilobytes (twice the cache size) away (H). Cord 
improves performance by as much as 20 percent to 
30 percent on programs exceeding the size cache. It 
works solely by improving the efficiency of the 
instruction cache. Methods to improve data cache 
accesses are not available yet because of the more 
random nature of data accesses and difficulty in get- 
ting accurate data reference information. 

An advanced architectural simulator, Sable mod- 
els (in C) the processor, including TLB, pipeline, 
register set, and system design, incorporating the 
cache subsystem, main memory, and 110 interface. 
Developers can customize Sable for a unique system 
design. Sable has been used routinely at MIPS to 
bring up the UNrX operating system before hard- 
ware is available. Simulation with Sable assures that 
the software is reliable and performs optimally 
when the hardware is actually available. Sable can 
be osed with the debugger to provide full symbolic 
debugging in the simulation environment. Also, 
Sable can provide the same address traces thatpixie 
provides to analyze operating system performance. 
After a system has been brought up using Sable, 
other tools can assist in constructing the system on 
the real hardware. A simple debug monitor is 
available to work with the symbolic debugger to 
provide a symbolic debugging environment on the 
real hardware. 

Compiler Optimization in RISC S p t m  

Compilers are taking better advantage of the paral- 
lelism in today's RISC processors. Evidence of this 
can be seen in the scheduling of instructions to 
capitalize on load and branch delays and multiple 
floating point units. This trend will continue as it 
becomes feasible to build effective multiprocessor 
systems. In this area, compilers that will partition a 
problem across multiple processors - each per- 
forming a portion of the iterations of a loop- will 
be seen. A major challenge will be to find ways to 
use this kind of parallelism in nonengineering prob- 
lems. These problems tend not to be loop intensive 
and will require a breakthrough in compiler tech- 
nology for automatic parallelism. 

Over the past five to ten years, the programming 
language c has come to the forefront as a major 
systems language. While C offers many advantages, 
it requires a user to deal with fairly primitive struc- 
tures rather than abstractions. C++ will offer much 
of the flexibility of C with the added capability of 
data abstraction. 

It  is expected that future compilers will take 
advantage of optimizations that reduce cache 
misses. These optimizations include loop inter- 
change, which reorders the accesses to an array to 
improve locality of data references, and software 
pipelining, which takes better advantage of over- 
lapping memory accesses and computation. 
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