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Cover Design 
Dithering and color space conversion are two 
of the concepts discussed in "Video Rendering," 
.which opens this issue's set ofpapers on multi- 
media technologies. On the covw the band 
of blue across the bottom of the cover graphic 
shows the rectangularpatterning created 
by an ordered ditherprocess using a populccr 
recursLue tessellation array The band of bur- 
gtrtzdy across the top shows the sziperiorpat- 
terning of the same ordered ditherprocess 
with a newly designed void-ancl-cluster array, 
which produces a higher quality image for dis- 
play by eliminating the rectangulc~r patterns 
and the textrires of white noise. The line illus- 
tration overlayiiag these two arrays presents 
two color spaces, one within the other: RGB 
and Y W  (Itiminance-chrominance space used 
by television systems; Y axis not shown). In the 
color conversion process, data transmitted 
in YWspace is converted lo RGB space. The 
cover design shows threefc~ces ofthe RGB 
space "lifted o r  ancl infused with the colors 
noted at each corner oftheparallelepiped, 

The cover concept and ill~rstrations are 
derived from the paper "Video Rendering" 
by Bob Ulichney. The design was imple- 
mented by Linda Falvella of Quantic 
Communications, Inc. 
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I Editor5 Introduction 

Jane C. Blake 
~Vunqqing Editor 

This issue of the Digital TechnicalJotrr~zal features 
papers on multimetlia technologies ant1 applica- 
tions, and on uses of the Application Control 
Architecture (ACA), Digital's implementation of the 
Object Management Group's CORHA specification. 

The high quality of today's television, film, and 
sound recordings have set expectations for com- 
puter-based multimedia; we expect high-quality 
images, fast response times, good quality audio, 
availability-including network transmission, and 
all at "reasonable" cost. Bob Ulichney has written 
about video image-rendering methotls that are it1 

fact fast, simple, and inexpensive to implement. He 
reviews a color rendering system and conlpares 
techniques that address the problem of insufficient 
colors for displaying video images. Dithering is one 
of these techniques, and he describes a new algo- 
rithm which provides good quality color and high- 
speed image rendering. 

The dithering algorithm is utilizetl in Software 
Motion Pictures. SIMP is a method for generating 
digital video o n  desktop systems without the need 
for expensive decompression hardware. Burkhard 
Neidecker-Lutz and Bob Ulichney tliscuss issues 
encountered in designing portable vitleo compres- 
sion software to display digital video on a range of 
display types. SMP has been ported to Alph;~ AXP, 
Sun, IBM, Hewlett-Packartl, and Microsoft platforms. 

Digitized data-video or audio-must be com- 
pressed for efficient storage and transmission. 
Davis Pan surveys audio compression techniques, 
beginning with analog-to-digital conversion and 
data compression. He then discusses the Motion 
Picture Experts audio algorithm and the interesting 
problem of tleveloping ;I real-time software imple- 
mentation of this algorithm. 

Even conipressctl, digitizetl data takes up tre- 
mendous  m mounts of storage space. A relational 

database can not only store this data but provide 
fast retrieval. Mark Riley, Jay Feenan, John Janosik, 
and T.K. Rengarajan describe DEC Rdb enhance- 
ments that support multimedia objects, i.e., text, 
still frame images, compountl documents, and 
binary large objects. 

Managing image documents is the subject of a 
paper by Jan te Kiefte, Bob Hasenaar, Joop Mevius, 
and Theo van Hunnik. Megadoc is a hartlware and 
software framework for building custon~ized image 
management applications quickly and at low cost. 
They describe the UNIX file system interface to 
\VOliM tlrives, a storage manager, ant1 ;In image 
;~pplication framework. 

Distributing multimedia over a network presents 
both engineering challenges and opportunities for 
applications. DE<:spin is a real-time, desktop video- 
conferencing application that operates over LANS or 
WANs, using TCP/IP o r  DECnet protocols. Larry and 
Ricky Palmer present an overview of the DECspin 
graphical interface. They then address network 
issues of real-time conferencing on non-real-time 
networks and a solution to network congestion. 

The transmission of full-motion video programs 
to multiple users requires adaptations in many 
parts of a client-server, IAN environment. Peter 
Hayclen's paper focuses on the specific problem of 
efficient allocation of network addresses for the 
transmission of digital vicleo data on a LAN. He 
reviews alternatives and tlescribes a technique for 
the tlynarnic allocation of multicast addresses. 

The common theme of the two final papers is 
ACA Services, Digital's implementation of the OMG's 
Common Object Request Broker Architecture. Paul 
Patrick has written an instructive paper o n  CASE 

environment development ~~t i l iz ing ACA. Assuming 
a multivendor, distributetl environment, he dis- 
cusses modeling of applications, data, and opera- 
tions; application interfacing; and environment 
m;inagement. 

DEC QaGlance software is an implementation of 
ACA th;lt supports the integration of manufacturing 
process information systems. David Ascher differ- 
entiates between generic integration software and 
OaGli~nce, and clescribes how ACA is ilsetl to inte- 
grate independently cleveloped applications. 

The editors thank John Morse, engineering man- 
ager, Corpor;ite Research, and Mary Ann Slavin, 
engineering manager, ACA, for their help in prepar- 
ing this issue. 
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I Foreword 

John A. Morse 
Sr: Engineering Munc~gel; 
Corporate Research G 
Architecture 

In the late '80s, "multimedia" was a magic word. 
It seduced us with glimpses of a brave new world 
where audio ant1 vitleo technology merged with 
computer technology. It promised us everything 
from instant high-impact business presentations 
to virti~al reality. Words like "paradigm shift" and 
"multibillion-dollar intlustry" were enough to snare 
both the technophilcs and the eager entrepreneurs 
into believing that the world had suddenly 
changed, and w e  were all going to get rich in the 
process. 

Somewhere o n  the way to the bank, reality set in, 
ant1 it wasn't virtual. The reality is that multimedia is 
a lot harder than it looks. S ~ ~ c c e s s h ~ l  rni~ltimetlia 
requires ;I marriage between analog 'W technology 
and digital computer technology; it requires recon- 
ciliation between a technical/professional market- 
place and a consumer marketplace. As in any 
marriage, a lot of hard work is required to make it 
succeed, and much of that work is yet to be done.  

For certain segments of the computer industr): 
multimedia was relatively easy to implement ant1 so  
caught o n  quickly. The first successes have been at 
the extremes of the  cost spectrum-very low-end 
clesktop multimedia o n  the one  hancl, and very 
high-entl virtual reality systems o n  the other. This 
has left Digital, with its traditional focus on  the 
mitltlle, temporarily out of the game. 

For desktop multimedia, all that is reqi~ired is the 
ability to capture and display video and audio. Since 
machines like the Commodore Amiga were already 
based more o n  Tv technology than on  computer 
technology (for cost reasons), they coultl be quickly 
ant1 cheaply adapted to handle audio and motion 
video. Thus desktop multimedia was born. The 

CD-ROM, adapted from autlio CD technology, was the 
perfect storage rnetlii~rn for distribution of multi- 
media content; and s o  for this market segment, 
CD-ROM and multimedia became almost synonymous. 
There has emerged a whole industry based around 
the production of multimedia titles on  CD-ROM. 

At the high end,  for purposes such as full-realism 
aircraft simulation o r  virtual reality applications, 
the solution was to use the highest performance 
hardware available, at whatever expense. Typically, 
high-end, three-dimensional graphics systems were 
coupled either to supercompilters o r  to  massively 
parallel processor arrays. The result was, and still is, 
impressive. But the cost is still so  high that such vir- 
tual reality systems arc not yet commercially viable 
except in specialized low-volume markets. 

The vast area in the middle, into which all of 
Digital's business falls, has developed very slowly. 
The problem is that our  business is based o n  a 
model of enterprise-wide computation. The com- 
puter systems w e  design ant1 sell not only inclucle 
processors and displays but incorporate networks 
and servers as well. To introduce multimedia into 
such a model, o n e  touches every aspect of the  sys- 
tem, from the desktop, through the network, and 
back to the servers. At every turn, w e  have found 
that the technology that has evolved over 30 to 40 
years for handling numbers, text, and (more 
recently) two-dimensional and three-dimensional 
graphics is not  quite right for video and audio. 
Every component of the system, both hardware and 
software, needs to  change in some way. We need to 
evolve to a model of networked client-server multi- 
media computing. Change of this magnitude is a 
slow process. 

Two challenges are s o  pervasive that alniost 
every paper in this issue addresses them, each from 
a different perspective. First of all, multimedia 
involves the handling of large quantities of data. 
Second, for many applications, that data must be 
handled under very tight time constraints. The 
resulting stress and strain on  all components of the  
system translates into a set  of technical challenges 
that has occupied us for the last four years and 
prornises to keep us busy through at least the rest of 
this decade. 

Depending o n  the picture quality chosen, it may 
require from o n e  million to o n e  hundred million 
bytes of storage to save each second of live video in 
digital form. Since many applications of multi- 
media, such as archiving television footage for 
research o r  historic preservation purposes, will 
need to save many hozirs of video, it is easy to see 



th21t n~ultimedia quickly builds dem;lnd for many 
gigabytes (1,000,000,000 bytes) of magnetic or opti- 
cal disk storage. But storage is only part of the prob- 
lem. Once such enormous amounts of data are 
stored, the challenge becomes how to retrieve a 
particular item of interest. Standard database tech- 
niques are orielited toward retrieval of text and 
r~un~bers. Retrieval of autlio ant1 video information 
will require new file and database techniclues that 
;ire only beginning to be untlers~ood. 

An obvious application of multirnedia technol- 
ogy, once the networks are in place, is telecon- 
ferencing. We can envision a day when we can 
connect to anyone any place in the world via the 
network ant1 carry on a conversation with them, 
while each of us sees the other in full-motion video, 
using the a ~ ~ d i o  ant1 vitleo capabilities of our clesk- 
top workstations and PCs. But realizing this vision 

has proved surprisingly hard. People expect the 
images they see to be synchronized with. the sounds 
they hear, and they expect delays to be no worse 
than tliose experienced on a long-distance tele- 
phone call. Unfortunately, data networks have been 
designed to maximize throughput and reliability. 
They do this at the expense of some delay in trans- 
mission-delay that is annoying at best, and unac- 
ceptable at worst, foi- teleconferencing applications. 

Successful infusion of multimedia technology 
into enterprise-wide computation is proving to 
require change on a scale that almost no one antici- 
pated. We at Digital are in the midst of this process 
of change, ant1 this issuc of the Digital Technical 
Jozirrzcrl is a snapsliot, t;~ken at one point in time, of 
that process. Together, the papers describe some of 
the toughest technical challenges that we face and 
in many cases give glimpses into possible solutions. 



Robert Ulicbney I 

Video Rendering 

Wdeo rendering, the process of generating device-dependent pixel data from 
device-independent sampled image data, is key to image quality. System compo- 
nents include scaling, color adjustment, quantization, and color space conuersion. 
This paper emphasizes methods that yield high image qualit34 are fc~st, and ye1 are 
simple and inexpensiue to implement. Particular attention is placed on the dc~iua- 
tion and analysis of new multilevel dithering schemes. While permitting smaller 
frame bzlffers, dithering also prouides faster transport of the processed image to the 
display-a k q ~  benefit for the massive pixel rates associated with full-motion video 

Perhaps the most influential characteristic govern- 
ing the perceived value of a system that displays 
images is the way the pictures look. Image appear- 
ance is largely dependent upon the quality of render- 
ing, that is, the process of taking device-independent 
data and generating device-dependent data tailored 
for a particular target display. 

The topic of this paper is the processing of sam- 
pled image data and not synthetic graphics. For 
graphics rendering, primitives such as specifica- 
tions of triangles are converted to displayable pic- 
ture elements or pixels. The atomic elements 
handled by a video rendering system are device- 
independent pixels. Whereas a prerendered graph- 
ics image can be compactly represented as a 
collection of triangle vertices, prerendered video 
achieves compaction by means of compression 
techniques. 

Sampling broadcast video requires a data rate of 
more than 9 million color pixels per second; the 
need of some relief for storage and networks is 
clear. Video compression reduces redundancy in 
the source image and thereby reduces the amount 
of data to be transmitted. Dramatic reductions in 
data rate can be achieved with little degradation in 
image quality. The Joint Photographic Experts 
Group (JPEG) standard for still frame and the 
Motion Picture Experts Group (MPEG) and Px64 
standards for motion video are current committee 
compression techniques.' Several other non- 
standard schemes exist, including a simple com- 
pression method conclucive to software-only 
implernentati~n.~ 

Vicleo rendering receives decompressed image 
data as input. Since every decompressed pixel must 
be processed, speed is essential. This paper focuses 

on rendering methods that are fast, simple, and 
inexpensive to implement. Performance at video 
rates can be achieved with minimal hardware or 
even software-only solutions. 

The Rendering Architecture section reviews the 
components of a rendering system and examines 
design trade-offs. The paper then presents details 
of new and efficient dithering implementations. 
Finally, video color mapping is discussed. 

Rendering Architecture 
Figure 1 illustrates the major phases of a video ren- 
dering system: (1) filter and scale, (2) color atljust, 
(3) quantize, and (4) color space convert. 

In the first stage, the original image data must be 
resampled to match the target window size. A sepa- 
rate scaling system should be used for the horizon- 
tal and vertical directions to handle the case where 
the pixel aspect ratio must be changed. For exam- 
ple, such asymmetric scaling is needed when the 
target display expects square pixels and the original 
pixels are not square. 

The best filters to use in combination with scal- 
ing have been determined from a perceptual point 
of view.? When limiting the bandwidth to reduce 
the data rate, a Gaussian filter with a standard devi- 
ation u = 0.30 X output period is recommended. 
For interpolation, the filter preferred (because the 
filtered results looked most like the original) was 
a cascade of two: first, sharpen with a Laplacian 
filter, and second, follow by convolution with a 
Gaussian filter with u = 0.375 X input period. 

A typical sharpening scheme can be expressed 
by the following equation: 

I,,,,,, [x,yI = I[XJJI  - P*\II[x,yI * J[x,yI, (1) 
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Figure I Image Rendering System 

where I[x, y] is the input image, 9[x, y] is a digital 
Laplacian filtcr, and "*" is the convolution ~ p e r a t o r . ~  
The nonnegative parameter P controls tlie degree 
of sharpness, with p = 0 i~itlicating no change in 
sharpness. When enlarging, sharpening should 
occur before scaling, and when reducing, sliarpen- 
ing should take place after scaling. The filtering dis- 
cussed here is assumed to be two-dimensional, 
which requires image line buffering. For economy, 
horizontal-only filtering is sometimes used. 

The simplest means of scaling is known as 
nearest-neighbor scaling, and its simplest imple- 
mentation is based on the Bresenham scan conver- 
sion algorithm for drawing straight l i~ i e s .~  This 
algorithm can be applied to image scaling ant1 per- 
formed with only three registers and one adder." 
Further optimizations make this algorithm espe- 
cially suitetl for real-time use.' 

The second stage of rendering is color adjust, 
most easily achieved with a look-up table (LIJ'T). 
Each color component uses a separate adjust 1.liT. 
In the case of a luminance-chrominance color, an 
adjust 1.m for the luminance component controls 
contrast and brightness, and LUTs for the chromi- 
nance components control saturation. 

For so-called true-color frame buffers with 24-bit 
depths, visual artifacts that can result from insuffi- 
cient amplitude resolution do  not occur. With 
smaller frame buffers, restricting the amplitucle of 

the color components red, green, and blue (R<;R) 

with a simple uniform quantizer causes P~lse con- 
tours to iippear in slowly varying regions. This issue 
leads to the third stage in the rendering system, 
quantization. 

The three basic classes of techniques for cir- 
cumventing the problem of insufficient colors or 
color memory are ( 1 )  histogram-based methods, 
(2) chrominance-s~1bsani1~1ed frame buffers, and 
(3) dithering. All histogram-based methods, some- 
times called palette selection, require two passes of 
the entire image data: the first to acquire the his- 
togram statistics to fabricate a three-dimensional 
qi~antizer to N colors and the second to perform 
the pixel assignments. Perhaps the fastest method 
is the popularity algorithm, where a simple sort 
finds the IV colors with the highest frequency, and 
all other colors are mapped to those." 

A more compute-inte~lsive method, but one that 
in general performs much better, is the often-used, 
median-cut ;~lgorithm.* In this method, the color 
space is repeatedly subdivided into smaller rectan- 
gular solitls at the median planes, with the goal that 
each o f  the selected colors represent an equal num- 
ber of colors in the image. The average of the colors 
in each of the final regions is the color usetl jn the 
quantizer. A later, less compute-intensive variation 
is the nie;in-split algorithm. Also, several clustering 
techniques have been reported that result in less 
quantization error than the above-mentionetl rnetll- 
ods. One method, for example, minimizes the sum 
of the squares of the errors.Vn all cases, ho\vever, 
color problems can occur in other application win- 
dows because each franie recli~ires a different color 
map; tlie colors in tlie other windows become 
scrambled in a different way for each color map. 

One ;idv;intage of representing image tlata in a 
luminance-chrominance space is that clirominance 
requires less spatial resolution than luminance to 
achieve excellent image quality. Visual perception 
of differences in chrominance is much less than that 
for luminance. The television standards have been 
exploiting this fact for dec;~tles. The quantizatioti 
approach of using chromin:ince-subsampled frame 
buffers is built on this fact, deferring conversion to 
the I i c B  components until just after the data is read 
for display. 1°.",'2 

Typical implementations of chrominance- 
subsampled frame buffers average each of the 
two chrominance values in a given lumin;~nce- 
chrominance color representation over ;I region 
that is either 2 by 2 or 4 by 4 pixels. Assuming 8 bits 
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of amplitude resolution per color component, the 
2-by-2-pixel case results in an average of ((2 X 2 X 8 
luminance bits) + (8 + 8 chrominance bits))/ 
(2 X 2 pixels) or 12 bits per pixel; similarly, the 
4-by-4-pixel case results in 9 bits per pixel. This 
approach requires expensive hardware to up-sam- 
ple the chrominance components and convert the 
color space at vitleo rates. These nonstandard 
frame buffers can also cause severe incompatibility 
problems with most applications that expect RGD 
frame buffers. While chrominance subsamplecl 
frame buffers can accommodate most sampled nat- 
ural images, thin-line graphics can be annihilated. 

The third alternative for quantization is to use 
a dithering method. Several methods exist that are 
designed primarily for binary output, but all are 
extendable to multilevel color.' li A "level" is a 
shacle of gray, from black to white, or a shade of 
a color component, from black to the brightest 
value. The basic principle of dithering is to use the 
available subset of colors to protluce, by judicious 
arrangement, the illusion of any color in between. 

Although neighborhood operations, most notably 
error diffusion, produce good-quality dithering, 
they are computationally complex and require 
additional storage. For video processing, where 
speed is essential, we turnetl our focus to those 
dithering methotls that are point operations, that is, 
methods that operate on the current pixel only 
without considering its lleighhors. Each color coni- 
ponent of every pixel in the image has an associatetl 
"noise" or tlither amplitude that is added to it before 
that component is passed to a uniform quantizer. 

Historically, the first dithering method used for 
video processing was white noise dithering, where 
a pseudorandom number was adtled to each lumi- 
nance value before quantization. This method was 
practiced soon after the dawn of television.I6 
However, the low-frequency energy in white noise 
causes undesir;~ble textures and graininess. 

A preferred method is the point process of 
ordered dithering, where a tleterministic noise 
array tiles tlie plane in a periodic manner. Dither 
arrays can be tlcsigned to mi~iiniize low-frequency 
texture. The most popular are tlie so-called recur- 
sive tessellation arrays.l7lVThese arrays yield results 
superior to those of white noise dithering but suf- 
fer from structured rectangular patterns. 

A new ortleretl tlither array design, called the 
"void-and-cluster" method, eliminates both the low- 
frequency textures of white noise and the rectangu- 
lar patterns of recursive tessellation arrays.I9 The 

name describes the dither array tlesign process in 
which voids and clusters are located and mitigated. 

For the high-speed case of motion video, an 
ordered dithering scheme has important advan- 
tages over chrominance-subsampled frame buffers 
and histogram-based approaches. Quantization by 
dithering allows the use of conventional franie 
buffers, does not require tlie time-consuming pro- 
cess of making two passes over each frame (or 
eve17 Nth frame), does not cause other applications 
to change color maps with every Nth frame, and 
allows any number of colors to be selected at ren- 
der time. Also, experiments have shown that the 
image quality achieved by dithering is very compet- 
itive with the other methods, when comparecl over 
a range of sample images. Even when 24-bit frame 
buffers are available, the increasetl speetl of loading 
three or four 8-bit color pointers or index values in 
the time required to load a single 24-bit pixel makes 
dithering a viable alternative in the design of desk- 
top video systems. 

By way of comparison, Figure 2 illustrates sonic 
of the methocls described in this section. A 240-by- 
560-pixel, 8-bit monochrome image was rendered 
to only two levels and displayetl at 100 dots per inch 
(dpi). Figure 2a depicts an image that was ditherctl 
wit11 white noise; in Figure 2b, the same image was 
tlitherecl using an 8-by-8 recursive tessellation 
dither array; and Figure 2c shows the image 
ditherecl with the new 32-by-32 voicl-and-cluster 
array. To illustrate the effect of sharpening, Figure 
2d shows the image in Figure 2c presharpenetl 
using a digital Laplacian filter as in equation ( I ) ,  
with a sharpening factor of = 2.0. The goal of this 
coarse example is to ampl@ the different effects. 
Tlie same methods apply to multilevel and color 
output, where the resulting quality is much higher. 

Fast Multilevel Dithering 
This section presents the cletails o f  simple, yet pow- 
erful new designs to perform multilevel ortleretl 
dithering. Tlie simplicity of these methods allows 
for imp1ement;ltion with minimum hardware or 
software only, yet guarantees output that preserves 
the mean of the input. The designs are flexible in 
that they allow dithering from any number of input 
levels 4, to any number of output levels No, pro- 
vicled A; 2 IY,. Note that and A;, are not restricted 
to be powers of two. 

Each color component of a color image is treated 
as an indepentlent image. The input image Li c;ln 
have values 
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(a) Dither with a White Noise Breshold ( 6 )  Dither with an 864,-8 Recursiiw 
Tesselllntion Threshold Arrojl 

(c) Dither zuitb a 32-6~,3,-.32 Void-ancl-cl~ister 
Tlireshold An-aj~ 

(61) Smne as (c) zuitl'l L L I ~ I N C I ' U I Z  .Y/x?rflenitl~, 
p = 2.0 

Figure 2 Ex6i1npke.s of Rendering to ~ ~ L Y J  Outpttt LezMs 

L i €  {0,1,2 ,..., (l'y - I)), 

and the output image L ,  can have values 

A deterministic dither array of size M X N is used 
that is periodic and tiles the entire input image. To 
simplify aclclressing of this array M and i\r 5houltl 
each be powers of two. A tlither template defines 
the order in which dither values are arranged. The 
elements of the dither template T  have values 

T E  {0,1,2,.. . ,  (4 - I ) ) >  

where IV, is the number of template levels, which 
rellresent the levels ag:~inst which image input 
values are compared to determine their ni;~pping 
to the output  values. The tlither template is thus 
central t o  determining the nature of the  resulting 
dither patterns. 

Figure 3 shows a dithering system that comprises 
two memories and an  atlcler. l 'he  system takes an 
input level Li at image location lx,.y] and produces 
output level Lo at the corresponding location in the 
dithered output image. The dither array is addressed 
by x'antl  y', which represent the low-orcler bits of 
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+ ARRAY x'-I 
Figt~re 3 Dithering Systern wi th  Tujo LUTs 

the image address. The selected dither value 
d[x: y'] is added to the input level to produce the 
sum s. This sum is then quantized by addressing a 
quantizer I.UT to produce the output level L,,. 

The trick to achieving mean-preserving dithering 
is to properly generate the LUT values. The dither 
array is a normalized version of the dither template 
specifiecl as follows: 

d[x:y' l  = int ( A , ( T [ x :  y ' ]  + i)), 
where A,, the step size between normalized dither 
values. is defined as 

and AV isthe quantizer step size 

(N, - 1) A =- 
-U cry, - 1) 

Note that AQ also defines the range of dither values. 
The qi~antizer LUT is a uniform quantizer with A; 
equal steps of size Ag. 

The precise expressions in equations (2), (3) ,  and 
( 4 )  were ;irrivetl at through extensive al~alysis of the 
average o i ~ t p i ~ t  resulting from processing input 
images of a constant value, over a wide range of y, 
y,, and N,. 

One-menzory Dithering System 
Using the above expressions, i t  is possible to sim- 
pllfy the system by exchanging one degree of free- 
dom for another. A bit shifter can replace the 
quantizer LUT at the expense of forcing [he number 
of input levels 4, to be set by the system. For hard- 
ware implementations, this design affords a consid- 
erable cost reduction. 

The system and method of Figure 3 assume that 
q. is given as a fixed parameter, as is usually the case 
with most imaging systems and file formats. 
However, for image sources such as hardware that 
generates synthetic graphics, arbitrarily setting N;. 
often has no effect on the amount of computation 
involvetl. If an adjust LUT is used to modify the 
image data, including a gain makes a "modified 
adjust LUT." Figure 4 depicts such a system, where 
L,. is the raw input level. The unadjusted or raw 
input image can have the values 

L,. € {0,1,2,. . .,(fV. - 111, 

where q. is the number of raw input levels, typi- 
cally 256. Therefore, the modified adjust LIJT must 
impart a gain of 

4. - 1 
1y. - 1 ' 

To solve for 4, recall that in the method of Figure 
3 the quantizer was defined to have equal steps of 
size AQ as definecl in equation (4).  The qi~antizer 
LUT can be replaced by a simple R-bit shifter, if the 
variable Ap can be forced to be an exact binary 
number, 

A, = 2Y ( 5 )  

4 can then be set by the expression 

N;. = (1V0 - 1 ) 2 ~  + 1. (6) 

The integer R is the number of bits the R-bit 
shifter shifts to the right to achieve quantization. 
Speceing R in terms of q,, equation (6) becomes 

I d l x '  v' l  

MODIFIED 
Lr[x.yI - ADJUST 

LUT SHIFTER 

Figure 4 One-memory Dithering System wi th  an Adjcut LUTand Bit ,Bfyter 
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R = log, (q - 1) 
(4, - 1)' 

To completely specify this problem requires speci- 
fying the range for 4,. It is rcason;tble to do this by 
specifying the number of bits 6 by which the image 
input values are to be represented. Specifying 6 
lilliits I\: to tlie range 

Parameter 6 will be a key value in specitjling tlie 
resultin&. ' s y stem. 

Given the two expressions, (7) and (8), and the 
two unknowns. R and A:, a unique solution exists 
because tlie range of IY. is less than a factor of two. 
and R ant1 A$ are integers. To solve for R, substitute 
equation (6) for N, in equation (8). The res~~lt ing 
equation is 

l o g  - - 1) < R s l o  ( )  (10) 
N" - I 4, - 1 

Since 2 I 4, 5 A:., the range of the expression in 
equation (10) must be less than one. Hence, give11 
that K is ;in integer, 

R = int [log2 (*)I 
4) - 1 

in equation (6) is now specified. 
As an example, consitler the case where 4, 

equals 87 (levels), 6 eqilals 9 (bits), 4 equnls 1,024 
(levels, for a 32-by-32 templ;ite). and IY. eqilals 256 
(levels). 'T'hus, R equals 2, ant1 the R-bit shifter drops 
the least-significant 2 bits. 4. equals 345 (levels); 
the tlither ;trrav is norni:~lizetl by equation (2) with 
A, = 1/256; and the gain factor to be incluclrd in the 
modified adjust LUT is 344/255. This data is loatled 
into the system represented by Figure 4 i~ntl uni- 
formly ni;~ps input pixels ;tcross tlie 87 true output 
levels, giving the illusion of 256 levels. 

The output image that results from either of the 
dithering systems illustratetl in Figure 3 or Figure 4 
appears to contain more effective levels than are 
actu:~lly displayed. An effective level is either a per- 
ceivetl average level that is tlitheretl between two 
true o i ~ t l x ~ t  levels or shades or an actual true out- 
put level. k small nuniher of tenlplate levels 4 clic- 
tates the resulting number of effective levels. \Vhen 
4 js I;trge, the number of effective levels is equal 
to the number of input levels I\:, because it is not 

possible to display more effective outputs than 
inputs. [More precisely, 

Effective Levels = 1 (12) 

Note that Aa/N, in equation (12) is equal to A,/ .  
When A ,  < 1, the normalization of the tlither array, 
i.e., equation (2),  results in integer truncated values 
that are not all unique. At this point, the number of 
effective levels saturates to N,. 

Data Width Analysis 
The design of an efficient dithering system, particu- 
larly in hardware, depends on knowing the number 
of bits recluired for all data paths in the system. This 
section presents an analysis of the one-memory 
dithering system shown in Figure 4. 

The system input 6, i t . ,  the bit depth o f  the 
image input values, limits tlie data path for L,lx;y]. 
The analysis shows the derivation of the precise bit 
depths for the other dat;~ paths. In summary, tlie 
tlerivation proves that the dither values in the 
dither matrix memory recluire R bits, where Rllll,, = 
(I? - I )  and s = Li + d (and thus tlie R-bit shifter) 
require only 6 bits. 

Bits iVee~/e~/ fbr Dither iP1~1Lrin' The amount of 
memory needed to store the dither matrix is an 
import;~nt C O I I C ~ ~ I I ;  d,l,l,,,, denotes the maximum 
value. To determine dlll~,,, substitute the maximi~m 
value of T [ x :  y 'I, which is (IV, - l), into equation 
(2). '['he resulting equation is 

dl,,,,, which depends on iV,, thus has a value in the 
range 

1;or the case of ;I dither matrix with one value, 
namely A, = 1, equals the lower end of this 
range. dl,,,, equals the high encl of the range for 
large dither nlatrices, where 2R-' 5 N,. An inipor- 
tant observation is that for all valiles in the range of 
expression (14), the number of bits needetl is 
ex:tctly K.  
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From equation (ll) ,  the value of R increases as No 
decreases. The smallest possible value of No is 2, 
which is for biton;~l output. In this case, the maxi- 
mum value of R is 

So, the number of bits needed for the dither values 
is R, which can be as large as (b - 1). 

Bit Width oj'Aclder Recall that s[x,y] = L,[x,y] + 
d[x, y ] .  The number of bits needed for this sum 
determines the size of the adder and the size of 
the R-bit shifter. L, can be at most (A:. - I )  and, as 
determined in the last section, d,,, can be at most 
(zK - 1). SO, 

From equation (6),  

which gives 

s , , , ~ ~  = ~ ~ ( 4 ,  - 1) + (2'- 1) = 2'% - 1. (18) 

\Ve can express R in terms of No by using equa- 
tion (11): 

R = int(logl(2" - 1) - log, (Nj, - 1)). (19) 

Each of the two terms in the equation (19) can be 
expressed in terms of :un integer part and a frac- 
tional part: 

log,(2" - 1) = (6 - 1) + E l ,  

where 

log,(ly, - 1) = K + E,, 

where K is an integer, and 

0 1 c 2 <  1. 

Now equation (19) can be rewritten as 

R = ( O - 1 ) - K + i n t ( ~ , - E , )  (22) 

E, IS largest when 4, (an integer) is a large power of 
2 Because iV, cannot be greater than 4, 

2" 2 4,. 
This fact, combinetl with equations (20) ancl (21), 
yields the further contlition 

E l  2 E,. 

Therefore, i n t ( ~ ,  - E,) in equation (22) must be 
equal to zero, and the value of R becomes 

R = b - 1  -K. (23) 

We can express No in equation (18) in terms of the 
same integer K of equation (21) by noting that 

log, ly, = K + E3. (24) 

where 

O < E ~ I I .  (25)  

Observe that E, is equal to 1, where iVo is an exact 
power of 2. Substituting 

No = 2K+E$ 

and equation (23) into equation (18) gives 
- 26-1-K 2 K + ~ ,  - = 2 h - I + ~ ,  - 

s,,lO.~ - 1. (26) 

Because of the range of ej  in equation (23 ,  the 
range of s,,,, must be 

2b-1 - 1 < s  ,,,,,, 5 2 " -  1, (27) 

which requires exactly b bits. 
As a check, the size of the shift register should 

equal the number of bits required for No plus R. The 
number of bits needed for 8, is 

int(1 + Iog2(yJ - I)). (28) 

Using the expression in equation (21), this value 
becomes 

int(1 + K + E ~ )  = K + 1. 

So, the size of the shift register must be 

(K + 1) + (6 - 1 - K) = 6 bits, 

which matches the maximum size of the sums. 

Color Space Conversion 
Referring once again to Figure 1, consider the final 
subsystem of a video rendering system-color 
space convert. Assuming a frame buffer that is 
expecting RGB data, color space conversion is not 
necessary if the source data is already represented 
in RGR, as in the case of graphics generation 
systems. However, motion video is essentially 
always transmitted and stored in a luminance- 
chrominance space. Such a representation allows 
subsampling of the chrominance, as mentioned ear- 
lier, which reduces bandwidth requirements; all 
video standards exploit this method of bandwidth 
reduction. I t  is also more intuitive to color adjust in 
a luminance-chrominance space. 
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Prior to proceeding to the quantize subsystem 
shown in Figure 1, all color components must be at 
the same final spatial resolution for a dithering 
method to work correctljr. Chrominance compo- 
nents, then, need to be up-sampled to the same rate 
as luminance components. 

Although the chromaticities of the RGB primaries 
of the major television standards vary slightly, all 
television systems transmit and store the color data 

( (Y-axis out) 

in YUV space. Y represents the achromatic compo- 
nent that is loosely called the luminance corn- 
ponent. (The term luminance has a specific 
photometric definition that is not what is repre- 
sented in a video Y component.) U and V are color 
difference components, where U is proportional to 
(Blue - Y) and V is proportional to @ed - Y). 

Figure 5 is an orthographic projection of ylrv 
space. Inside the W rectangular solid is the 

FQure 5 Feasible RGB Values in the YW Color Space 
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parallelepiped of "feasible" RGB space. Feasible RGB 
points are those that are nonnegative and are not 
greater than the maximum supported value. For ref- 
erence, the corners of the RGB parallelepiped are 
labeled black (K), white (W), red (R), green (G), 
blue (B), cyan (C), magenta (M), and ~rellow (L). KGB 
and W values are related linearly and can be inter- 
converted by means of a 3-by-3 matrix multiply. 

In the United States video broadcast system, the 
chrominance plane (i.e., the U-V plane in Figure 5) 
is rotated 33 degrees by introducing a phase in the 
quatlrat~lre modulation of the chrominance signal. 
The resulting rotated chrominance signals are 
renamed I and Q (for inphase and quadrature), but 
the unmodulated color space is still W. 

Figure 6 shows the back end of a rendering sys- 
tem that uses dithering as a quantization step prior 
to color space conversion. A serenclipitous conse- 
quence of dithering is th21t color space conversion 
can be achieved by means of table look-up. The 
collective address formed by the dithered Y, U, and 
V values is small enough to require a reasonably 
sized color mapping LUT. There are two advantages 
to this approach. First, a costly dematrixing opera- 
tion is not required, ant1 second, infeasible RGB val- 
ues can he intelligently mapped back to feasible 
space off-line during the generation of the color 
mapping LIIT. 

This second advantage is an important one, 
because 77 percent of the valid W coortlinates 
are in invalid RGR space, i.e., the space around the 
RGB parallelepiped in Figure 5. Color adjustments 
such as increasing the brightness or saturation can 
push otherwise valid KGB values into infeasible 
space. In alternative systems that perform color 
conversion by dematrixing, out-of-bounds RGB val- 

DITHER 
SYSTEM 

RGB 
--t COLOR 

INDEX 

1 
SYSTEM 

Fig~~re 6 System for Dithering Three-color 
Compotzent.~ and Color Mclpping 
the Collectiue Result 

ues are simply truncated. This operation effectively 
maps colors back to feasible RGR space along lines 
perpendicular to a parallelepiped surklce illus- 
trated in Figure 5, which can change the color in an 
undesirable way. The use o f  n color mapping LIIT 

avoids these problems. 

Summary 
Video is beconling an increasingly important data 
type for desktop systems. This is especially true as 
distinctions between cornp~~ting, consumer elec- 
tronics, and communications continue to blur. 
While many f;~ctors contribute to the impression 
one has of the value of a product that tlisplays infor- 
mation, the way the images look can 11i;llie the 
biggest difference. This paper focuses on rendering 
system designs that are k~st ,  low cost, procl~~ce 
gootl-quality video, and are conducive to hardware 
or software implementation. 

References 

1. Special Issue 077 Digitcil M~lltinzedia .(;3~.slenzs, 
Com.wi~lnications of the ACfil, vol. 34, no. 1 
(April 1991). 

2.  B. Neiclecker-Lutz and R. Ulichne): "Software 
Motion Pictures;' Digitc~l Teclmzicc~l Jo~~nza l ,  
vol. 5, no. 2 (Spring 1993, this issue): 19-27 

3. W Schreiber ancl D. Troxel, "Transformation 
between <:ontinuous ancl Discrete Kepresen- 
tation of Images: A Perceptual Approach," 
IEEE Transactions on Puttern Alzafysis and 
Machine Intelligence (PAW/), vol. PAMI-7, no. 2 
(1985): 178-186. 

4. R .  L:lichney, Digit611 HrrlJtot~itzg (Cambridge, 
PM: The M IT Press, 1987). 

5.  J. Bresenham, "Algorithm for Computer Con- 
trol of a Digital Plotter," IHll,l S~tste~n.s./oztrnal, 
vol. 4, no. 1 (1965): 25-30. 

6 F. Gl;~zer, "Fast Bitonal to Graysc:~le Image 
Scaling," DEC-Tlt-505 (Maynard, MA: Digital 
Equipment Corporation,June 1987). 

7. R. Ulichney, "Bresenham-style Scaling," Pro- 
ceedings of the ISGT Atztzz~al Cot~fet-ence 
(Cambritlge, Phi, 1993): 101 - 103. 

8. P Heckbert, "Color Image Quantization for 
Frame Buffer Display" Conzp~lter- Graphics 
ALiC SIG'GR4PH '82 Corzference Yroceedir~gs, 
vol. 16, no. 3 (1982): 297-307. 

Digital Tecbrrical Journal 1/01. 5 No. 2 Spring 1993 



Multimedia 

9. S. Wan, K. Wong, and I? Prusinkiewicz, "An 
Algorithm for Multidimensional Data Cluster- 
ing," ACIW Trnnsuctions on  Muthemutic~il 
Soflzunre, vol. 14, no. 2 (1988): 153-162. 

10. C .  Sigei. R. Abruzzi, and J. ,Munson, "Chro- 
matic Subsampling for Display of Color 
Images," Ol~lical Society of Arneric~~ Topicnl 
Meeling on Applied Vision, 1989 Technical 
D~gest  Series, vol. 16 (1989). 158-161. 

11. A. Luther, Digital Video in  the PC Enuiromz- 
meizt (New York, NY: Intertext Publications, 
McGraw-Hill, 1989): 193-194. 

12. L. Glass, "Digital Video Interactive," Byte (May 
1989): 284. 

13. I? Roetling, "Binary Approximation of Contin- 
uous-tone Images," Photographic Science 
and Engineering, vol. 21 (1977): 60-65. 

14. J. Stoffel ant1 J. Moreland, "A Survey of 
Electronic 'I'echniques for Pictorial Reproduc- 
tion,'' IEEE Transactions on  Co~?zmulziccr- 
tions, vol. 29 (1981): 1898-1925. 

15. J. Jarvis, C .  Judice, and W Ninke, "A Survey of 
Techniques for the  Display of Continuous- 
tone Pictures on  Bilevel Displays," Comnputer 
Crn,!!hics umzd Image Processing, vol. 5 
(1976): 13-40. 

16. \X! Goodall, "Television by Pulse Code Modu- 
l at ion," Bell Systems Teclhlical journal, vol. 
30 (1951): 33-49 

17 B. Bayer, "An Optimum Method for Two Level 
Rendition of Continuous-tone Pictures, Pro- 
ceedings of the IEEE Internation~il Confer- 
ence O H  Co~7znzui~icutior~~, Confere~zce 
Kccord (1973): (26-11)-(26.15). 

18. R. Ulichney, "Frequency Analysis o f  Ordered 
Dither," Proceedings of t l x  Society of Pboto- 
o ~ l t i c ~ ~ l  Iizstrzlrrze~?lutiori L3zgil?eers (SPIE), 

VOI. 1079 (1989): 361-373. 

19 R. Ulichne): "The Void-antl-cluster Method for 
I l i  t her Array Gener;ition," Tl7c Society for 
Irn~~ging Science and Tcchtzolog~~/~S~~~~zpo- 
siiiin on Electronic I~rzclgiiig Science ancl 
Tecl!izolog)) (ISGT/SPIE) (February 1993). 

18 Vol 5 .\lo 2 $ p ~ , ~ n g  199.3 Digitnl Technical Jounrnl 



Burkhard K. Neidecker-Lutz 
Robert Ulichney 

Software Motion Pictures 

Softzvcrre nzotion pictures is a method of generating digital video on general- 
)Lir/!ose desktop colnl)ulers zvitho~it using special decompression bardivare. The 
co~npressio~z algorilhnz is designed for rapid decomnpression in softzuare and gener- 
ates deterministic data rates for use fronz CDROIM and netu~ork connections. The 
decompression part oflers device indepe~zdence and integrates well with existing 
wi~zdo~u sj~stenls and applicatio~z progralnming ilzteflces. Software motion pic- 
lures fecrtures n yortable, low-cost solution to digital video playback. 

The necessary initial investment is one of the major 
obstacles in making video a generic data type, like 
graphics and text, in general-purpose computer 
systems. The ability to display vicleo usually requires 
some combination of specialized frame buffer, 
decompression hartlware, and a high-speed network. 

A software-only methocl of generating a video 
display provides an attractive way of solving the 
problems of cost and general access but poses chal- 
lenging qi~estions in terms of efficiency. Although 
several digital vicleo standards either exist or have 
been proposed, their computational complexity 
exceeds the power of most current desktop sys- 
tems.1 In addition, 21 compression algorithm alone 
does not adclress the integration with existing win- 
dow system hardware and software. 

Software motion picti~res (SMP) is both a vitleo 
compression algorithm ancl a complete software 
implementation of that algorithm. SMP was specdi- 
cally designed to address all the issues concerning 
integration with desktop systems. A typical applica- 
tion of SMP on ;I low-entl workstation is to play back 
color digital vicleo at ;I resolution of 320 by 240 
pixels with a cocled data rate of 1.1 megabits per 
second. On a DECstation 5000 Model 240 H X  work- 
station, this task uses less than 25 percent of the 
overall rn;tchine resources. 

Together with suit;~ble ;~i~clio s ~ ~ p p o r t  (audio sup- 
port is beyond the scope of this paper), software 
motion pictures provides portable, low-cost digital 
video playback. 

The SMP Product 
Digital supplies SMP in several forms. The most 
complete version of SMIIP come5 with the XMedia 
Toolkit This toolkit is primarily clesigned for devel- 
opers of multimeclia applications who include the 

SMP functionality inside their own ;~pplications. 
Figure 1 shows the user controls as displayed on a 
workstation screen. SMP players are also available 
on Digital's freeware compact disc (CD) for use 
with Alpha AXP worltstations running the DEC.: 
OSF/l AXP operating system. In addition, SMP plap- 
back is included with several Digital products such 
as the video help utility on the SPIN (sound picture 
information networks) application, as well as other 
vendors' products, such as the MediaImpact multi- 
media authoring system.2 

In the XMedia Toolkit, access to the SMP functions 
is possible through X applications, command line 
utilities, and C language libraries. The applications 
and utilities support simple editing operations, 
frame capture, compression, and other functions. 
Most of these features are intenclecl for use by pro- 
ducers of simple file formats called SivIP clips. 

The decompression fiinctionality is offerecl as an 
X toolkit widget that readily integrates into the 
Open Software Foundation's (OSF) Motif-based 
applications. Multiple SMP coclecs (compressors/ 
decompressors) on a given screen all share the 
same color resources with one another and with 
the Display I'ostScript X-server extension, which is 
offered by all major workstation vendors. It also 
plays well with the standard color allocations used 
in die Macintosh QuickDraw rendering system and 
Microsoft Windows standard color allocations. 

To facilitate flexible but simple access to entire 
films of SMP frames, SMP defines SMI-' clips. Rather 
than publisl~ing that file format directly all applica- 
tions and widgets are accessed through an encap- 
sulating library. This method allows future releases 
to have application-transparent changes to the 
underlying file structure and completely different 
ways to store and obtain SMP frames. 
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Figtire I User Controls as Di.~plgyecl on the 
Workstc~tion Screen 

An esample of the latter is the storage of SMP 
clips directly in a relational database system in 
which no files exist, such as SQL hlultimedia. The 
video data is stored directly in database records, 
and the client receives the data through the stan- 
dard remote database access protocols. At the 
receiving client, the SMP clip library is used to gen- 
erate a virtual SiLlP clip for the application program 
by substituting a new read function. 

The SMP product also contains image converters 
that translate to anti from the popular PBMPLUS £am- 
ily of image formats, allowing import and export to 
about 70 different image formats, including the 
Digital Document Interchange Format (DDIF). This 
allows the use of almost any image format as input 
for creation of SMP clips. 

Historical Background and 
Reqziirements 
In 1989 Digital's Distributed Multimedia Group 
experimented briefly with an algorithm called 
color cell compression (CCC) that had been 

described in 1986 by Campbell et al.5 CCC is a cod- 
ing method that is optimized for rapid decom- 
pression of color images in software. \Ve built a 
demonstrator that rapidly displayed CCC-coded 
images in a loop to create a motion video effect. 
'The demonstrator then served as our study 
vehicle to create a usable product for digital vitleo 
playback. 

Performing digital video entirely in softwarc 
woulcl stress the systems at all levels (I/O, proces- 
sor, ancl graphics), so we needetl to establish upper 
bounds for what we could hope to achieve with our 
desktop systems and workstations. 

From the user's perspective, large sizes and high 
frame rates are desirable. These features need to be 
balanced with the limitations of real hardware. \We 
modeled the data path through which digital video 
would have to flow in the system and measured the 
available resources on the slowest system we 
would use, a DECstation 2100. This workstation has 
a 12.5-megallertz (MHz) MIPS R2000 processor anti 
a simple, 8-bit color frame buffer. 

By merging this measurement with user feedback 
concerning the smallest acceptable image size and 
frame rate, we set our performance goal to play 
back movies of size 240 by 320 on the slowest 
DECstation processor with an 8-bit display at 15 
frames per second. Smaller viewing sizes are almost 
invisible on a typical high-resolution workstation 
screen. 

We settletl for a frame rate of 15 frames per sec- 
ond. This rate is reasonably smooth: to the human 
eye, it appears as motion rather than separate 
images. It can be generated easily from 30-frame 
source material, such as standard video used in 
North America and Japan, by taking every other 
frame. Consequently, on the DECstation 2100 we 
would have at most 

12.5 X 10%lock cycles/second 
(320 X 240 X 15) pixels/second = 

cycles 
per pixel 

Thus, we must average no more than (approxi- 
mately) ten machine instructions to decode and 
render each pixel to the screen. 

In order to set our target for compression 
efficiency, we looked at the volume of data and pos- 
sible distribution methods. CD-ROM looketl promis- 
ing, and this data rate was also chosen by the 
Motion Picture Experts Group (MPE(;)-I standard.4 
Hence our coded data rate goal was to maintain 



a cotletl dat:~ rate for this size and frame rate 
that woultl allow playback from a CD-ROM. TO 
achieve this goal, we limited tlie cotletl data rate 
for the video component to 135 to 142 kilobytes 
per seconcl for video, leaving 8 to 15 kilobytes per 
second for audio. In adtlition, we had to limit fluc- 
tuations of the coded data rate to allow sensible 
use of bandwidth reservation protocols for play- 
back over a network without coniplex buffering 
schemes. 

More interesting were the issues that became 
apparent when we attempted to use the prototype 
for real applications. The digital video material hacl 
to be usable on a wide range of display types, and 
due to its large volume, keeping specializetl ver- 
sions for different displays was prohibitive. \Ye 
would li;~ve to adapt the rendition of the coded 
m;~terial to the device-tlej>enclent color c;rpabilities 
of the target tlisplay at run time. 

Our design center used 8-bit color-mapped dis- 
plays. These were (antl still are) the most common 
color tlisplays, ant1 tlie demonstrator was based 
on them. Integration of tlie video into applications 
in a multitasking environment necessitated that 
computational as well as color resources were 
available for use by other i~pplications. The system 
woultl have to perform cooperative sharing of 
the scarce color resources on tlisplays with limited 
color ci~pitbil ities. 

From the perspective of portability, we needed 
to con€orni to existing X11 interfaces, without any 
hidden back tloors into the window system. The 
X Window System affords no direct way of writing 
into the frame buffer. Rather. the MITSHM extension 
is used to write an image into a shared memory seg- 
ment, and then the X server must copy it into the 
frame buffer. This method woultl impact our 
;~lreatly strained CPIJ butlget for the codec opera- 
tion. We woultl need to decompress video in our 
code and have the X server perform a copy opera- 
tion of the deconipressed video to tlie screen, again 
using the main CPU. Quick measurements showed 
that the copy alone woultl use ;ipproximately 50 
percent of the <:PI, budget for an 8-bit frame buffer, 
ant1 ;inother 5 to 10 percent would be used by read- 
ing the cotled tlatii from I/O tlevices. 

Witli approximately five clock cycles per pixel 
yet to be rendered, it became clear why none of the 
standarcl video algorithms was of any use for such a 
task. We went back to the original CCC algorithm 
and started the development of software motion 
pictures. 

Comparison with Other 
Video Algorithms 
Today (early 1993), a number of digital video coni- 
pression algorithms are in use. All of them ;ire 
guarded closely as proprietary and t1iereh)re 
closed, and only one algorithm predates the devel- 
opment of SMP. Although we c o ~ ~ l d  not builcl o n  
experiences with these for our work, \ye believe 
the internal working on most of them is siniil;ir to 
SiMP with some adtlitions. 

A popular methotl for video compression is 
frame differencing. Rather than each frame being 
encoded separately, only those parts of tlie images 
that have changed relative to a preceding (or 
fluture) frame are encoded (together with tlie infor- 
mation that the other blocks ditl not change). 'I'his 
method works well for some input m;~teri;~l, for 
example, in video conferences wliel-e the camera 
does not move. The methotl fails, however, on 
alniost all other video material. 

To enable frame differencing on a wider range of 
input scenes, a method known ;a motion estini;~- 
tion is used by some algorithms. The encoder ti)r an 
image sequence performs a se;~rcli h)r blocks that 
have movetl between frames ant1 encodes the 
motion. This search step is coliij>~~tation;~Ily very 
expensive and usually clefeats re;~l-time encotling, 
even for special-purpose Ii;~rdw;~re. 

One of the earliest algorithms was digital video 
interactive (DVI) from Intel/lHM. It comes in two 
variations, real-time video (RTV) ant1 protluction 
level video (PL\J). RTV uses an unknown block 
encoding scheme and frame difkrencing. I'L\' 
aclds motion estimation to this. 1U'I1 is cornp;lr;ible 
to SMP in compression efficiency cornpt~t;~tionally 
more expensive, and much worse in ini;ige clu;~litj! 
PLV cannot be clone in software ;~nd I-equjres 
special-purpose supercomputers for compression. 
Compression efficiency of Pl,V is about twice as 
good as SMP, ancl image quality is somewhat hetter. 
The more recent INDEO video boards from Inrel 
use 1 W .  

In 1992 Apple introtluced QuickTime, which 
contains several video cornpression cotlecs. "l'he 
initial Roadpizza (1V) video cotlec uses .simple 
frame differencing and a block encoding similar to 
CCC, but without the color quantization step. (This 
is a guess based on the visual appearance and per- 
formance characteristics.) Compression efficiency 
of IW is three times worse than SM t', ;lntl irn;~ge clual- 
ity is comparable on 24-bit displ;~ys nntl much 
worse than SIMI-' on 8-bit displays. I'erformance is 

Digital Tecbtric~l Jour-nnl VoI. 5 No. 2 Spring I993 2 1 



Multimedia 

difficult to compare since SMP does not yet run on 
Macintosh computers. 

The newer Compact Vicleo (Cv) codec intro- 
duced in QuickTime version 1.5 is similar to CCC 

with frame differencing and has con~pression 
efficiency much closer to SMP. Image quality on 
8-bit displays is still lower than SIMP, and compres- 
sion times are almost unusable (i.e., long). 

The newest entry into the market for software 
video codecs is the video 1 codec in Microsoft's 
Video for Windows procluct. Very little is known 
about it, but it seems to be close to CCC with frame 
differencing. Finally, Sun Microsystems has inclutled 
CCC with frame differencing in their ilpcoming ver- 
sion of the x l ~ .  imaging library. 

Three well-known standards for image and video 
compression have been established by the Joint 
Photographic Experts Group (JPEG) and the Motion 
Pictilre Experts Group (MPEG) committees of 
the International Organization for Standardization 
([SO) and by the Conlit6 Consultatif Internationale 
de T616graphique et  Tt l tphoniqi~e (CCITT). These 
standards are computationally too expensive to be 
performecl in softw;lre in all but the most pon~erful 
workstations totlay. 

The Algorithm 
The SMP algorithm is a pixel-based, lossy compres- 
sion algorithm, designed for minimum Cl'u loatling. 
I t  features acceptable image quality, medium com- 
pression ratios, and a totally pretlictable coded data 
rate. No entropy-based or computationally expen- 
sive transform-based coding techniques are used. 
The downsicle of this approach is a limited image 
quality and compression ratio; however, for ;I wide 
range ofapplications, SMP quality is sufficient. 

Block Truncation Coding 
In 1978, the method referred to as block truncation 
coding (HTC) was independently reported in the 
United States by Mitchell, Delp, and Carlton and in 
Japan by Kishimoto, Mitsuya, ancl Ho~hida.3.~,6.? 

BTC is a gray-scale image compression technique. 
The image is first segmented into 4 by 4 blocks. For 
each block, the 16-pixel average is found and used 
as a threshold. Each pixel is then assigned to a high 
or  a low group in relation to this threshold. An 
example of the first stage in the coding process is 
shown in Figure 2a, in which the sample meal1 
is 101. Each pixel in the blocl< is thus truncated to 
1 bit, based on this threshold (see Figure 2b). 

(a) The arlerage of these 16pixels is 101. 

(6)  The auernge (g 101 i s  ~lsecl 61s cf thr~s l~old  
to segment the block. 

Figure 2 Block Tr~lncution Coding of 
n 4 03) 4 Blotk 

For each of the two groups, the ;Iver;cge is then 
calculated again, giving a low average, a, ant1 a high 
average, b. Mathematically, the first ant1 second sta- 
tistical moments of the block are preserved. 
Therefore, for a block of m pixels, with y pixels 
greater than the sample mean x2, and sample vari- 
ance Z2, it can be shown that 

More intuitively, the bit mask represents the 
shape of things in the block, and the avemge lumi- 
nance and contrast of the block contents are pre- 
served. With this coding method, for blocks of 4 by 
4 pivels and 8-bit gray values, ;I 16-bit mask ant1 two 
8-bit values encode the 16 pixels in 32 bits for a rate 
of 2.0 bits per pixel. 

Color Cell Compression 
Lema and Mitchell first extended 111'<: to color 
by employing a luminance-chrominance space.H 
However, the tlirection taken by Campbell et  al. 
was comput;~tionally faster for decode.+ In this 
approach, a luminance value 1s computed for each 
pixel. As in the BTC algorithm,  he sample mean of 
the luminance in each 4 by 4 block is used to seg- 
ment pixels into low and high groups based o n  
luminance values only. The 24-bit color values 
asslgned to the low ;lnd high groups are fo~~ncl by 
independently solving for the 8 - b ~ t  red, green, . ~ n d  
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blue values. This :~llows each block to be repre- 
sentetl by a 16-bit mask and two 24-blt color values, 
for a cotling rate of 4 bits per pixel. 

The 24-bit values are mapped to a set of 256 8-bit 
color inclex values by means of a histogram-based 
palette selection scheme known as the median cut 
algorithm "Thus every block can be represented by 
two 8-bit color indiccs and the 16-bit mask, yielding 
2 b ~ t s  per pixel; however, each image frame must 
also send the table of 256 24-bit color values. 

Softzuc~re Motion Pictures Compression 
With our goal of 320 by 240 image resolution play- 
back at 15 frames per second, straight CCC coding 
would have resulted in a data stream of more than 
292 kilobytes per second, which is well beyond the 
capabilities of stanclarcl CD-ROM drives. Thus SMP 
neetletl to improve the compression ratio of CCC 
approximately twofold. 

Given that we could not apply any of the more 
expensive compression techniques, we lookecl for 
comp~~tationally cheap data-reduction techniques. 
Since most of these techniques negatively impact 
image quality, we needed a visual test bed to judge 
the impact of each change. 

We compi~tetl the images off-line for a short 
sequence, frame by frame, and then preloaded the 
images into the workstation memory. The player 
program then moved the images to the frame buffer 
in a loop, allowing us to view the results as they 
would be seen in the final version. The use of this 
technique provided two advantages. First, we 
co~llcl discover motion artifacts that were invisible 
in any individual frame. Second, n7e could judge the 
covering aspects of motion, which tends to brush 
over some defects that look objectionable in a still 
frame. 

At first, interfr21rne or frame difference coding 
looked like a reasonable technique for achieving 
better compression results without sacrificing 
image clirality, but this was highly dependent on the 
natilre of the input material. Due to the low CPU 
budget, we coulcl not use any of the more elaborate 
motion compens;ltion algorithms, so even slight 
movements in the input video material largely 
defeated frame differencing. Typically, we achieved 
only 10 percent better compression with inter- 
frame coding, while introducing considerable 
complexity to the compression and decoding oper- 
ations. As ;I result, we clropped interframe coding 
and m;~tle SMP a pure intraframe method, simplfi- 
ing editing operations and random access to 

digitizecl material. At the same time, this opened up 
use of SMP for still image applications. 

To reach our final compression ratio goal of 
approximately 1 bit per pixel, we settled for a com- 
bination of two subsampling techniques. Similar 
techniclues have been independently described by 
Pins, who conducted an exhaustive search and eval- 
uation of compression techniques.I0 His finclings 
served as a check on our experiments. 

Blocks with a low ratio of foreground-to-back- 
ground luminance (a metric that can be interpreted 
as contrast) are represented in SMP by a single color 
and no mask. This reduces the coded representa- 
tion to a single byte compared to 4 bytes in CC<;, 
which amounts to a foilrfoltl subsampling of such 
blocks. No chrominance information enters into 
this decision. It is surprising, but even very marked 
chrominance differences in foreground/backgroi~nd 
pairs are readily accepted by the human eye. 

With the introduction of a second kind of block, 
additional encoding information was necessary to 
distinguish normal (structured) CCC blocks from 
the subsampled (flat) blocks. In the SMP encoding, 
this is handled by a bitmap with one bit flagging 
each block. 

Because the adaptive subsampling alone did not 
yield enough data reduction for our compression 
goal, we added fixed subsampling for the struc- 
tured blocks. The horizontal resolution of the 
structured blocks in SMP is halved relative to CCC by 
horizontally averaging two neighboring pixels, 
which reduces the number of bits in the mask from 
16 to 8. This reduction leads to blurred vertical 
edges but looks reasonable for natural vicleo 
images. Fixed subsampling allowed the encoding of 
structured blocks with 3 bytes instead of 4 bytes. 

Wfe reapplied these ideas to the original gray- 
scale block truncation algoritlun. We added a varia- 
tion to the format that does not use a color look-up 
table but interprets the foreground and background 
colors directly as luminance values. Images com- 
pressed in this format code gray-scale input mate- 
rial more compactly (there is no need to transmit 
the leading color look-up table as in CCC); they also 
do not suffer from the quantization band effects 
inherent in the color quantization ~lsed in the Ccc 
algorithm. 

We varied the ratio of flat to structured blocks 
to effect a trade-off between image quality and 
compression ratio; however, the range of useful set- 
tings is relatively small. If too few structured blocks 
are allocated, the image essentially is scaled down 
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fourfold, which makes the image look very block\.. 
If too many structured blocks are allocatetl. regions 
of the image that have little clet;~il ;Ire encoded with 
unnecessary overhead. Over the wide range of 
images we tested, allocating between 30 percent 
;inti 50 percent of structured blocks worked best, 
yieltljng a bit rate of 0.9 to 1.0 bits per pixel. For 
color ini;iges, the overhead of the color t;ible (768 
bytes) must be added. 

Decompression 
l'he most challenging part of the design of the 
S&lP system. given the performance requirements, 
is the decompression step. Efficient rendering 
techniques of block-truncation cotling are well 
known for certain classes of oiitpl~t tlevices.5 
SMI-' improves on the in1plement;itions described 
in the literature by coniple~nenting the r;lw algo- 
rithm with efficient, device-independe~it renclering 
engi~ies .~.~.H~(~" To maximize code eflicienc): n sepa- 
rate decompression routine is used for each clisplay 
sitii;ttion, rather than using contlitionals in a more 
generic routine. The current implement;ition can 
rcnder to 1-, 8.. and 24-bit displ;~ys. 

1)ecompression of BT(: involves filling 4 by 4 
blocks of pixels with two colors untler a mask. 
Recause the size and alignment of thc blocks is 
known, ;I very fast, fiill!~ unrol let1 code sequence 
c:in be ilsed. Changes of brightness and contrast of 
thc image can be rapidly adaptetl to tlifl'erent view- 
ing conclitions by manipulating the entries of the 
colormap of the SMP encotling. Most of the work 
lies in adaptation of the color contcnt of the decom- 
pressed tlata to the device cli:~r;~cteristics of the 
frame buffer. 

For displays wit11 fitll-color c;~pabilities (24-bit 
true color). the process is straiglitforwartl. The 
main problem is performing the copy of the tlecom- 
pressed vicleo to the screen. Sincc 24-bit d n t ; ~  is usu- 
all), ;~lloc;ited in 32-bit wortls, the ;rnlount of data to 
copy is four times the 8-bit case. "ryypically, SIMP 

spentls 90 percent of the c:I-'rl time in the screen 
col>y on 24-bit systems. 

The Inore common and interesting case is to 
clecompress to an 8-bit color representation. Given 
tliat SMP is an 8-bit, color-indexed format, it would 
seem straightforwarcl to tlownlo:itl the SMP frame 
color table to the window system color t;tble and 
f i l l  the image with the pixel indices directly. This 
methotl is impractical for two reasons. First, most 
wintlow systems (including X11) tlo not allow 
reservation of all 256 colors in the 1i:irdware color 

tables. Typically, applications and window man- 
agers itse a few of the entries for system colors ant1 
cursors. Qu;~ntizing down to a smaller number of 
colors (such ;IS 240) could overcome this drawback 
to a certain tlegree; however, it would make the 
SMP-cotled materi;il depenclent on the device cliar- 
acteristics of ;I p;irticitlar window system. 

The second and mucli more problematic aspect 
is that the SMP frames in a sequence usually have 
different color tables. Consequently, each frame 
requires a change of color table that causes a kalei- 
doscopic effect for the windows of other applica- 
tions on the screen. In fact, flashing cannot be 
eliminated within the sMp window itself. 

Neither XI1 nor other popular window sjlstenis 
such as Microsoft Windows allow reload of the 
color table and the content of an image at the same 
time. "Illerefore, regartlless of whether the color 
table or image contents is modified first, a flashing 
color effect takes place in the SMP window. It may 
seem that the update would have to be done in a 
single screen refresh time as opposecl to simultane- 
ously. This is true but irrelevant. Most window 
systems clo not allow for such fine-grain syncliro- 
nization; and for performance reasons, it was unre- 
alistic to expect to be able to update the image in a 
single, vertical blanking periocl. 

Alternative suggestions to avoid this problem 
have been proposed in the literature. One sugges- 
tion is to use ;I single color table for the entire 
sequence of frames.1o," This method is computa- 
tionally expensi\.e and fails for long sequences ancl 
editing operations. Another proposes quantization 
to less than half of the available colors or partial 
updates of the color map and use of plane masks." 
This alternative is not particularly portable 
between different window systems, and the use of 
plane masks can have a disastrous impact on perfor- 
mance h)r some frame-buffer implementations 
such 21s the (:X adapter in the DECstation protluct 
line. 

Neither of these methods addresses the issue of 
monochrome displays or the use of multiple sinlul- 
taneous SMP movies on a single display. (This effect 
can be witnessed in Sun Microsystems' recent addi- 
tion of C<:C coding to their XIL library.) To keep 
device influence out of the compressed material 
and to enable the use of SMP on  a wide range of 
tlevices ant1 window systems, a generic tlecoupling 
step was :~tlded between the colors in the SMP 
frame and the clevice colors used for rentlition on 
the screen. 
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A well-known technique for matching color 
images to devices with a limited color resolution is 
dithering. Dithering trades spatial resolution for an 
apparent increase in color and luminance resolu- 
tion of the display device. The decrease in spatial 
resolution is less of an issue for SMP images because 
of their inherently limited spatial resolution capa- 
bility. Thus the only challenge was the computa- 
tional cost of performing dithering in real time. 

Fortunately, we found a dithering algorithm that 
allowecl both good quality and high speed.I2 It 
reduces quantization and mapping to a few table 
look-up operations, which have a trivial hardware 
implementation (random access memory) and a 
reasonable software implementation with a few 
adds, shifts, and loatls. 

The general software implementation of the 
dithering algorithm takes 12 instructions in the 
MIPS instruction set to map a single pixel to its out- 
put representation. For SMP decoding, two differ- 
ent colors at most are in each 4 by 4 block. With this 
distribution, the cost of dithering is spread over the 
'16 PLYCIS in each block. 

Another optimization used heavily in the 8-bit 
decoder is to manipulate 4 pixels simultaneously 
with a single machine instruction. This technique 
increases performance for decompressing and 
dithering to 3.2 instructions per pixel in the MIPS 
instruction set, including all loop overhead, decod- 
ing of the encoded data stream, and acljusting con- 
trast ant1 brightness of the image (2.7 instri~ctions 
per pixel for gray-scale). This efficiency is achieveel 
by carefill merging of tlie decoding, decompres- 
sion, ant1 dithering phases into a single block of 
code and avoiding intermediate results written to 
memory. The cost of the 1-bit and 24-bit decoders is 
the same or lower (3.2 and 2.9 instructions per 
pixel, respectively). 

Compression 
The SMP compressor takes an input image, a desired 
coded image size, and an output buffer as argu- 
ments. It operates in five phases: 

Input scaling (optional) 

Block truncation (luminance) 

Flat block selection 

Color quantization (color SMP only) 

Encotling and output writing 

Although the initial scaling is not strictly part of 
the sMp algorithm, it is necessary for different input 
sources. Fast scaling is offered as part of both the 
library and the command-line SMP compressors. 
Instead of simple subsampling, true averaging is 
used to ensure maximum input image quality. 

The block truncation phase makes two passes 
through each 4 by 4 block of the input. The first 
pass calci~lates the luminance of each individual 
pixel and sums them to fintl the average luminance 
of the entire block. The second pass partitions tlie 
pixel pairs into the foreground and background 
sets and calculates their respective luminance ancl 
chrominance averages. 

The flat-block-selection phase uses the desired 
compression ratio to decicle how many blocks can 
be kept as structured blocks and how many need to 
be convertecl to flat blocks. The luminance differ- 
ence of the blocks is calculated, and blocks in the 
low-contrast range are marked for transition to flat 
blocks. Because the total average was calculated for 
each block in the preceding phase, no additional 
calculations are needed for the conversion of 
blocks, and the mask is thrown away. Colors are 
entered into a search structure during this phase. 

The color quantization phase uses a median cut 
algorithm, biased to ensure good coverage of the 
color contents of the image rather than minimize 
the overall quantization error. The bias methotl 
ensures that small, colored objects are not lost due 
to large, smoothly shaclecl areas getting the lion's 
share of the color allocations. These small objects 
often are tlie import;uit featilres in motion 
sequences and have a high visibility despite their 
small size. 

The final encotling phase builcls the color table 
and matches the foreground/background colors of 
the blocks to the best ni;~tclies in the chosen color 
table. 

The gray-scale compression can be much faster 
because neither the quantization nor the matching 
step need be performed. Also, only one-thkd of the 
uncompressed video data is usually read in, making 
gray-scale compression fast enough to enable real- 
time compression on faster workstations and video- 
conferencing type applications. 

This speed is partly due to the %bit restriction in 
the mask of each structured block. This restriction 
permits the algorithm to store all intermediate 
results of the block truncation step in registers on 
typical reduced instruction set conlputer (MSC) 

machines with 32 registers. The entire gray-scale 
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compression algorithm can be done on a MIPS 
R3000 with 8 machine instructions per input pixel 
on average, all overlieacl (except input scaling) 
included. 

Unfortunately, for color processing, SMP com- 
pression remains an off-line, non-real-time pro- 
cess, albeit a reasonably fast one at 220 instructions 
per pixel. A 25-MHz R3000 processor can process 
more than 40,000 frames in 24 hours (DECstation 
5000 Model 200, 320 by 240 at 15 frames per sec- 
ond, TX/PIP as frame grabber), equivalent to 45 min- 
utes of compressed video material per day. The 
more recent DEC 3000 AXP Model 500 workstation 
improves this number threefold, so special-purpose 
hardware for compression is unnecessary even for 
color SMP. 

Portability 
A crucial part of the SMP design for portability is the 
placement of the original SMP codec on the client 
side of the X Window System. This allows porting 
and use of SAW on other systems, without being 
at the mercy of a particular system vendor for inte- 
gration of the codec into their X server or witidow 
system. 

This placement is enabled by tlie efficiency of the 
SiLlP decompression engine, which allows many 
spare cycles for performing the copy of tlie decom- 
pressed, device-dependent video to the window 
system. 

Currently, SMP is offered as a product only on the 
DECstation family of workstations, but it has been 
ported to a variety of platforms, including 

DEC AXP workstations running the DEC OSF/l 
AXP operating system 

Alpha AXP systems running the OpenVMS oper- 
ating system 

D E C ~ C  AXP personal computers running the 
Windows NT AXP operating system 

VAX systems running the VMS operating system 

Sun SPARCstation 

IBM ~ ~ / 6 0 0 0  system 

HP/PA Precision system 

Microsoft Windows version 3.1 

Generally, porting the SMP system to another plat- 
form supporting tlie X Wintlow System requires the 
selection of two parameters (host byte order and 
presence of the MITSHM extension) and then a com- 
pilation, l'he same codec source is used on all the 
above machines; no assembly language or machine- 
specific optimizations are used or needed. 

The port to Microsoft Windows shows that 
the same base technology can be usetl with other 
window systems, although parts specific to tlie win- 
dow system had to be rewritten. The codec code is 
essentially identical, but the extreme shortage of 
registers in the 80x86 architecture and the lack of 
reasonable handling of 32-bit pointers in C lan- 
guage under Winclows warrant a rewrite in assem- 
bly language on this platform. We do not expect 
this to be an issue on Windows version 3.2, clue to 
be released later in 1993. 

Conclusion 
Software motion pictures offers a cost-effective, 
totally portable way of bringing digital video to the 
desktop without requiring special investments for 
add-on hardware. Combined with audio facilities, 
SMP can be used to bring a complete video playback 
to most desktop systen~s. The algorithm and irnple- 
mentation were designed to be used from (:ll-ROMs 
as well as network connections. SMP ~ e i l n i l e ~ ~ l y  
integrates with the existing windowing system soft- 
ware. Hecause o f  its potentially universal i~vailabil- 
ity, SiMP can serve an important function as the 
lowest common denominator for digital video 
across nlultiple platforms. 
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Digital Audio Compression 

Compared to most digital data types, with the exception o f  digit611 uideo, the data 
rates associated wzth uncompressed digital audio are su6st~~ntial Digital azidio 
cor~zpression enables Inore eflicient storage and t~~~in.s~nission of ~ u d z o  data The 
inany fonns of cl~lclio co~npression tec/?niqz~es offer a range Of encoder and decoder 
comnplexitJ,, co~npressed audzo quality, nizd dffer/iig ornotints of d~ilcl ccorrzpression 
The p-law transJor~nation and ADPCJI coder are simllple ~rpproaches with lozi1- 
complexity, lou8-compression, and medium azidio quality algoritl~nzs The ;UPEG/ 

audio standard is a high-complexity, high-compression, arzd high audio qziality 
algorithm These techniques apply to general audio sigrznls and are not specifically 
tuned for speech signals 

Digital audio compression allows the efficient stor- 
age and transmission of audio data. The various 
audio compression techniques offer different levels 
of complexity, compressecl audio quality, ant1 
:imount of clata compression. 

This paper is a survey of techniques itsetl to corn- 
press digital audio signals. Its intent is to provide 
usefi~l information for readers of all levels of experi- 
ence  with digital audio processing. The paper 
begins with a summary of the basic audio digitiza- 
tion process. The next two  sections present 
detailed descriptions of two relatively simple 
approaches to audio compression: p-law ant1 adap- 
tive differential pulse code modulation. In the fol- 
lowing section, the paper gives a n  overview of a 
third, much more sophisticated, compression 
audio algorithm from the Motion Pictilre Experts 
Group. The topics covered in this section are quite 
complex and are intended for the reader w h o  is 
familiar with digital signal processing. The paper 

concludes with a discussion of software-only real- 
time implementations. 

Digital Audio Data 
The digital representation of audio data offers 
many advantages: high noise irnmunit): stability 
and reproclucibil.ity, iludio in digital form ;11so 
allows the efficient implementation of many audio 
processing fiinctions (e.g., mixing, filtering, ant1 
equalization) through the digital computer. 

The conversion from the analog to the digital 
domain begins by s:~mpling the audio input in  regu- 
lar, discrete intervals of time ant1 quantizing the 
sampled villues into a tliscrete number of evenly 
spaced levels. "l'he digital audio data consists o f  a 
seqilence of binary values representing the number 
of quantizer levels h,r each audio sample. The 
method of representing each sample with an intle- 
pendent code word is called pulse code motlul;~tion 
(PCI\l). Figure 1 shows the digital audio process. 

ANALOG ANALOG 
AUDIO I PCM -m PCM AUDIO 

INPUT _ ANALOG-TO-DIGITAL VALUES DIGITAL SIGNAL VALUES DIGITAL-TO-ANALOG OUTPUT 
CONVERSION PROCESSING CONVERSION 

Figure I Digital Audio Process 
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According to the Nyquist theory, a time-sampled 
signal can faithfully represent signals up to half the 
sampling rate.' Typical sampling rates range from 
8 kilohertz (kHz) to 48 kHz. The 8-kHz rate covers 
a frequency range up to 4 kHz and so covers most of 
the frequencies produced by the human voice. The 
48-kHz rate covers a frequency range up to 24 kHz 
and more than adequately covers the entire audible 
frequency range, which for humans typically 
extends to only 20 kHz. In practice, the frequency 
range is somewhat less than half the sampling rate 
because of the practical system limitations. 

'The nilmber of quantizer levels is typically a 
power of 2 to make fill1 use of a fixed number of 
bits per auclio sample to represent the qi~antized 
values. With uniform quantizes step spacing, each 
additional bit has the potential of increasing the 
signal-to-noise ratio, or equivalently the dynamic 
range, of the quantized amplitutle by rouglily 
6 tlecibels (dB). The typical number of bits per sarn- 
ple usetl for digital audio ranges from 8 to 16. The 
dynamic range capability of these representations 
thus ranges from 48 to 96 dB, respectively. To put 
these ranges into perspective, if 0 dB represents the 
weakest audible sound pressure level, then 25 dB 
is the minimum noise level in a typical recording 
studio, 35 dB is the noise level inside a quiet borne, 
ant1 120 clB is the loudest level before tliscomfort 
begins.l In terms of audio perception, 1 dB is the 
minimum audible change in sound pressure level 
under the best conditions, and tloubling the sound 
pressure level amounts to one perceptilal step in 
louclness. 

Comparetl to most digital data types (digital 
video exclutled), the data rates associated with 
unconipressecl digital audio are s~~bstantial. For 
ex;~niple, the autlio data on a compact disc (2 chan- 
nels of auclio sampled at 44.1 kHz with 16 bits per 
sample) requires a data rate of about 1.4 megabits 
pes xcontl. There is a clear need for some form of 
compression to enable the more efficient storage 
and transmission of this data. 

The Inany forms of audio compression tech- 
niques differ in the track-offs between encoder and 
decoder complexity, the compressetl audio quality, 
;untl the rlmount of data compression. The tech- 
niques presented in the following sections of this 
paper cover the full range from the p-law, a low- 
complexity, low-compression, and medium audio 
qu;~lity ;~lgoritlirn, to MPEG/audio, a high-cornplex- 
ity, high-compression, and high audio quality algo- 
rithm. "These techniques apply to general audio 

signals and are not specifically tuned for speech sig- 
nals. This paper does not cover audio compression 
algorithms designed specifically for speech signals. 
These algoritllms are generally based on a model- 
ing of the vocal tract and do not work well for non- 
speech audio signals."L The federal standards 1015 
LPC (linear predictive coding) and 1016 CELP (coded 
excited linear prediction) fall into this category of 
audio compression. 

p-law Audio Compression 
The p-law transformation is a basic audio compres- 
sion technique specified by the Comite Consultatif 
Internationale de Tdegraphique et Telephonique 
(CCITT) Recommendation G.711.5 The transfor- 
mation is essentially logarithmic in nature and 
allows the 8 bits per sample output codes to cover a 
dynamic range equivalent to 14 bits of linearly quan- 
tized values. This transformation offers a compres- 
sion ratio of (number of bits per source sample)/ 
8 to 1. Unlike linear quantization, the logarithmic 
step spacings represent low-amplitude audio sam- 
ples with greater accuracy than higher-amplitude 
values. Thus the signal-to-noise ratio of the trans- 
formed output is more uniform over the range of 
amplitudes of the input signal. The p-law transfor- 
mation is 

where m = 255, and x is the value of the input sig- 
nal normalized to have a maxinium value of 1. The 
CCITT Recommendation G.711 also specifies a simi- 
lar A-law transformation. The p-law transformation 
is in common use in North America and Japan for 
the Integrated Services Digital Network (ISDN) 
8-kHz-sampled, voice-grade, digital telephony ser- 
vice, and the A-law transformation is used else- 
where for the ISDN telephony. 

Adaptive Dt!ferential Pzclse 
Code Modulation 
Figure 2 shows a simplified block diagram of 
an adaptive differential pulse code modulation 
(ADPCM) coder.Qor the sake of clarity, the figure 
omits details such as bit-stream formatting, the pos- 
sible use of side information, and the adaptation 
blocks. The ADPCM coder takes advantage of the 

Digilul Technical Journal Vo1. 5 IVO. 2 Spring 199.3 



Multimedia 

x [ n l +  0 Dln] (ADAPTIVE) c[nl 
QUANTIZER I 

Xp[n - 11 H (ADAPTIVE) 17xNnl f A D A P T l V E )  1 
PREDICTOR DEQUANTIZER 

DEQUANTIZER - 
PREDICTOR IJ 

(b) ADPCM Decoder 

Fi&ure 2 ADPCM ColnI,ressio~t a,zd 
Deco~nprcssion 

fact that neighboring audio samplcs are generally 
simil:tr to each other. Instead of representing each 
audio sample independently as in P(:ILI, an ADPCM 
encoder computes the difference between each 
audio sample and its predicted value ;111tl outputs 
the PCM value of the differenti;ll. Note that 
the AIIPCM encoder (Figure 2a) uses most of the 
components of the ADPCM decoder (Figure 2b) to 
compute the predicted values. 

The quantizer output is generally only a (signed) 
representation of the number of quantizer levels. 
'Ihe requantizer reconstructs the value of the quan- 
tized sample by multiplying the number of quan- 
tizer levels by the quantizer step size ancl possibly 
adding an offset of half a step size. Depencling on 
the quantizer implementation, this offset may be 
necessary to center the requantized value between 
the quantization thresholds. 

The AuPCM coder can adapt to the characteristics 
of the audio signal by changing the step size of 
either the quantizer or the pretlicto~; or by chang- 
ing both. The method of computing the predicted 
value and the way the predictor and the quantizer 
;~tlapt to the audio signal vary among different 
ADPC~M coding systems. 

Some tLDPCM systems recluire tlie encoder to 
provide side information with the differential 

PCM values. This side information can serve 
two purposes. First, in some ADPCM schemes 
the decoder needs the additional information to 
determine either the predictor or the quantizer 
step size, or both. Second, the data can provide 
redundant contextual information to the tlecoder 
to enable recovery from errors in the bit stream 
or to allow random access entry into the coded bit 
stream. 

The following section describes the ADPCM 
algorithm proposecl by tlie Interactive ~Vultirneclia 
Association (IMA). This algorithtn offers a compres- 
sion factor of (number of bits per source sample)/ 
4 to 1. Other t\DIJ<:M audio compression schemes 
include the CCL'TT Recommendation G.721 (32 kilo- 
bits per second compressed data rate) and 
Recomrncndation G.723 (24 kilobits per second 
compressetl data rate) standards and the con1p;ict 
disc interactive audio compression algorithm.?* 

The IMA ADPCM Algoril%~m The IIMA is a consor- 
tium of computer h~rdware and software vendors 
cooperating to tlevelop a de facto standard for com- 
puter multimedia data. The I I U ' S  goal for its audio 
compression proposal was to select a piiblic- 
domain auclio co~~ipression algorithm ab.le to pro- 
vide good compressetl audio quality with good 
data cotnpression performance. In addition, the 
algorithm had to be si~ilple enough to enable 
software-only, real-time clecompression of stereo, 
44.1-kHz-sampled, audio signals on a 20-megahertz 
(MtIz) 386-class computer. The selected ADI'CM 

algorithm not only meets these goals, but is also 
simple enough to enable software-only, real-time 
encoding on the same computer. 

The simplicity of the I n \  ADPCM proposal lies in 
the crutlity of its predictor. The predicted value of 
the audio sample is simply the tlecoded value of the 
immediately previous audio sample. Thus the pre- 
dictor block in Figure 2 is merely a time-delay 
element whose output is the inpi~t delayed by one 
autlio sample interval. Since this predictor is not 
adaptive, side information is not necessary for the 
reconstruction of the predictor. 

Figure 3 shows a block diagram of the quantiza- 
tion process used by the IivIA algorithm. The qu;tn- 
tizer outputs four bits representing the signed 
magnitude of the number of quantizer levels for 
each input sample. 

Adapt;~tion to the audio signal takes place only in 
the quantizer block. The quantizer adapts the step 
size based o n  the current step size ant1 the c]u;ln- 
tizer output of the immediately previous input. 
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START 5' 
SAMPLE = - SAMPLE 

STEP SIZE12 SAMPLE = 
SAMPLE -STEP SIZE/2 

A BIT1 = 0  
STEP SIZW4 

Figure 3 IMA ADPCM Quantization 

This adaptation can be done as a sequence of two  
table lookups. The three bits representing the 
number of q ~ ~ a n t i z e r  levels serve as an index into 
the first table lookup whose output  is an index 
adjustment for the second table lookup. This adjust- 
ment is added to a stored index value, and the 
range-limited result is used as the index to the sec- 
ond table lookup. The summed index value is 
stored for use in the next iteration of the step-size 
adaptation. The output  of the second table lookup 
is the new quantizer step size. Note that given a 
starting value for the index into the second table 

lookup, the data used for adaptation is completely 
deducible from the quantizer outputs; side  inform;^- 

tion is not  required for the quantizer adaptation. 
Figure 4 illustrates a block diagram of the step-size 
adaptation process, and Tables 1 and 2 provide the 
table lookup contents. 

IMA ADPCM: Error Recoveyy A fortunate side 
effect of the  design of this ADPCM scheme is 
that decoder errors caused by isolated code word 
errors or  edits, splices, or  random access of the 
compressed bit stream generally d o  not have a 

LOWER THREE 
BITS OF 
QuANTlzER OUTPUT 4 7  P Z S T M ~ ~ ~ I  , wYZZLIF 

TABLE BETWEEN TABLE 
LOOKUP 0 AND 88 LOOKUP 

DELAY FOR NEXT 
ITERATION OF 
STEP-SIZE 
ADAPTATION 1 

Figure 4 IMA ADPCM Step-size Adaptation 
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Table 1 First Table Lookup for the IMA 
ADPCM Quantizer Adaptation 

Three Bits 
Quantized 
Magnitude 

lndex 
Adjustment 

disastrous impact on decoder output. This i5 usu- 
ally not true for compression schemes that use 
prediction. Since prediction relies on the correct 
decotling of previous audio samples, errors in 
the decoder tend to propagate. The next section 
explains why the error propagation is generally 

limited and not disastrous for the IMA algorithm. 
The decoder reconstructs the audio sample, Xp[n], 
by adding the previously decoded audio sample, 
X11[n- 11, to the result of a signed magnitude prod- 
uct of the code word, C[n], and the quantizer step 
size plus an offset of one-half step size: 

where C'ln] = one-half plus a suitable numeric 
conversion of C[nJ. 

An analysis of the second step-size table lookup 
reveals that each succcssi\~e entry is about 1.1 times 
the previous entry. As long as range limiting of the 
second table index does not take place, the value 
for step-size[nl is approximately the product of the 
previous value, step-size[n-11, and a fi~nction of 
the code word, F(C[n - 11 ) : 

The above two equations can be manipulated 
to express the decoded audio sample, Xp[n], as a 

Table 2 Second Table Lookup for the IMA ADPCM Quantizer Adaptation 

Index Step Size Index Step Size Index Step Size Index Step Size 
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function of the step size and the decoded sample standard addresses the compression of synchro- 
value at time, m, and the set of code words nized video and audio at a total bit rate of roughly 
between time, m, and n 1.5 megabits per second. 

Like p-law and ADPCM, the i\lPEG/audio compres- 
Xp[n] = Xp[m] + step-size[m] sion is lossy; however, the MPEG algorithm can 

Note that the terms in the summation are only 
a function of the code words from time m + l  
onward. An error in the code word, C[q], or a ran- 
dom access entry into the bit stream at time q can 
result in an error in the decoded output, Xp[ql, and 
the quantizer step size, step-size[q+ 11. The above 
equation shows that an error in Xp[m] amounts to 
a constant offset to future values of Xp[n]. This 
offset is inaudible unless the decoded output 
exceeds its permissible range and is clipped. 
Clipping results in a momentary audible distortion 
but also serves to correct partially or hllly the offset 
term. Furthermore, digital high-pass filtering of the 
decoder output can remove this constant offset 
term. The above equation also shows that an error 
in step-size[m+ 11 amounts to an unwanted gain or 
attenuation of future values of the decoded output 
Xp[n]. The shape of the output wave form is 
unchanged unless the index to the second step-size 
table lookup is range limited. Range limiting results 
in a partial or full correction to the value of the step 
size. 

The nature of the step-size adaptation limits the 
impact of an error in the step size. Note that an 
error in step-size[m+'L] caused by an error in a sin- 
gle code word can be at most a change of (l.l)9, or 
7.45 dB in the value of the step size. Note also that 
any sequence of 88 code words that all have magni- 
tude 3 or less (refer to Table 1) completely corrects 
the step size to its minimum value. Even at the low- 
est audio sampling rate typically used, 8 kHz, 88 
samples correspond to 11 milliseconds of audio. 
Thus random access entry or edit points exist 
whenever 11 milliseconds of low-level signal occur 
in the audio stream. 

MPEG/Audio Compression 

achieve transparent, perceptually lossless com- 
pression. The MPEG/audio committee conducted 
extensive subjective listening tests during the 
development of the standard. The tests showed 
that even with a 6-to-1 compression ratio (stereo, 
16-bit-per-sample audio sampled at 48 kHz com- 
pressed to 256 kilobits per second) and under opti- 
mal listening conditions, expert listeners were 
unable to distinguish between coded and original 
audio clips with statistical significance Further- 
more, these clips were specially chosen because 
they are difficult to compress. Grewin and Ryden 
give the details of the setup, procedures, and 
results of these tests.9 

The high performance of this compression algo- 
rithm is due to the exploitation of auditory mask- 
ing. This masking is a perceptual weakness of the 
ear that occurs whenever the presence of a strong 
audio signal makes a spectral neighborhood of 
weaker audio signals imperceptible. This noise- 
masking phenomenon has been observed and cor- 
roborated through a variety of ps~~cl~oacoustic 
experiments.lO 

Empirical results also show that the ear has a lim- 
ited frequency selectivity that varies in acuity from 
less than 100 Hz for the lowest audible frequencies 
to more than 4 kHz for the highest. Thus the audible 
spectrum can be partitioned into critical bands that 
reflect the resolving power of the ear as a function 
of frequency. Table 3 gives a listing of critical band- 
widths. 

Because of the ear's limited frequency resolving 
power, the threshold for noise masking at any given 
frequency is solely dependent on the signal activity 
within a critical band of that frequency. Figure 5 
illustrates this property. For audio Compression, 
this property can be capitalized by transforming 
the audio signal into the frequency domain, then 
dividing the resulting spectrum into subbands that 
approximate critical bands, and finally quantizing 
each subband according to the audibility of quanti- . 

The Motion Picture Experts Group (MPEG) audio zation noise within that band. For optimal compres- 
compression algorithm is an International Organi- sion, each band should be quantized with no more 
zation for Standardization (ISO) standard for high- levels than necessary to make the quantization 
fidelity audio compression. It is one part of a noise inaudible. The following sections present 
three-part compression standard. With the other a more detailed description of the MPEG/audio 
two parts, video and systems, the composite algorithm. 
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Table 3 Approximate Critical Band 
Boundaries 

Band Frequency Band Frequency 
Number (Hz)* Number (Hz)* 

* Frequencies are at the upper end of the band. 

MPEG/Audio Encoding and Decoding 
Figure 6 shows block diagrams of the MPEG/ 
audio encoder and d e c ~ d e r . " . ~  In this high-level 
representation, encoding closely parallels the pro- 
cess described above. The input audio stream 
passes through a filter bank that divides the input 
into multiple subbands. The input audio stream 
simultaneously passes through a psychoacoustic 
model that determines the signal-to-mask ratio of 
each subband. The bit or  noise allocation block 
uses the signal-to-mask ratios to decide how to 
apportion the total number of code bits available 
for the quantization of the subband signals to rnini- 
mize the audibility of the quantization noise. 

I/ STRONG TONAL SIGNAL 

REGION WHERE WEAKER 

FREQUENCY 

Figure 5 Az~dio Noise Mctiki~zg 

Finally, the last block takes the re,presentation of 
the quantized audio samples and formats the tlat;~ 
into a decotlable bit stream. The decotler simply 
reverses the formatting, then reconstructs the 
quantized subband values, ant1 finally transforms 
the set of subband values into a time-tlornain auclio 
signal. As specified by the kI13EC; requirenients, 
ancillary tlata not necessarily related to the audio 
stream can be fitted within the codetl bit stream. 

The &IPEC;/audio st;ind;ll-d has t.hree distinct lay- 
ers for compression. Layer I forms the most basic 
algorithm, and Layers I1 and 111 are enhancements 
that use some eleme~lts found in Layer I. Each suc- 
cessive layer improves the comprcsaion perfor- 
mance but at the cost of greater encoder ant1 
decoder complexity. 

Layer1 The Layer I algorithm uses the basic filter 
bank found in all layers. This filter bank divitles the 
audio signal into 9 constant-width frequency 
bands. The filters are relatively simple and provitle 
goocl time resolution with reason;~ble frequency 
resolution relative to the  perceptual properties of 
the  human ear. The design is a compromise with 
three notable concessions. First, the 32 constant- 
width bands do not accurately reflect the e;~r's criti- 
cal bands. Figure 7 illustrates this discrepancy. The 
bandwidth is too  wide for the lower frequencies s o  
the number of quantizer bits cannot be specificalljr 
tuned for the noise sensitivity within each criticzll 
band. Insteacl, the includetl critical band with the  
greatest noise sensitivity tlictates tlie number of 
quantization bits reqirirecl for the entire filter band. 
Second, the filter bank :~ntl its inverse are not loss- 
less transformations. Even w i t l i o ~ ~ t  quantization, 
the inverse transformation woultl not perfectly 
recover the original input signal. Fortunately, the 
error introducetl by the filter 1~11ik is small and 
inaudible. Finally, adjacent filter bands have :I signif- 
icant frequency overlap. A signal at a single fre- 
quency can affect two aclj;~cent filter hank outputs.  

The filter bank provides 32 freq~lency samples, 
o n e  sample p e r  band, for every 32 input :rilclio sam- 
ples. The Layer I algorithm groups together 12 sam- 
ples fro111 each of tlie 32 I>;~nds. Each group of 12 
samples receives a bit allocation anti, if the bit ~ l l o -  
cation is not zero, a scale factor. Coding for stereo 
redundancy compression is slightly different and is 
discussed later in this paper. 'l'hc bit ;rllocation 
determitlcs the number of bits irsetl to represellt 
each sample. The scale factor is a multiplier that 
sizes the  samples to maximize the resolution of 
tlie quantizer. The Layer 1 encoder formats the 
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TIME-TO-FREQUENCY ALLOCATION, BIT-STREAM 
QUANTIZER, AND FORMAnING 

A I 

PSYCHOACOUSTIC ANCILLARY DATA 

MODEL (OPTIONAL) 

(a) MPEG/Audio Encoder 

FFk+FFI ::=:o. 
RECONSTRUCTION 

I v 
ANCILLARY DATA 
(IF ENCODED) 

(13) lWEG/Audio Decoder 

Figure G MPEG/Audio Compression and Decompression 

MPEGIAUDIO FILTER BANK BANDS 

CRITICAL BAND BOUNDARIES 

Figure 7 MPEC/Audio Filter Bandwidths versus Critical Bandwidths 

32 groups of 12 samples ( i t . ,  384 samples) into a 
frame. Besides the audio data, each frame contains 
a headel; an optional cyclic redunclancy code (CRC) 
check word, and possibly ancillary data. 

Layer I/ The Layer 11 algorithm is a simple 
enllancemenr of Layer I.  I t  improves compression 
performance by coding data in larger groups. The 
Layer I 1  encoder forms frames of 3 by 12 by 32 = 

1,152 samples per audio channel. Whereas Layer I 
codes data in single groups of 12 samples for each 

subband, Layer I1 codes data in 3 groups of 12 sam- 
ples for each subband. Again discounting stereo 
redundancy coding, there is one bit allocation and 
up to three scale factors for each trio of 12 samples. 
The encoder encodes with a unique scale factor for 
each group of 12 samples only if necessary to avoid 
audible distortion. The encoder shares scale factor 
values between two or all three groups in two 
other cases: (1) when the values of the scale factors 
are sufficiently close and (2) when the encoder 
anticipates that temporal noise masking by the ear 
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will hide the consequent distortion. The Layer 11 

algorithm also improves performance over Layer I 
by representing the bit allocation, the scale factor 
values, ancl the quantized samples with a more effi- 
cient code. 

Layer- III The Layer 111 algorithm is a much more 
refined approach.lA l 1  Although basecl on the same 
filter bank found in Layers I and 11. Layer 111 compen- 
sates for some filter bank deficiencies by process- 
ing the filter outputs with a modified discrete 
cosine transform (MDCT). Figure 8 shows a block 
diagram of the process. 

The IMIICTs further subclivitle the filter bank out- 
puts in frequency to provide better spectral resolu- 
tion. Because of the inevitable trade-off between 
time and frequency resolution, Layer 111 specifies 
two different MI,<:T block lengths: a long block of 36 
samples or a sllort block of 12. The short block length 
improves the time resolution to cope with tran- 
sients. Note that the short block lengtl~ is one-third 
that of a long block; when used, three short blocks 
replace a single long block. The switch between 
long ant1 short blocks is not instantaneous. A long 
block with a specialized long-to-short or short-to- 
long tlata window provides the transition mecha- 
nism from a long to a short block. Layer I11  has three 
blocking modes: two modes where the outputs of 
the 32 filter banks can ;ill pass through MDCTs with 
the same block length and a mivetl block mode 
where the 2 lower-frequency bands use long blocks 
and the 30 upper bancls use short blocks. 

Other major enhancements over the Layer 1 and 
Layer 11 algorithms include: 

Alias reduction - Layer I11 specifies a method of 
processing the MDCT values to remove some 
redundancy causetl by the overlapping bands of 
the Layer I and Layer I1 filter bank. 

Nonuniform quantization - The Layer 111 quan- 
tizer raises its input to the 3/4 power before 
q~lantization to provide a more consistent signal- 
to-noise ratio over the range of cluantizer valucs. 
The reqiiantizer in the klt)E<;/audio decoder 
relinearizes the values by raising its output to 
the 4/3 power. 

Entropy coding of data values - Layer 111 uses 
Huffman cocles to encocle the quantizecl samples 
for better data cornpression.li 

Use of a bit reservoir - The design of the Layer 111 
bit stream better fits the variable length nature of 
the compressed data. As with Layer 11, Layer 111 
processes the audio data in fri~rnes o f  1,152 sam- 
ples. IJnlike Layer 11, the codctl data representing 
these samples does not necessarily fit into a 
fixed-length frame in the code bit stream. The 
encoder can donate bits to or borrow bits from 
tlie reservoir when appropriate. 

Noise allocation instead of bit ;~llocation - 'I'he 
bit allocation process used by Layers I and I1 only 
approximates the amount of noise causetl by 
quantization to a given number of bits. The Layer 
I11 encoder uses a noise allocation iteration 
loop In this loop, tlie qilnntizers ;Ire varietl in a n  
orderly way, and the resulting quantization nolse 
is actually calculated and specifically allocated 
to each subband. 

PCFA 
AUDIO 
INPUT - (ONLY FOR 

FILTER LONG 
BANK BLOCKS) 

WINDOW 

LONG, LONG-TO-SHORT 
SHORT, SHORT-TO-LONG LONG OR SHORT BLOCK 
WINDOW SELECT CONTROL (FROM 

PSYCHOACOUSTIC MODEL) 

Figure 8 1l4PEG/A~lclio L q ~ e l -  III Filter Bnrzk Processi7zg, Encoder Side 
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The Psychoacoustic Model 
The psychoacoustic model is tlie key component of 
the MPEG encotler that enables its high perfor- 
mance.16~~~"~" The job of the psychoacoustic model 
is to analyze the input audio signal and determine 
where in the spectrum quantization noise will be 
masked and to what extent. The encoder uses this 
information to decide how best to represent the 
input audio signal with its limited number of code 
bits. The 1MPEC;hudio standard provides two exam- 
ple implementations of the psychoaco~~stic model. 
Below is a general outline of the basic steps 
involved in tlie psychoacoustic calculations for 
either model. 

Time align audio data - The psychoacoustic 
model must account for both the clelay of the 
autlio data through the filter bank ancl a data 
offset so that the relevant data is centered within 
its analysis window. For example, when using 
psychoacoustic model two for Layer I ,  the delay 
through the filter bank is 256 samples, and the 
offset required to center the 384 samples of a 
Layer I frame in the 512-point psychoacoustic 
analysis wi~itlow is (512 - 384)/2 = 64  points. 
The net offset is 320 points to time align the 
psychoacoustic model data with the filter bank 
outputs. 

Convert audio to spectral domain - The psy- 
choacoustic moclel uses a time-to-frequency 
mapping such as a 512- or 1,024-point Fourier 
transform. A standard Hann weighting, applied 
to audio data before Fourier transformation, 
conditions the data to reduce the edge effects of 
the transform winclow. The model uses this sep- 
arate and independent mapping instead of the 
filter bank outputs because i t  needs finer fre- 
quency resolution to calculate the masking 
thresholds. 

Partition spectral v;~lues into critical bands - To 
simplify the psychoacoi~stic calculations, the 
model groups the frequency values into percep- 
tual quanta. 

Incorporate thresliold in quiet - The model 
includes an empirically determined absolute 
masking threshold. This thresholtl IS the lower 
bound for noise masking and 1s determined in 
the absence of masking signah. 

Separate into tonal and nontonal components - 
The moclel must iclentify and separate the tonal 

and noiselike components of the audio signal 
because the noise-masking characteristics of the 
two types of signal are different. 

Apply spreading function - The model deter- 
mines the noise-masking thresholds by applying 
an empirically determ~ned masking or spread~ng 
function to the signal components. 

Find the minimum masking threshold for each 
subband - The psychoacoustic model calculates 
the masking thresholds with a higher-frequency 
resolution than provided by the filter banks. 
Where the filter band is wide relative to the criti- 
cal band (at the lower end of the spectrum), the 
model selects the minimum of the masking 
thresholds covered by the filter band. Where the 
filter band is narrow relative to the critical band, 
the model uses the average of the masking 
thresholds covered by the filter band. 

Calculate signal-to-mask ratio - The psycho- 
acoustic model takes the minimum masking 
threshold and computes the signal-to-mask 
ratio; it then passes this value to the bit (or 
noise) allocation section of the encoder. 

Stereo Redundancy Coding 
The MPEG/audio compression algorithm supports 
two types of stereo redundancy coding: intensity 
stereo coding and middle/side (MS) stereo coding. 
Both forms of redundancy coding exploit another 
perceptual weakness of the ear. Psychoacoustic 
results show that, within the critical l ~ n d s  cover- 
ing frequencies above approximately 2 kHz, the 
ear bases its perception of stereo imaging more 
on the temporal envelope of the auclio signal than 
its temporal fine structure. All layers support inten- 
sity stereo coding. Layer I [ [  also supports MS stereo 
coding. 

In intensity stereo mode, the encoder codes 
some upper-frequency filter bank outputs with a 
single summed signal rather than send independent 
codes for left and right channels for each of the 32 
filter bank outputs. The intensity stereo clecoder 
reconstructs the left and right channels based only 
on independent left- and right-channel scale hc-  
tors. With intensity stereo coding, the spectr;~l 
shape of the left and right channels is the same 
within each intensity-codecl filter bank signal, but 
tlie magnitude is different. 

The MS stereo mode encocles the signals for left 
and right channels in certain frequency ranges as 
middle (sum of left and right) and side (difference 
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of left and right) channels. In this mode, the  
encoder uses specially tuned techniques to  further 
compress side-channel signal. 

Real-time Sofiware Implementations 
The software-only implementations of the p-law 
and ADPCM algorithms can easily run in real time. A 
single table lookup can d o  p-law compression o r  
decompression. A software-only implementation 
of the IbM ADPCM algorithm can process stereo, 
44.1-kHz-sampled audio in real time on  a 20-MHz 
386-class computer. The challenge lies in develop- 
ing a real-time software implementation of the  
ivIPEG/audio algorithm. The MPEG standards clocu- 
ment does not offer many clues in this respect. 
There are much more efficient ways to compute 
the calculations required by the encoding and 
decoding processes than the procedures outlined 
by the standard. As an example, the following sec- 
tion details how the number of multiplies and addi- 
tions used in a certain calculation can be  reduced 
by a factor of 12. 

Figure 9 shows a flow chart for the analysis sub- 
band filter used by the MPEG/audio encoder. Most 
of the computational load is clue to the second- 
from-last block. This block contains the following 
matrix multiply: 

63 
s(i) = x v(k) x cos [ (2 X i+l) X (k-16) X ll 

k=o 64  1 
Using the above equation, each of the f values of 

S(i) requires 6 3  adds and 64  multiplies. To optimize 
this calculation, note that the iM(i,k) coefficients 
are similar to the coefficients used by a ?&point, 
un-normalized inverse discrete cosine transform 
(DCT) given by 

31 ( 2 x i + l ) x k x I I  
/(i) = 2 F(k) X cos [ 64 k=O I 

for i = 0 ... 31. 

Indeed, S(z] is identical tof(z] if F(k) is computed 
as follows 

F(k) = Y(1G) fo rk  = 0; 

= Y(k + 16) + ~ ( 1 6  - k) for k = 1 . . . 16; 

= Y(kS16) - Y(80-k)fork = 17 ... 31. 

SHIFT IN 32 NEW SAMPLES 
INTO 512-POINT FIFO BUFFER. Xi 

WINDOW SAMPLES: 
F O R I = O T O ~ ~ ~ , D O Z ~ = C ~ X  Xi 

PARTIAL CALCULATION: 

F O R i = O T 0 6 3 . D O Y I = ~ Z , + 6 4 j  

CALCULATE 32 SAMPLES BY 
63 

MATRlXlNG Si =x y i  x M i,k 
k=O 

OUTPUT 32 SUBBAND SAMPLES 

Fig~lre  9 Row Diagram of the MPEG/Audio 
Encoder Filter Bank 

Thus with the almost negligible overhead of com- 
puting the  F(k) values, a twofolcl reduction in mul- 
tiplies and additions comes from halving the range 
that k varies. Another reduction in multiplies ancl 
additions of more than sixfold comes from using 
one  of many possible fast algorithms for the compu- 
tation of the inverse DCT.2021.LZ There is a similar 
optimization applicable to the 64 by 32 matrix nii~l- 
tiply founcl within the tlecoder's subbancl filter 
bank. 

Many other optimizations are possible for both 
MPEG/audio encoder ancl decoder. Such optimiza- 
tions enable a software-only version of the  MPE<;/ 
audio Layer I o r  Layer 11 decoder (written in the C 
programming language) to obtain real-time per- 
formance for the  decoding of high-fidelity mono- 
phonic auclio data on a DBCstation 5000 Model 200. 
This workstation uses a 25-MHz R3000 MII-'S CPU 
and has 128 kilobytes of external instruction 
and data cache. With this optimizecl software, the 
MPEG/audio Layer 11 algorithm requires an average 
of 13.7 seconds of CPlJ time (12.8 seconds of user 
time and 0.9 seconds of system time) to  decode 7.47 
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seconds of a stereo audio signal sampled at 48 kHz 
with 16 bits per sample. 

Although real-time MPEG/auclio tiecoding of 
stereo audio is not possible on the DECstation 5000, 
such decoding is possible on Digital's workstations 
equipped with the 150-MHz DECchip 21064 CPU 

(Alpha AXP architecture) and 512 kilobytes of exter- 
nal instruction and data cache. Indeed, when this 
same code (i.e., without CPU-specific optimization) 
is compiled ant1 run on  a DEC 3000 AXP Model 500 
workstation, the MPEG/audio Layer 11 algorithm 
requires an average of 4.2 seconds (3.9 seconds of 
user time and 0.3 seconds of system time) to 
decode the same 7.47-seconcl audio sequence. 

Summary 
Techniques to compress general digital audio sig- 
nals include p-law and adaptive differential pulse 
code modulation. These simple approaches apply 
low-complexity, low-compression, and medium 
audio quality algorithms to audio signals. A third 
technique, the MPEG/dutlio compression algorithm, 
is an I S 0  standard for high-fidelity audio compres- 
sion. The MPEG/audio standard has three layers of 
successive complexity for improved compression 
performance. 
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The Megadoc Image Document 
Management System 

iVIegadoc image doczifnent management solutions are the result of a systems 
engineering eflort that combined several disciplines, ranging from optical disk 
hardware to an image application framework. Although each of the component 
tech~zologies may be fairly mature, combining them into easy-to-customize solu- 
tions presented a significant systems engineering challenge. The resulting applica- 
tion framework allows the configuration of customized solutions with low systems 
integration cost and short time to deployment. 

Electronic Document Management 
In most organizations, paper is the main medium 
for information sharing. Paper is not only a comrnu- 
nication medium but in many cases also the carrier 
of an organization's vital information assets. Whereas 
the recording of information in document format is 
done largely with help of electronic equipment, 
sharing and distribution of that information is in 
many cases still done on paper. Large-scale, paper- 
based operations have limited options for tracking 
the progress of work. 

The computer industry thus has two opportunities: 

1. Capture paper documents in electronic image 
format (if using paper is a requirement) 

2. Provide better tools for sharing and distribution 
among work groups (if the use of paper can be 
avoided) 

Organizations that use electronic imaging, as 
compared to handling paper, can better track work 
in progress. Productivity increases (no time is 
wasted in searching) and the quality of service 
improves (response times are shorter and no infor- 
mation is lost) when vital information is repre- 
sented and tracked electronically. 

Imaging is not a new technology (see Table 1). 
Moreover, this paper does not document new base 
technology Instead, we describe the key compo- 
nents of an image document management system in 
the context of a systems engineering effort. This 
effort resulted in a product set that allows the con- 
figuration of customized solutions. 

Those who first adopted the use of image tech- 
nology have had to go through a long learning 

curve-a computer with a scanner and an optical 
disk does not fully address the issues of a large- 
scale, paper-based operation. Early atlopters of 
electronic imaging experienced a challenge in 
defining the right electronic document indexing 
scheme for their applications. Even though the 
technology is now mature, the introduction of a 
document imaging system frequently leads to some 
form of business process reengineering to exploit 
the new options of electronic document manage- 
ment. The Megadoc image document management 
system allows the configuration of customer- 
specific solutions through its building-block archi- 
tecture and its built-in customization options. 

The Megadoc system presented in this paper is 
based on approxin~ately 10 years of experience 
with base technology, customer projects, and 
everything in between. In those years, Megadoc 
image document management has matured from 
the technology delight of optical recording to an 
application framework for image document mall- 
agement. This framework consists of hardware and 
software components arranged in various architec- 
tural layers: the base system, the optical file server, 
the storage manager, and the image application 
framework. 

The base system consists of PC-based work- 
stations, running the Microsoft Windows operating 
system, connected to servers for storage manage- 
ment and to database services for document index- 
ing. Specific peripherals include image scanners, 
image printers, optional full-screen displays, and 
optional write once, read many (WORM) disks. 

The optical file server abstracts from the differ- 
ences between optical WORM disks and provides 
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Table 1 History of lmage Document Management 

1975 Philips Research combines a 12-inch (30.48-centimeter) videodisk for analog storage of facsimile 
documents and high-resolution video monitors with a minicomputer for indexing in an experimental 
image management system. 
Philips' image management system switches to digital technology through the availability of 
WORM disks and random-access memory (RAM) chips (for refreshing a full-page video monitor). 

1983 At the Hannover Fair (Hannover, Germany), Philips shows Megadoc, an image document 
management system with WORM disks containing compressed document images. Dedicated 
image document management solutions are introduced. 

1988 lmage document management transitions from dedicated image display technology as part of a 
proprietary computer architecture to an open systems platform with PC-based image workstations. 

1993 The image becomes just another document format that is used next to text-coded electronic 
documents. 

the many hundreds of gigabytes (GB) of storage 
required in large-scale image document manage- 
ment systems. 

The storage manager provides storage and 
retrieval functions for the contents of documents. 
Document contents are stored in "containers," i.e., 
large, one-dimensional storage areas that can span 
multiple optical disk volumes. 

The Megadoc image application framework con- 
tains three sublayers: 

1. Image-related software libraries for scanning, 
viewing, and printing 

2. Application templates 

3. A standard folder management application that 
provides, with some tailoring by the end-user 
organization, an "out-of-the-box" image docu- 
ment management solution 

The optical file server and the storage manager 
store images in any type of document format. 
However, to meet customer requirements with 
respect to longevity of the documents, images 
should be stored in compressed format according 
to the ComitC Consultatif Internationale de TCIC- 
graphique et Telephonique (CCITT) Group 4 
standard. 

In addition to image docurnent management 
solutions, Megadoc components are used to "image 
enable" existing data processing applications. In 
many cases, a data processing application uses 
some means of identification for an application 
object (e.g., an order or an invoice). This identifica- 
tion relates to a paper document. Megadoc reuses 
the application's identification as the key to the 
image version of that document. Application pro- 
gramming interfaces (APIs) for terminal emulation 

packages that are running the original application 
in a window on the Megadoc image PC work- 
stations allow integration with the ilnchanged 
application. 

The following sections describe the optical file 
ser17er, the storage manager, and the image applica- 
tion framework. 

Megadoc Optical File Server 
The Megadoc optical file server (OFS) software pro- 
vides a UNIX file system interface for W O W  disks. 
The OFS automatically loads and unloads these 
W O W  volumes by jukebox robotics in a completely 
transparent way. Thus, from an API perspective, OFS 
implements a UNIX file system with a large on-line 
file system storage capacity. Currently, up to 800 GI3 

can be reached with a single jukebox. 
We implemented the OFS in three layers, as 

shown Figure 1: 

I. The optical disk filer (ODF) layer, which enables 
storing data on write-once devices and provid- 
ing a UNlX fiLe system interface. 

2. The volume manager (VM), which loads ant1 
unloads volumes to and from drives in the juke- 
boxes and communicates with the system opera- 
tor for handling off-line volumes. 

3. The device layer, which provides device-level 
access to the WORM drives ant1 to the jukebox 
hardware. This layer is not discussed further in 
this paper, 

Optical Disk Filer 
When we started to design the ODF, the chief 
prerecluisite was that it should adhere to the UNIX 

file system interface for applications. The obvious 
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Fi<qure I The Three Software Lclyers of the 
Optical File Server 

STORAGE 
MANAGER OR 
OTHER UNlX 
APPLICATION 

- - - - -  - - - - - - - - - -  

benefit was that the designers would not have to 
write their own utilities to, for example, copy data, 
create new files, and make new tlirectories. All 
UNM utilities would work as well on WORM devices 
as on any other file system. 

Current UNlX implementations provide two ker- 
nel interfaces for integrating a new file system type 
into the kernel: the file system switch (FSS), in UNIX 

versions based on the System V Release 3; and the 
virtual file system (VFS), in UNJX implementations 
like the System V Release 4, SunOS, and OSF/l oper- 
ating systems. We introduced the optical clisk filer 
in the FSS and later ported it to the VFS. 

The key challenge for the design of a file system 
for write-once devices is to allow updates without 
causing an "avalanche" of updates. Note that any 
update to a sector on a woki  device forces a 
rewrite of the full sector at another location. If 
pointers to an updated sector exist on the WoRiiI 

device, sectors that contain those pointers have to 
be rewritten, also. For example, if a file system 
implementation is chosen where the list of data 
blocks for a file, or just the sector location of such a 
list, is part of the file's directory information, any 
update to that file would cause a rewrite of the 
directory sector and the sectors for the parent 
directories, all the way up to the root directory 

A second issue to be addressed for removable 
optical disks is performance. Access time for on-line 
disks is at least eight times slower than for current 

OPTICAL 
DISK FILER 

VOLUME 
MANAGER 

DEVICE 
DRIVER 

magnetic disks. (The average seek time for a \VOki 
device is 100 milliseconds; rotational delay is about 
35 milliseconds.) Fetching a disk from a jukebox 
storage slot, loading it, and waiting for spin-up 
takes between 8 and 15 seconds, depending on the 
type of jukebox. 

Caching solves both issues. We decided that the 
usual in-memory cache would not be sufficient for 
the huge amounts of \VOW data, and therefore, we 
use partitions of magnetic disks for caching. OPTICAL 

FILE SERVER 

ODF WORM Layoz~t To avoid duplicating previ- 
ous efforts, we used classical UNlX file systems as 
a guideline for the definition of ODF's \VOki layout. 
However, we  had to add some indirect pointer 
mechanisms to avoid update avalanches. Each file 
system is mapped onto a single WOkil partition. 
These partitions are written sequentially, reducing 
the free block administration to maintaining a cur- 
rent write point. 

The ODF reuses many notions from UNIX file sys- 
tems, such as i-nodes, superblock, ancl the func- 
tional contents of directory entries.' Applying 
these UNIX notions to the optical file system 
resulted in the following ODF characteristics: 

The superblock contains all global data for a file 
system. 

- - - - -- 

Each i-node contains the block list and all the 
attributes of a file except the file's name. 

- - - - - - - - - 

An i-node number identifies each i-node. 

A directory is a special type of file. 

JUKEBOX 

Entries in a directory map names to i-node 
numbers. 

HARDWARE 

A new notion in the ODF, as compared to UNlX 

file systems, is the atlministration file (admin file). 
One such file exists for each file system. The file is 
sequential, and its contents are similar to the first 
disk blocks in classical UNrX file systems: the first 
extent contains the superblock, and all other 
extents form a constantly growing array of i-nodes; 
the i-node's number is the index of the i-node in the 
file's i-node array. An important difference between 
UNIX file systems and the ODF is that the 2-kilobyte 
(kB), fixed-size extents of the ODF admin file are 
scattered over the WOhVl device, instead of being 
stored as a sequential array of disk blocks, as in 
UNIX systems. As a result, any update to an i-node, 
as a consequence of a file update, causes the invali- 
dation of at most one admin file extent. Since 
the logical index in the admin file of this i-node, i.e., 
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the i-node number, does not change, the parent 
directories do not have to be updated. 

However, this scheme needs an additional indi- 
rect pointer mechanism: a list of block numbers 
representing the location of the admin file extents. 
The ODF stores this list in the admin file's i-node 
(aino). The aino is a sequential file that contains 
slightly more than block numbers and is a sequence 
of contiguous blocks on the W o h i  disk that con- 
tain the same information. Hence, an update to an 
admin file extent always invalidates the entire aino 
on the WOkV device, which makes the aino a more 
desirable candidate for caching than the admin file 
extents. 

The following example, sliown in Figure 2, illus- 
trates the steps involved in reading logical block N 
from the file with i-node number I: 

1. Read the aino to obtain the block number of 1's 
admin file extent. 

2. Read the admin file extent to get file I, which is 
used to translate the logical block number Minto 
the physical block number I(N). 

3. Read physical block IW). 

If the file system is in a consolidated state, i.e., all 
data on the WOhL disk is current, the aino and the 
superblock are the last pieces of information writ- 
ten to the \VOhi device, directly before the current 
write point. Blocks written prior to the aino and 
the superblock contain mainly user data but also 
an occasional adrnin file extent, fully interleaved. 
Figure 3 shows the WOKM layout. Since ODF 
requires the first admin file extent and the com- 
plete aino to be in the cache, introducing a disk 
with consolidated file systems to another system 
requires searching the current write point, reading 
the superblock, determining the aino length from 
the superblock, and finally reading the aino itself. 

ADMlN FlLE EXTENTS 

SUPERBLOCK 

i-NODE BLOCK 1 

/ 

I-NODE BLOCK K 11 

Searching the current write point is a fairly fast 
operation implemented through binary search and 
hardware support, which allow the ODF to distin- 
guish between used and unused data blocks of 1 K  
bytes. 

ODF Cc~ching Caching in the ODF is file oriented. 
We suggest a magnetic cache size of approximately 
5 percent of the optical disk space. If  data from a 
file on a WORM disk is read, the ODF creates a cache 
file and copies a contiguous segment of file data 
from the \VOW4 clisk (64 kB in size, or less in the 
case of a small file) to the correct offset in the cache 
file. The cache file is the basis for all I/O operations 
until removed by the ODF, after having rewritten all 
dirty segments (i.e., updated or changed segmcnts) 
back to the WORM clevice. The ODF provides special 
system calls (through the UNIX fcntl(2) interface) 
to flush asynchronously dirty file segments to the 
WORM device and to remove a file's cache file. The 
flusher daemon monitors high and low watermarks 
for dirty cache contents. The daemon flushes dirty 
data to the optical disks. The flusher daemon 
flushes data in a sequence that minimizes the num- 
ber of WO&\$ volume movements in a jukebox. The 
ODF deletes clean data (i.e., data already present on 
the optical disk) on a least-recently-used basis. 

The admin file has its own cache file. The mini- 
mum amount of aclmin file data to be cached is the 
superblock. The ODF gradually caches the other 
admin file extents, which contain the i-nodes, while 
the file system is in use. The ODF writes i-node 
updates to the WOkil device as soon as all i-nodes in 
the same admin file extent have their dirty file data 
written to the WORM device. The aillo has its own 
cache file, also, and is always completely cached. 
If all file clata and i-nodes have been written to the 
WORM device, the file system can be consolidated 
by a special i~tility that writes aino and superblock 

EXTENTS OF FlLE I 

n r-I EXTENT 0 

EXTENT 1 I 

+-I 
EXTENT N 

Figure 2 Steps Involved in Getting from the Aino to Extent I\' of File I 
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PREVIOUS AINO I 
AND SUPERBLOCK 

/ 
PREVIOUS CONSOLIDATION POINT 

CURRENT CONSOLIDATION POINT 
WORM PARTITION: \ 

\ CURRENT i-NODE / CURRENT AlNO ' I 
BLOCKS J AND K AND SUPERBLOCK 

Figure 3 WORM Layout for a Consolidated ODF File System 

EMPTY SECTORS 
I 

to the WORM device, hence creating a consolida- 
tion point. 

For reasons of modularity and ease of implemen- 
tation, we chose the UNlX standard magnetic disk 
file system implementation to perform the caching. 
An alternative would have been to use a magnetic 
disk cache with an optimized, ODF-specific struc- 
ture. We opted for a small amount of overhead, 
which would allow us to add a faster file system, 
should one become available. Our performance 
measurements showed a loss of less than 10 percent 
in performance as compared to that of an ODF- 
specific solution. The cache file systems on mag- 
netic disk can be accessed only through the ODF 
kernel component. Thus, in an active OFS system, 
no application can access and, therefore, possibly 
corrupt the cached data. 

Volume Manager 
In addition to hiding the WOki nature of the under- 
lying physical devices, the OFs transparently moves 
volumes between drives and storage slots in juke- 
boxes that contain many volumes ("platters"). The 
V>1 performs this function. 

The essential characteristic of the volume man- 
agement layer is its simple fiunctionalit): which 
is best described as a "volume faulting device." 
The interface to the vM consists of volume device 
entries, each of which gives access to a specific 
WOkI\I volume in the system. For example, the vol- 

AlNO 

ume device ently /dev/WORRI-A gives access to the 
WORM volume WORii-A. This volume device entry 
has exactly the same interface as the usual device 
entry such as /dev/worm, which gives access to 
a specific WORM drive in the system, or rather 
to any volume that happens to be on that drive at 
that moment. Any access to a volume device, e.g., 
/dev/WORM-A, either passes directly to the drive on 
which the volume (\VOw-A) is loaded, or results in 
a volume fault. This last situation occurs when the 

S FILE DATA .-. 

volume is in a jukebox slot and not in a directly 
accessible drive. Note that since /dev/WOkkl-A has 
the same interface as /dev/worn~, the OFS could 
function without the VM layer in any system that 
contains only one worm drive and one volume that 
is never removed from that drive. However, since 
this configuration is not a realistic option, the OFS 
includes the VM layer. 

The internal architecture of the VM is more com- 
plicated than its functionality might indicate. The 
vM consists of a relatively small kernel component 
and several server processes, as illustrated in Figure 
4. The kernel component is a pseudo-device driver 
layer that receives requests for the volume devices, 
e.g., /dev/WOkV-A, and translates these requests 
into physical device driver (/dev/worm) requests 
using a table that contains the locations of loaded 
volumes. If the location of a volume can be found in 

S' AINO' 

the table, the I/O request is directly passed on to the 
physical device. Otherwise, a message is prepared 
for the central VM server process, and the volume 
server and the requesting application are put in a 
waiting state. 

The volume server uses a file to translate volume 
device numbers into volume names and locations. 
It communicates with two other types of viM server 
processes: jukebox servers and drive servers. The 
jukebox servers take care of all movements in 
their jukebox. Drive servers spin u p  and spin down 
their drive only on request from the volume server. 

IB [K] 

Storage Manager  
The storage manager implements containers, as 
mentioned in the Electronic Document Manage- 
ment section. Large-scale document management 
uses indexing of multiple storage and retrieval 
attributes, typically with the help of a relational 
database. Once the contents of a document are 
identified through a database query on its attri- 
butes, a single pointer to the contents is sufficient. 

"' FILE DATA 
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VOLUME MANAGEMENT I 

APPLICATION SERVERS 
1 UNlX USER SPACE 

1 UNlX KERNEL SPACE 

DISK FILER JUKEBOX 
COMPONENT GRIPPER 

DRIVER 

DRIVER I 

Figure 4 Global Architecture Sho~uing the VIM Component 

Also, there is little need for a hierarchically struc- first generation was based 011 delivery of source of 
ti~red file system. Containers provide large, flat example applications. However, tracking source 
structures where the contents of a document are changes appeared to be too big of an issue and ham- 
uniquely defined by the container identification pered the introduction of new base functionality. 
and a unique identification within the container. In cooperation with European sales organi- 
The document's contents identification is translated zations, we formulated a list of requirements for a 
by the storage manager in a path to a directory nrllere second-generation LAF. The framework must 
one or more contents files can be written. For multi- 1. Allow for standard applications. Standard appli- 
page image documents, the Megadoc system stores cations, i.e., scan, index, store, and retrieve, cover 
each page as a separate image file in a directory a wide range of customer recluiremellts in folder 
reserved for the docutnent. This schcme guarantees management. Tailoring standard applications 
locality of reference, avoiding unnatural delays can be acconiplished in one day, without pro- 
while browsing a multipage image document. gramming effort. 

A container consists of a secruence of file sys- 
tems, typically spanning multiplc volumes. Due to 
the nature of the OFS, no distinction has to be made 
between WOkh~l disk file systems and magnetic disk 
file systems. The storage manager fills containers 
sequentially, up to a configurable threshold for 
each file system, allowing some degree of local 
updates (e.g., aclding an image page to an existing 
document). As soon as a container becomes fill I, a 
new file system can be added. 

Containers in a system are network-level 
resources. A name server holds container locatiotls 
Relocation of the volume set of a container to 
another jukebox, e.g., for load balancing, is possible 
through system management utility programs and 
can be achievecl without changing any application's 
indexing database. 

RetrievAll-The Megadoc Image 
Application Framework 
Early Megadoc configurations required extensive 
system integration work. RetrievAll is the second- 
generation image application framework (IAF). The 

2. Be usable in system integration projects. The 
IAF must provide APls for folder management, 
allowing the field to build applications with 
fi~nctionality beyond the standard applications 
by reusing parts of the standard applications. 

3. Allow image enabling of existing applications. 
RetrievAll should allow the linkage of electronic 
image documents and folders with entities, such 
as order number or invoice number, in existing 
applications. Existing applications need not 
be changed and run on the image workstation 
using a terminal emulator running at the image 
workstation. 

4.  Accommodate internationalization. All text pre- 
sented by the application to the end user should 
be in the native language of the user. RetrievAIl 
should support more than one language simulta- 
neously for multilingual countries. 

5. Allow upgrading. A new filnctional release of 
RetrievAll should have no effect on the customer- 
specific part of the application. 
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6. Provitle document routing. Mter scanning the 
documents, RetrievAll shoulcl route references 
to new image tlocuments to the in-trays of users 
who need to take action on the new documents. 

Image Documents in 
Their Production Cycle 
Image documents start as harcl-copy pages that 
arrive in a mailroom, where tlie pages are prepared 
for scanning. Paper clips and staples are removed, 
and the pages are sortecl, for example, per depart- 
ment. An image batch contains the sorted stacks of 
pages. 'l'he scanning application identifies batches 
by a set of attributes. The scanning process offers 
a wide variety of options, inclucling scanning one 
page or multiple pages, accepting or rejecting the 
scanned image for image quality control, batch 
importing from a scanning subsystem, browsing 
through scanned pages, ant1 controlling scanner 
settings. 

The indexing process regroups image pages of an 
image batch into multipage image documents. Each 
tlocument is identified with a set of configurable 
attributes and optionally stored in one or more 
folders. Folders also carry a configurable set of 
attributes. On the basis of the attribute values, the 
doci~ment contents are stored in the document's 
storage location (container). 

Many users of RetrievAll applications use the 
retrieve tilnctions of the application only to 
retrieve storecl folders and documents. Folders and 
documents can be retrieved by specifying some of 
the attributes. RetrievAll allows the configuration 
of query forms that represent different views on the 
indexing elatabase. The result of a query is a list of 
documents or folders. For tlocuments, the opera- 
tions are view, edit, delete, print, show fol:oltler, and 
put in folder. The Megadoc editor is used to view 
and to m;inipul;ite the pages of the document 
including adding new pages by scanning or import- 
ing. For folders, the operations are list documents, 
delete, ;lnd ch;~nge ;ittributes. 

Doczlnzent Routing Applications 
A RetrievAJl. routing application is an extension to a 
folder management application. A route defines 
how a reference to a folcler travels along in-trays of 
users or work groups. 

Systems Management 
The following systems management functions sup- 
port the RetrievAl l package: 
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Container management 

Security, i t . ,  user and group permissions 

Logging and auditing 

Installation, customization, tailoring, ancl local- 
ization 

Architecture and Overview 
As illustrated in Figure 5, the RetrievAIl image appli- 
cation framework consists of a number of motlules. 
Each module is a separate program that performs a 
specific function, e.g., scanning or document index- 
ing. Each module has an MI to control its function- 
ality, and some modules have an end-user interfxe. 
Modules can act as building bricks under a control 
module. For example, an image document capture 
application uses 

1. Scan handling, to let an end user scan pages into 
a batch. 

2. Scanner settings, to allow the user to set and 
select the settings for a scanner. The user can 
save specific settings for later reference. 

3. Batch handling, to allow the end user to create, 
change, and delete batches. 

These three modules can operate together under 
the control of the scan control module and in this 
way form a document capture application. The 
scan control module can, under control of a main 
module, perform the clocument capture function 
in a folder management application. 

Modules communicate by means of tlynamic data 
exchange (DDE) interfaces provided in the 
Microsoft Windows environment. Each module, 
except the main module, can act as a server, and all 
modules can act as clients in a DDE communication. 

Main Module Any RetrievAll application has a 
main rnodule that controls tlie activation of major 
functions of the application. These functions 
include scanning pages into batches, identifying 
pages from batches into multipage image docu- 
ments and assigning documents to folders, and 
retrieving docun~ents and folders. The main mod- 
ule presents a menu to select a major function. The 
main module activates the control modules of the 
major functions in an asynchronous way. For exam- 
ple, the main module can activate a second major 
function, e.g., retrieve, when the first major func- 
tion, e.g., identification, is still active. 
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Figure 5 RetrievALl Module Overviezu 

Control Modules Each major RetrievAll function The existing application is controlled by a termi- 
has a control moclule that can run 3s a separate nal emulator program running in the Microsoft 
application. For example, when a PC acts as a scan Windows environment. This terminal emulator 
workstation, it is not necessary to offer all the func- program must have programming facilities with 
tionality by means of the main module. Control DDE functions. 
modules can be activated as a server through the 
DDE API with the main module as client or as a pro- 

= While entering a new order into the system, the 

pram item from a Microsoft Windows program image document representing the order is on 

group. the screen. The function to include the image 
can be mapped on a function key of the emula- 

Server  modules All modules, with the exception 
of the main module, act as DDE server moclules. 

Configuration files hold environment data for 
each module. An application configuration file 
describes which lnodules are in the configuration. 
The layout of the configuration files is the same as 
the WIN.INI file used by the  microso oft Windows 
software, allowing the reuse of standarcl access 
functions. 

Making an Application 
An application can be made by selecting certain 
modules. Figure 5 gives an overview of the modules 
used for the standard folder management applica- 
tion. The installation program, which is part of the 
standard applications, copies the appropriate mod- 
ules to the target system and creates the configura- 
tion files. 

Modules can also be used with applications other 
than the standard ones. Image enabling an existing 
(i.e., legacy) application (see Figure 6), such as an 
order entry application where the scamed images of 
the orders should be inclutled, entails the following: 

tor. Pressing the function key results in a DDE 
request to the identification function of the 
RetrievAll components. This DDE request passes 
the identification of the document (as known in 
the order entry application) to the identification 
function. 

Summary 
This paper has provided an overview of the many 
components and disciplines needed to build an 
effective image document management system. We 
discussed the details of the \VOW file system, the 
storage manager technology, and the image applica- 
tion framework. Other aspects such as WORM 
peripheral technology, software compression and 
decompression of images, and the integration of 
facsimile and optical character recognition tech- 
nologies were not covered. 

From experience, we know that different cus- 
tomers have different requirements for image docu- 
ment management systems. The same experience, 
however, taught us to discover certain patterns 
in customer applications; we captured these pat- 
terns in the application framework. The resulting 
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Figure 6 Image Enabling a Legacy Application 

framework allows 11s to bui.ltl highly customized Reference 
applicatio~ls with low system integration cost and 
short time to cleployment. Future directions are in 1.  M .  Bach, The Design of the Unix Operating Sys- 
the area of enhanced folder management and inte- tern, ISBN 0-13-201757-1 (Englewood Cliffs, NJ: 

grated distributed work flows. Prentice-Hal I ,  1986). 
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The Design of Multimedia 
Object Support in DEC Rdb 

Storing nzulti~~zedia objecb in a relational database ojfers ad~1a/zt~1ge.$ ozler file 
s~lstenz storage. DigitalS relational database soft~ilareproduct DEC Rdb silpports tbe 
storing and indexing of ~nciltirrzedia objects-text, stillfr.nnze irn~l~yl~les, conzpourz~i 
documents, audio, uideo, and cinjl binarjl large object Alter erlal~rating the e.visri17g 
DEC Rd6 uersion 3.1 for its ability to insert,fc,tch, a-lzdprocess nzidti~~~ediu ll~rln, stft- 
ware desi~ners decided to ?nodif)) ~~zanypcirts of Rdb and to crse urite-once oj~ticcii 
disks config~i~ed in stc~~~dntnloize driue or jukebox configurations. fiihrincernents 
were nzade to the 6~fle.r manager andpage allocntion algot.itl~tr~s, thus redncin~ 
wasted disk space. Performance and copncilj~field tests indiliwte thrt DIiC Kd6 carz 
sustain a 200-kilolyte-per-second SQL fetch throzighput and a 57.7-kilobyte-per- 
second .TQI,LTeruice.$fetch througlgput, insert andfetcb a 2-gigabyte object, and bcril~l 
a 50-gigabyte d~~tabase. 

To acconlmodate the increasing demand for com- 
puter storage ant1 intlexing of multimedia objects, 
Digital supports rnultimeclia objects in its DEC Rdb 
relational database software product. This paper 
discusses the improvements over version 3.1 and 
presents details of the new features ant1 algorithms 
that were developetl for version 4.1 and are used in 
version 5.1. This advancetl tecl~nology makes the 
DEC Rdb comnlercial database product a precursor 
of sophisticated database management systems. 

Multimedia objects, s i ~ c h  as large anlounts of 
text, still frame images, compound documents. and 
digitized audio and video, are becoming standard 
data types in computer applications. Devices that 
scan paper, i.e., facsimile machines, are inexpensive 
and ubitluitous. Ilevices tJi;~t capture and play back 
fi~ll-motion video and audio are just beginning to 
reach, tlie mass market. Capturing these objects for 
use within a computer results in many large data 
files. For example, one  minute of tligitizetl and com- 
pressed stantlard TV-quality video requires approxi- 
mately 50 megabytes (MB) of storage! 

To date, relational databases have been used 
successhilly in storing, indexing, and retrieving 
codetl riumbers and characters. Relational algebra 
is an effective tool for reorganizing queries to 
reduce the number of records, e.g., from 1 million 
to 70 records, that an application program must 
search to obtain the desired information. Other 

database features, such as transaction processing, 
locking, recover!: ancl concurrent ant1 consistent 
access, are essential to tlie successfill operation of 
numerous businesses. Electronic banking, credit 
card, airline reservation, and 1iospit;il information 
systems all rely on  these fe;~tures t o  qilei-y, main- 
tain, atid sustain business records. 

However, nlthough n business niight have its 
numbers ant1 characters organized, controlled, and 
managed in a computer database, maintaining the 
paper ant1 film storage media associatecl with 
clatabase records can be costly, both in dollars and 
in human resources. Some estimates place the 
worlclwide data storage business at $40 billion. ant1 
as much ;IS 95 percent of the  information is stored 
on  either paper or  film. <:urrentl~: businesses such 
as insurance, banking, engineering, ;~ncl medicine 
depend o n  human beings to manage the filing and 
retrieval of these extensive paper and film archives. 
Human error can result in the loss of paper and 
film. Clearly, scanning the paper, storing the infix- 
mation in a computer, and making this information 
available over computer networks is a better way 
to manage paper records. This scheme allows 
(I) multiple copies to be distributed at once; (2) a 
customer f'ile to be e l ec t~ .o~~ic ;~ l ly  located ;~ntl  
retrieved in seconds, whereas to materialize a 
paper folder can take clays; and (3) properly 
programmecl computers to m;~int:~jn these types 
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of information more efficiently and accurately than 
humans can. 

The idea of eliminating paper-based storage of 
business records in favor of computer storage is 
long-standing. However, only recently have techni- 
cal developments made it practical to consicler cap- 
turing, storing, and indexing large quantities of 
multimedia objects. Storage robots based on mag- 
netic tape or optical disk can be configured in 
the range of multiple terabytes (TB) at the low cost 
of 45 cents per MB. Central processors based on 
reduced instruction sets are getting fast enough to 
process multimedia objects without having to rely 
on digital signal coprocessors. Processor main 
memory can be configured in gigabytes (GB). 
Document management systems, which have 
thrived over the past few years, deliver computer 
scanning, indexing, storage, and retrieval across 
local area networks. 

Until now, most multimedia objects have been 
stored in files. Docunlent management systems 
generally use commercial relational database tech- 
nology to store the documents' index and attribute 
information, where one attribute is the physical 
location of the file. 'This approach has several disad- 
vantages: considerable custom software must be 
written and maintained to make the system appear 
logically as one database; application programs 
must be written against these proprietary software 
interfaces; a system based on both files and a rela- 
tional database is difficult to manage; two backup- 
and-restore procedures must be learned and 
applied; and complications in the recovery process 
can occur, if the database and file system backups 
are executed independently. 

Notwithstanding these disadvantages, storing 
multimedia objects in a relational database offers 
several advantages over file system storage. 

Coding an application against one standard 
interface structured query language (SQL) to 
store object attribute data as well as multimedia 
objects is easier than coding against both SQL to 
manage attribute data and a file system to store 
the multimedia object. 

The database requires only one tool to back up 
and monitor data storage rather than two to 
maintain the database and the file system. 

The database guarantees that concurrent users 
see a consistent view of stored information. In 
contrast to a file system, a database provides a 

locking mechanism to prevent writers and read- 
ers from interfering wit11 one another in a gen- 
eral transaction scheme. However, a file system 
does offer locks to prevent readers and writers 
from simultaneous file access. 

The database guarantees, assuming that proper 
backup and maintenance procedures are fol- 
lowed, that no information is lost as a result of 
media or machine failure. All transactions com- 
mitted by the database are guaranteed. A file sys- 
tem can be restored only up to the last backup, 
and any files created between the last backup 
and the system failure are lost. 

In the sections that follow, we present (1) the 
results of an evaluation of DEC Rdb version 3.1 for 
its ability to insert, fetch, and process multimedia 
objects; (2) a discussion of the impact of optical 
storage technology on multimedia object storage; 
ant1 (3) design considerations for optical disk sup- 
port, transaction recovery, journaling, the physical 
database, language, and large object data storage 
and transfer. The paper concludes with the results 
of DEC Rdb performance tests. 

Evaluation of DECRdb as a 
Multimedia Object Storage System 
Given the premise that production systems need to 
store multimedia objects, as well as numbers and 
characters, in databases, the SQL Multimedia engi- 
neering team members evaluated the following DEC 
Rdb features to determine if the product could s u p  
port the storage and retrieval of multimedia 
objects: 

Large object read and write performance 

Maximum large object size 

Maximum physical capacity available for storing 
large multimedia objects 

The DEC Rdb product has always supported a 
large object data type called segmented strings, 
also known as binary large objects (BLOBS). The evo- 
lution from support for BLOBS to a multimedia 
database capability was logical and straightfor- 
ward. In fact, the DEc Rdb version 1.0 developers 
envisioned the use of the segmented string data 
type for storing text and images in the database. 

In evaluating DEC Rdb versio~i 3.1, we came to a 
variety of conclusions about the existing support 
for storing and retrieving multimedia objects. 
Descriptions of the major findings follow. 
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The DEC Rdb SQL, which is compliant with the 
standards of the American National Standards 
Institute (ANSI) and the International Organization 
for Standardization (lSO), and SQL/Services, which 
is client-server software that enables desktop com- 
puters to access DEC Rdb databases across the net- 
work, did not support the segmented string data 
type. Note that the most recent sQL92 standard 
does not support any standard large object mecha- 
nisms.' Object-oriented relational database exten- 
sions are expected to be part of the emerging SQL3 
standard.' 

The total physical capacity for storing large 
objects and for mapping tabular data to physical 
storage devices is insufficient. A11 segmented string 
objects have to be stored in only one storage area in 
the database. This specification severely restricts 
the maximum size of a multimedia database and 
thus impacts performance. One cannot store a large 
number of X-rays or one-hour videos on a 2- to 3-GB 
disk or storage area. Contention for the disk would 
come from any attempt to access multimeclia 
objects, regardless of the table in which they are 
stored. Although multiple discrete disks can be 
bound into one OpenVMS volume set, thereby 
increasing the maximum capacity, data integrity 
would be uncertain. Losing any disk of the volume 
would result in the loss of the entire volume set. 

The maximum size of the database that DE<: Rdb 
can support is 65,535 storage areas, where each area 
can span 2" - 1 pages. That translates to 256 tera- 
pages (i.e., 256 X 10" pages) or 128 petabytes (PB) 
( i t . ,  128 X 10" bytes). At a penny per megabyte, a 
128-petabyte storage system would cost 1.28 billion 
do1 lars! 

The largest BLOB that DEC Rdb can maintain is 275 
TB (i.e., 275 X 1012 bytes). A data storage rate of 
1 megabyte per second (i\.1B/s) for motion video and 

DATABASE KEY LOCATES 
FIRST PAGE OF BLOB 
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audio translates into 8.7 years of video. However, as 
mentioned previously, the maximum size and the 
total number of objects that can be stored are lim- 
ited. As part of system testing, we successfully 
stored and retrieved a 2-GB object in a DEC Rdb data 
field. 

DEC Rdb uses a database key to reference individ- 
ual segments stored in database pages. A BLOB 
belongs to only one column of one row of a rela- 
tion. The database key value that locates the first 
segment is stored in the column of a table defined 
to represent the BLOB data type. DEC Rdb imple- 
ments segmented strings as singly linked lists of 
segments. Therefore, version 3.1 must read a seg- 
ment in order to find the next segment. This pro- 
cess has two disadvantages: (1) random positioning 
with a BLOB data stream is extremely slow, and (2) 
BLOB pages cannot be prefetched asynchronously. 
Figure 1 illustrates a DEC Rdb version 3.1 singly 
Linked list segmented string implementation. 

BLOB data transfer performance of DEC Rdb ver- 
sion 3.1 was promising. We were able to code a load 
test that sustained 65 kilobytes per second (kB/s); a 
fetch test sustained 125 kB/s. To put these measure- 
ments in perspective, DEC Rdb is capable of insert- 
ing more than one A4-size (210 millimeters [mm] 
by 297 mm, i.e., approximately 8.25 by 11.75 inches) 
scanned piece of paper per second and capable of 
fetching more than two Ad-size pieces of paper per 
second. The test was conducted by writing and 
reading 50-kB memory data buffers to and from 
magnetic storage areas defined by the DEC Rdb soft- 
ware. This experiment ignores the overhead of net- 
work delays ancl compression. 

DEC Rdb version 3.1 can write multiple copies 
of BLOBS, one to the target database storage area 
and one to each of the database journal files. The 
journal files provide for transaction recovery and 

POINTER 

PAGE N m 
Figure 1 RdD Version 3.1 Singly Linked List Segmented String Irnplementario?~ 
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system failures, such as disk drive failures. Database 
journal files tend to be bottlenecks, because every 
data transaction is recorded in the journal. 
Therefore, writing large objects to journal files dra- 
matically impacts both the size of the journal file 
and the l/O to the journal file. 

The volume of storage required for most modest 
multimedia applications call be measured in tera- 
bytes. A magnetic disk storage system 1 TB in size 
is expensive to purchase and maintain. An alterna- 
tive storage device that provided the capacity at a 
much lower cost was required. We investigated the 
possibility of using Digital's RV20 write-once opti- 
cal disk drive and the ~ ~ 6 4  optical library ("juke- 
box") system based on the RV20 drives. We quickly 
rejected this solution because the optical disk 
drives were interfaced to the Q-bus and UNIBUS 
hardware as tape devices. Since relational databases 
use tape devices for backup purposes only and not 
for direct storage of user data, these devices were 
not suitable. Note that physically realizing and 
maintaining a large data store is a problem for both 
file systems and relational databases. 

DEC Rdb version 3.1 does not support large 
capacity write once, read many (WORM) devices, 
which are suitable for storing large multimedia 
objects. Version 3.1 has no optical jukebox support 
either. 

Storage Technology Impact 
When we evaluated DEC Rdb version 3.1, a I-TB mag- 
netic disk farm was orders of magnitude more 
expensive than optical storage. Large format 12- or 
14-inch (i.e., 30.5- or 35.6-centimeter) WOW opti- 
cal disks have a capacity of 6 to 10 GB. The WOM$ 
drives support removable media. These drives can 
be configured in a jukebox, where a robot transfers 
platters between storage slots and drives. A fully 
loaded optical jukebox, which includes optical disk 
drives and a full set of optical disk platters, of 
approximately I-TB capacity costs about $400,000, 
i.e., $0.40 per MB. By comparison, Digital's RA81 
magnetic disk drive, for example, has a capacity 
of 500 MB and costs $20,000. Thus, to store 1 TB of 
data would require 2,000 RA81 disk drives at a total 
cost of $40 million, i.e., $40.00 per MB! 

How big is one terabyte? Assume, conservatively, 
that a standard business letter scanned and com- 
pressed results in an object that is 50 kB in size. 
Therefore, 1 TB can store 20 million business let- 
ters, i.e., 40,000 reams of paper at 500 sheets per 
ream. A ream is approximately 2 inches (51 mm) 

high, so 1 TB is equivalent to a stack of paper 80,000 
inches or 6,667 feet or 1.25 miles (2 kilometers) 
high! The total volume of paper is 160 cubic yarcls 
(122 cubic meters). i\ 1-TB optical disk jukebox is 
about 3 to 4 cubic yards (2.3 to 3 cubic meters). 
Assuming TV-quality video, 1 TB can store 308 
hours or approximately 12 days of video. Full- 
motion video archives suitable for use in the broad- 
cast industry require petabytes of mass storage. 

The gap between affordable and practical config- 
urations of optical disk jukeboxes and magnetic 
disk farms has closed consitlerably since late 1992. 
Juxtaposing equal amounts (700 GB) of magnetic 
and optical storage, including storage device inter- 
connects, installation, and interface software, 
reveals that magnetic disk storage is about five 
times more expensive than optical storage. The 
major disadvantage of optical jukebox storage is 
data retrieval latency related to platter exchanges. 
This latency, which is approximately 15 seconds, 
varies with the jukebox load and how data is 
mapped to different platters. 

Mass storage technology, including device inter- 
connects, combines different classes of storage 
devices into storage hierarchies. Storage rnanage- 
ment software continues to be a challenging aspect 
of large multimedia databases. 

To provide 1 TB of mass storage capacity for rela- 
tional database multimedia objects at reasonable 
cost, we conducted a review of third-party optical 
disk subsystems, hardware, and device drivers for 
VAX computers running the OpenVhfS operating 
system. A characterization of the available optical 
disk subsystems revealed three basic technical alter- 
natives. 

1. Low-level device drivers provided by the drive 
and jukebox manufacturers. 

2. Hardware and software that model the entire 
capacity of an optical disk jukebox as one large 
virtual address space. 

3. Write-once optical disk drives interfaced as stan- 
dard updatable magnetic disks. The overwrite 
capability is provided at either the driver or the 
file-system level, where overwritten blocks are 
revectored to new blocks on the disk. For exam- 
ple, consider a file of 100 blocks created as a sin- 
gle extent on a WOkM device. When requested to 
rewrite blocks 50 and 51, the W O W  file system 
writes the new blocks onto the end of all blocks 
written. The system also writes a new file header 
that contains three file extents: blocks 0 to 49 
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stored in the original extent; blocks 50 to 51 
stored in the new extent; arid blocks 52 to 100 
stored as the third extent. Obviously, files that 
are updated frequently are not candidates for 
WORM storage. However, immut;tble objects, 
such as digitized X-rays, bank checks, and health- 
benefit authorization forms, are ideal candidates 
for WORM storage devices. 

As a result of this investigation, we tlecided that 
using write-once optical clevices, interf~cetl as stan- 
dard disk devices, was the best solution to provide 
optical storage for niultimedia object storage. This 
functionality is being met with commercially avail- 
able optical disk file and device drivers. 

In the firture, WORM devices may be superseded 
by erasable optical or magnetic disks. However, 
experts expect that WORM devices, like microfilm, 
will continue to be useful for legal purposes. 

Design Considerations 
The tamperproof nature of WORM devices is an 
asset but causes special problems in database sys- 
tem design. The evaluation of IIEC Rtlb version 3.1 
indicated that several features neetletl to be added 
to the DEC Rdb product to make it  a viable nlultirne- 
dia repository. This section clescribes tlie design of 
the new multimedia features inclutletl in DEC Rdb 
versions 4.1 through 5.1. 

Mass Storage 
DEC Rdb version 4.1 supports WORM optical disks 
configured in standalone drive or jukebox configu- 
rations. DEC Rdb permits d;~tabase columns that 
contain multimedia objects to be storetl or mapped 
to either erasable (magnetic or optical disk) or 
write-once (optical disk) areas. The write-once 
characteristic can be set and reset to permit the 
migration of the data to erasable tlevices. No 
changes to application programs are recluired to 
use write-once optical tlisks, including jukeboxes. 

The main design goals for WOlW area support 
were to 

Reduce wasted optical disk space by taking into 
account the write-once nature of WOki devices 

Not introduce DEC Rdb application program- 
ming changes for WORM areas 

Maintain the atomicity, consistency isolation, 
and durability (ACID) properties of transactions 
for WORM devices 

Maintain comparable performance. allowing for 
hartlware differences between optical and mag- 
netic devices 

DEC Rtlb uses the optical disk file system to cre- 
ate, extend, delete, ancl close database storage files 
on WOliM devices. Although this approach uses the 
block revectoring logic in the optical disk file sys- 
tem, minimal sp;rce is wasted. When writing blocks 
to WORM tlevices, I)EC Iitlb explicitly knows tli;~t 
blocks can be written only once and bypasses the 
revectoring logic in the optical disk file system. 

Nonetheless, I)E<: Rtlb software could waste 
space in two m;~jor w:~ys. First, when DEC: Ilclb cre- 
ates a storage area on an erasable medium (e.g., 
a magnetic or eras;~ble optical disk), the databilse 
pages are initialized to contain a standard page for- 
mat, with page ni~mbers, area Ins, checksums, etc. 
Preinitializetl database pages help to determine cor- 
rupted cl;~tabase pages. However, preuiitializing 
database pages on write-once media makes little 
sense. 'The second way in which DEC Kdb could 
waste write-once optical disk pages is to use stor- 
age allocation bit maps for space management 
(SI'M). SPtiILI p;lges are used to keep track of free 
and usetl pages. As records are adclecl to ant1 tleletetl 
from tlie database, the SPtbii bit maps are constantly 
uptlatetl. SPAM p;rges are maintained within e;~ch 
database file. With write-once devices, a page can 
be used only once. Again, it makes no sense to 
update SPAM ~xlges for write-once media. 

To eliminate needlessly wasting space on write- 
once media, I)E<; Kdb does not preinitialize W O k i  
pages. As a general rule, WORM areas should not 
contain any updatable data structures. DEC Rtlb 
maintains WORM storage space allocation in the 
database root file. The database root file should 
always reside on a magnetic disk, because the root 
file is frequently uptlatetl and magnetic tlisks yield 
higher perform;~nce. The clusterwide object man- 
ager niechanism ensures that the pointer to the end 
of the written ;ire;r is consistent across ;I cluster. 

SPhM pilges, ;iltl~ougb disabled for write-once 
areas, are in fitct allocated anyway. The reason 
for allocating SP.AM p;iges in a write-once area is to 
provide the ability to migrate the contents of the 
storage area to an erasable device. The SPAivl pages 
simply need to be rebuilt to reflect the space uti- 
lization at the point of conversion. 

This write-once char~cteristic was the basis for 
several enhancements to the buffer manager ant1 
page allocation ;~lgorithn~s. Given that a free WORM 
page has never been written to, the buffer manager 

54 Val. 5 No. 1 .S/)rirtg 1391 Digital Techricnl Jounznl 



The Design of illultitnedrcr Object Support in DEC Rdb 

simply materializes an initialized buffer in main 
memory for write operations without having to 
first read the page from disk. In the case of page 
allocation h)r magnetic disks, DE<: Rtlb must scan 
SIJA'AIM pages in search of enough free storage space 
to satisfy a write operation. The scanning ;~lgorithrn 
is much simpler for write-once areas; to store new 
records, I>EC Rclb allocates one more page at the 
entl of the written portion of the area to a process. 
oE<: Rtlb maintains such allocated p;lges in ;I queue 
c;~lletl tlie marked W0kM page queue o n  a per- 
process basis. Wlienever a WILi page is written 
to disk, that page is taken off the marked WOI1M 
page qileue. An attempt to store a recortl checks 
the t l i ~ a ~ e  before allocating new WOKILI pages to 
storage. 17acilities exist to allocate many WORM 

p21ges in one operation, thus minimizing the num- 
ber of writes to tlie root file. 

By explicitly taking into account the write-once 
c1i;iracteristic of the device, DBC litlb greatly 
retluces wasted space, keeping optical tlisk reatl 
ant1 write performance high. 

Trnnsaction Recovery 
To understand the discussion of transaction recow 
er): tlie concepts of first- ancl second-class records 
must be i~ntlerstoocl. Both alphanumeric records 
and I3L011 segments are stored in tlatabase pages. 
Alphanumeric records are first-class recortls and 
thus have identities in tables; these records are the 
I-ows. First-cl;iss records are requiretl to be on a 
metliuni tlut permits update (either magnetic disk 
or erasable optical disk). All relation tuples are first- 
cl;rss records. Second-class recorcls, such as BLOBs, 
have 110 identities of their own. BLOBs call exist only 
within tlie clomain of an alphanumeric recortl and 
;Ire pointed to by first-class recorcls. Second-class 
records may be loc;ited in U/OI~M areas. 

Multimedi;~ objects can be stored as second-class 
records in either write-once or erasable areas. 
However, due to transaction recovery constraints, 
the rows of relations must be stored in magnetic 
disks 21s first-class records. 

If ;in upd;~te tr;~nsaction against the d;~tab;~se is 
aborted, then the database must restore the state of 
all tlatabase areas to pretransaction state. Regard- 
less o f  the transaction recovery scheme employed, 
e.g., hybricl unclo-retlo, the effects of ;ui uncom- 
mitted transaction to write-once media may have to 
be undone. 

By definition, a write transaction on write-once 
metli;~, once complete, can never be undone. In 

cases where a transaction fails and the transaction 
has written data to a write-once area, DEC Rdb 
employs a logical unclo operation. This operation 
de-references the database key that points to the 
BLOB data written as part of the failed transaction. 
An example helps to illustrate how the logical undo 
operation works. 

1. Colisider row 1% of t a l k  T, which contains a col- 
umn defined as tlata type ULOB. 

2. The BLOB storage map indicates that the large 
objects are stored in a write-once area. 

3. A process starts a transaction and updates the 
row storing a BLOB in the write-once area. 

4. For some reason the transaction aborts 

5. Recovery nullifies the value of tlie database key 
that locates the first page of the BLOB. 

The write-once pages can never be reused and 
will never again be allocatetl. Nothing points to or 
references data written as part of an aborted 
transaction. 

This transaction recovely scheme introtluces the 
interesting phenomenon of W/ORM holes. Consider 
the following scenario: 

A write-once area has the first 106 pages written 
and allocated. 

Process X starts a transaction that writes a BLOB 

segment to the write-once area. 

Page 107 is allocated for process S. 

Later in time, process Y starts a transaction to 
store a BLOB in the same write-once area. 

Process Y causes pages 108 to 120 to be allo- 
cated, data is written, the transaction conimits, 
and process Y disconnects from the database. 

At this point, process X tlecitles to roll back its 
transaction. 

Page 107 remains in a preinitializecl state. 

Page 107 can never be allocated to store ULOB data. 
Recall that DEC Rdb manages space on write-once 
devices by maintaining an end-of-area pointer to 
keep track of pages that have been written. Zero- 
filled pages that will never be allocated are called 
WORM holes. WOk\l holes are interesting because 
DEC Rdb utilities, such as verify, expect to find all 
allocated pages in a standard format. The utilities 
have been modified to ignore empty pages on 
write-once areas. 
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Journaling Design Co~zsideratio~zs 
An effective database management system guar- 
antees the recovery of a dat;tb;tse to ;I consistent 
state in the event of a major system failure, such 
as media failure. Hence, fill1 ant1 incremental back- 
ups must be performed ; ~ t  regi11:tr interv;~la, anct 
the database must recorcl or keep :I journ;~l file of 
tr;~nsactions tli;~t occur between back~~ph. In LIE(; 
I<tlb, the after image journ;~l (AIJ) file records all 
transactions against the database since the last 
backup. Also, to recover from a system f;~ilurc. the 
database must keep track of all outstancling or 
pending transactions. The recovery unit journal 
( IUU)  file records the state ancl clat;~ ;tssoci;tted with 
; I I  I pending transactions. 

journal files are heavily ~~tilizetl in a tlatabase 
management system. Contention h)r the journal. 
files comes from every process that is updating 
the database. To be completely recovefitble, the 
tlatabase management system must record 13I.OI3 
data, as well. as alphanumeric data, to both the AU 
and the RIJJ files. Because multimedia objects ;Ire 
large, eliminating the neecl to write tlicsc objects to 
the journnl files is desirable. The double-write trans- 
action negatively impacts the pcrform:lnce of the 
;tpplication storing the object ant1 t;ixcs the journitl 
file, one of the most burdenetl resources in the 
d;lt;~base. 

As tliscussed in the Transaction Recovery sec- 
tion, DEC Rdb uses logical undo operations t o  undo 
aborted transactions. In acldition to the minimal 
processing required to de-reference ;I tlatabase key 
pointing to the wok\l area pages, I>H: Rclb automat- 
ically clisables RUJ log writes for WOllM :Ires records. 
This is another advant;~ge of using WORM tlevices 
fix ~i~ultirnedia objects. 

Recorcling multimetlia objects in the AIJ file is 
not so straightforwartl. I)E<: Rtlb uses the AIJ file 
for media recovery, as well as l'or transaction 
recovery. By definition. keeping a metlia recovery 
journal forces twice the numbcr of I / ( )  operations, 
each to a separate device. 1)E<: Rdh must write 
the milltimedia object to the storage area tlesig- 
nated for the multimedi;~ object 21ncl write ;I copy of 
the object to the i\ tJ  file. If the primary stor;tge 
clevicc that contains the objcct f;tils, the clat;lbase 
;~dministrator can apply the last fill[ backup of 
the storage area, followed by any subsequent incre- 
mental backups, and roll forwarcl through the 
AIJ journal file to recover the data. If a multi- 
medi;~ database is to be completely recoverable 
ancl consistent, then rnultirnccli;~ objects must be 

recorded in the A l j  file. Since they can never be 
erasecl, WORM optical tlisks might be the best 
devices to n-ritc an objcct (or- a journal filc) to. F.;fen 
tl-rough ;I jukc.box c;tn misfecd and pernlanently 
damage the media. disks in a jukcbox c:tn bc disk 
shatlowecl. The trittle-off is rloubling the I/o versus 
risking c l ; ~ t ; ~  integrity, Rather than legislate a policy, 
DEC Rclb permits applications to disable A1.I logging 
for RI.ODs, thuh transferring the risk to individu;ll 
applications. 

The orignal design of segmented strings specified 
a singly linked list, where the segments were 
writtcn one at a time, as shown in Figure 1. When 
writing a new segment, the previous segment 
hacl to be uptlxtecf with ;I pointer value that identi- 
l'iccl the loc:~tion of the new segment. For example, 
to store a l$I,Oll with two segments R1 anel R2, 
the old algorithm storeti R1, stored K 2 ,  and then 
modified l i l  to point to R2. Although this algorithm 
docs not \vastc. sp;~ce on :I magnetic disk, it does 
waste sp;tcc. on write-once optical disk. Segment 
R1 must be rewritten to disk with a pointer to 
segment RI! 

I f  wc irnposc thc depe~~clenc!~ between the two 
stores th;tt R2  must l x  stored before R l ,  the store 
dependency for D1,OBs becomes a reverse orcler 
of segments. Storing segtnents in reverse order 
requires bi~ffcring ;t I I  segments of a niultirnetli;~ 
object. U herc:~s buffcring the entire objcct in ni;tin 
memory m;ly be feasible for small multirneclia 
objects, main memory is not large enough to buffer 
auclio and vidco data objects. The singly linked 
list method that DEC: Rdb used prior to version 4.1 
is not well suited for WORM devices. l'hereforc, wc 
redesigned the format of BWBs in \/oR\il ;Ireas to 
eliminate the need to buffer large amounts of data. 

The nenr design replaces the singly linked list 
with rir.ol% segment pointer arrays and BLOn data 
segments. The segment pointer array maintains 
a list o f  tl;ttabase keys that locate each segment, in 
order, for ;I BLOB, ;IS illustrated in Figure 2. Btrause 
segment pointer arrays are stored as a singly linkcd 
list, the pointer arrays can become large. 
Application clata is stored in BLOB data segments. 
The new method buffers and writes the BLOB seg- 
ment pointers to disk after assigning the segmented 
string to a record. 

Besides eliminating the waste problem for write- 
once devices, the segment pointer array has other 
advantages. r>E<: Rdb reads the pointer array into 
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DATABASEKEYLOCATES 
FIRST PAGE OF BLOB 
THAT CONTAINS POINTER 
ARRAY LOCATING THE 
OTHER BLOB PAGES 

I; iq~~re  2 Kdb Versio~~ 4.2 Pointer' A r r q ~  Segmented String Jrn~lement~~tion 

POINTER TO SEGMENT 1 

POINTER TO SEGMENT 2 - 
POINTER TO SEGMENT 3 

POINTER TO SEGMENT N 

ARRAY TERMINATOR 

menlory when an application accesses a BLOB. DEC 
Rdb can, therefore, tluickly ant1 randomly atldress 
any segment in the BLOB. Also, DEC Rclb can begin 
to load segments into main memory before the  
application requests them. This Feature benefits 
applications that sequenti;tlly access an object, 
such ;a playing a video game. 

Storage M a j  Enbnncementsjbr BLOBs 

DATABASEKEY 

DATABASE KEY - 

Designers acldressetl several issues related to stor- 
age mapping. The major problems solvecl involved 
capacity ant1 system m;magernent, jukebox perfor- 
mance, ant1 the fi~ilover o f  full volunles. 

, 

DATABASE KEY - 
BLOB 

Cupucity a i ~ d  .Sj~slern ~W~inugemer~f  U EC: Rd b can 
map user data, represented logically as tables, rows, 
ant1 columns, into multiple files or  storage areas. 
Besides increasing the amount of data that can 
be stored in the database, spreading data across 
multiple devices reduces contention for disks and 
improves performance. However, as mentioned in 
the section Evalu;ltion of l>E(: Rtlb ;IS ;I Multjmedia 
Data Storage System, prior to LIE(: Rdb version 4.1, 
only one  stor;ige area coulcl be used for storitig 
BLOR data. A1 1 DLOH colunlns in the database were 
implicitly mapped into the single area, which 
severely lilnitetl the rn;~xirnum  mount of multi- 
media d;~ta that co i~ ld  be stored in IIEC Rtlb. 

Prior to  new multimetlia support  for BLOBs, DEC 
Rdb restricted the  direct storage of a particular 
table column to one  I X < ;  Rdb storage area ( i t . ,  file). 
This partitioning control is accomplishetl by means 
of the DT:c Rtlb storage map mechanism, as shown 
in the following code example: 

BLOB 
PAGE 2 

C r e a t e  s t o r a g e  m a p  BLOB-MAP 
S t o r e  L i s t s  

i n  RESUME-AREA 
f o r  ( P L A C E M E N T - H I S T O R Y ,  

C A N D I D A T E S - R E S U M E )  
i n  PHOTO-AREA 

f o r  ( C A N D I D A T E S - P I C T U R E )  
i n  R D B S S Y S T E M ;  

PAGE 3 

DATABASE KEY 

This code directs the BLOB data from the table 
PLACEMENT-HISTORY and the column RESUME of 
the table CANDIDATES to be  stored in the area 
RESUME-AREA and the BLOB column I'I(:TIIRE of 
the table CAYDIDAT'ES to be stored in the are;l 
PHOTO-AREA. The remaining BLOR data in the 
database is stored in the  default RDBSSYSTEM area. 

Restricting the storage of all BLOBS :tcross the 
entire database schema to a single file or  database 
area was clearly undesirable. The size of the area 
would be limitecl t o  the largest file that could be 
created by the  OpenVMS operating system and the 
mass storage devices available. The Iimitecl map- 
ping of one  BLOB area mappecl to one  disk 
can be circumvented by using the OpenViMs sys- 
tem's Bound Volume Set mechanism. This mecha- 
nism allows n discrete disks to be bound into one  
logical disk. DEC Rdb can then create a single stor- 
age area on  the logical disk that spans the bountl 
set of disks. 

However, although the volume set mechanism 
solves the problem of limited area mapping, serious 
limitations exist in the  database system administra- 
tion ancl recovery processes. All tlatabase-related 
facilities operate at the granularity of a tlat;ll>;tse 
storage area. Thus, if one  disk in a 10-disk volume 
set  is defective, DEC Rdb would have to  restore all 
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10 disks. Not only does restoring data on function- 
ing disks waste processing time, but during the 
restore operation, applications are stalled for access 
at the area level. This situation introduces concur- 
rency problems for on-line system operations. 

DEC Rdb version 4.1 and successive versions 
solve the capacity problem by (1) permitting the 
definition of multiple BLOB storage areas, (2) bind- 
ing discrete storage areas into storage area sets, and 
(3) providing the ability to map or to vertically 
partition individual BLOB columns to areas or area 
sets. Applications can set asicle a disk or a set of 
disks for storing employee photographs, X-rays, 
video, etc. The alphanumeric data and inclexes 
can be stored in separate areas as well. Figure 3 
depicts the employee photograph column being 
mapped to the EMP-PHOTO-1, EMP-PHOTO-2, and 
EMP-Pf-IOTO-3 storage area set. All alphanumeric 
data in the table EMPLOYEES is assumed to be 
mapped to storage area A. 

Coding this example results in 

C r e a t e  s t o r a g e  m a p  B L O B - N A P  
S t o r e  L i s t s  

i n  ( E N P ~ P H O T O ~ 1 , E M P ~ P H O T 0 ~ 2 ,  
EMP-PHOTO-3 )  

f o r  ( E M P L O Y E E S . P H O T 0 G R A P H )  
i n  R D B S S Y S T E M ;  

This code directs the BLOB data, i t . ,  the column 
PHOTOGKAPH from the table EMPLOYEES, to be 

TABLE: EMPLOYEES 

NAME 

DICK 

FRED 

Figure 3 DEC Rdb BLOB Storage Area Sets 

MARY 

stored in the three specified areas ENP-PHOTO-I, 
EMP-PHOTO-2, ant1 EMP-PHOTO-3. 

The ability to define multiple BLOB storage areas 
ancl to bind discrete areas into a storage set elirni- 
nates the BLOB storage capacity limitation in DE(: 
Rdb. Consider the storage problem of storing 1 k113 
of medical X-rays :IS part of a patient record. Prior to 
DEC Rdb version 4.1, the limited one-BLOB storage 
area could store approximately 2,000 X-rays on a 
2-GB disk device. The features included in version 
4.1 allow the creation of a t>EC Rdb storage area set 
that spans mirltiple disk devices. Also, adding stor- 
age areas or disks to a storage area set can expanti 
the capacity initially tlefinetl for the colunin. 

123 

J ~ t k e b a ~  Pelfor~nance Problenzs When a storage 
area set is defined using the S(ZL storage map state- 
ment, DEC Rtlb implements a random algorithm 
to select ;I discrete :ires or disk from the set to store 
the next object. Since multiple processes access 
multimedia objects ;(cross the entire set, a random 
algorithm that evenly distributes data across the 
disks in the area set retluces contention for ;my 
one disk. 

Using a random algorithm to select from a set 
of platters in :I jukebox is extremely inefficient. 
A jukebox comprises one to five disk drives with 50 
to 150 shelf slots where optical disk media is stored. 
A storage robot exchanges optical disk platters 
between drives ant1 storage slots. As described ear- 
lier, a h111 platter exchange-spin down the platter 
currently in the tlrive, eject the platter, insert a new 
platter, spin up  the new platter-takes approxi- 
mately 15 seconds. Each optical disk surface, i.c., 
sicle ofa plattrl; is modelecl as a discrete disk to the 
OpenVMS operating system. Consider, for exaniple, 
ten storage areas clefinecl on optical disks in the 
jukebox and mapped into a storage area set. All 
patient X-rays from a single table in the database are 
to be stored in this area set. Each new X-ray inserted 
in the tlat:~bnse causes DE(: Rtlb to randomly select a 
disk sur f~ce  in the jukebox, which probably results 
in a platter exchatlge. Consequently, each X-ray 
insertion takes 15 seconcls! 

The solution to the jukebox performance prob- 
lem was not to eliminate random storage area selec- 
tion, which works successfully with fixed-spindle 
devices. Rather, the solution was to ;~ccommodate 
an alternate :~lgorithm that sequentially filled the 
disks in an :ue;i set. Using DEC Rdb, applications can 
specify random or sequential loading of storage 
area sets as part of the storage map statement. 

PHOTOGRAPH 

IMAGE OBJECT 

ADDRESS 

456 

IMAGE OBJECT 
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Contention for a single optical disk in a jukebox is 
a far more tlesirable situation, with respect to 
Ii~tencj: than causing one platter exchange per 
object storecl. 

When multiple users simultaneously issue 
requests to read multimedia objects stored in a 
jukebox, long delays occur, whether the storage 
area is lo;~decl secli~entially or rantlomly. Using a 
transaction monitor to serialize access to the 
database helps eliminate jukebox thrashing and 
improve the aggregate performance of the database 
engine 

Fuilouer of Full Volumes The introduction of 
storage ;Ires sets gave rise to another problem: 
What happens when one area in tlie set becomes 
ful I ?  Normally, within the DEC Rdb environment, 
disk errors that result from trying to exceed the 
allocated disk space are signaled to the ;~pplication 
so that the transaction can be rolled back (dis- 
c;~rdetl). When relatecl to storage area sets, how- 
ever, the error is just an indication that a portion of 
the disk space allocated to the column has been 
exhausted and that processing should continue. 
Also, since multimedia objects tend to be esceed- 
ingly large, great amounts of data may have already 
exhausted cache memoq7 and been written back to 
the WoRbl meclia, even though the d;~tabase trans- 
action has not committecl. Handling such an error 
by signaling to the application and expecting the 
application to roll back ancl retry the transaction 
would result in the waste of a large number of 
clevice blocks that have already been burned. Thus, 
I)EC Rtlb had to implement a new scheme. 

DEC; Rdb now implements fill1 failover of an area 
within the area set. Thus, when an area becomes 
full. DEC Rdb traps the error, selects a new area in 
tlie set, ant1 writes the remaining portion o f  the 
B1.00 being written to the new area. This area 
failover works whether the storage allocation is 
random or sequential. In addition, the area that 
is now ful l  is marked with the attribute of full, ant1 
the clusterwide object manager of [>EC Rtlb rn;~in- 
tains this attribute co~isistently throughout the 
cluster. <:onsequently, writers to the database will 
consitler the area unavailable for future HLOH store 
operations. Further, the DEC Rclb database n1;lnage- 
ment utilities can remove tlie attribute if additional 
space is made available to the database area (e.g., if 
DEC Rdb moves BLOBS from area A to another copy 
of area A that resides on a device with twice the 
capacity). 

Language Design Considerations 
SQL, tlie ISO/ANSI standard relational database 
structured query langn;rge, is well suited to 
expressing queries against alphanumeric data 
yet harclly begins to address the needs of multi- 
media objects. Putting aside the fact that sanlpled 
data ( i t . ,  a scanned image) is more difficult to 
query than coded clata (e.g., text coded in ASCII), 
SQL cannot provide data compression and ren- 
dition capabilities for niultimetlia objects. 
Multimedia object processing is better suited to 
a language like C or C+ +. Ideally, sQL woultl sup- 
port the ability to define objects and to associate 
methods with those objects. SQL3 is a new version 
of the SQL standarcl that tlie standards organizatio~~s 
are just beginning to work on. SQJ.3 contains the 
mechanism to define abstract clata types ant1 to exe- 
cute external procedures as part of SQL statements. 
However, SQ1.3 will not become a standard for four 
to five years. 

As discussed previously, I)E(: Rclb SQL lacks 
support for the segluented string or RLOB dat;~ 
type that was available in the Rdb relational engine. 
A new DEC Rtlb SQL clata type, LIST OF BYTE 
VARYING, was designed basecl on the native Rdb 
segmented string data type. The clata access mecha- 
nism for the LIST OF HYTE VARYING data type is 
a list cursor, wliicli operates like a table cursor- 
open the cursor, fetch segments of a BLOB, and 
close the cursor. 'This new data type with asso- 
ciated access mechanism was also added to 
SQL/Services. SQWServices software enables remote 
clients on a network, such as personal com- 
puters, to attach t o  remote DEC Rdb databases. 
The ability to scroll or to randomly position the 
list cursor allows positioning at a particular data 
segment within the multimedia object stream with- 
out having to physically re;~cl through the entire 
data stream. 

Although applications can program directly to 
list cursors, this interface W;IS cumbersome and did 
not offer any object typing or processing. The list 
cursor mechanism does not present the straightfor- 
ward byte-stream interface that is common in most 
file systems. Applications want to store objects, 
such as images and compound clocuments, not 
BLOBS. Data compression was another important 
consicleration. Multimetlia objects should be com- 
pressed on the client side of the network; then, 
conipressecl bits are transferrec.1 through the net- 
work, servers, and clisks. The objects should be 
decompressed when they are to be rendered for 

Digital  Teck~rical Jozrnznl Vol. 5 Aro 2 ,T / ) I ' I~ IR  l99 i  59 



Multimedia 

display. Finally, the enormous size of multimedia 
objects saturates main memory resources on pel-- 
sonal computers, so application developers must 
use disk storage to buffer as well as persistently 
store multimedia objects. 

The limitations of the LIST OF BYTE VARYIN<; data 
type and the list cursor data access mechanism led 
to the development of multimetlia object exten- 
sions. SQL i~lultimedia is an object library that oper- 
ates against SQL and SQL/Services. SQL Multimedia 
allows application developers to classify or type 
multirnetlia data types (e.g., Il\wGE, TEXT, and 
<:OMPOUND-DOCIJMENT) and to specify the data 
format within a type or class. Because no widely 
agreed upon multimedia object encodings or for- 
mats exist, we decided not to limit the types of data 
encoding or formats th;~t coultl be stored in the 
database. For example. the database can store :In 
image in Digital Document Interchange Format 
(DDIF) or Tagged Image File Format (TIFF). The 
option of defining a c;inonicaI encoding ant1 form;~t 
for each object class WAS too restrictive. 

In both the SQL and the SQL/Services versions, 
the SQL Multimedia insert ant1 fetch calls operate 
within the bountls of a transaction. All multimedia 
objects enjoy the same rights and privileges as 
alphanumeric data types in the database, with 
respect to concurrent access, recover): etc. 

A process that ;lttacIies to a DEC Rdb database 
can specify that an iluthorization identifier or a 
default identifier be created iind referenced by the 
"RDB$HANDLE" symbolic label. A transaction can 
be started explicitly or ;I deh i~ l t  transaction begins. 
To operate within the bounds of the default trans- 
action, the SQL Multimetlia roiltines reqi~irecl 
access to the default authorization identifier 
RDB$HANDLE. A new SQL compile time switch, for 
the SQL module language ant1 precompilers, causes 
this identifier to be tlefjned in a global address 
sl>;~ce. The SQL Multimetli;~ routines can thus access 
the value of the identifier. 1fa clistributed transac- 
tion identifier is not passetl to the SQL Multimedia 
routines, the SQL   multimedia operation is executed 
using the default trnnsaction. 

SQL. Multimedia improves the cumberson~e list 
cursor interface by supporting the followiilg object 
sources and destinations: 

The entire object soilrced from or depositetl to 
main memory 

The object buffered through main memory 

A file 

SQI. Multimedia handles file I/<> operations 
across many different software environments, 
inclutling the MS-DOS, Windows, ~Macintosh, 
III:I'IIIS, ant1 OpenVMS olxrating systems. SQL 

Multimedia preserves file ;~ttributes on insert oper- 
ations. For example, the Macintosh file system's 
resource fork, which contains the name and ver- 
sion of tlie applic:~tion to be launched when the 
object is ;~ccesscd by ;i user, is preservetl. If another 
Macintosh user fetches the object to a local file, 
then SQL Multimedia restores the file including 
the resource fork. Assuming the second user has 
the same application, the user can now access 
and manipulate the multimedia object, e.g., a com- 
poi11id tlocument or a QuickTime video file. Rules 
and default file organizations exist for the case 
where a user inserted :I file from an OpenVMS 
system a t~d  another user c:iuses the object to I,e 
fetched to a different client file system, say on a 
PC. Application programmers can tlirect SQL 
Multimedia to override the tlefault file attributes. 

Although SQL Multimedia handles disparate file 
system 110, at present, it does not convert multime- 
tlia object formats or encodings. Images captured 
ant1 stored in DEC I<db in 1)I)IF are deliveretl to each 
client in DDIF. 

SQL Multitnedia makes it eiisy for application 
programmers to insert ant1 fetch compound docu- 
ments to and from the database. The buffered 
I / ( )  d:itn stream conforms to 1)igitnl's Compound 
Document Aschitecture ((:[)A) stream management 
interface. Fetching a compound document using 
the buffered I/O interface, SQI. Multimedia returns 
the itddress of a procedure entry mask, a data buffer 
pointer, ;ind the buffer length. These returned argil- 
ments can be passed to the (:[)A viewer in the 
1)EC;windows environment. The viewer then repeat- 
etlly calls tlie SQL Multimecli;~ buffer-fill procedure 
i ~ r l t i l  the object has been transferred to the viewer 
and displayed. 

In addition, SQL ~Vlultimetli;~ provitles object- 
specific processing for inxlge ancl text objects. Disk 
image objects formatted ;iccorcling to DDlF and 
mxin memory objects forrn;ittetl according to 
I)igit;~l's image toolkit l>E<:i~nage i\pplication 
Services (DAS) can be processed 011 either fetch 
or insert operations. SQI. Multimedia leverages 
the cajx~bilities of DAS software to provide image 
processing, e.g., compression, tlecompression, 
scaling, and dithering. When ;in image is inserted 
or fetchetl, S(2L Alultimedia object processing 
arguments permit the specification of image 
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process steps ant1 parameters. 'r'lie DAS toolkit 
supports ComitG Consultatif Internationale de 
Telkgraphique et Telephonique (<:<:ITT) compres- 
sion (a ubiquitous compression standard for fac- 
simile machines) for bitonal images and Joint 
Photographic Experts Group (JPEG) compression 
(an ISO/ANSI standard) for multispectural images. 

To improve application perforniance, SQL 
Multimedia can generate niultiple rendered ver- 
sions of an image that are stored in a single database 
field. Therefore, a user can store the original image, 
retaining its fidelity, ancl also store a miniature 
version of the image for fast access or browsing pur- 
poses. For example, consider a personnel applica- 
tion where 90 percent of the fetches for employee 
photographs are to he tlisplayecl in a passport-size 
format on ;in eniployee information form. If  
the capture portion of the application stored the 
original employee photograph ancl directed SQL 
Multimedia to generate and store a passport-size 
renclered version in addition to the original, at fetch 
time, the I/() operations required to transmit the 
image to the eniployee form would be reducetl. 
Storing mi~ltiple renclered versions would also elim- 
inate using <:Pli time to scale the Iktched image. 

System Testing and Evaluation 
After the multinietlia engineering of the DEC Rclb 
product was com]>lete, we conducted several test- 
ing activities to determine the perforniance and 
capacity bound;lries. The performance work pre- 
sented is not complete but is offered as an inclica- 
tion of the multimeclia object access capabilities of 
the DEC Rdb software. 

In the tlebit cretlit domain, the Transaction 
Processing l'erform;u~ice Council (1'PC:) tests pro- 
vide a stantlard procedure to measure the perfor- 
mance of one d;~tabase as coniparecl to another. 
However, no sti~ntlartl rnultin~ecli;~ database per- 
formance tests exist. The performance of a DEC 
Rdb multimedia database is influenced by many 
variables, including the processor, mass storage 
medium, tlatab;~se design, object sizes, and work- 
load. The perform;uice data presented in this paper 
should be used only as ;I guide. 

Performance Testing 
For perforniance testing we used a VAX 6360 pro- 
cessor (relatively slow by today's standards) config- 
ured with 128 M1i of main mernor)r, an HSC50 
storage interconnect processor with 16 M70 

magnetic disks, 6 It292 magnetic clisks, and 2 ESE20 
solid-state disks. The total mass storage available 
for building databases was 10 <in.  We evaluated 
the SQL performance of DEC Rdb version 4.2 Fieltl 
Test 1 (FT1) and SQL Multimedia version 1.0 Field 
Test 2 (FT2), and generated the SQL/Services remote 
client data fetch ancl insert performance clata for 
I>EC Rclb version 4.1 Field Test 4 and SQI. Multimetlia 
version 1.0 FT2. 

This performance data should be used as a guide- 
line, because the field-test software contained 
implementation errors that al'fectecl performance 
but were corrected in the released products. As pre- 
sented in Table 1, using the released version of DE<: 
Rdb, we are able to sustain a .)00-kl.3/s througliput 
from a magnetic disk DEC Rdb storage area, across 
an Ethernet network, to a DECstation 5240 work- 
station. This test demonstrates fetching a software 
motion pictures (Sj41P) video clip out of the data- 
base for display on an ULTRlX-basetl workstation..$ 
Although the vicleo was sampled at 15 frames per 
second, we can play back the video clip at 20 
frames per seconcl! The performance measured for 
an SQL/Services fetch was 57.7 kH/s, as shown in 
Table 2. We expect to conduct similar performance 
tests on a DEC 7000 A X P  processor. 

The performance test inserted ant1 fetched 50-kB 
records. Fifty kilobytes is a conservative estimate of 
a compressed A4-size piece of paper, probably the 
most prevalent object to be stored in multirneclia 
databases. For both the distribi~ted SQL/Services 
client and the local SQL interface, 50-kB main mem- 
ory buffers were the sources anel destinations for 
the inserts and fetches. 

We built several 5 0 - M B  databases, va~ying data- 
base design parameters such as page and buffer 
sizes, to determine the fastest set of parameters 
for the large object performance test. Using the 
largest page and buffer sizes yielded the best perfor- 
mance. The database table was organized into three 
columns: two key columns and a 13L013 colunin. The 
BLOB column was mapped to a storage area set con- 
sisting of multiple magnetic storage disks. 

After we establisheel the best database organiza- 
tion, we built many 3- to 10-GB databases by 

Varying the number of processes executing 
insert and fetch operations 

Varying the number of tables in the database 

Varying the number of inserts and fetches per 
transaction 
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Table 1 SQL Performance 

SQL lnsert Performance 

Number of Processes 
Performing Insert Number of Number of Inserts 
Operations Tables per Transaction 

Throughput 
AIJ (kB/s) 

N o 83.0 

No 103.4 

Yes 48.0 
Yes 55.9 

No 295.3 
N 0 533.7 

No 601.5 

SQL Fetch Performance 

Number of Processes 
Performing Fetch Number of Number of Fetches Throughput 
Operations Tables per Transaction AIJ (kB/s) 

N o 194.0 

No 184.0 
Yes 181.0 

Yes 192.5 

Table 2 SQLIServices Performance 
-- - - 

SQLIServices lnsert Performance 

Number of Processes 
Performing lnsert 
Operations 

Number of 
Tables 

Number of Inserts 
per Transaction AIJ 

Throughput 
(kB1s) 

SQLIServices Fetch Performance 

Number of Processes 
Performing Fetch 
Operations 

Number of 
Tables 

Number of Fetches 
per Transaction 

Throughput 
AI J (k B/s) 

Enabling and disabling A [ j  journaling objects from a single table, and :i more complicated 
update test, where multiple writers are simultatie- 

Inserting ant1 fetching from an SQL/Services 
ously updating one table, have yet to be fabricated 

client or using SQL for local database access 
and run. 

When we concluctetl the performance tests, the To put some of the performance results pre- 
computer was dedicated to o u r  task; no other 21ctiv- sented in Table 1 into perspective: the tested conf g- 
ity was taking place. A simple contention test, i~ration can sustain approximately 600 kB of insert 
where multiple reatlers simultaneously fetch bantlwidth, wliich translates into twelve SO-kH 
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A4-size pieces of paper per second. Even a single 
process scanning paper at 103.4 kB/s can keep up 
with some of the fastest paper scanners available. 

Also, scanning both sides of a compressed bank 
check (scanned at 200 dots per  square inch) results 
in an object size of about 20 kB. Therefore, the par- 
ticul;~r configuration we tested could store 30 
checks per second with multiple processes, and 
6 checks per second with a single process. 

Capacity Testing 
We condi~ctetl two capacity tests. Tlie first stored 
ant1 fetchetl a 2-<;B object in a DEC Rdb field, and the 
second built a 50-GB database. A 2-GR known pat- 
tern was generated in virtual memory. DE<: Rdb 
wrote this object, with no AU, to a field in an empty 
clatabasc. The HI.OB column was mapped to three 
tlisl<s, toL;~ling 2.5 (;B of storage. 'lb avoid having to 
sustain storage area or file extensions, the storage 
area set was defined to be 2.3 GB. DEC Rtlb was able 
to succrssfiully insert and fetch the 2-GI3 object. 

To demonstrate the capacity that could be 
acliicvetl with SQL Multimedia, DEC Rdb, and opti- 
cal storage, we built a 50-GB database. The hard- 
ware configilration co~isisted of the following: 

A VAX 4000 Model 500, with 6 <;R of magnetic 
disk ;uitl 128 MB of main memory 

A Koclak Automated Disk Library Model 6800, 
with 100 (;I3 of storage (with a rnaxirni~m capac- 
ity o f  1.2 "I'B) 

IX<: Rdb version 4.2 Field Test 0 

SQL Multimedia version 1.0 F'T2 

Perceptics 1.aserStar optical disk software 

Starting with a backup of a 2-GR manufacturing 
d;~tabnsc that was usetl by Digital's Mass Storage 
Ciroup, I>E(: Rdb added an SQL  multimedia column 
to a table that containecl over 550,000 rows. IIEC 
Rtll7 then rnnppetl the column to five platters, mod- 
eletl ;is ten 9.5-million-block (5.1-<a) magnetic 
tlisl<s to the OpenVMS operating system, l~sing the 
sequential lo;~d algorithm. An update table cursor 
was devisetl t1i;lt returned between 2,000 to 3,000 
rows. Using SOL Multi~nedia, DEC Iklb inserted 
images representing the disk assembly process 
until the storage was h ~ l l .  

Conclusion 
The multimctlia katures that have been added to 
Rdb are in direct support of the increasing demand 
for computer data storage and intlexing of multi- 

- - 
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media object types (i.e., text, still images, com- 
pound documents, audio, and video). Relational 
database systems must expand mass storage device 
support, database physical database design, lan- 
guage functionality, and performance to manage 
the variety of today's information. The development 
of this advanced technology in Digital's DEC Rdb 
product provides desktop computer-to-optical 
disk jukebox integration by means of a commercial 
database. As multimedia technology matures, data- 
bases must address the need to store and index 
information beyond numbers and characters. 

The work accomplished to support multimedia 
objects in DEC Rdb is just "the tip of the iceberg." 
Current multimedia capabilities are able to success- 
fully manage the majority of document and still 
frame applications. However, improvement in 
capacity and performance are required before the 
database can serve m ~ ~ l t i p l e  channels of video and 
audio data. As the SQL standard evolves to incorpo- 
rate a more object-oriented mechanism, much of 
the SQL Multimedia hlnctionality will migrate to 
using standard interfaces to define, operate on, and 
query abstract data types. 
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Lawrence G. Pabner 
Ricky S. Palmer I 

DECspin: A Networked 
Desktop Vieoconferencing 
Application 

The S o u d  Picture Infmzation Networks (SPIN) technology that is part of the 
DECspin version 1.0product takes digitized audio and video from desktop comput- 
ers and distributes this duta over a network to form real-time conferences. SPIN uses 
standard local and wide area data networks, adjusting to the various latency and 
bandwidth differences, and cloes not require GL dedicated bandwidth allocation. 
A high-level SPIN protocol was developed to synchronize audio and video data 
and thus alleviate netzuork congestion. SPIN performance on DigitalS hardware 
and softwc~re platforms results in sound and pictures suitable for carrying 
on personal communications over a data nehuork. The Society of Technical 
Communication chose the DECspin version 1.0 application as a first-pkice recipient 
of the Distinguished Technical Communication Award in 1992. 

In late 1990, w e  began to  design a software product 
that would allow people to see  and hear o n e  
another from their desktop computers. The result- 
ing DECspin version 1.0 application takes digitized 
audio and video data from two  to  eight desktops 
and distributes this data over a network to form 
real-time conferences. The procluct name rep- 
resents the four major communication elements 
that unite into one  cohesive desktop applica- 
tion, namely, sound, picture, information, and 
networks. The overall technology is referred to  as 
SPIN. This paper first presents an introduction to  
conferencing and gives a brief overview of the  
framework o n  which SPIN was developed The 
paper then details SPIN'S graphical user interface. 
Although the  high-level protocol (which is the  
application layer of the  International Organization 
for Stanclardization/Open Systems Interconnection 
[ISO/OSI] model) that SPIN uses to  synchronize 
distributed audio and video is proprietary, a gen- 
eral discussion of how SPIN uses standard data 
networks for conferencing is presented. Perfor- 
mance data for DECspin version 1 0  running o n  
a DEcstation 5000 Model 200 workstation with 
DECvideo and DECaudio hardware follows the  dis- 
cussion of network considerations. Finally, the 
paper summarizes the future direction of desktop 
conferencing. 

Introduction to Confeencing 
When the SPIN project started, standalone telecon- 
ferencing protlucts were available but not for desk- 
top  computers. Typically, the products offered 
cost as much as $150,000, required scheduled con- 
ference rooms and operators, and needed leased 
telephone lines. These systems did not operate as 
part of a corporate computer data network but 
instead required dedicated, switched 56-kilobit- 
per-second (kb/s), T1 (1.5-megabit-per-second 
[Mb/sl), and T3 (45-Mb/s) public telephone compo- 
nents in order to operate. Originally designed 
as two-way conference units, these teleconferenc- 
ing products later included hardware to multiplex 
several equally equipped systems. In addition, 
the  enhanced systems included custom logic to  
implement a hardware compressor/decompressor 
(codec) that reduced digital video data rates suffi- 
ciently to use leased telephone lines. 

During the last several years, other conferencing 
systems have been demonstrated. The Pandora 
research project by Olivetti Research resulted in 
an excellent clesk-to-desk conferencing system. 
Although the Pandora system was expensive p e r  
user and did not use existing network protocols, it 
did prove the viability of using a digital conferenc- 
ing system from one's office and demonstrated the  
natural progression from room conferencing to  
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office conferencing. This system served as a good 
example for our own emerging desktop model, 
DECspin version 1 .O. 

Throughout this same period, several conipres- 
sion standards suitable for video capture and 
playback have evolved and been implemented. The 
Joint Photographic Experts Group (JPEG) industry- 
standard algorithm results in intrafranie compres- 
sion of frames of high-quality video (on the order of 
25 to 1).1-2 This algorithm is well suited for either 
single-frame capture o r  motion-frame capture of 
video information. This form of compression is 
most appropriate for real-time video capture ant1 
playback where low (i.e., frame-by-frame) latency 
is required. 

The Motion Picture Experts Group (MPEG) stan- 
dartl results in interframe compression of motion 
video.5 This algorithm is well suited for motion- 
frame capture of video because only the differences 
between successive frames are stored. Interframe 
compression is appropriate for video capture and 
playback where real-time low latency is not 
required. 

The H.261 standard results in interframe com- 
pression of motion video that is most responsive to 
the demands placed on capturing live video for d i s  
semination over low-bandwidth public telephone 
 network^.^ This compression is suitable for video 
capture and playback with reasonable latency but is 
not quite real-time in nature. H.261 is the standard 
used most in the teleconferencing systems on tlie 
market today. 

Finally, the last few years have also witnessed 
the emergence of dramatic new base computer and 
network techtlologies. Reduced instruction set 
computer (RISC)-based workstations supply the 
needed processing power and I/O bandwidth to 
process large and continuous amounts of data, and 
fiber distributed data interface (FDDI) technology 
results in 100-megabit-per-second local area net- 
works for the desktop. Consequently, the SPIN 
development project got under way to provide a 
novel and innovative software applic;~tion that 
could take advantage of the powerful new systems 
and networks. 

Overview of Underlying 
Hardware and Sofitware 
We came up with the SPlN project in response to 
the question: How can we  communicate easily 
with graphics, video, and audio on the desktop 
as well as over both local and wide geographical 

area networks? Video help documentation, textual 
help, and audio help are used on the desktop to 
con~municate how the application works. Sound, 
picture, graphics, and network elements are all 
woven together to provide better communication 
among conference participants. 

Early in 1991, we  received our first prototype of 
the I>ECvideo TUKBOchannel frame buffer, which 
includetl the necessary hardware to i n p ~ ~ t  and cap- 
ture ;in analog video signal, to digitize the signal, 
ant1 to display the pixel information on the screen. 
The frame buffer was special in that it displayed 
8-bit pseutlocolor, 8-bit gray-scale, and 24-bit true- 
color graphical data simultaneously. This feature 
allowed captured video data to be displayed with- 
out data dithering. 

Dithering is the process of converting each pixel 
of vitleo data to a form that matches a limited 
number of available colormap entries. Most work- 
station frame buffers are S-bit pseudocolor. Hence, 
digitizecl, 24-bit true-color video data for display 
would need pixel-by-pixel conversion. Algorithms 
exist that could be used to accomplish this conver- 
sion. However, a better SPIN conference, in terms 
of frame rate ancl picture quality, was achieved by 
performing 110 software dithering, thus relying 
on the ability of the DECvideo hardware to display 
24-bit true-color video or  8-bit gray-scale video.i In 
addition, the DECvideo hardware could scale down 
the inconling video image in real time so that fewer 
pivels (i.e., less data) represented the original 
image. 

Concurrently, SPIN used a DECaudio TuRBOcha~el 
card that could sample an input analog audio signal 
from a microphone and deliver an 8-kilohertz digi- 
tized audio bit stream. The DECaudio hardware 
could also convert a digital auclio stream for ou tp i~ t  
to ;In analog speaker or external amplifier. A 
11ECst;ltion 5000 Model 200 with 1)ECaudio and 
DE<:video components provided the core hardware 
capability used in SPIN development work. 

In addition to these new hardware capabilities, 
the SPIN effort needed new underlying base soft- 
witrc capabilities. The DECvideo hardware required 
the Xv vitleo extension to the X Window System to 
allow for the display and capture of video data. (The 
Xv extension was jointly developed by base system 
graphics ;ind MIT Project Athena teams.) The 
I>E<:audio component used the AudioFile audio 
server, developed by Digital's Cambridge Research 
L;~borator): to capture and play back digital ailclio 
tlata. 
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A prototype software base was created to make 
fundamental measurements of video and audio data 
manipulation within the workstation and over a 
network. Testing the prototype over a 100-Mb/s 
FDDI network and a 10-Mb/s Ethernet network 
demonstrated that a conferencing product running 
over existing network protocols was possible. 

The SPIN Application 
SPlN is a graphical multimedia communications 
tool that allows two to eight people to  sit at their 
desktop computers and communicate both visually 
and audibly over a standard computer data net- 
work. The user interface employs a telephone-like 
"push" model that allows a user to place an audio- 
only, video-only, or audio-video call to another 
desktop computer user. Here, the term "push" 
means that SPIN conference participants control all 
aspects of the digitized data they send onto a net- 
work. Thus, users can feel confident about the secu- 
rity of their audio and video information. A caller 
initiates all calls to other users, and a call recipient 
must agree to accept an incoming SPlN call. Because 
all data is in the digital domain, this model makes it 
almost impossible to use SPlN to eavesdrop on 
another person. Placing a wiretap on a person's call 
would involve intercepting network packets, sepa- 
rating data from protocol layers, and then reassem- 
bling data into meaningful information. If the 
network data were encrypted, interception would 
be impossible. SPIN also provides other communi- 
cation services, such as an audio-video answering 
machine, messaging, audio-video file creation, 
audio help, and audio-video documentation. 
Figure 1 shows a screen capture of a SPIN session in 
progress, using the DECspin version 1.0 application. 

The product is easy to learn and to use. The 
graphical user interface is implemented on top of 
Motif software. Motif provides the framework for 
the SPlN international user interface. A model was 
chosen in which all actions taken by a user are 
implemented by push buttons that activate pop-up 
menus. The SPIN application does not use pull- 
down menus, because they require language- 
specific text strings to ident~fy the purpose of an 
entry and thus require translation for different 
countries. Also, pull-down menus are intended for 
short-term interaction, and SPIN menus usually 
require more long-term interaction. All push- 
button icons are pictorial representations of the 
intended function. For example, the main window 
has a row of five push buttons, each of which 

activates a specific function of the application and 
is shown in Figure 1. 

In the main window, the first button from the left 
contains a green circle with a vertical white bar, the 
international symbol for exit. This button appears 
in the same location in each of the pop-up win- 
dows. It is used to exit the window or, in the main 
window, to exit the application. 

The second button from the left is labeled with 
the communication icon. This button is used to 
select the call list shown in Figure 2. The call list 
contains the various buttons and widgets used to 
place a call to another user, to create and play back 
SPIN files, and to display a list of received SPIN mes- 
sages, if any exist. The list provides a way to play 
and manage audio-video answering machine mes- 
sages. For example, to place a call to another user 
on the network requires just three steps. 

1. Enter the computer network name of the 
machine and user into SPIN'S phone database as 
"user@desktop." A string representing some- 
thing more understandable to a novice is also 
allowed, e.g., uuser@desktopl.dec.com" becomes 
"user@desktopl.dec.com Firstname Lastname at 
Digital Equipment Corporation." 

2. Select whether the call is to be sound only, 
picture only, or both. The toggle push buttons 
under the large note icon control audio select; 
those under the large eye icon control video 
select. Once the call is established, these but- 
tons can be set or unset by clicking a mouse or 
using a touch-screen monitor and are useful 
for muting the audio portion or freezing frames 
of the video portion. 

3. To establish a two-way network connection, 
press the call push button under the connection 
icon (which is labeled with two arrows going in 
opposite directions) that appears next to the 
desired call recipient. If the person called is 
logged on, a ring dialog box appears on the 
call recipient's screen and a bell rings. If the call 
recipient is not available, a dialog box appears on 
the caller's screen asking whether the caller 
wishes to leave a message. The caller can then 
choose to leave a message or not. 

Depending on the individual settings, users can 
see and hear one another in multiple windows 
on the screen. To connect all conference partici- 
pants in a mesh, press the "join" push button, 
which has a triangular icon. 
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Figure 1 Sample SPIN Session 
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Figure 2 SPIN Cull List Pop-u& Window 
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Returning to the main window, the rnjtltl.le push 
button is the Sl'IN control button. As shown in 
Figure 3, the SPIN control pop-up window contains 
slide bars that, from top to bottom, allow the caller 
to set maximum capture frame mte, hue, color sat- 
uration, brightness, contrast, speaker output vol- 
ume, and microphone pickup gain. At the bottom 
of the control window are buttons for selecting 
compression and rendering. 

To the right of the control button in the main 
window is the st;r~us icon button. Pressing this but- 
ton causes the status pop-up window shown in 
Figure 4 to appear. The status window displ;rys, 
below the c;lmcra icon, the active size of the cap- 
tured video area in pixels. Beneath these dimen- 
sions is a vertical slide bar that indic;itcs the average 
frames-per-second (frames/s) capture rate sampled 
over a five-second interval. To the right of the 
camera icon is the connection icon, under which 
appears the number of active connections. Below 
this number arc the sound and picture icons, under 

which appear the number of active audio connec- 
tions and the number of active video connections, 
respectively. The second slide bar indicates the 
result of sampli~ig the average outgoing bandwidth 
consumption (measured in Mb/s) of the application 
on the network. This measurement is also updated 
every five seconds. 

Finally, the fifth push button (on the far right) in 
the main window is the information button. By 
pressing this button and selecting the type of on- 
line information desired, the user can access the 
documentation pop-up windows, as illustrated in 
Figure 5. Within each tlocumentation window are 
several topics and two columns of toggle push but- 
tons that can be used to obtain either textual docu- 
mentation or video documentation. The video 
documentation comprises short videos that 
contain expert help about the operation of the 
application. 

As a final level of help, all push buttons and wid- 
gets within the application have associated audio 
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DECspin: Control 
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Figure 3 SPIN Control Pop-up Window 

tracks that tell the user what the buttons and 
widgets do within their context in the application. 
To activate the audio tracks, the user must first 
select the button or widget and then press the Help 
key on the keyboard. 

Network Considerations 
SPIN uses standard data networks to transport the 
information that composes a conference. Data net- 
works are usually private networks that a user com- 
munity maintains. Such networks often include a 
number of individual networks joined together by 
bridges and routers. Unlike public telephone net- 
works, which are most frequently used for phone 
calls, private networks are used for a variety of 
computer data needs, including file transfers, 
remote logins, and remote file systems. However, 

telephone networks often provide the long- 
distance lines used to make up  private wide area 
data networks. 

The use of data networks allows conferencing 
data to be treated as woulcl any other type of data. 
SPlN requires no special low-level networking pro- 
tocols to transmit its data and uses the transmission 
control protocol/internet protocol (TCIJ/IP) or the 
DECnet protocol. Also, SPIN requires no changes to 
existing operating systems. When performing the 
prototype work for the SPIN application, we were 
not certain whether the real-time nature of confer- 
encing could be accomplishecl on inherently 
non-real-time networks and operating systems. 
Consequently, we developed a special high-layer 
synchronization conferencing protocol, called the 
SPIN protocol, that uses existing data networks. 
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Figure 4 SPIN Status Pop-up Windozu 

This protocol is responsible for the synchronization 
of audio and video information. The SPIN protocol 
monitors the flow of data to the network in order 
to alleviate network congestion when detected. As 
the network becomes congested, the protocol 
makes the decision to withhold further video data, 
since video is the largest consumer of network 
bandwidth. This withholding of video data is a key 
feature of the SPIN protocol, because it allows a 
conference to vary the video frame rate on a user- 
by-user basis. Thus, video bandwidth can scale to 
the lesser of either the bandwidth available or the 
number of frames/s of video bandwidth that a given 
platform can sustain. 

If the withholding of video corrects the network 
congestion, video data is once again allowed in the 
conference. If not, the SPIN protocol delays audio 
data and stores it in a buffer until the network is 
able to handle this data. If the network outage lasts 
approximately 10 seconds, audio data is lost. 
Periods of audio silence are used as a means of 
recovery from periods of network congestion. 

Thus, variable video frame rates along with this 
treatment of audio data allow for the graceful degra- 
dation of a conference as the network becomes 
busy. 

SPIN has been demonstrated over a variety of 
public and private data networks including 
Ethernet (10 Mb/s), FDDI (100 Mb/s), T1 (1.5 Mb/s), 
T3 (45 Mb/s), cable television (10 Mb/s, more cor- 
rectly, Ethernet running over two 6-megahertz 
cable television channels), switched multimegabit 
data service (SMDS) (1.5 or  45 Mb/s), asynchronous 
transfer mode (ATM) (150 Mb/s), and frame relay 
(1.5 or 45 Mb/s). Some of these networks are local 
or metropolitan area technologies, i.e., local area 
networks (LANs), whereas others are wide area 
technologies, i.e., wide area networks (WANs), as 
illustrated in Figure 6. 

Each type of network provides SPIN with differ- 
ent latency and bandwidth characteristics. SPIN 
makes corresponding adjustments to a conference 
to account for these differences and does not 
require a dedicated bandwidth allocation to carry 
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on a conference. If a given network supports 1)antl- 
width. allocation, this feature only cnh;~nccs S1'1N's 
ability to deliver video and audio i1iform;ition. 

WANs may use a routzr to i~itercon~lect two or 
more LANs. SI'IN has been tested on a number of 
routers with mixed results, i.e., somc routers cor- 
rectly handle SPIN'S biclirection;rl traffic pattern 
w11t.rcas others do not. Si~ice sollie routers tlo not 
correctly handle bidirectional data traffic without 
~xlcket loss, wide area routers ~ i i i r > t  be i~~cljvitlually 
tested with SPIN to veritj pruprr opcr;trion. Son~e 
router problems wcre traced to the use of old 
firn1w;tre or software. C O I I S ~ ~ ~ L I C I ~ ~ J ~ ,  SPIN acted 
like a diagnostic tool in pointit~g out these prob- 
lems. For example, running the SI'IN application 
with audio only, across Digit;tl's private 11' network, 
yields varied results. Digital's IP network is ;ui exam- 
ple of an open network, with routers from   no st 
router vendors. We tracecl nlost instances of poor 
SPIN pcrform;unce to old or obsolete routers (some 
in service for the last six years without ul)gri~des). 
These routers usually tlroppecl ~xtckets whcn rout- 
ing between adj;lcent Ethernet ne~works tli;ct were 
only 10 percent busy. After these routers were 

i1,pgradetl to the I)E(;NlS hlmily of routers, the SI'IN 

;~pplication fi~nctionetl correctly, even on con- 
gested networks. 

To tle~nonstl-;tte clajly use of SPIN, we cre;~tetl a 
metropolit;cn area networl< ( k w ) .  Figure 7 shows 
the network topology, which spanned the states of 
New t1aml)shire and Mass;tchusetts. The test bet1 
;~llowetl 11s to tlrmonstrate our FDDI products, 
inclutling end-station FDIII adapter cards, multi- 
~uode  b'L)I.)I wiring concentrators, and single-mock 
k'l)L)1 wiring concentrators. SPIN was used in SO 
workstations, two of which were attachecl to large- 
screen projection units in col~erence rooms. 

The conference tlll;~lity achieved when running the 
SPIN ;ipplic;ition tlepends on many factors. The 
avail;tble network bandwidth, the processor speed, 
the tlcsirecl fl-;~me-rate specification, the compres- 
sion setting, the picture size, and how the pictures 
are rendcred all itffect the quality of the collferencc. 
Tdble 1 contiiins perh,rmnnce data for DECspin ver- 
sion 1.0 at various conlbinations of settings for 
these factors. 

- - - - - - - - 
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Figure 7 Digitcd's MAAT Test Bed for SPIN 
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Table 1 SPIN Performance on a DECstation 5000 Model 200 with 
DECvideo and DECaudio Hardware 

Width x Height 
(Pixels) Network 

Framesls (Bit 
rate in Mbls) 

Black and White1 No 
Black and White1 Yes 
Colorl No 
Colorl Yes 
Black and White1 No 
Black and White1 Yes 
Colorl No 
Colorl Yes 
Black and White1 No 
Black and White1 Yes 
Colorl No 
Colorl Yes 
Black and White1 No 
Black and White1 Yes 
Colorl No 
Colorl Yes 

FDDl 
FDDl 
FDDl 
FDDl 

FDDl 
FDDl 
FDDl 
FDDl 
Ethernet 
Ethernet 
Ethernet 
Ethernet 

Ethernet 
Ethernet 
Ethernet 
Ethernet 

Using a DECNIS Router (Ethernet-to-Router-to-TI-to-Router-to-Ethernet) 

256 x 192 Black and White1 No TI 
256 X 192 Black and White1 Yes T1 
256 x 192 Color1 No TI 
256 x 192 Color1 Yes TI 
160 x 120 Black and White1 No TI 
160 x 120 Black and White1 Yes TI 
160 x 120 Color1 No TI 
160 x 120 Color1 Yes TI 

As shown in Table 1, we tested SPIN performance 
using two basic picture sizes: 256 by 192 pixels and 
160 by 120 pixels. The tests were performed over 
both Ethernet and FDDI networks for black-and- 
white and color cases. Also noted in the table is 
whether or not software compression was enabled 
for a specific test case. The far right column shows 
the frame rate achieved for the different combina- 
tions and also summarizes the network bandwidth 
consumed in each test. The table is presented pri- 
marily to give a sampling of the frame rate and, 
hence, the level of visual quality achieved for a spe- 
cific combination of parameters. Frame rates affect 
an observer's ability to detect change within a 
sequence of frames. With a slow frame rate, the 
resulting video sequence may appear choppy and 
incomplete, whereas a normal frame rate (24 to 30 
frames/s) leads to a smoothly varying video 
sequence with even continuity from one sequence 
to another. The frame rates in Table 1 below about 6 
to 7 frames/s are considered low quality. Those in 
the 8-to-19-frames/s range are considered good 
quality, and those in the 20-to-30-frames/s range 

are high-quality video. The best cases in Table 1 are 
those that used software compression to deliver a 
pleasing frame rate with the least amount of net- 
work bandwidth consumed together with some 
degradation of individual frame quality. The soft- 
ware compression was tuned to provide nearly the 
same frame quality as the uncompressed case. 

Table 1 also shows performance data measured 
using a DECNIS router. As noted earlier, wide area 
usage of SPIN depends on ;I router with correct algo 
rithms for handling of bidirectional continuous 
stream traffic. The DECNIS family of routers can 
supply the full T1 bandwidth when presented with 
bidirectional SPIN traffic. Other routers on which 
SPIN was tested typically delivered only 25 to 50 
percent of the TI bandwidth. Note that this was 
only true on the particular routers we tested and 
that routers other than DECNrS routers may also be 
able to deliver fill1 TI bandwidth for this particular 
traffic pattern. 

Hardware compression technology mentioned in 
the section Overview of Underlying Hardware and 
Software reduces the bandwidth requirements for 
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conferencing. Experimentation with motion JPEG 
compression (using the Xv extension with com- 
pression functions o n  an Xvideo frame buffer 
board) has shown that at a resolution of 320 by 240 
pixels, true-color frames can be used at 15 to 20 
frames/s at a bit rate of just under 1.0 Mb/s. This bit 
rate produces a good- to hig11-quality conference 
with very low latency. H.261 ant1 MPEG technology 
result in similar frame rates and picture size at 
about one-half the bandwidth but higher overall 
latency. Using motion JPEG as the example, high- 
quality conferences require about 1 Mb/s per  
connection. If all conferences are to be high qual- 
ity, this bit rate allows 1 two-party conference 
on a T1 connection, 5 two-party conferences on an 
Ethernet segment, and 50 two-party conferences 
o n  an FDDI network. Using GIGASWI'TCH FDDI 
switches, more than 500 two-party conferences 
can take place simultaneously on a network. More 
users coultl be supported on T1, Ethernet, or 
~ ; l < ; ~ s w ~ : t I  networks, if  lower-quality confer- 
ences are acceptable. 

Conclusion 
It became clear during the development and 
deployment of SPIN that high cost per  user limits 
the widespread use of the application. The cost of 
vicleo for 1)EC:spin version 1.0 adds about $8,000 to 
the price of a workstation. Audio for version 1.0 
adds about $2,000 per workstation. These costs, 
which are prohibitive to most potential users of 
the technology, d o  not include the network cost 
impact. 

Digital's Alpha AXP family of computers come 
with audio input and output hardware as part of the 
base workstation. In spring 1993, Digital released to 
the Internet community a version of DECspin that 
uses this hardware to carry on audio-only confer- 
ences and shows the user a voice waveform instead 
of ;I vicleo image. This version eliminates the add-on 
hardware cost for audioconferencing. A new low- 
cost vicleo option would go far to reduce the add-on 
cost for vicleo and facilitate a wider use of the SPIN 
application. 

The SPIN application and its associated protocol 
have been demonstrated on Digital and non-Digital 
computers, operating systems, and networks. In 
particular, SPIN has been shown on SPARC worksta- 
tions running Solaris software. Additionally, SPIN 
has been demonstrated on a personal computer 
using the Microsoft Multimedia Extensions (MME) 
to Windows software. This platform provides a 

very large user community of potential SPIN users 
and dramatically drops the price per user compared 
with the original product. Interoperability among 
platforms and a common user interface give Digital 
a leadership position in this fast-forming market. 

Today, high-quality confcrencing can sca d e  l to 
liunclreds of seats on ;I LAN wit11 lower-quality con- 
ferencing scaling to larger, more geographically dis- 
persed networks. Several factors will l a c 1  to the 
widespread use of this technology: better and less- 
expensive hardware, programmable codecs, and 
higher-speed and less-costly cross-country net- 
works. Less-expensive video hardware allows many 
users to upgrade their systems to include video, 
while programmable compression technology 
allows users to ; d ~ i e v e  improvements in picture 
quality, compression transcoding, and lower net- 
work needs. Higher-capacity and less-costly cross- 
country networks allow more users to access 
conferencing services. Ultimately, even homes will 
have better computer connectivity and bandwidth. 
As these changes occur, and we believe they will, 
desktop conferencing can become the interactive 
telephone of the twenty-first centur)l. 
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Peter C. Hayden I 

LANAddressing for 
Digital Video Data 

Multicast uddressing was chosen over the broadcast aaclress and unicasr address 
mechanisms for the transmission of video data over the LAN. Dynumic allocation of 
mztlticast addresses enables such features m the continuozls playback of full 
motion video over a network with multiyle viezuers. Design of this video data trans- 
mission system permits interested nodes on a L t W  to dynamically allocate a single 
multicast address from a pool of multicast &dresses. When the allocated address is 
no longer needed, it is returned to the pool. This mechanism permits nodes to use 
fmer multicast addresses than are required in a traditional scheme where a 
unique address is allocated for each possible function. 

The transmission of digital video clata over a local 
area data network (LAN) poses some particular 
challenges when multiple stations are viewing the 
material simultaneously. This paper describes the 
available addressing mechanisms in popular LANs 
ancl how they alleviate problems associated with 
multiple viewing. It also describes a general mecha- 
nism by which nodes on a LAN can dynamically allo- 
a t e  a single multicast address from a pool of 
multicast addresses, and subseq~~ent ly  use that 
address for transmitting a digital video program to a 
set of interested viewers. 

Project Goals 
The objective of this project was to design a mecha- 
nism suitable for providing the equivalent of broad- 
cast television using computers and a local area 
data network in place of broadcast stations, air- 
waves, ancl televisions. The resulting system had to 
provide access to broadcast, closed circuit, and on- 
demand video programs throughout an enterprise 

using its computers and data network. The use of 
computer equipment installed for data transmis- 
sion would eliminate the need to invest in cable Tv 
wiring throughout a building. 

The basic system would consist of two primary 
components. One computer, o r  set of computers, 
would act as a video server by transmitting video 
program material, in digital form, onto the data net- 
work. Other computers, acting as clients, would 
receive the transmitted video program and present 
it on the computer's display. Figure 1 depicts such a 
configuration. 

The variety of video source material suggests that 
servers may be equipped in several ways. For exam- 
ple, accessory hardware can receive broadcast 
video programs; hardware and software can con- 
vert analog video into digital format; and hardware 
and software can compress the digital video for effi- 
cient use on a personal computer and data net- 
w0rk.'.~.3 Figure 2 shows a server equipped to 
handle different types of video program sources. 

C ) LOCAL AREA 

t .t- t .t- NETWORK 

SERVER 0 
* TRANSMllTED 

TRANSMlnlNG 
DIGITAL VIDEO 

4 

CLIENT 0 CLIENT 0 
I I 

RECEIVING NOT RECEIVING 
DIGITAL VIDEO DATA 

I DATA STREAM 

CLIENT u 
RECEIVING 
DIGITAL VIDEO 

Figure I Client-server System for Video Data Transmission 
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ANALOG 
VIDEO 
SOURCES 

LOCAL AREA NETWORK 
t 4 

NETWORK 
INTERFACE 

PROCESSOR 
STORAGE 

PERSONAL COMPUTER 
CABLE 
TUNER 

Figure 2 Types of Video Progmnz Sotirces 

STORED 
DIGITAL 
VIDEO 

Vitleo program material is categorized as live, 
e.g., the current program broadcasting o n  a televi- 
sion network, o r  stored and played o n  demand, 
e .g . ,  ;I recorded training session. In both cases, it is 
desirable for more than o n e  client to be able to 
monitor o r  view the transmitted video program. 

To implement the client-server system described 
above, many technical hurdles hat1 to be overcome. 
This paper, however, focuses o n  one  narrow but 
critical aspect, the addressing method used on the  
] .AN for tlelivery of the digital video data. 'The char- 
acteristics of digital video and the need for multiple 
stations to receive programs from a wide range of 
possible sources combined to create some interest- 
ing challenges in devising a suitable addressing 
m e ~ h o d .  

Choosing an Addressing Method 
To transmit digital video over a data network, an 
effective addressing mech:lnism Iind to be chosen 
that would satisfy the project's goals. Most Lms 
support  three basic data addressing mechanisms: 
broadcast, unicast, and multicast. Each method 
of transmitting digital video over a LAN has charac- 
teristics that are both attractive and undesirable. 

Broadcast addressing ilses a special reserved d e s  
tination address. By convention, tlata sent  to this 
address is received by all nodes on the LAN. 

Transmitting digital video darn to the broadcast 
atlrlress serves the purpose of permitting multiple 
clients to receive the same transmitted video pro- 
gram while permitting the server to transmit the  
data once to a single adtlress. Viewed another way, 
this convention is a significant disadvantage 

because all stations receive the data whether they 
are interested o r  not. Compressed digital video r e p  
resents from 1 to  2 megabits p e r  second of data; 
therefore nodes not expecting to  receive the video 
data are impacted by its unsolicited arrival.',' As a 
further complication, when two  o r  more video pro- 
grams are playing simultaneously, stations receive 1 
to 2 megabits pe r  second o r  more of data for each 
video program. This renders many systems inoper- 
ative. Furthermore, LAN bridges pass broadcast 
messages between LAN segments and cannot con- 
fine digital video data to a LAN segment.* As a result 
of these drawbacks, use of the  broadcast adtlress is 
unsuitable for transmission of digital video data. 

Utlicast addressing sends data to  o n e  unique 
node. The use of unicast addressing eliminates the 
problems encountered with broadcast addressing 
by confining receipt of the digital video data to a 
single node. This approach works quite well as long 
as only one  node wishes to view the video program. 
If mi~lt iple clients wish to view the same program, 
then the server has to retransmit the data for each 
participating client. As the number of viewing 
clients increi~scs, this approach quickly exhausts 
the server's capacity and congests the LAN. Because 
unicast adtlressing cannot practically support  o n e  
server in conjunction with multiple clients, it too is 
unsuitable for transmission of digital video data. 

Multicast addressing uses addresses designated 
to simultaneously adtlress a group of nodes on a 
LAN. Nodes wishing to  be part of the addressed 
group enable receipt of data atldressed to the multi- 
cast address. 'This characteristic makes multicast 
addressing the itleal match for the sin~ultaneous 
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transmission of digital video data to multiple client 
nodes without sending it to uninterested nodes. 
Furthermore, many network adapters provide 
hardware-based filtering of multicast addresses, 
which permits high-performance rejection/ 
selection of data based on the destination multicast 
address.9 Because of these advantages, multicast 
addressing was selected as the mechanism for trans- 
mission of digital video data. 

Multicast Addressing Considerations 
Together with its advantages, multicast addressing 
brought significant problems to be overcome. The 
problems were in the assignment of multicast 
addresses to groups of nodes, all of which are inter- 
ested in the same video program. If a single multi- 
cast address were assigned for all stations 
interested in receiving any video program, then 
only interested stations would receive data. All  par- 
ticipating stations, however, would receive all pro- 
grams playing at any given time. If multiple 
programs were playing, each station would receive 
data for all programs even though it is interested in 
the data for only one of the programs. The obvious 
solution is to allocate a unique multicast address for 
each possible program. The following sections 
examine various allocation methods. 

Traditional Address Allocation 
Traditionally, a standards committee allocates mul- 
ticast addresses, each of which serves a specific 
purpose or function. For example, a specific multi- 
cast address is allocated for Ethernet end-station 
hello messages, and another is allocated for fiber 
distributed data interface (FDDI) status reporting 
frames.L0,11s12 Each address serves one explicit func- 
tion. This static allocation breaks down when a 
large number of uses for multicast addresses fall 
into one category. 

It clearly is not possible to allocate a unique 
multicast address for all possible video programs 
for several reasons. At any given time, hundreds 
of broadcast programs are playing throughout 
the world, and thousands of video programs 
and clips are stored in video libraries. Countless 
more are being created every minute. Assigning a 
unique address to each possible video program 
would exhaust the number of available addresses 
and be impossible to administer. Furthermore, 
it would waste multicast addresses since only 
those programs currently playing on a given 
LAN (or extended LAN) need an assigned address. 

A technique, therefore, is needed by which a block 
of multicast addresses is permanently allocated for 
the purpose of transmitting video programs on a 
computer network, and individual addresses are 
dynamically allocated from that block for the dura- 
tion of a particular video program. 

Dynamic Allocation Method 
A dynamic allocation method should have several 
characteristics to transmit video programs on a 
LAN. These desired characteristics 

1. Must be consistent with current allocation pro- 
cedures used by standards bodies like the IEEE 

2. Should be fully distributed and not require a 
central database (improves reliability) 

3. Must support multiple clients and multiple 
servers 

4. Must operate correctly in the face of LAN per- 
turbations like segmentation, merging, server 
failure, and client failure 

It is clearly desirable to use a dynamic allocation 
mechanism that does not require changes to the 
way addresses are allocated by standards commit- 
tees. Changes to protocols only create another level 
of administrative complexity. Instead, a single set of 
addresses should be allocated on a permanent basis 
for use in the desired application. Drawn from a 
pool of addresses, these allocated addresses could 
be dynamically assigned to video programs as they 
are requested for playback. When playback was 
complete, the address would be returned to the 
pool. 

Regardless of which allocation mechanism is 
adopted, it needs to support multiple servers and 
multiple clients. This implies that some form of 
cooperation exists between the servers to prevent 
multiple servers from allocating the same address 
for two different video programs. One node could 
act as a central clearinghouse for the allocation of 
addresses from the pool, but the overall operation 
of the system would then be susceptible to failure 
of that node. The preferred approach is a fully dis- 
tributed mechanism that does not require a central- 
ized database or clearinghouse. 

LANs tend to be constantly changing their config- 
urations, and nodes can enter and leave a network 
at any time. As a result, an allocation mechanism 
must be able to withstand common and uncommon 
perturbations in the LAN. It must accommodate 
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events such as the segmentation of a LAN into two 
LANs when a bridge becomes inactive o r  discon- 
nectecl, joining of two LANs into one when a bridge 
is installeel or becomes reactivated, and failure or 
disconnection from the LAN at any time by both 
server and client nodes. 

Other Multicast Allocation Methods 
A  variety of different group resource allocation 
mechanisms exist, and the one most nearly applica- 
ble to  transmitting digital video over a LAN is used 
in the internet protocol (IP) suite. Deering dis- 
cusses extensions to the internet protocols to sup- 
port multicast delivery of internet data grams.15 
In his proposal, multicast address selection is algo- 
rithmic;~lly derived from the multicast IP address 
and yields a many-to-one mapping of multicast 
11' addresses to JAN multicast address. As a conse- 
quence, there is no  assurance that any given multi- 
cast acltlress will be allocated solely for the use of 
a single digital video transmission. This unclermines 
the goal of using multicast addressing to direct the 
he;ivy flow of clata to only those stations wishing to 
receive the data. Deering discusses the need for 
;~llocation of transient group address ant1 alludes to 
the concepts presented in this paper. 

Model for Dynamically Allocating 
Multicast Addresses 
Given the overall goals of the project and the 
desired characteristics of the application, thc fol- 
lowing model was developed. It transmits digital 
vicleo on a data network using dynamically allo- 
cated multicast addresses. First, simple operational 
cases on the LAN are described. Then complicated 
scenarios dealing with network misoperations are 
addressed. 

I t  should be noted that the protocols described 
address the location of video program material as 
well as the allocation of multicast addresses for 
delivery of that material. Because of the one-to-one 
correspondence between video material and 
address allocation, it is convenient to combine 
these two functions into a single protocol; how- 
ever, the focus of this paper remains on the address 
allocation aspects of the protocol. 

Multicast Address Pool 
This model assumes a set of n multicast addresses 
permanently allocated ancl devoted to it. The 
addresses are obtained through the normal process 

for allocation of multicast addresses through the 
IEEE. All clients and servers participating in this 
protocol use the same set of addresses. For the sake 
of this discussion, these addresses are denoted as 
A l ,  A2,.  . .An. Address A1 is always used by the par- 
ticipating stations for exchange of information nec- 
essary to control the allocation of the remaining 
addresses for use by the participating stations. The 
remaining addresses A2 through An form the pool 
of available multicast addresses. 

Server Announcements 
All servers capable of transmitting digital video 
data continuously announce their presence and 
capabilities by transmitting a message at a predeter- 
mined interval; for example, a message is addressed 
to A1 every second. In these announcements, the 
servers include information identifying their gen- 
eral capabilities, clata streams they are currently 
transmitting, and data streams they are capable of 
transmitting. 

A server's general capabilities include its name 
ant1 network adtlress(es). Other usel111 information 
can also be announced, but it is not relevant to 
this cliscussion. To identlfy the data streams cur- 
rently being transmitted, the server describes 
the data ancl the multicast address to which each 
data stream is being transmitted. In this way, it 
announces those multicast aclclresses that the sta- 
tion is currently using, along with a description of 
the associated video program. The data streams the 
server is capable of transmitting are identified by 
some form of a description of the data stream. 

Identifying Servers and 
Available Programs 
With each server continuously announcing the p r o  
gram matcrial available for playback, clients wish- 
ing to receive a particular data stream can monitor 
the server announcements being sent to address 
A l .  By receiving these announcements, a client can 
ascertain the address of each server active on the 
LAN, the data streams currently being transmitted 
by each server and the multicast address to  which 
each is being transmitted, and the data strcams 
available for transmission. 

With a large repository of program material, 
it could easily become impractical to announce 
all available material. In this case, the announce- 
ments could be used only to locate available 
servers, and an inquiry protocol o r  database search 
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mechanism could be used to locate available mate- 
rial more efficiently. 

Once a client identifies a server that is offering 
the desired data stream, it can request that the 
server begin transmission. The client sends a mes- 
sage i d e n t ~ i n g  the desired playback program 
material. In response, the server allocates a unique 
multicast address, includes the new material and 
multicast address in its announcement messages, 
and begins transmitting the program material. 

Add~ess Allocation and Dacking 
Each server maintains a table containing the usage 
of each of the A2 to An addresses. Each address is 
tagged as either currently used or available for use. 
When a server receives a client's request for trans- 
mission of a new data stream, the server selects a 
currently unused multicast address and includes 
the address and data stream description in its 
announcements of data streams currently being 
transmitted. After sending two announcements, 
the server begins transmitting the data to the cho- 
sen multicast address. Sending two announcements 
before beginning transmission provides client 
nodes with ample time to ascertain the address to 
which the data will be sent and to enable reception 
of the video program. 

In addition to sending announcement messages, 
the servers also listen to the announcements from 
other servers to keep track of all multicast 
addresses currently in use on the LAN. Each time a 
server receives an announcement message from 
another server, it notes the addresses being used 
and marks them all as used in its table. This pre- 
vents a server from allocating an address already 
used by another server and eliminates the need for 
a central database or clearinghouse. 

If a server observes that it is using the same 
address as another server, then the server moves 
its data transmission to another address if and only 
if its node address is numerically lower than the 
other server's node address. The new address is 
allocated exactly as it would be if the server were 
beginning to transmit the data stream for the first 
time. This algorithm resolves conflicts where two 
or more servers choose the same available rnulti- 
cast address at the same time. In addition, it 
resolves a similar conflict that occurs when two 
separate LNU segments become joined and two 
servers suddenly find they are using the same multi- 
cast address. 

Clashing allocations of multicast addresses can be 
held to a minimum if servers allocate an address at 
random from the remaining pool of addresses rather 
than all servers allocating in the same fixed order. 

Identifying and Stopping Playback 
After a client requests playback of new material, it 
can then examine the server's announcements, and 
when the desired data stream appears as being 
transmitted by the server, the client can begin 
receiving data from the advertised multicast 
address. At this point, any other client stations on 
the LAN can also receive the same video program by 
enabling receipt of the same address. 

When no more clients wish to view a partic- 
ular program, a mechanism is needed to inform 
a server to stop transmission and return the asso- 
ciated address to the free pool. Two alternative 
approaches were considered to stop playback; one 
was chosen for several reasons. 

In the first approach, each server tracks the num- 
ber of clients that have requested a particular pro- 
gram by simply counting the number of requests 
for that program. In addition, clients are required to 
not@ the server when they are finished viewing. 
The server then continues to transmit the material 
until all interested clients have indicated they are 
no longer interested in viewing. This approach has 
two problems. If a viewing client node is reset or 
disconnected, or if its message to end viewing is 
lost, the server could lose track of the number of 
viewing clients and never stop playing a particular 
program. The second problem, which is more of a 
nuisance, is that clients have to request playback of 
a program even if it is already playing to enable the 
servers to track the number of viewers. 

In the preferred approach, interested clients 
periodically remind the server that they wish to 
continue viewing the program. Servers then simply 
keep playing the material until no client expresses 
interest for some period of time. For example, 
clients could reiterate their interest in a program 
every second, and a server could continue transmit- 
ting a requested program until it did not receive a 
reminder for 3 seconds. This time lapse would 
accomn~odate lost reminder messages from clients, 
and client failure would result in transmission ter- 
mination within 3 seconds. In addition, when all 
clients had finished viewing the material, the 
server, multicast address, and consumed network 
bandwidth would be released within 3 seconds, 
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making them available for other uses. Selection of 
the actual timer value depends on the desired bal- 
ance between ongoing consumption of network 
resources (bandwidth ancl multic;~st addresses) 
after all receiving parties have stopped viewing tlie 
data, and network, entl system, and server resource 
consumption caused by more frequent reminder 
messages. 

Changing Mu1 ticnst Addresses 
Aside from receiving and processing the dat* <I f o r  a 
video program, client stations must also continue 
to examine the server announcement messages and 
remain alert t o  possible changes in the  multicast 
address to  which the receiveel program is being 
transmitted. As noted above, address al1oc:ition can 
change at any time due to merging of WN segments 
o r  cluplicate allocation by two servers. Anytime a 
client notes a change in atldress, it must stop receiv- 
ing data on the previous address and resume receiv- 
ing with the new acltlress. A momentary tlisruption 
in playback is likely to occur, but such disturbances 
are infrequent because only merging LANs c;luse 
duplicate allocations of addresses in the middle of 
playback. 

Under the  circumstances described earlier, a 
client can fincl itself receiving two  data stre;lrns o n  
the same multicast atlclress for some finite time 
period until the servers resolve the allocation of 
that address. Clients can gain immunity to this situ- 
ation by noting the source address of the server th:~t 
originally providetl the dat:~ stream, and clisc;lrding 
all data received o n  the multicast atldress that is not 
from the source address. With this improvement, 
clients can easily distinguish tlie data strexm of 
interest from another which might momentarily 
appear addressed to the same multicast address. 

The allocation and resolution of multicast 
address use can be improved if servers send their 
announcements at an increased rate for some time 
period after a new data stream begins transmitting 
o r  when a data stream changes address. Such accel- 
erated announcements permit client stntions to 
more quickly identify the address of ;I recluestetl 
data stream, and more quickly identify when ;I data 
stream has moved from o n e  address to another. 
They also permit servers to more cluickly itlentitji 
instances of clashjng multicast atltlresses ant1 
resolve them. For example, the announcement 
interval could be increased from 1 second to  one- 
quarter second for a 2-secontl tlur;~tion ancl 
resumed at 1-second intervals. 

Extension to 112 terconnected LANs 
The described protocols and allocation methods 
fi~nction correctly across multiple LANs intercon- 
nected by bridges since bridges nominally forward 
multicast traffic. Man)? bridge implenientations per- 
mit m;lnagetnent control over the forwarding of 
multicast data. This can unintentionally interfere 
with the tlesired operation of this protocol, but  
it can also as serve as ;I u s e f ~ ~ l  tool to confine clata 
traffic to particular LAN segments. Another prac- 
tical consider;~tion in the particular application 
tlesct-ibecl here is the ability of a bridge to forward 
the large :~moullts of data traffic involvecl in digital 
video without detrimentally impacting the time- 
dependent n;lture of the data. 

Extending the pt-otocols to a wide area network 
is ;r more difficult procedure. Routers do not for- 
ward multicast traffic, but  they could if used as 
proxy notles between LhNs. Router forwarding 
perform:~nce teritls to bc even lower than bridge 
for\varding rates, which cliscourages the operation 
of this system over a router. 

Conclusions 
Dynamic allocation o f  multicast adtlresses is criti- 
cal to er~able features such as the continuous play of 
full motion video over a network with multiple 
viewers. I t  is not fe;lsible (or at least is very difficult) 
for a server to transmit a data stream indivitlually 
to all clients wishing to  receive it. If. o n  the  other 
hand, the desiretl data stream is transmitted to the 
broadcast acltlress, ;ill stations o n  the Lf\N have to 
receive an enormous volume of data whether they 
;Ire interested o r  not. It is highly desirable not 
to inuntlatc i~ninterested clients with vicleo data 
streams, but to send them to clierits that want to 
receive specific video data streams in which they 
are interested. 

MuJtic;~st ;~tltlresses are well suited (in fact 
designed) for transmission to some arbitrary group 
of stations. To prevent a client that is receiving one  
video stream from being inundated by other video 
streams, a unique multicast address is required 
for each uniclue data stream. Since there are infi- 
nite individual tlata streams to choose from, it is 
impossible to allocate a unique multicast address 
for every tlat;~ stream. A mechanism to  allocate 
a unique multic;~st ;~tldress from a finite set of 
;~dclresses for the duration of the tlata stream is the  
itleal choice. The tlescribetl mechanism also has the 
attractive c1iar;lcteristic that it is completely dis- 
tributed; there is no  central agent for allocatiotl of 
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multic;~st addresses; therefore it is more reliable as 
servers join ancl leave the Wi.  

Although transmission of digital video data has 
prompted this system design, the basic mechanism 
for dyn;~niically allocating multicast addresses can 
be applied to any application with similar needs. 
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Paul B. Patrick, S1: I 

CASE Integration Using 
ACA Services 

Digital uses the object-oriented software Application Control Architecture (ACA) 
Services to address the problems associated with data access, interapplication com- 
munication, and workflow in a distributed, rnultivendor CASE environment. The 
modeli~zg of applications, data, 61nd operations in ACA Services provides the foz~n- 
dntion on which to build n CASE environment. ACA Services enables the senmless 
integration of CASE applications mnging from compilers to analysis and design 
tools. ACA Services is DigitalS irnplenzentatio~z of the Object Manageme~zt Group's 
(OMG) Comrno~z Object Request Broker Architecture (CORBA) spec~icatio~z. 

Based on work accomplished in many computer- 
aided software engineering (CASE) projects, this 
paper describes how Digital's object-oriented 
Application Control Architecture (ACA) Services 
can be used to construct a CASE environment. The 
paper begins with an overview of the types of CASE 
environments currently available. It describes the 
object-oriented technique of modeling apl>lica- 
tions, data, and operations and then proceeds to 
discuss design and implementation problems that 
might be encountered during the integration pro- 
cess. The paper concludes with a discussion o f  
environment management. 

CASE Environment Description 
Today's CASE environments are required to operate 
in network envuonments that consist of geographi- 
cally distributed hardware manufactured by multi- 
ple vendors. In such environments, access to clata, 
metadata, and the functions that operate on this 
data must be as seamless as possible. This can be 
accon~plislied only when well-architected proto- 
cols exist for the exchange of information and con- 
trol. These protocols need not be defined at the 
level of network packets, but rather as operations 
that have well-defined, platform-independent inter- 
faces to predictable behaviors. 

In adtlition to utilizing the various applications, 
environments deal with how applications are orga- 
nized or grouped within a project and how work 
flows between applications and within the environ- 
ment as a whole. These concepts :ire discussed 
later in the paper as are the different styles of inte- 
gration that an application can employ. 

Data integration, i.e., information sharing, is vital 
to any CASE environment because it reduces tllc 
amount of information users must enter. Howevel; 
data integration must be accompanietl by a mecha- 
nism that allows control to pass from one applica- 
tion to another. This mechanism, commonly called 
control integration, provides a means by which 
the appropriate application can be startetl and 
requested to perform an operation on a piece of 
information. Control integration is also irsed to 
exchange information between cooperating appli- 
cations, regardless of their geographic locations. 
These two integration mechanisms used in tandem 
can solve many of the problems presented by a dis- 
tributed, multivendor CASE environment. 

ACA Services is Digital's implementation of the 
Object Management Group's (OMC) Common Object 
Request Broker Architecture (CORBA) specification. 
ACA Services is designed to solve problems asso- 
ciated with application interaction ancl remote d;it;i 
access in distributed, multivendor environments 
such as the CASE environments just describetl. This 
support includes the remote invocation of applica- 
tions and components without the need for multi- 
ple logins or the use of terminal emulators. The 
encapsulation features of ACA Services allow the 
use of applications not designetl for distributed 
environments. ACA Services call also be configlll.ecl, 
in a way transparent to the application, for use on ;i 
local host. 

The central focus of a CASE environment is on 
how easily functions such as compiling. building, 
ant1 tliagamming can be performed. The fi~nctions 
available form the foundation on which the 
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environment is constructed. Therefore, the first 
step in the design of a CASE environment is to deter- 
mine wli;~t ti~nctions to offer. The applications cur- 
rently available to support these functions may be 
integrated using one of two paradigms: application- 
oriented or data-oriented. 

Application-oriented Paradigm 
CASE environments that follow the application- 
oriented paradigm focus on standalone ;~pplica- 
tions used to develop software such as editors, 
compilers, and version managers. Application- 
oriented environments normally comprise a col- 
lection of applications that support the necessary 
functions. In application-oriented environments, 
integration tends to be focused on direct communi- 
cation between two different applications. In this 
paradigm, the requesting application knows which 
cl;lss of ;lpplication can be used to satisFy a par- 
ticul;lr request. Environments that present an 
application-oriented paradigm to the user require 
the user to b;ive knowledge of the applications that 
can be ~lsetl to perform specific tasks. 

As the level of task complexity increases, it 
becomes increasingly important to build environ- 
ments that utilize a paradigm focused on the data 
associated with the task being done and not on the 
applications i~sed to perform the task. The re a I '  I L ~ -  

tion of this problem has brought about the exis- 
tence of data-centered environments. 

Data-oriented Paradigm 
CASE environments that use a data-oriented para- 
digm are centered around the data associated with 
the task the user is performing. To accomplish 
a task in such environments, operations are per- 
formed on a data object. Using the object being 
;~dtlressetl, the operation, and preferences supplied 
by the user. the environment determines which 
application will be ilsed to perform the requested 
operation. Thus, the requesting ;~pplic;rtion rrcluires 
no knowledge about which application implements 
an operation. This paradigm is extremely irseful in 
CASE environments because of the diversity of 
objects ;111d range of applications available to per- 
form certain operations. 

The ;~pplication and the data paracligms can 
coexist in a single CASE environment, and in fact, 
tightly integrated CASE environments exploit the 
strengths of each paradigm. A text editor can be 
used to illustr;rte this point. Typically, when the 
contents of a source file need to be modified, an 

edit operation is sent to the object representing the 
file. However, a debugger may also use the same 
editor to display source code. The operation to 
position the cursor on a particular line is sent 
directly to the text editor application, rather than 
to a data object such as the line. ,411 environment 
with such a split focus avoids the expense and com- 
plexity of presenting 2 complete object-oriented 
interface to the environment and results in the 
existence of both appiication- and data-oriented 
paradigms. 

Regardless of which paradigms and applications 
a CASE environment uses, the primary focus of the 
environment is on the objects and on the opera- 
tions that are defined on those objects. Therefore, 
after determining what functions to offer, the sec- 
ond step in designing a CASE environment is to 
understand how applications, data, and operations 
are modeled using an object-oriented approach, in 
particular the one providecl by ACA Services. 

CASE Integration in 
Object-oriented Terms 
Describing environments using object-orientecl 
techniques can simplify the design of an environ- 
ment. Techniques such as abstraction and poly- 
morphism can be used to describe the objects 
that comprise the environment, the operations that 
can be performed on those objects, and any rela- 
tionships that exist between objects. Further- 
more, using these techniques makes it possible to 
describe an environment as a set of classes and ser- 
vices for each class. ACA Services performs the role 
of the method dispatcher, matching an object and 
an operation with the firnction in an application 
that can implement that operation. To realize the 
benefits of this approach requires constructing 
models for the applications, data, and operations 
that will be present in the environment. 

Modeling Applications and 
Application Relationships 
Applications that are integrated into an environ- 
ment can provide various functions or services to 
other members of the environment. The number of 
services an application provides depends not only 
on the capabilities of the application but also on 
the way it is modeled. These services are stand- 
alone pieces that can be plugged into a system to 
perform specific functions. An application can 
define a single operation whose sole function is to 
start the application; an application can export the 
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entry points of its callable interface; o r  an applica- 
tion can define sets of operations for each type of 
object it manipulates. In support of application 
modeling, ACA Services provides the concepts of 
application classes, methods, and method servers. 
Figure 1 illustrates the relationships among the var- 
ious pieces of information used to model an appli- 
cation in ACA Services.' 

In ACA Services, the definition of an application is 
divided into two pieces: interface and implernenta- 
tion. The interface definition is concerned with the 
publicly visible aspects of the application. These 
include class definitions for the objects that the 
application manipulates, a class definition for the 
application itself, and definitions of operations that 
the application supports. The operations, which 
represent the functions provided by the applica- 
tion, are modeled as messages on the application 
class definition. These messages define a consistent 
interface to various implementations of the opera- 
tions. Placement of the application class definition 
affects the behaviors this definition inherits. This is 
sometimes called classification. The classification 

O,N 
APPLICATION 

O,N 

MODELED AS 

METHOD 1 I SERVER I 
APPLICATION 
CLASS / 

METHOD n 
METHOD 

1 0,N fi MESSAGE 0,. 1 
Figure 1 AG4 Services ~Metadatct Mode/ 

of each coniponellt of an application depends on 
whether a coniponent contains a superset or a sub- 
set of the functions contained in tlie components 
of other applications in the environment. 

Once the application's components li;~ve been 
classifietl, the integrator must determine how the 
application will make its capabilities available to 
the environment: as an operating system script, as a 
callable interface, or as an executable image. The 
implementation definition represents the actual 
implementation of the application. An application 
may comprise a number of executable files ant1 
sharecl libraries. Typically, only the executable file 
used to start the application is modeled as a method 
server. If the functions of the application are pro- 
vided through a shared library or image, only the 
sharecl library is modeled as a method server. 

The implementation of the functions or services 
exported to the environment are motleled as meth- 
otls. Methods describe the callable interfaces or 
operating system scripts that implement a particu- 
lar operation and are associated with only one 
method server.? During the method selection pro- 
cess, tlie messages defined for the application ant1 
the objects it manipulates are mapped onto one or 
more methods. 

Modeling Data and Data Relationships 
Data modeling is another significant aspect of creat- 
ing CASE environments, especially environments 
that utilize a data-oriented paradigm. Identifying 
the data objects that the application uses is a key 
element in the process of integrating that applica- 
tion. The list of data objects should include those 
objects for which the application provides a ser- 
vice, as well as those objects on which the applica- 
tion makes requests. The variety ant1 quantity o f  
data objects c;m vary frorn application to applica- 
tion ancl depend on an application's cap;tbilities 
and the paradigm utilized. To support the modeling 
of data objects, ACA Services uses the concept of 
data classes. Note that, rather than provide instance 
management for data objects, ACA Services pro- 
vides a means to represent the data cl;~sses used by 
an application as metadata. 

Because environments that utilize a data- 
oriented paradigm may contain many data classes, 
ACA Services organizes the data classes into an inher- 
tance hierarchy. This hierarchy allows responsi- 
bilities, such as operations and attributes, to be 
inherited by other data classes. Data classes found 
in an ACA Services inheritance hierarchy are related 
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to one another through an "is-kind-of relationship. 
A class that has an "is-kind-of" relationship with 
one or more superclasses must support all opera- 
tions defined on the superclasses from which it 
inherits..$ A subclass is not limited to those opera- 
tions and attributes defined by a superclass but may 
have other operations, as well as refinements to 
inherited operations and attributes. 

Modeling Operations 
As mentioned previously. operations are modeled 
as messages in the CASE environment. The name of 
the message describes the type of operation. Some 
messages are data oriented, i.e., Edit, Reserve, and 
Copy, whereas other messages are application ori- 
ented, i t . ,  ExecuteCommand and Terminateserver. 
Messages provide a consiscent abstraction of the 
fiinctions provided by applications. This abstrac- 
tion allows the details of how a function is 
implementecl to be hidden from the requesting 
application. Since A<:A Services supports more than 
one implementation for a single message, it also 
provides ;I means to hide various irnp1ement;rtions. 

The tleveloper should anticipate different imple- 
mentations o f  a message within the elivironment 
ancl be aware that a message may apply to a variety 
of classes. The cleveloper must consider how the 
operation on an object might be usetl by various 
applications and in fi~tiire environments.' In this 
way, adding new types of objects to an environment 
requires only minor changes, if any, to applications 
that are alr~acly integrated. 

tl,emtio~z Interactions The semantics of a rnes- 
sage dict;ites which particular interaction model is 
to be used. A<:,\ Services can be used to construct 
a number of different interaction moclels: syn- 
chronous recluest, asynchronous request, and 
request/reply, as shown in F ig~~re  2. 'The sy11- 
chronol~s request interaction model, shown in 
Figurc 2;1, is usefi~l when serial operations originate 
from a single source. This model blocks the execu- 
tion of the clicnt application during a request. 
Control is returned to the client application only 
after the server application receives ant1 executes 
tlie recluest anel outputs data, if any. 

?'he asynchronous request interaction model, 
shown in Figure 2b, is usefi~l in situations where 
the client can process other work until the server 
application completes the recluest. This rnoclel is 
especially beneficial when the requested operation 
takes ;I considerable amount of time to complete or 
if the server is busy with other requests. Execution 

of the client application is blocked only for the 
amount of time required to deliver the request. 
Client execution resumes once the request has 
been deliveretl. Upon completing the processing of 
the request, the server application notifies the 
client application of the completion and returns 
any output data. 

The request/reply interaction model, shown in 
Figire 2c, is most appropriate for requests whose 
implementations cannot perform the operations 
required to obtain the necessary output data. 
Gateway and message-forwarding applications are 
examples of applications for which this type of 
interaction model is best suitecl. In this model, the 
message that represents the request cannot have 
any output arguments and must pass an application 
handle to itself. The server application uses the 
application handle to return any output informa- 
tion to the requester by sending a message that rep- 
resents the reply. In a request/reply model, a single 
reply message shoulcl be defined for returning infor- 
mation, thus reducing the number of messages an 
application must support. 

~Messctge Arguments A message argument for 
passing the object being manipulated need not be 
defined. ACA Services automatically passes the 
object to which the message was sent to the 
method. Each method routine can access the object 
through a structure containing context informa- 
tion for the current invocation. 

The arguments of a message should not be 
designed around a specific instance of an applica- 
tion, nor should they imply how an object is physi- 
cally stored. To help meet these design criteria, all 
references to an object should be passed as instance 
handles. In this way, the application that receives 
tlie instance reference can use it directly for sub- 
sequent operations on that object. In addition, 
when defining the message arguments, developers 
should consider other applications that could be 
instances of a particular class and possibly used as 
replacements. 

Howevel; all instances of an application do not 
have the same set of capabilities. To support the var- 
ious capabilities, the developer may have to define 
additional arguments to represent bit masks and 
flags. An argument list or an item list can be used 
to pass infornlation about different clata types or 
cji~antities. The message design should not require 
implementation-specific information for proper 
application operation; this design implies that rea- 
sonable defaults accommodate any unspecified 
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(a) Sy~zcbronous Request 

CLIENT APPLICATION SERVER APPLICATION 

ACAS-lnvokeMethod( ) ,  

if (status != SUCCESS) 

Reserve( ) + f0o.c 

+- - - - - return( SUCCESS ); 

CLIENT APPLICATION SERVER APPLICATION 

Figure 2 Operation Interaction r~oclels 

ACAS-lnvokeMethod( ); 

return( ) ;  
) 

Cornplet~onCallback() 
( 

1 

CLIENT APPLICATION SERVER APPLICATION 

information. In cases where proper operation of an 
application requires implementation-specific infor- 
mation, the most suitable design is to use the con- 
text object as a place to store the clefault values. 
With such a design, the application no longer needs 
to use hard-coded dehult values and can be cus- 
tomized for the environment. 

Browse( ) -, f0o.c 

+ - - - - - - - - - - - - - - - -  return( SUCCESS );  

ACAS-lnvokeMethod( ) ,  

return( ); 
) 

ReplyMthd( ) 
( 

return( ); 
1 

Integration Frameworks 
A number of issues must be resolvecl in the con- 
struction of a CASE environment before the first line 
of code can be written. Many of these issues center 

arountl the modeling of objects in the environment. 
As discussed in the previous section, abstraction is 
used to hide much of the actual implementation of 
the operations o n  objects from the requesting 
application. Howevel; additional context may be 
required for further operations. If the application is 
using an application-oriented paradigm, most oper- 
ations are clirectecl to an application class that pro- 
vides the service. In cases where a data-oriented 
paradigm is used, the application typically directs 
operations to the data class of which the object is 
an instance. 

Connect( ) + Gateway 
t 

Reply( ) --, Client + 
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MVS-ConnectMthd( ) 
( .  

return( SUCCESS ); 
1 

LU62-ConnectAck( ) 
( .  

return( ); 
1 
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Fig~we 4 Direct and Indirect iI4etl7od Re f e~v~~ces  

same type, direction, ancl order. Both messages 
must also return the same type of object. 

On encountering an indirect method reference, 
ACA Services first looks at tables in the context 
object for an attribute that matches the reference. If 
such an attribute is found, ACA Services uses tlie 
attribute value to determine the class and message 
that should be checked next. Thus, users can pro- 
vide a mapping to their preferred application for the 
operation. If no matching attribute is found, ACA 
Services uses the message and class specified in the 
indirect method reference as the next place to 
check. 

The approach used in COHESION has many advan- 
tages over specifying either ;I direct reference to a 
method or an indirect reference to a specific appli- 
cation class. This approach does not limit the user's 
ability to speclfy application preferences associ- 
ated with using direct references to methods, nor 
does it burden the installation of the ;~pplication 
with determining all the data classes that will need 
to be updated (as required with indirect references 
to a specific application class). 111 addition, the 
approach allows the application developer to tlo the 
least amount of work and still provitle tlie maximum 
level of support for user preferences in applications. 

Using ACA Services, the application developer 
must create an application class definition for each 

CASE apl~liciition to be added. Consequently, the 
class hierarchy contains both abstract and instance 
classes. The application class is required to contain 
all the messages defined on its superclass, plus any 
adclitional messages that the application supports. 
The method map of each message on an application 
class should contain a direct reference to the 
method that iniplements the operation. Althougli 
better than the other alternatives, the COHESION 

approach has no default implementation unless one 
is explicitly specifiecl in a contest object. To over- 
come this problem, an entry for each message 
clefined 011 the abstri~ct application class must be 
created in one of the context objects. The values 
for these entries point to the corresponding mes- 
sage on the cl;lss of application ilsed as the tlefault 
implemetitation. 

Common Classes 
Common clr~sses for a CASE environment provide 
CASE appliciltion developers with a clescription 
about how an application fits into the environ- 
ment, tlie behaviors the application must support, 
and the Iiiessages that result in those behaviors. 
The notion of plug-and-play in the environment 
is acbievetl throi~gh the use of cornmon classes. 
An implemcntation that adheres to the descrip- 
tion of a particular class of applications can be 
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easily switched with another implementation that 
adheres to the same application class semantics. 

Programs like COHESION are working toward 
a set of common classes for CASE environments. 
The set currently defined contains classes for many 
types of data and applications found in CASE envi- 
ronments focused on the coding and tcsting phases 
of the software development process. A graphical 
view of the data portion of the hierarchy is shown 
in Figure 5. The hierarchy is partially based on the 
hierarchy found in ATIS, a standard for tool integra- 
tion, and utilizes the strength of the ATIS data 
r n ~ t l e l . ~  (Shatletl boxes indicate the classes that are 
specific to ATIS.) Encompassing the ATlS model, the 
hierarchy presents a uniform data model for the 

integration of data throi~ghout the CASE environ- 
ment. The set of classes, although not exhaustive, 
serves as a basis on which a CASE environment can 
be built. Extensions o f  the hierarchy will occur as 
new classes of applications and their associatecl 
clata objects are integrated into the environment by 
independent software vendors, customers, and 
other CASE vendors. 

Most data classes are subclasses of the data class 
SOURCE-FILE, because the initial data class imple- 
mentation was targeted at a CASE environment 
consisting of editors, con~pilers, builclers, and ana- 
lyzers. Additional data classes for both file ant1 
nonfile objects will be added when applications 
that provide and manipulate these objects are 

I DATA OBJECT I 

NAMED 
ELEMENT 

DIRECTORY 

I 1-7, 
RELATION 

INARY FlLE a 
I 

I 1 1 I 
OBJECT FILE TEXT FILE DIAGNOSTIC EXECUTABLE 

FILE )I FILE 

( LISTING FlLE I ( SCRIPT FlLE I 

Note: Shaded boxes indicate ATIS-wif ic classes 
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integratetl into the environment. A nuniber of data 
c1;lsses represent composite objects such ;IS tests 
and ;ictivities. These data classes are used to !~ide 
how the object is physically stored in the environ- 
ment. Classes that represent composite objects 
h;lvt. attributes with values that are actually other 
objects. For example, the test data class typically 
has attributes that represent the result ofa test run, 
an operating system script or program used to per- 
form the test, ancl a benchmark against which a test 
run is compared. Each of these ;~ttributes may have 
as a value a reference to the file object th;it contains 
the actu;~l data. 

The portion of the hierarchy that is used to spec- 
if$ application classes contains only abstract appli- 
c;~tion cl;isses, as shown in Figure 6.  These classes 
provide structure, but more important, they define 
the operations that are inherited by any application 
that is an instance of a class. Abstri~ct cJ:tsses are 
provided for a number of tlie ;cpplications found in 
CASE environments that deal with the coding and 
testing functions. The hierarchy does not contain 
ally classes that represent particular instances of an 
applicntion. Such application dasses exist only 
whcn ;ipplications are installed in tlie rnvironnient. 

Consistent Integration Interface 
&1;1ny CASE vendors are building products for a 
number of different environnients, including elec- 
tronic publishing, office auton~ation, computer- 
aided design, and computer-aided rn;~nuk~cturing, 
in i~ddition to CASE. Therefore, vendors must decide 
how to integrate these applications into the various 

environments. Until now. most integration was 
accomplishetl 1)). linking one application with 
another, which resiiltctl in tightly coupled applica- 
tions. However, such ;ipplications tend to be unable 
to operate intlepe~identlj: without the other mem- 
ber. Also, e;~cli coupled member tends to have 
its own applic:~tion programming interface (Al'I). 
Integration perforrnerl in this manner results in an 
application tliat must maintain code to support 
multiple AI'Is, if tlie application is to work in a num- 
ber ofe~~\/ i ro~~li ients .  Si~ch support can incrcase tlie 
maintenance cost and the time and effort reqiiirecl 
to integrate with other implementations of applica- 
tions ant1 environments. Other bjr-protlucts of this 
approach are an increased image size and a neeti to 
rerelease sofrw:lre when a clependent application 
changes. 'The clegree to whicl~ rerelease occurs 
varies with the platform and operating system. 

ACA Services can be used to minimize the nunl- 
ber of interfaces that an :~pplication must maintain 
without removing filnctionality; a common AI'I 

provides the interk~ce to all potential filnctionality. 
'The A<:A Scrvices AI'1, along with a set of coni- 
mon cl;wses, allows the same level of interaction 
between applica[-ions tliat can be accomplishecl 
through a priviltc r\IIL, without the negative side 
effects previously dcscribed. Through the use of 
common cl;lsses, an ;ipplication can integrate with 
multiple implernentatiot~s of another application 
without requiring a sep;irate effort for each. On 
platforms wlicre dyn;~mic loatling of libraries or 
shareable im;~ges are supportetl, applications c:ln 
use ACA Services t o  locate the appropriate library, 

MANAGER MANAGER 

BITMAP VERSION CONFIGURATION 
MANAGER MANAGER 

I PERFORMANCE 
ANALYZER I 

SOURCE FlLE OBJECT FlLE CONVERTER I-- 

Figure 6 Hioa~.ci?j~ of CASE Coirrlnol~ iipI1lic~ttio12 Classes 
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find the proper entry point, and transfer control to 
the appropriate routine. /\(\(:A Services also provides 
a transpitrent mecli;~nism for enc;ipsuIating applica- 
tions that have no callable interhlces. Use of this 
mechanism extentls tile number of applications 
that can be integrnted and removes the need to 
develop operating system-specific code to start 
applications. 

Styles of Application Interfncing 
Creating an interhce to ;ln application that is to be 
integrated is different from integrating ;in applica- 
tion into an environment. Application interfacing 
deals with the puhlic interface or interfaces that 
the application provides to another application. In 
tur~l ,  these interh~ces provide the primitives that 
can be used in the integration of  applications. 

Application interfaces can be created in various 
ways, with differing levels of effort. Software devel- 
opers can design new applications to utilize all the 
capabilities of A(:A Services. Esisting applications 
can also take :Idvantage of the fill1 capal>ility of 
A<;A Services, if the source code to the application 
is ;ivailable aricl i f  the application can be easily 
adapted to use ;In event-driven model. However, 
even if the source code to an ;~pplication is not 
available. applic;~tions can still bc integrated into 
the environment using M:A Services. If  the applica- 
tion has a cal1;tble interface, ;I server can be written 
that receives messages and calls the appropriate API 
routines. If the application does not have ;I callable 
interface, the app1ic;ition can be integrated by 
encapsulation through the use of an operating sys- 
tem script. The remainder of this section describes 
how to use eiich of these techniques to create an 
interface through which the application can be 
integrated into a CASE environment. 

Application M o d z ' i c a t i o  
An existing applic;~tion can easily be atlapted to use 
ACA Services, if the source code to the application 
is available. With minimal changes, :In application 
that utilizes a11 event-driven clesign, like that used 
by most window-based applications, can operate as 
an application server. 'T'lic ;lctual moclific;~tions 
required to provide t\(:iZ Services support differ 
across applications, b i ~ t  for most window-based 
applic;~tions the chiinges ;ire sinlil;ir. As an illustra- 
tion of this style of integration, consider an editor, 

Most editors are implernentetl ;IS event-driven 
applications, whicll allows easy integration 

because the structure of the cocle requires no major 
cli;~nges. To register the current executing inst;lnce 
of the application with ACA Services, a call t o  the 
ACAS-Registerserver routine must be added to the 
application's initialization routine. During tlic pro- 
cess of run-time registration, ACA Services registers 
various information about the ayplici~tion, includ- 
ing the identifier of the process in which the appli- 
cation is executing, the owner of the process, and 
the class- and inst;~nce-i~nique identifiers for the 
application. As part of the registration, an  applica- 
tion can spec@ an abstract name by which it can 
be located ant1 the routines to be called when an 
ACA Services event arrives, e.g., when the server 
is instructed to shut down or when a session ends. 

Once registered with ACA Services, the applica- 
tion must enter its event dispatching loop. Bec;~use 
many applications have existing event tlisp;itching 
mechanisms, ACA Services has been dcsigned for 
easy integration with most mechanisms. ACA 

Services provides this support by ;illowing the 
application to clefine a routine called the event 
notifier, which is called at signal level each time an 
ACA Services event occurs. T'he event notifier roll- 
tine places an event on the applications work 
queue for the ACA Services event. Upon encounter- 
ing the event, the application's event clispatcher 
routine calls the ACAS-Dispatch routine Lo allow 
ACA Services to dispatch the appropri;ite rnethotl or 
management routine for the event. ii description of 
how ACA Services dispatches operation requests 
follows. 

Application Servers 
When the application to be integrated does not 
have a user interface but provitles :I callahle inter- 
face, integration is best accon~plishetl by creating 
an application server. Consitlerecl a form of encap- 
sulation, an application server provides ;I consis- 
tent programming interface to the applic;~tion. An 
application server provides jacket routines that use 
the application's callable interface, Iiiding the 
actual details of this interface. This technique is ;~lso 
used to create applications that li;~ve a cle:t~i separ;l- 
tion of presentation and h~nctions. 

Applications that implement persistent data 
stores, such as databases, code managers, ;inti 

repositories, are prime cantlidates for this style of 
integration. By using an application server to 
access persistent data stores, 21 requesting appli- 
cation need not know how the dat;~ store is 
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implemented and which implement;ition is to be 
used. l'his technique promotes the reuse of existing, 
filnctions contained in the environment regirdless 
of the actual implementation of the fi~nction. 
1)igital's Cocle Managenlent System (I)E<:/CMS) and 
<:DIl/Repository software are examples of applica- 
tions that have been integrated i~sing the appli- 
cation server technique. Figure 7 illustrates the 
typical structure of the various components 
involvetl in this style of integration. 

As shown in Figure 7, the integration process 
involves the following steps. (1) An invoke from the 
client application of the message "lieserve" on the 
object "foo.cn goes through the resolution cotle and 
(2) out the transport to the server ;il?l>lic;ition. l'his 
m;Iy result in starting the scrver ;~pplication, if no 
server was available to service the request. (3) The 
server application's main routine c;~lls the event 
dispatcher and waits for work to arrive, whcri the 
server is started. (4) When the "Kcserve" message 
;~rrives on the transport, the tr:lnsport notifies the 
server application, ( 5 )  causing the event tlispatcher 
to dispatch the "Reserve" message by calling the 
method dispatcher routine. (6) The method dis- 
patcher routine calls the appropriate metllod inter- 
face routine. (7) The method interface routine cloes 
;my work required to call the appropri;~te callable 
interface routine. (8) When the c;illable interface 
routine returns control to the method interface 
routine, the routine can perform any worI< neces- 
sary before (9) returning control to the method 
tlispatcher routine. (10) The method dispatcher 
routine then puts any arguments to he returned in 

the proper format and sends this information to the 
transport, which acti~ally sends the information 
back to the client application. 

Using the I)E<:/(:MS ;ipplication server as an esam- 
ple, the software developer must create a main rou- 
tine to (1) perform any setup required to use the 
call;~ble intcrf;rce ant1 (2) register the existence of 
the server with )\(:A Services. Registration includcs 
specifying the method dispatcher routine, which is 
generateti by )\<:A Services, so that the appropriate 
method routine will be dispatchetl for the message 
received. 

A mcthod routjne exists for each operation that 
the server is capable of performing. The set of 
method routines is analogous to the operating sys- 
tem script for compilation ilsed to explain applica- 
tion encapsulation later in this section. Because the 
DEC/<:MS application server is not an operating sys- 
tem script, mess:lge arguments are passecl into the 
method routine directly. As mentioned earlier in 
the section <:RISE Integration in Object-oriented 
Terms, the object on which the current operation is 
to be performed is available to the method routine 
through the use of the invocation context struc- 
ture. 11lforrn;ition about the object, such as its cl:lss, 
name, ancl generation, can be obtained by calling 
the R-\CAS-ParseInstanceHa~~~lle routine. The class 
of the object can thcn be used to determine if the 
object is an element ilntler version control, a collec- 
tion, or a group. 

The name of the object ancl its generation ;we 
contained in the reference data field of the instance 
handle that represents the object. Because each 

APPLICATION PROCESS 

CLIENT APPLICATION 

DATA TYPEILIST CALLS ACAS~lnvokeMethod(Rese~e,foo.c) 

RESOLUTION CODE 
DATA TYPEILIST CODE 

TRANSPORT 

APPLICATION SERVER 

MAIN ROUTING 
INITIALIZATION CODE 

EVENT DISPATCHER 
I 4 (4) 

+ (5 )  TRANSPORT I 
4 (10) 

t I 

I (6) 
METHOD DISPATCHER f (9) 

I I 

METHOD INTERFACE 

CALLABLE INTERFACE 
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different cocle management system has its own 
representation of generation, it was necessary to 
create a canonical form;~t to represent all imple- 
mentations. Therefore, the method must convert 
the canonical generation representation to a format 
that is native to the implementation, i.e., DEC/CMS 
specific. 111 adclition, ;lny method that returns a ref- 
erence to a versioned object must convert the 
native generation representation to its canonical 
format. Table 1 shows how an object reference can 
be mapped between its c;lnonical and DEC/CMS- 
specific formats. 

Once the necessary information aboitt the object 
has been retrieved and converted to a format native 
to the implementation, the method can call to the 
appropriate callable interface routine, possibly 
based on the object's data class. Once the call com- 
pletes, the method milst convert any objects to be 
returnetl into a canonical format, at which point 
the nlethod can return the statils of the operation 
and output arguments. 

Application Encapsulation 
Encapsulation, the simplest integration technique, 
is appropriate for applic:ltions that do not have a 
call;~ble interface or in cases where no source code 
is available. Compilers are ;In itleal cantlidate for 
this style of integration, because they perform syn- 
chronoiis operations. Encapsulation of compilers 
providcs a consistent programming interface to any 
compiler that is integrated into the environment, 
regartllcss of the qualifiers ilsecl to specify particu- 
lar compilation options. This technique can also be 
used to provide a generic compile command that is 
platform independent. Encapsulation of a compiler 
is best accomplished through the use of an operat- 
ing system script. Figure 8 illustrates an example of 
an encapsulated compiler. 

Table 1 Converting Generation 
Representations 

Native Representation 
Canonical Object Object 
Format Name Generation 

/DEBUG - 
/NOOPT 

SERVER 

IF DBG = "TRUE" 

DBG-QUAL = "/DEBUGN 
ENDlF 

CC 'PI 'DBG-QUAL 

Figure 8 Example of an Encapsulated Compiler 

The purpose of an operating system script for 
compilation is to convert the generic compilation 
qualifiers, which are passed as message arguments, 
into the compiler-specific options. The /DEBUG 
and /NOOPT qualifiers shown in Figure 8 are exam- 
ples of generic compilation qualifiers. Many operat- 
ing system scripting languages limit the number of 
parameters that can be passed on the commantl 
line. The compilation scripts avoid these limita- 
tions by passing the name of the file to be com- 
piled as the only command line parameter, as 
shown in the command @SYS$LIBRARY:COILIPILE.CO~L~ 
%INSTANCE() in Figure 8. ACA convenience com- 
mands, such as APPWCONT GET ARGUMENT, are used 
to retrieve and set the values of the message argu- 
ments in the operating system script. When all the 
switch values are gathered, the operating system 
script converts the generic values into specific 
qualifiers. Finally, the actual command line is con- 
structed and executed. This same technique can 
also be used to encapsulate linkers and any other 
types of applications where no source code or 
callable interface is available. When applications 
provide a callable interface, even tighter integration 
can be achieved by creating an application server. 

Application Integration 
Integration of applications goes beyond the inter- 
faces that applications present to the environment; 
it concerns how applications interact with one 
another. Integration also takes into account the 
policies used in an environment to allow a collec- 
tion of applications to be grouped into a single 
composite object. This section discusses concepts 
such as an activity, locating an application within 
an activity, context sharing, and the sharing of 
applications across multiple activities. 
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Activity Participation 
Since more than one activity may be active at 
any given time, an activity must be  able to locate 
the other applications participi~ting in the activ- 
ity. Data-oriented environments provicle a means 
to loosely couple the various data and applica- 
tion objects into a single composite object. The 
<:OHESION integrated environment refers to this 
composite object as an activity The implementa- 
tion of an  activity differs depending upon the envi- 
ronment: ATIS uses a persistent process; file 
system-based environments generally use il direc- 
tory hierarchy; and environments built on a private 
data store can use a data file. In the COHESION envi- 
ronment, an activity is represented as an  ACA 

Services context object that contains attributes that 
reference a directory hierarchy. The context object 
is used to set  u p  the execution environment in 
which a set of applications will operate and to 
locate other applications that are executing within 
the activity. 

Locating Activity Applications 
The ability to locate an application that is executing 
in an activity allows for reuse of the  application by 
other ;ipplications executing ill that sarne activity. 
Such locating provides for better utilization of 
applications and reduces the amount of context 
that must be propagated from o n e  application to 
another. To locate an application within an activity, 
an application must have registered its presence in 
the activity. When registering with ACA Services, 
the application must specify the activity name as 
the value of the  attribute A<:AS-SEItVEK-RE<;ISTRY. 
The application must also register itself with the 
event manager to allow centralized management of 
the activity and to participate in the flow of work 
within the activity 

GISE applications determine if they are execut- 
ing within an  activity by checking for the existence 
of the environment variable A C ? ' l V l n - N t ~ b l E .  I f  this 
environment variable exists, its value is the activity 
identifier. To allow an activity to extend beyond a 
single host and to support  different activities with 
the sarne name, the activity is identified by a unique 
identifier. 

Sharing within Activities 
Applications executing within an  activity operate 
in a conlmon context. ACA Services provitles a set 
of mechanisms that can be used to  provide 
this common context. The environment variable 

M\<:?'MT1'-N&\lE is defined each time a method 
server is started in the C O H E S I O N  environment. The 
method server definition specifies as the value of 
the start-up environment attribute, the names of 
the context tables and attributes that are to be 
defined as environment variables upon start-up. 

Another m7ay of providing a common context 
across an  activity is to propagate context object 
tables and attributes as implicit arguments to 
method servers. Specifying this information ;IS 

implicit argllments instructs ACA Services to propa- 
gate these attributes to the context object of the 
method server servicing the request. 

The context object can also be used directly to  
create a common context across an activity i.e., by 
holtling information that needs to be shared. This 
information can include references to directories, 
preferences of applications, and default values. 

Sburing between Activities 
Reusing applications that are active within an activ- 
ity reduces the overall system resources requiretl to 
perform the activity. However, a problem occurs 
when two or  more activities are active at the same 
time and require the same application. With the 
addition of windowed interfaces and the need to 
utilize other services, application sizes have greatly 
increased. Consequently, it is often impractical to 
expect a separate instance of an application to be 
associated with each activity that is active. 

In order for an application to be shared between 
multiple activities, the application needs a means 
by which to determine if a request is part of an 
ongoing dialog with another application o r  is the 
beginning of a new clialog. These dialogs, called 
"sessions:' represent a conversation between a pair 
of al>plications. E;icli time a client application 
makes a request to a new application server, a ses- 
sion is established and an identifier is associated 
with the session. ACA Services passes the  session 
identifier to the server application. 

The management of sessions can be accom- 
plished by using the session ID as a lookup key into 
a list of structures that represent the active ses- 
sions. When the server application locates the 
structure associated with the  session identifier, the 
application can establish the appropriate context 
for that session. In the example of DEC/CMS applica- 
tion server, the structure would contain the handle 
to the library associated with the session. 

AC:A Services also notifies an  application server 
when a session is to be terminated between a client 
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and a server application. Wl~en notified, the appli- 
cation server determines the appropriate course of 
action. Using the CMS example, the server releases 
any cached information it has kept about the ses- 
sion, closes the specific CiLlS library, and then frees 
the library data block. 

Environment Management 
After defining application interfaces and integrat- 
ing applications into an activit): CASE environment 
tlevelol~ers must focus on the management of the 
environment as a whole. This includes the manage- 
ment of references to applications and data, the 
transformation of object references into platform- 
specific formats, and the flow of work within the 
environment. 

Handle Management 
In the CASE environment, objects are the targets of 
all operations. Sending a message to an object 
recluires untlerstanding how to create and manage 
references to the object. Since ACA Services does 
not manage instances of objects, it uses references 
to instances of objects. These references take the 
form of instance and application handles, which 
reference data and application objects, respec- 
tively. Proper management of these handles leads to 
more efficient use of application objects, thus 
reducing the amount of network resources and 
memory consumed by the application. Appropriate 
handle management can also enhance performance 
and guarantee predictable behavior. 

Instalace Handles 
The creation of an object reference is performed by 
calling the i\Ct\S-CreateInstanceHatldle routine. 
ACA Services (1) creates an instance handle from 
the information passed as arguments to the routine, 
(2) allocates memory to the handle and manages 
this memor): and (3) sends a message to ;I storage 
class, if one was specified. 

To avoid creating numerous copies of a11 instance 
handlc, each with its own memory, a cache 
of objects should be used. This is especially 
true in CASE environments that use the data- 
oriented paradigm. Each object structure con- 
tains pointers to both the previous and the next 
object structure in the queue. The structure also 
contains values for the location and reference 
data fields that were passed as arguments to the 
ACAS-Cre;~telnstanceHandle routine and, thus, 

allows for the unique identification of an object in 
the cache across multiple hosts. In addition to the 
location and reference data, the structure contains 
a pointer to the instance handle returned from the 
call to the ACAS-CreateInstanceHandle routine. 
Reuse of the instance handle saves the time 
required to create the handle, including any over- 
head associated with using storage classes. Reuse 
also reduces the total amount of memory required. 
However, instance handles are not the only handles 
that require management; application handles need 
to be managed as we1 I. 

Application Handles 
Application handles are references to appli- 
cation objects. Each application handle can 
represent one or more method servers. A method 
server can generate a handle by calling the 
ACAS-CreateApplicationHandle routine, or the 
ACAS-InvokeMethod routine can return an applica- 
tion handle as an output argument. As with 
instance handles, application handles can be 
passed as arguments to a message. Management of 
application handles is similar to the management 
of instance handles. Each entry in the cache of 
application handles contains the location of the 
application ancl the name of the class of appli- 
cation. The entry also contains a pointer to the 
application handle ant1 a count of the number of 
outstanding references to the handle. Freeing an 
application handle results in the termination of all 
sessions between the client and any method 
servers referenced by the handle; it also releases all 
memory associated with the handle. 

Each instance handle should be associated with a 
corresponding application handle. This association 
allows the application handle to be reused when 
sending additional requests to the application con- 
cerning the data object. An application handle asso- 
ciated with a cache entry can be used to make the 
request. Failure to find the application in the cache 
could indicate that the appropriate invocation flag 
should be used to obtain an application when call- 
ing the KAS-InvokeMethod routine. 

As described, proper handle management can 
result in better performance, better resource uti- 
lization, and predictable behavior within the envi- 
ronment. However, handle management does not 
deal with how to create an object reference that, 
when presented to an application on a remote host, 
is in a format native to that platform. For this capa- 
bility, we must turn to storage classes. 
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Data Transformations Using 
Storage Classes 
Distributed CASE environments, whether homoge- 
neoils or heterogeneous, must concern themselves 
with the representation of object references that 
are shared among different app1ic;itions. File speci- 
fications exempl~fy this problem. <;ivc.n multiple 
hosts, it is unlikely that two hosts have tlie same 
pat11 to a specified file, even if  both hosts arc of 
the same platform type. Consitler the scenario in 
which Application A sencls the Edit message to tlie 
file object $PR0]4: [I~RWECT,SR(:]SOl<7~(:. resulting 
in a request ofApplication B to edit the contents of 
tlie file. The problem becomes complicated if 
Applici~tion B is executing on :I cli~ferent j7latform 
type than Application A. 

To solve the problem, the environment can uti- 
lize the functionality provided I>y 1\<:i\ Services stor- 
age classes. Storage classes provicle a nlechanism 
for translating an object's reference clat;~ from one 
file system representation to another. A solution 
to the scenario described involves implementing a 
set of methods that would be executed when the 
object reference uses a storage class. 

The SC-COHESION storage class is a CASE-specific 
storage class, which is a refinement of the SC-FILE 
storage cl;lss provided by ACI\ Services. As a refine- 
ment, SC-COHESION inherits all the niess;lges definecl 
on its parent storage class, including the messages 
SetInstance and Getlnstance. 'I'lie methods for these 
two messages provide an iniplementatioll for niap- 
ping file system specifications from platform- 
specific formats to platforrii-indepe~~tle~~t Pormats 
and back again. The storage class methods do this by 
utilizing device and directory information, called 
tlirectory mappings, found in tlie context object. 

The directory mappings stored in the context 
object provide a means to associate a physically 
sh;ired directory path with ;I net\vorl< j3ath name. 
The network path name is ;I pl;~tform-indel~endetit 
name that, when presented to a remote platform, 
can be mapped into a format native to tlie platform 
receiving the request. A network path name and its 
mapping are stored as an attribute-value pair in the 
134TFlNAME-IEGISTRY table of a context object. 

The directory mapping fu~~ctionality allows ref- 
erences to file objects to be passed between appli- 
cations on different hosts in ;I way independent of 
the platform. This same scheme can also be ilsed to 
convert object references in object identifiers, such 
ah ATIS element IDS for use with the <:I>L)/Repository 
software. In the implementation for the file system, 

the method ;~ssoci;itetl with the Setlllstancc mcs- 
sage must determine the data class of the object ref- 
erence, ;IS well as tr;~nsform the reference tlata into 
its network format. The rletermination can be made 
in a number of ways, the most common of which 
is to base the cl;lss on the extension of the file. 
Al.tbough not the most ilccurate method of deter- 
mining the class, this approach does meet the needs 
of many files. 

Work. Flou~ Malzqerne~zt 
ACA Services rn;!nagcs the v;lriol~s instances o f  exe- 
cuting applications Imt does not i~nclerst;lnd the 
concept of an activity Therefore, managing the 
applications within the activity requires the use of 
an application th;it ~rnclerstnnds this concept. l ' h r  
event manager, which acts as a central registry of 
active applications ancl their associatetl activities, 
can provide a s i~ i~p le  form of work flow manage- 
ment within the environment. However, the event 
manager js used only in n limited capacity in the 
COHESION integr;cted environment. In COI+ESION, 
the event manager is notifietl each time an applica- 
tion is st;lrtetl 0 1 -  stopped in an acti~it)~. Thc applica- 
tion provides ;in ;cpplication handle to itself, which 
is used by the event manager to notify the applica- 
tion of events of interest. The use of the event man- 
ager removes the neetl h)r An application to forwarrl 
certain messages, as a result of an event in the envi- 
ronment, to ;1l1 applications with which it Ilas been 
communicating. Removing the need to i-brward 
messages redi~ces both the chances of loops form- 
ing in a set of applications and any communication 
deadlocks between ;ipplic;itions, 

On registration, an application can express interest 
in being notified ;ibout particular events. Events 
;ire categorized into two c1;tsses: system events 
and applic;ition events. System events affect the 
overall oper;~tion of the erivironment. These events 
inclucle shutdow~i and changcs in activities. All 
applications in the (:OHESION environment are 
notified of the system events for activity shuttlown, 
iconifjcation, ;~nd  deiconification. Application 
events occur when the state of an ol3ject in the envi- 
ronment changes. File modification or con~pletion 
of a build step :Ire typic;il examples of application 
events. Other applications in an activity c;ln use 
these events for synchronization or as notifications 
that cause a ch;inge in behaviot: Such notifications 
have tradition;~lly been callecl triggers. 
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For example, in a simple build system such as the 
make utility, events can create a work flow that 
woultl ar~toniatically compile and link an applica- 
tion when one rnoclule changes. If the build process 
completes successfi~llp, the work flow i~utomati- 
cally starts the clebugger to debug the newly built 
executable file. If the build fails, the work flow 
loatls the faulty module into a progsam editor and 
positions the cursor to the line where the error 
occurred. 

Summary 
ACA Services can be ilsed to resolve many problems 
encounteretl in a distributetl, multiventlor environ- 
ment. The object-oriented approach provitlecl by 
ACA Services can aid in the construction of a CASE 
environment that promotes the plug-and-play con- 
cept across ;I number of different platforms and 
network transports. ACA Services pro\iitles ;I means 
of developing client-server applications and of 
itbstracting the network dependencies away from 
the developer. This feature, together with the use of 
stor;lge c1;isses and data marshaling, can help to 
exchange information in a heterogeneous environ- 
ment. At  the s;rme time, ACA Services can provide ;I 

consistent programming interface to all compo- 
nents in the system. The dynamic nature of ACA 
Services allows new components to bc added to the 
environment without the neetl to rebuild the entire 
environment. The flexibility of ACA Services allows 
its use to construct a CASE environment regartlless 
of the integration paradigm used ancl while sup- 
porting ;I number of interaction nlodels. ACA 

Services provides the infrastructure necessary to 
integrate the Large number of existing applications 
into distributetl, heterogeneous environments. 
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David Ascber I 

DEC @aGlance-Integration of 
Desktop Tools and Manufacturing 
Process Information Systems 

The DEC @aGlance architectt~re szlpports the intep-ation of mcr~zz@cttiringprocess 
itzjorrnation systems with the analysis, scheduling, desgn, and ?lza~zage,nent tools 
that are used to itnprove and manage prodz~ctiotz DEC @aGlatice softz~lare corn- 
prises a set of run-time libraries, an application development tool kit, and exten- 
sions to popular spreadsheet applicatzons, all ~nzplet?zentecl zuith Digital's 
object-oriented Apl~l~cat io~~ Control Architecture (ACA) Services The tool kit helps 
developers produce DEC @aGlance client and server applications that toill interop- 
erate with other independently developed DEC @aGlance applications. Spreadsheet 
extelazom (add-211s) to Lotus 1-2-3 for Wilzdolus and to ikf~crosoft Excel for Windozus 
allow users to access real-tinze and historzcal datapo~n DbC @crGlance servers Wztlg 
DEC @aGlance softulare, control engineers and other manuj~~cturingprocesspT.ofes- 
sionals can ~~sefa!niliar desktop tools on a variety ofpla@rms and have simple, 
interactiue, and transparent access to current andpast process datcr 211 theirplc~tzts 

At a chemical plant that has been producing nylon 
using the same process for over 35 years, the lead 
control engineer told an interviewer that what he 
likes about his job is that "it is totally different every 
da)l."l To an outside observer, the operation of a 
process plant, such as a refinery or  paper plant, 
appears to be an unchanging flow of materials 
into a tightly controlled and repetitive process 
that produces a continuous flow of unvarying 
product-24 hours a da): 365 days ;I year. In reality, 
the operation of these plants is kir more complex 
and challenging, involving constant adjustment to 
changing conditions, aging equipment, and varia- 
tions in raw materials, as well 3s constant monitor- 
ing for equipment malfunctions. 

The operation of a large process plant involves 
the functioning of numerous valves, switches, 
pumps, other actuators, and sensors measuring and 
control ling the levels, pressures, temperatures, and 
flows of various materials through a complex series 
of pipes, tubes, tanks, and vessels. Jn addition to  
detecting and managing failures in these compo- 
nents, a large proportion of the personnel in the 
plant is involved in process ant1 product improve- 
ment. The personal computer o r  workstation 
ant1 an array of sophisticated desktop tools allow 

data to  be analyzetl, visualizetl, manipulated, and 
explored In ways that support  creative problem 
solving Getting timely information about the pro- 
cess into the appropriate problem-solving tools is, 
however, difficult. This paper begins with some 
bacl<ground about manufacturing process infor- 
mation systems and the need for access to system 
data. The paper then describes the development of 
DEC @aGlance software and the  choice and use of 
Application Control Architecture (ACA) Services to 
solve the probleni of integrating independently 
developetl applications in the manufacturing 
space.' 

Background 
In large manufacturing facilities, the productioli 
process is controlled through the  use of advanced 
automation systems. These systems may track thou- 
sancls of temperatures, flows, pressures, and levels 
and can drive hundreds of pumps, valves, ancl other 
actuators. To implement control strategies, such 
systems may compute  large numbers of complex, 
dynamic control algorithms. Usuall-): additional sys- 
tems measure various physical properties of the 
product, such ;IS color, weight, viscosity thickness, 
and moisti~re content. Supervisory control systems 
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often coordinate parts of a complex process, ;IS 
well as implement higher-level control and produc- 
tion strategies and keep historical records of key 
process variables. 

The control of a large plant is i~sually imple- 
mented through strategies that allon7 the control 
problem to be divided into smaller parts, as illus- 
trated in Figure 1. Each piece of the system is 
responsible for the control of a subsystem (e.g., 
steam generation and distribution, or cooling flu- 
ids), a part of the process (e.g., premixing, material 
storage, or reaction), or an area of the plant (e.g., 
packaging line, product stream, or finished goods 
management). Within each subsystem, there is typi- 
cally a hierarchy of control. The lowest-level com- 
ponents control activities that require responses 
within less than a second to as much as one minute 
(direct control). The next level of systems control 
activities that require responses within less than 
a few minutes (distributed control). Above this 
level of response are systems that control activities 
that may not change for long periods or that imple- 
ment control algorithms that involve measurements 
from more than one lower-level system (super- 
visory control). At the plant level, additional 

control systems may exist to implement control 
algorithms that reflect changes in the markets for 
products, market opportunities, and fluctuations in 
raw material availability and composition, along 
with the information about the process that is sup- 
plied by the lower-level systems (high-level con- 
trol). Scattered among these levels may be various 
additional systems that schedule preventive main- 
tenance, identLFy equipment failures, and advise on 
process improvements-all based on information 
about process from the other systems in the plant. 

Distributed control systems include an operator 
console that consists of multicolor displays, push 
buttons, warning lights and buzzers, a touch screen 
or trackball, and industrialized keyboards with as 
many as a 36 special fi~nction keys. The displays 
allow an operator to oversee all parts of the process 
for which the operator is responsible. Typical dis- 
plays show recent trends of key variables and mimic 
diagrams showing the current state of the manufac- 
turing equipment (e.g., valve positions and tank lev- 
els) and of the material flowing through the 
process. The keyboard and other input devices 
allow the operator to select displays, request 
reports, and moditj, control settings. Response to 
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Figure 1 Typicul Levels of Control in a Process Plant 
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problem or alarm conclitions ant1 modification of 
the process to change the product are effectecl 
through the console. 

Process operators are responsible for maintain- 
ing the routine operation of a plant. Operators use 
the control system to change process parameters in 
orcler to produce different mixes or variants of the 
product, or to respond to an equipment failure by 
rerouting material around nonoperational process 
equipment. 

'To perform their functions, manufacturing plant 
production and engineering support personnel 
(e.g., control engineers, process engineers, produc- 
tion supervisors, product~on planners, mainte- 
nance supervisors, and manufacti~ring engineers) 
also need access to information in the control and 
supervisory systems. These professionals regularly 
access information containeel in multiple manufac- 
turing systems and have an occasional interest in 
particular measurements or parameters within 
other parts of the process. The functions of these 
manufacturing plant personnel include 

Complex problem analysis ;inti solution. 
Locating sources of product- 01- process variation 
involves analyzing information from different 
parts of the process that may be uncles the con- 
trol of different automation systenis. Comparing 
the flow that exits one part of the process 
with the flow that then enters the subsequent 
part, for example, could disclose a faulty flow 
meter, a previously unknown temperature con- 
trol problem, or a leak. 

Product improvement. Improving product qual- 
ity and consistency involves investigating how 
the product is affected by existing variations 
in the production process For ex;~mple, investi- 
gation may involve the study of a process vari- 
able that cannot be measurecl directly but can be 
calculated from the values of other process vari- 
ables. Examining sets of v;~ri;~bles over time and 
exploring possible relationships may result in 
discovering combinations of process variables 
that y ielcl unexpected effects on product 
attributes. 

Process improvement. Improvements in process 
yield and process reliability ancl reduction of 
waste and hazardous by-proclucts may involve 
the study of historical data values from the pro- 
cess. Studying n~easurements obtained from 
multiple control systems may also result in pro- 
cess improvements. 

Resource optimization. Usually, process plants 
are capable of protlucing different grades of 
procluct, as well as mixtures of end protlucts. 
An oil refinery, for example, produces various 
grades of fuel oil and also home heating and 
lubricating oils, all from a single process. While 
the operators adjust the equipment to control 
the product mix, a process planner or produc- 
tion manager determines the best production 
schedule based on customer orders and the effi- 
cient use of the process equipment. 

Process information is available to operators 
and engineers who are trained to work with the 
various control and management systems in the 
plant. Using proprietary tools for each system 
allows reports to be generated and specific types 
of analyses to be performed on the data contained 
within each of these systems. However, extracting 
the data from these systems to an engineer's desk- 
top for analysis by generic tools, such as spread- 
sheets and statistical analysis packages, is difficult 
or even in~possible. Lack of console- ancl tool- 
specific training is another obstacle to accessing 
process infol-rn;~tion. 

Manz@~cturi~zg Process I~zformation 
Systems and Desktop Sj~stems: 
Goals and Barriers 
Production anel engineering support personnel 
want to be able to use the desktop tools of their 
choice to explore and analyze data from nunufi~c- 
turing systems. Spreadsheets, simulation tools, 
report generators, visualization tools, statistical 
analysis tools, pl;~nning tools, charting tools, and 
grapliic-generation tools have all become accepted 
parts of the array of computer-aided techniques and 
tools available to the contemporary knowledge 
worker. The interactive, easy-to-use graphical user 
interface, which ciin run on relatively inespensive 
platforms under the complete control of the end 
user, has not only encoilraged the wide use o f  these 
desktop tools but also enhanced their effectiveness. 
These tools stimulate professionals to creatively 
explore the character of large amounts of data and 
thus support the tliscovery of previously unex- 
pected patterns and relationships. 

Tlie further an encl user's primary ti~nction is 
froni production, the more likely it is that such a 
user will want access to multiple systems. System 
interfaces, which may differ widely and are gener- 
ally oriented toward production use, discourage 
users h-om making ad hoc inquiries into the system. 
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Consequently, manufacturing system data may not 
be easily ;iccessible to users of the many desktop 
tools ;~v;iil;ible for such purposes as decision sup- 
port, research, analysis, and simulation. 

Totlay, the use of data from the manufacturing 
process in pl:~nning, reporting, and managing the 
operation of a plant is hampered by the difficulty in 
accessing the data froni plant control and process 
information systems. It is typical for a procluction 
supervisor wlio ~ieetls  tlata from a control system 
to request the tlata from a process operator. Once 
in hand, the tlat;~ is then manually entered into a 
spreaclsheet or  other clesktop tool for analysis. The 
results of the analysis often require entering new 
parameter values into the control system. This task 
is typically performed by another person, trained 
to use tlic control system, who transcribes the val- 
ues froni a hzirtl copy o f  the tool's output.  The pro- 
cess is time-consuming, costly, and error prone. 
l'roblem-solving ;~ctivities are limited to those that 
can justib the trouble and expense involved in siln- 
ply accessing the data. 

Existing Integmtion Efforts 
The desire to use data froni the control systems 
to analyze and improve the understanding ant1 con- 
trol of the ni;inufacturing process has spawned 
a variety of efili)rts since the late 1980s. This work 
has attempted to ease the transfer of information 
between computing systems ant1 control systems. 
However, tlie resulting products and standards are 
not oriented toward supporting ad hoc inquiries 
antl, therefore, are not witlely usecl. 

Many currently available manufacturing systems 
may be co~inected  to tlie plant network, but with- 
out stand;~rtl higher-level interfaces, access to these 
systems remains limitetl.5-- Through such network 
connections, some manufiicturing systems pro- 
vide limited ;iccess r o  OpenVMS and/or DOS system 

simplifies transcription but still requires that ;I 

specialist extract the data using proprietary inter- 
faces. In adtlition, the data may need to be con- 
verted from string to numeric format to be usable 
within a particular spreadsheet. 

The International Organization for Standard- 
ization standard Munz~fucturing Messaging Speci- 
.ficcirioi1 (1~9506 o r  MMS) addresses tlie problem 
of data exchange between applications a ~ i d  dedi- 
cated manufacturing systems (referred to in the 
stantlard as manufacturing devices) .Vl though 
some manufacturers of programmable colltrollers 
(that is, cleclicated control systems that are pri- 
marily iised in discrete manufacturing industries) 
offer klMS capabilities, the process industry manu- 
facturers and their control system suppliers have 
not witlely accepted MMS. Use of the standard 
has been perceived as expensive, inefficient, ant1 
oriented primarily toward the needs of discrete 
manufactilring. A committee of the Instrument 
Society of America (1s~) is developing a companion 
standard (ISA 72.02) to  use with MMS in communi- 
cating with distributed co~i t ro l  systems in process 
manuhcturing.') An important aspect of this pro- 
posed standard is a data moclel that describes the 
organization and types of tlata in a distributed con- 
trol system. 

Requirements for Integration 
1)igit;il designed the DE<: GaGlance architecture not 
to be a generic application integration mechanism 
but rather to  support  the  integration of popular 
desktop tools with manufacturing process informa- 
tion systems An application that complies with the 
architecti~re can be installed on  any system within 
a network, run, and immediately exchange data 
with other compliant applications. Some key char- 
acteristics of the environment that helped to tlrive 
the architecture are 

users. However, the access is typically restricted to 
Multiple vendors. Although, MS-DOS person;~l 

the use of unique, proprietary programming inter- 
computers are the most popular desktop envi- 

faces or  to proprietary tools targeted at performing 
ronnlent, VAXstation, Macintosh, ancl UNlX work- 

a malii~facti~~-ing-reliited function, such as statistical 
stations have a clear presence in particular 

quality control. Usually, interfaces are supplied 
tlepartments and in certain large customer sites. 

only o n  a specific operating system o r  o n  limited 
versions o f  a specifjc operating system. Multi],le software developers. The applications 

In some systems, it is possible to  extract a table of to be integrated are products of many compa- 
data values into a file using a common representa- nies that build manufacturing systems and deslc- 
tion and file format (such as Lotus Development top tools. The software development groups in 
Corporation's WK 1 )  that can then be imported into these companies focus on  core  application and 
a spreadsheet o n  an IRM-compatible PC. This tecli- human interface issues rather than o n  integra- 
nicli~e obviates the neetl for hartl-copy output  and tion issues. 
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A large variety of desktop applications ancl user 
interfaces. Each class of desktop application 
has a different way of interacting with users. 
Spreadsheets, for example, have very different 
user interfaces from statistic;ll packages and data 
vis~~alization packages. Some ;~pplications have 
elaborate macro languages, whereas others are 
almost entirely graphically driven. 

Multiple types of large networks. In the typical 
process manufacturing facility, large networks 
are already in place. While many plants use 
DECnet for their network, an increasing number 
of plants are choosing to use the transmission 
control protocol/internet protocol ('TCP/IP), 
and some plan to migrate to Open Systems 
Interconnection (OSI) networks (including 
Digital's DECnet Phase V) from multiple vendors. 
PC LANs are also becoming popular. 

Conservative computing strategies. Large 
manufacturing facilities cannot afford to halt 
operation to make major changes in their 
production-related computing systems ancl net- 
works. Such facilities look to standards-based 
products as a way of achieving stability and of 
ensuring confidence in the longevity of a partic- 
ular technology. 

Architectural Issues 
Simply stated, the problem that the DE<: @aGlance 
architecture attempts to address is, how can a 
set of existing applications running on heteroge- 
neous platforms, distributed across a varicty of 
networks, ;tnd developed by different vendors 
(with only peripheral interest in integration) be 
easily integrated? A good understanding of both 
the nature of the applications involved and how entl 
users would use them if they were integrated is 
important for evaluating potential :inswcrs to the 
question. 

The applications that we considered integrating 
can be divided into two groups: those that "own" 
manufacturing data, i.e., the manuf~cturing control 
systems, and those that are consumers of that clata, 
i.e., the desktop tools. From the viewpoint of an 
end user, some aspects of the relationship between 
a desktop tool and a manufacturing control applica- 
tion must be considered in order to accomplish 
work goals. End users in this environment are 
primarily concerned about the manufacturing 
process, the equipment controlling the process, 

and the state of materials within the process. These 
users have little or no interest in such aspects 
as network topologies and protocols, operating 
systems, and byte ordering on different hardware 
platforms. 

Some major concerns of the end user that the 
architecti~re shoulcl acltlress are 

The identity of the manufacturing control sys- 
tem. Generally, a large plant is controlled 
through the use of several control systems, each 
of which might control a part of the process, 
such as refining or packaging, or an aspect of the 
plant operation, such as steam distribution or 
waste reprocessing. A particular data point 
resides in a single manufacturing control system. 
The user should be able to specdy precisely 
which manufacturing system is to supply the 
data values. The architect~lre should be capable 
of establishing a relationship with the specific 
application th:it owns the data of interest to the 
user. The end user shoultl not have to specify 
either the network node, the operating system, 
or the hardw;~re platform on which the applica- 
tion is running. Neither sllould the end user have 
to specify the network con~rnunication proto- 
cols requiretl. 

The length of the relationship between the desk- 
top tool and the rnani~facturing control applica- 
tion. The relationsl~ip should be able to remain 
active for multiple transactions to allow end 
users to work interactively with desktop tools 
to explore possibilities. For example, end users 
may want to examine different data points or the 
same data point over various time intervals. 
Thus, usage of a desktop tool. could involve mul- 
tiple requests for data from a manufacturing 
control application. Establishing a relationship 
between applications over a ~lrtm~ork is timr- 
consuming, and therefore establishing long- 
lived relationships would be advantageous. The 
ability to continuously monitor a set of points 
and have their values reported on a time or 
change basis is another desirable feature that 
would require the establishment of long-lived 
relationships. 

Multiple access to the applications. Applica- 
tion re1;itionships should not be exclusive. 
Each application should be able to have concur- 
rent relationships with several partner applica- 
tions. Each desktop tool may require data from 
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several manufacturing systems, and conversely, 
several users of desktop tools may need to 
access the same control system simultaneously. 
The relationships between desktop tools and 
manufacturing control systems is illustrated in 
Figure 2. 

The data model. Applications should agree about 
how to reference data and about data types. 
Within the context of this environment, a rela- 
tively simplc data model exists in the draft stan- 
dard ISA 72.02. Data should always be converted 
to types appropriate to the local system and to 
the application. A spreadsheet user should not 
have to manually convert strlngs into numeric 
values. 

The user interface. Application integration 
should not require the use of any particular 
desktop user interface, such as the X Window 
System or DECwindows software, or even the 
existence of a windowing system. Also, the user 
interface of the manufacturing data application 
should be of no concern to the desktop user. 

Single Client-sewer Conneclion 

- - - - - - - - 
CLIENT I-: 
ifi I-* SERVER $+ 

Multisewer Connection 

i- j-+ 
Multiclient Connection 

Figcu-e 2 Relationships betureen Desktop Tools 
and Manzlfacturing Control Sj~sterns 

Usage Model 
To help us understand how a user might go about 
employing the capabilities that we were consider- 
ing, we developed a simple usage model. We based 
the model on the scenario that an end user makes a 
series of ad hoc inquiries into the state of a process. 
We assumed that the user was familiar with the 
manufacturing process but not necessarily expert 
in all the details of the process. The user woultl 
know, for example, what the major areas of the 
plant were called ancl what h~nctioris they per- 
formed but might not know the internal reference 
identifier of every flow meter in each control sys- 
tem. We focused on how the user of a spreadsheet 
tool might reasonably expect to proceed to get data 
into a spreadsheet and how services that we might 
provide could aid in exploring the data. 

The information within a manufacturing system 
consists of the many parameters and measurements 
that the system uses to monitor and control the pro- 
cess. Generally, this data is organized into blocks, 
each one related to a particular part of the process, 
such as flow, level, temperature, or pressure. As the 
typical data block in Figure 3 illustrates, every 
block has a unique name or tag that can be used for 
reference purposes. 

In control systems, tag names are assigned as part 
of the configuration. Large plants use a naming con- 
vention to ensure the assignment of unique tag 
names to the thousands of blocks spread through- 
out the plant and over several control systems. In 
addition to the tag, the block contains attributes 
such as the parameters of the control algorithm, 
measured input values, unit conversion algorithni 
identifiers. The data model proposed by the ISA 
72.02 committee describes seven types of blocks, 
each with a standard set of attributes with associ- 
ated names and data types. 

BLOCK TYPE 
TAG NAME 
DESCRIPTOR 
ANALOG PROCESS VALUE 
ANALOG CURRENT VALUE 
HI ALARM LIMIT 
LO ALARM LIMIT 
PROPORTIONAL 
INTEGRAL 
DERIVATIVE 

I ENGINEERING UNIT 

Figtire 3 A Tyl~ical Dcrtn Block in GI 

M~rnrifc~ct  iring Corztrol Systenz 
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This usage model allows a user to easily deter- 
mine the tag names recognized by a piirticular 
manufacturing system. To examine the data values 
associated with a specific tag, the user needs to 
know the valid attributes. (All blocks d o  not have 
the same attributes, e.g., an analog loop control 
block has more  attributes than a simple digital mon- 
itoring block.) Once the tag names and their valid 
attributes are known, the  user can inquire about 
current values as well as historical values. 

The use of operating prototypes, inclutling simu- 
lated servers and a simple spreadsheet, advanced 
the development of the usage model. The proto- 
types were shared with potential end users and 
application developers at customer visits and inclus- 
try trade shows. Feedback obtained from demon- 
strations and discussions of the usage model helped 
expand and refine the services. 

Architecture 
The DEC @aGlance architecture defines two  kinds 
of applications, a set of services for accessing data 
in the control systems, ;I data specification model, 
2nd some basic types of data. The ;ipplic;ition 
classes are (1) manufacturing data servers and 
(2) clients. Typical manufacturing data servers are 
the manufacturing control system appliciitions. 
Typical clients include desktop tools such as 
spreadsheets and statistical analysis tools, as well as 
production planning, procluction scheduling, and 
other production management applications. An 
application may be  a client in relation to  o n e  appli- 
cation and a server in relation to another. 

A data point is specified to DE<: @aGlance appli- 
cations by the name of a server, a tag name, and an 
attribute name. A data point has a current value and 
may also have historical values (if the nianufactur- 
ing system has a historian capability). A current 
value is the   no st recent available value of a p;irame- 
ter or  measurement within the system. A historical 
value is ;I value that the data point hxcl at some time 
in the  past. A historical value is specified by thc 
name of a server, a tag name, an attribute name, and 
the time associated with the value. 

The services defined by the DE<: @aGl;lnce archi- 
tecture fall into o n e  of four function;~l categories: 
configuration information, data value exchange, 
monitoring, o r  management. Each service defines 
an operation that may be recluestecl by one applica- 
tion of a partner application. The services defined 
are not necessarily the same functions that an end 
user requests. 

Configurution I~zfornzation 
One service is tlefinetl for requesting the tag names 
that the serves finds in the control s)rstem's 
database. An ;~dditional service returns a list of 
attribute names that are defined for a specified t:lg 
name o r  a list of tag names. 

Data Valz~e Exchange 
Services are defined for reading and for writing 
current and historical data point values. For current 
values, services support  reading o r  writing either 
a list or  ;i table of data point values. A read o r  write 
list request specifies pairs of tag names ant1 
attributes. A reatl or  write request fol- a table of tlata 
point values specifies a list of names and a list 
of attributes. The t;ible of data points consists of 
all tag names paired with their correspondi~lg 
attributes. Both the list and the table reqi~ests can 
be used to read o r  write ;I single data point, collaps- 
ing to either a list o r  a table of o n e  data point. 

By using the IIEC GaCrlance services to get lists of 
tag names, attribute names, and data point values. 
and the name o f a  server, an end user can generate 
a wide range of acl Iioc queries without knowing 
much about the control system in advance. A com- 
nion data point attribute is the descriptor, which 
characterizes the function of the data point, e .g . ,  
south tank level. Tlii~s, it is a Fairly straiglitforwarcl 
task to use DL:(:  lance services to build ;I list of 
tag names and tlescriptors that provide a basis for 
further inquiries. 

The services for historical data values are defined 
to deal with tables of historical values for a list of 
data points. Historical data service requests specify 
a list of tag name ancl attribute pairs and a time 
specification that is applied to all the clata points. 
The time specificiition consists of a start time, a 
time interv:~l, and the nillnber of intervals for which 
values al-e to be returnecl. 

iMonitoring 
Monitoring is usefi~l for reacling the values o f  ;I 

set of data points at intervals in time o r  when ;I sig- 
nificant change in value occurs for any of the data 
points. A graphical display program can run on  
a desktop system ancl make minimal use of the net- 
work and computing resources while maintaining 
an accurate representation of what is occurring in 
the manufacturing process. &lonitoring could also 
be used to i~pclate ;I spreadsheet at regul;il- time 
intervals or  whenever a particular process variable 
changes. 
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No st;~ndnrd definitions exist f'or what consti- 
tutes a significant change in value. Definitions s i~p-  
ported for various systems include (a) detectiotl of 
change outside of a specified range or "tle;td band," 
0)) c1i;lnge by more than some percentage of the 
previously reported value, and (c) change by more 
than some percenti~ge of a fived value. Therefore, 
the service is defined to support monitoring and 
reporting of changes on a time basis or on some 
other basis that is specific to the data server appli- 
cation. Whenever the requested monitor conclition 
is fulfilled, the data server application uses a moni- 
tor l~ptlate service to send the new d;tt;~ point val- 
ues to the original client application. Since the 
server initiates monitor update requests, the usual 
relationship between the client and the server is 
temporarily reversed. 

Connection management services are provided to 
establish a connection, to terminate a connection, 
and to test a connection. 

Implementation Considerations 
Ilsing existing networking and application integra- 
tion technologies to implement the DEC @aGlance 
;trchitecture was important both in terms of 
reclucing development efforts and improving com- 
1x1tibility with existing environments. Technol- 
ogy used in the implementation had to provide 
as many as possible of the capabilities described 
in the architecture while imposing minimal restric- 
tions o n  the encl-user operating ant1 network 
erlvirot~ments ancl on the developers of thc 21ppli- 
cations. In atldition, it was desirable that the i~ntler- 
lying technologies offer capabilities that coulcl 

support future enhancements to the DE<: @%Glance 
architecture. 

The DEC OaGlance architecture allows an existing 
desktop tool to be integrated with existing manu- 
facturing control systems, as shown in Figure 4 .  The 
architecture effectively combines the fi~nctional 
capabilities of the desktop tool for analysis, visual- 
ization, computation, etc., with the capabilities of 
the manufacturing control systetii for monitoring 
and controlling a manuf;~cti~ring process. The incli- 
vidual applications were, of course, originally 
designed and written without any knowledge of 
each other's existence. Therefore, to facilitate inte- 
gration efforts, implementation of DEC @aGlance 
software should loc;~lize ant1 minimize reqi~iretl 
changes to the app1ic;ltions. 

A network protocol such as DECnet, the transmis- 
sion control protocol/internet protocol ('I'CP/IP), or 
one of the local area network (LAN) protocols could 
have provided the network services required 
for DEC QaGlance's interapplication communica- 
tions. However, this appro;~ch lacks a mechanism 
for locating servers oti the network, requires 
DEC QaGlance to support the multiple network 
protocols that exist in the manufacturing environ- 
ment, requires DEC @aGlance to include data type 
conversion between applic;~tion platforms, and 
necessitates the development of monitoring and 
management tools unique to i>E(: QaGlance. A bet- 
ter approach is to use an existing product that is 
available on an appropriate set of platforms, sup- 
ports an appropriate set o f  networks, and already 
solves these problems. 

A remote procedure call (RI'<:) mechanism 
appears to have many of the capabilities that 
the DEC @aClance architecture requires. RPC 

STATISTICAL OTHER 
SPREADSHEETS ANALYSIS GRAPHICS (Al. AVS ....) 

ULTRIWOSF 
MS-DOS 

ULTRINOSF 
SUN OS 

SUPERVISORY 
SYSTEM 

, ' "::"., 
SYSTEM HISTORIAN SYSTEM 

PROCESS DATA SERVERS 

Figure 4 Intcgmtirzg Desktop Tools and Mrrn~ifacturing Systems 
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mechanisms provide for location of a partner or 
server application, and they provide data type con- 
version and reliable network services. The WC 
model of application integration, however, is actu- 
ally more appropriate for the distribution of a single 
application across nlultiple systems in a network. 
This use implies a simple, static rel;~tionship 
between the parts of an application: one part is 
always a client that requests the execution of a pro- 
cedure, and the other part is always an RPC server 
that executes the proceclure and returns the results. 
In such a relationship, each request generates a sin- 
gle response. This model woultl be poorly suited 
for supporting the DEC QaGlance monitoring ser- 
vice. When DEC @aGlance was being tlevelopetl, no 
commercially available RPC implementation ran on 
the key platforms, the OpenVMS and Microsoft 
Wintlows environments. Furthern~ore, no one had 
announced their intention to procllrce a portable 
implementation that would be available on the 
wide range of platforms that we considered impor- 
tant for future versions of DEC @Glance software. 

Digital's ACA Services was chosen as the basis 
for implementing DEC @aGlance software beciluse 
it implements an application integration model 
that closely matches the requirements of the 
DEC QaGlance environment. ACA Services supplies 
many capabilities required of the integration mech- 
anism including 

Abstraction of functions from in~plementations 

l'he ability to encapsulate existing applications 

Location of partner applications on a variety of 
networks 

Est;~blishrnent and management of reliable, long- 
lived communication links 

l'he ability to easily add new applications to the 
system 

The ability to easily install new versions of exist- 
ing applications in the system 

The correct handling of data type conversions 
between heterogeneous systems 

Commercial availability of portable interfaces 
on OpenVMS, Microsoft Windows, Macintosh, 
and a wide variety of UNIX platforms from multi- 
plc vendors 

The class hierarchy capabilities of ACA Services 
allow the creation of new combinations of appli- 
cations integrated to provide new capabilities 
without additional coding. Thus, a new class of 

server cat1 be defined to offer the capabilities of 
a DEC QaGlance data server as well as additional 
capabilities. The older DEC @Glance servers would 
actually provide the DEC @aGlance services while, 
transparent to the client applications, the new 
server woi~ltl m;~ke the new capabilities available. 

ACA Services has been selected as a major com- 
ponent of the Object Management Group's (OMG) 

Object Request Broker, which in tun1 has been 
selected as a part of the Open Software Founda- 
tion's (OSF) Distributed Computing Environment 
(DCE). ACA Services is designed to be inclependent 
of the type of network that provides the interappli- 
cation comniunications services and currently 
works over both DECnet and TCP/IP networks, the 
networks most commonly found in manufacturing 
environments. Therefore, applications using ACA 

Services need not be concerned about network 
communications. 

ACA Services is supportetl on the OpenVMs, 
Microsoft Windows, Maciotosh, and SunOS operat- 
ing systems, the most often used platforms in this 
application space. In fact, ACA Services is the only 
application integration mechanism currently avail- 
able on all these platforms. Moreover, A(;A Services 
supports the kind of asynchronous services 
required by DE<: Wa<;l;~nce. 

Although it provides many important compo- 
nents of the required integration service, ACA 

Services does not completely solve the integration 
problem. ACA Services is a tool intended to be used 
to integrate applications; it does not define the clat;~ 
model nor does it define the set of services that 
applications are to provide. Application integrators 
are expected to define (1) the classes of applica- 
tions that provide sets of services, (2) the services, 
ant1 (3) the meaning and type of data to be 
exchanged by ;~pplications using the services. 

DEC @aGlance SoJtwat-e: 
The Tool Kit and Add-ins 
As shown in the JIEC OaGlance component diagram 
in Figure 5 ,  DEC: @iGlance software Llses ACA 

Services as a b:~sic application integration facility. 
Above ACA Services, 1)E<; @aGlance adds definitions 
of a class of manul'acturing data server applications 
(servers), a set of definitions of the services pro- 
videel by the servers, ant1 definitions of the data ref- 
erence motlel. 

ACA Services provides a general capability to 
integrate sets of: applications. DEC QaGlance soft- 
ware provicles a set o f  routines that are specifically 
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Figure 5 DEC @aGlu?zce Conz~!on.ents 

designed to simplify the implementation of the set 
of services that DE<: @aGlance supports. For server 
applications, 1>T:(: QaGlance software supplies a set 
of callback points, as well as callable routines for 
declaring callb;rcks, filtering strings, and support- 
ing monitoring activities. For client applications, 
DEC @aGlance software supplies a set of cal.lable 
routines for requesting each of the defined ser- 
vices, as well as calIb;lck points in support of moni- 
tor updates. 

The DEC @aGlance server library also supports 
a test connectivity capability usecl to verify that an 
interapplication relationship can be established to 
the server application. This capability simplifies 
the diagnosis of problems encoi~nteretl during both 
server development and client-server installation. 

To reduce dependence irpon properly written 
server code, the test connectivity capability oper- 
ates entirely within the library. Thi~s, once a server 
calls the DEC @a(;lance initialization routine, ancl 
if the server is still running, this service should 
function properly in response to requests from 

DEC @aGlance clients. Proper functioning includes 
verifying the installation and configuration of the 
network and of the ACA Services ancl DEC @aGlance 
run-time components of the systems on w-hich the 
client and server applications reside. 

Software add-ins, i.e., extensions, for two pop- 
ular spreadsheet applications, Lotus 1-2-3 for 
Windows ancl Microsoft Excel for Windows, are 
also DEC @aGlance products. These add-ins allow 
users of the spreadsheets to request data from man- 
ufacturing data servers by means of the spread- 
sheets' macro facilities. The add-ins provide a 
dialog box to guide untrained users through the 
process of constructing a DEC @aGlance macro. 
Once built, a macro can be executed one or more 
times, moclified if necessary, and saved in a work- 
sheet for reuse at some other time. 

Tool Kit 
The tool kit was developed to encourage the rapid 
and successfi~l development of DEC @Glance appli- 
cations by third parties. Successful applications are 
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those that interoperate with other DE<: @aGlance 
applici~tions upon delivery to a customel- site with 
no adclitional coding, no  application recompila- 
tion, ant1 no application rebuilding. 

The key components of the tool kit are 

A I ) E ( :  @aGlance client or  server library 

Example code 

A<:A Services definition files for the DE<: @a<;lance 
class ;ind methods 

Simple test facilities 

The I X < ;  @aGlance Programmer's GuitleIo 

The A(:A Services clefinition files contain the 
information required to tlefine the manukicturing 
data server class and the services that members of 
the class support. Supplying the  definitions in this 
form ensures strict cotisisteilcy among all server 
and client developers with regard to  these tlefi- 
nitions. The routines in the DEC @aGl;ince client 
and server libraries use these definitions. 'I'lie 
DEC @:~Gl;~nce libraries contain all the code required 
to est;tblish and maintain ;In A<:A Services session. 

Server Applic~itions 
A server application built with the tool kit has three 
major components: an initi;~lization section, the con- 
trol system-specific section. and the DEC QaGlnnce 
section. 'Ihe initialization section simply declares 
the server's name to the DEC @aGlance application, 
declares a set  of callback points, and enters a dis- 
patch loop. The server name is the name that client 
applicittions can use to interact with this server. 
The callback points are thc cotle entry points to 
which OEC @aGlance clislxitches in response to tlle 
receipt of service requests from the client applica- 
tions. For a server, callback points exist for the fol- 
lowing services: 

Get a list of tag names 

Get a list of attribute nalnes 

Get a list of data point values 

Get a titble of data point values 

Put a list of data point values 

Put a table of clata point values 

Get ;I table of historic;~l values 

Put a list of historical values 

Register a monitor request 

Cancel a monitor request 

Initiate a session 

Terminate a session 

Execute a server-specific request 

Terminate the server 

The control system-specific section consists of 
code motlules that execute calls to the control sys- 
tem application programming interface (MI). These 
modules have to convert piuameters to ancl from 
the 1,E<: @aGlance format :~nd the control system- 
specific format. The entry point of each module is 
declared as a callback point during initialization. 

In addition, callable routines are provided for 
sencling monitor updates ;u~cl for session manage- 
ment.  The DEC @aGlance section of the  server is 
containecl entirely within a library of callable 
server routines. This section handles all i n t e r ~ c -  
tions with A(:A Services, inclutling server rcgistra- 
tion ant1 session man;igcnient. It also liantlles the 
dispatch of incoming rcquests to the callback rou- 
tines and ;I number of housekeeping tasks for 
which each server developer would otherwise 
have to tlevelop ant1 implement solutions. The 
DL(: Oa(;lance section also resl?onds to test con- 
nectivity requests. 

Almost all vendors of m:inufacturing systems 
have applications that execute calls to the control 
system ~1'1, but such ;ipl?lications are typic;~lly 
clriven off a command 1angu;tge or  menu interface. 
Conversion of these applications to a DEC QaGlance 
server is relatively edsy; some vendors have created 
a simple I>EC QaGlance server in as little time as 
one day 

Client Applications 
The typical DEC @aGlance client application is built 
on an cxisting desktop tool. Desktop tools provide 
a user interface for perforining some clilss of 
generic function such as decision support ,  statisti- 
cal ;tnalysis, quality control. o r  production schetlul- 
ing. Other types of applications that could make 
use of process data, such as report generators, 
batch schetlulers, and ni;tintenance tracking sys- 
tems, can also provide the basis of DE<: @aGlance 
client applications. Adding DE(: @aGlance s i ~ p p o r t  
to an existing tool allows the user to treat tlata from 
DEC: OaGlance n~ ; inuf i~c t~~r ing  data servers like data 
entered manually or  from other data sources. 

A I)E<: QaGlance client application incorporates 
the I)E<:  glance client routine library, which 
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provides call;~ble routines for initialization and for 
each of the following DEC Q1:a<;l;unce services: 

Get a list of tag names 

Get a list of xttribute names 

Get a list of data point values 

Get a table of data point values 

Put a List of tl;~ta point values 

Put a table o f  data point values 

Get a table of historical values 

Put a list of historicalvalues 

Initiate a monitor request 

Cancel a monitor request 

Initiate a session 

Terminate a session 

Execute a server-specific request 

Terminate the server 

Terminate the client 

In addition, support routines help monitor uptlates. 
To support the IIEC OaGlance monitoring capa- 

bility, a client ;~pplication milst have some server 
characteristics. Once a monitoring request has 
been initiated, the server issues monitor update 
requests when the monitoring condition is satis- 
fied. The monitor update requests are received by 
the client application using the same callback 
mechanism that the server uses when servicing 
client requests. 

A typical client calls the DEC OaGlance initializa- 
tion routine and then continues to perform its nor- 
mal functions. When a DEC OaCilance service is 
requested through the user interface or other 

mechanism, the application simply formats the 
request and calls the appropriate DEC @aGlance 
service request routine. Upon completion of the 
routine, status (and if requested, data) is returned 
from the server application. If data is returned that 
is to be fi~rtller processed by the client application, 
the application moves the data to its workspace in 
preparation for additional processing. 

DEC @aGlunce Lotus 1-2-3 for 
Windows and Mimosoft Excel Add-ins 
Whereas most manufacturing control systems pro- 
vide a callable library that allows the tlevelopment 
of applications that access the data in the system, 
some desktop tool applications have mechanisms 
that allow for extension of their capabilities in the 
field. Spreadsheet applications such as Lotus 1-2-3 
and Microsoft Excel support the use of add-in motl- 
ules to add external fi~nctions and external macro 
capabilities. Add-ins for these two spreadsheets are 
available as DEC OaGlance software products. 

With the add-ins, spreadsheet users can access 
most DEC @aGlance services and thus can 

Fill a range of cells with a list of tag names from 
a server 

Fill a range of cells with a list of attribute names 
associated with a range of tag names in a server 

Fill a range of cells with a list of data point values 

Fill a range of cells with a table of data point 
values, as shown in Figure 6 

Write a list of data point values to a server 

Write a table of data point values to a server 

Fill a range of cells with a table of historical 
values for a specific time interval 

Write a list of historical values 

Figure 6 A Table of D~ilzl Point Values in a Spreadsheet 
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A 

UNIT41 

TIC001 
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FRC005 

TRC085 

B 

APV 

134.7 

65.3 

185.8 

65.6 

145.4 

C 
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140.0 

50.0 

- 

50 0 

145.0 

D 

ALMST 

- 

HIGH 

RATE + 

HlGH HlGH 

NONE 

E 

DESC 

FEED TEMP 

FEED LEVEL 

FEED RATE 

REFLUX RATE 

REFLUX TEMP 



Application Control 

Tlie interface for the add-ins was designed to sup- 
port  acl hoc inquiries A di;rlog box guides the end 
user through the process of supplying the approp- 
riate parameters for a selected function. Where 
appropriate, defaults are suggested based upon the 
previous inquiry. 

Summary 
DEC @aGlance software has been specifically 
designed to make it easy for users of desktop tools 
to access, explore, anel analyze clata from dis- 
tributed control systems, supervisory control sys- 
tems, anel other common systems uscd to run 
manufacturing processes. An analysis of tlie infor- 
mation environment and the ways in which end 
users want to access the data led to tlie refinement 
of the architectural requirements. Tlie analysis also 
lee1 to the clecision to use ACA Services as the appro- 
priate mechanism for integrating desktop and man- 
ufacturing control applications. The creation of a 
usage model and rapid deployment of prototypes 
were instrumental in the analysis. To promote 
widespre;id availability of plug-compatible appli- 
cations that use DE(: @aGl;ince, a developer's tool 
kit was created. Tlie tool kit contains 1ibr:lries of 
DEC @a<;I;lnce routines that both simplify ant1 
encolrrage proper ant! consistent usage of A(:A 

Services to integrate DE<; @Glance applications. 
I)E<: @aGlance add-ins for the popular spread- 

sheet programs Lotus 1-2-3 for Winclows and 
Microsoft Excel for Windows were developed also. 
With tlie adcl-in, ilsers can interactively explore 
data in plant manufacturing control systems from 
within a familiar spreaclsheet, as well as write 
reusable worksheet macros for performing 
repeated tasks like report generation. 
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