
S o f t w a r e Process and Qzlality

Digital Technical Journal
Digital Equipment Corporation

Volume 5 Number 4

Fall 1993

Editorial
Jane C Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Cover Design
The honeycomb structure has long inspired
mathematiciam and architects. On our cover:
the honeycomb represents the structured disci-
pline and dynamic development lhat are char-
acteristic of software processes as described
in this issue. Overlaid on the honeycomb is a
stepped line representing theme levels ofpro-
cess muturicy. Tbese levels cwe defined by the
Software Engineering Inslilute, a federully
funded organization, and are discussed in
the paper by Davies and Durnont.

The cover was designed by Susanna B. Ries of
Digital's UNIXSoftware Afblicatiom Group.

Circulat ion
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Product ion
Terri Autieri, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W! Beane
Donald Z. Harbert
Richard J. Hollingsworth
Alan G. Nemeth
Jeffrey H. Rudy
Stan Smits
Michael C. Thurk
Gayn B. Winters

TheDigilnl TechnicalJo~lrnal is a referced journal published quarterly by Digital
Equipment Corporation, 30 Porter Road L,I02/D10, Littleton, Massachusetts 01460.
Subscriptions to the Journal are $4000 (non-1J.S. $a) for four issues and $75.00 (non-
U.S. $115) for eight issues and must be prepaid in 1J.S. h~ntls . llniversity and college
pl.ofessors and Ph.D. student5 in the electrical engineering and computer science
fields receive complimentary subscriptions upon request. Orders, inquiries, and
address changes should be sent to the Digital TechnicalJo~rrtral at thc published-by
address. Inquiries can also be sent electronically to DTJ@CRL.DEC.COM. Singlc copies
and back issues are available for $16.00 each by calling DECdirect at I-800-DIGITAL
(1-800-344-4825). Recent back issues of the Jorrrnal are also available on the Internet
at gatekeeper.dec.com in the directory /~LI~/DEC/DEC~~~O/DTJ.

D ~ g ~ t a l employees may order subscriptions through Readers Choicc by entering v l X
PROFILE at the system prompt

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by o r network address.

Copyright O 1993 Digital Equipment Corporation. Copying without fce is permitted
provided that such copies are made for use in educational institutions by faculty mem-
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation's authorship is permitted. MI rights reserved.

The information in the Journalis subject to changc without notice and should not be
construed as a commirment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the Jo~tmal .

Documentation Number EY-F92OE-DP

The following are trademarks of Digital Equipment Corporation: ACMS, ALL-IN-I,
Alpha AXP, AXP, DEC MAILworks, DEC TP WORKcenter, Digital, the DIGITAL logo,
OpenVMS, POLYCENTER, TeamLinks, TeamRoute, VAX, VAX IWLLY, and VMS.

Apple, Mac, and Macintosh are registcrcd trademarks of Apple Computer, Inc

Motif is a registered trademark of Open Software Foundation, Inc.

Post-it is a registered trademark of 31M Company.

PostScr~pt is a registered trademark of Adobe SysLems Incorporated

QFD/CAPTURE is a trademark of International TechneCiroup Incorporatetl.

SPECmark is a registered trademark of the Standard Performance Evaluation
Cooperative.

Windows is a trademark of Microsoft Corporation

X Window System is a trademark of the Mass;~chusetts Institute of Technology.

Book production was done by Quantlc Communication.\, Inc.

I Contents

6 Foreword
Anthony E Hutchings

Software Process and Quality

9 Modeling the Cost of Software Quality
Stephen T. Knox

18 Changing the Rules: A Pragmatic Approach to
Product Development
Paul K . Huntwork, Douglas W Muzzey, Christine M. Pietras,
and Dennis R. Wixon

36 Defining Global Requirements with Distributed QFD
John A. Hrones, Jr., Benjamin C. Jedrey,Jr., and Driss Zaaf

47 DEC TP WORKcenter: A Software Process Case Study
Ernesto Guerrieri and Bruce J. Taylor

59 SEI-based Process Improvement Eflorts at Digital
Neil L. M . Davies and Margaret M. Durnont

69 Assessing the Quality of OpenVMS AXP:
Software Measurement Using Subjective Data
Robert G. 'Thornson

Editor's Introduction

Jane C. Blake
Managing Editor

Digital is continually seeking to adopt, improve, or
devise processes that will deliver the highest qual-
ity products to our customers. In this issue of the
Digital Technical Journal, software engineers from
several of Digital's organizations present their expe-
riences with modern software process methods,
such as Voice of the Customer techniques and the
Software Engineering Institute's (SEI) framework,
that direct the development focus on the needs of
customers.

One of the first hurdles for software process
advocates is making a clear case for the value of
implementing software product development pro-
cesses. Steve Knox's paper offers a Software Cost of
Quality Model that addresses the cost and schedule
concerns of many software managers. The model
demonstrates that among the incentives for improv-
ing software process is a two-thirds decrease in the
cost of quality, as a percentage of development, as
process maturity grows.

Digital's software processes are still in the early
stages of maturity as defined by the SEI (described
in a later paper). Nevertheless, software engineers
who are using process techniques are already see-
ing significant benefits in the form of products
that meet customer needs. Paul Huntwork, Doug
Muzzey, Chris Pietras, and Dennis Wixon describe
the techniques they used to gather customer
requirements for the TeamLinks for Macintosh
groupware application. TeamLinks designers uti-
lized Contextual Inquiry and artifact walk-
throughs, and a Vector Comparative Analysis tool to
quantlfy the data obtained. The authors review the
key requirements-and surprises-uncovered and
the impact these had on design.

Quality Function Deployment is another process
for obtaining an accurate, prioritized set of customer
requirements, specifically through well-planned,

structured meetings. John Hrones, Ben Jedrey, and
Driss Zaaf present an enhanced approach to QFDs,
i.e., a Distributed QFD for gathering customer
requirements from around the globe. They refer-
ence a Digital-internal QFD conducted by Corporate
Telecommunications Software Engineering.

The motto of the team that built DEC TP
WORKcenter was "Use the process, but don't let
the process use you." The team was in fact able to
successf~~lly adapt several processes-Contextual
Inquiry, QFD, conceptual modeling, and rapid
prototyping-to serve quality and schedule goals.
Ernesto Guerrieri and Bruce Taylor analyze the
effectiveness of these and other design-phase pro-
cesses vis-a-vis the WORKcenter project and make
recommendations for their general application in
future software projects.

Many of the software methods described in this
issue originated at the Software Engineering
Institute, a federally funded organization which pro-
motes software process infrastructure to achieve
productivity and quality. Meg Dumont and Neil
Davies provide a brief overview of the five levels of
the SEI's Capability Maturity Model and discuss two
case studies of their organizations' experiences
with the CMM. Included are their evaluations of the
challenges presented by the model and future direc-
tions for Digital's process-improvement efforts.

In the papers above, engineers stress the impor-
tance of learning customer requirements as early as
possible in the project. For engineers porting the
OpenVMs operating system to the Alpha AXP plat-
form, customer requirements/expectations for this
mature and complex system were well known.
As Robert Thomson explains, ensuring that these
expectations were met for the AXP product and at
the same time meeting the aggressive Alpha AXP
program schedule would require a new quality-
assessment process. Robert describes how subjec-
tive data, obtained by means of a questionnaire for
developers, can be used to assess the quality of a
software release.

The editors thank Tony Hutchings, Technical
Director of Digital's Software Engineering Tech-
nology Center, for selecting the subjects and writ-
ing the Foreword for this issue.

Biographies

Margaret M. Dumont Meg Dumont is the engineering manager for process
development in the UNIX Software Group (USG). She helped organize a Software
Engineering Institute Assessment of USG and created and staffed a process
improvement group that is focused on the recommendations from the assess-
ment. Meg is involved with the future direction and ongoing improvements
within the quality function. Prior to this work, she created a standards engineer-
ing function within USG and was responsible for standards compliance in the
DEC OSF/l AXP operating system V1.O to V1.2. Meg joined Digital in 1980.

Neil L. M. Davies Neil Davies is the OpenVMS quality manager and is respon-
sible for creating metrics, goals, and programs to achieve engineering excellence
in the OpenVMS organization. In this role, Neil works with Digital's engineering
management to introduce the techniques established by the Software
Engineering Institute. Neil is also involved with the task force aimed at defining
metrics for cycle time, applied time, and product quality and reducing the cost
to q u a l e new systems. Prior to joining Digital in 1992, Neil was the software
quality manager for all of Hewlett-Packard's computer systems.

Ernesto Guerrieri Ernesto Guerrieri, a senior software engineer in the Produc-
tion Systems Group, is the DEC TP WORKcenter project leader. He is an adjunct
professor at Boston University. Prior to joining Digital in 1990, he was employed
by SofTech, Inc., where he was the chief designer and developer of reusable Ada
products for information systems development (RAPID) center library. He holds
a Ph.D. in software engineering from Rensselaer Polytechnic Institute and an
M.S.C.S. from the University of Pisa. Ernesto has published various papers in soft-
ware engineering. He is a member of ACM, IEEE Computer Society, and Sigma Xi.

John A. Hrones, Jr. As a consultant in the Software Engineering Technology
Center (SETC), John Hrones works with clients to develop and implement TQM

programs and is program manager for the Corporate Formal Inspection effort
and for Six Sigma for Software. John joined Digital in 1973. He led software devel-
opment efforts in MUMPS, BLISS, DSR, and 0PS5 and originated the ELF facility and
the Software Tools Clearinghouse. He managed the Corporate Forms, Base
Graphics, and Engineering Quality Technology groups before joining SETC. John
received a B.S. from MIT and an M.S. from the University of Michigan.

Biographies

Paul K. Huntwork Paul Huntwork is a consultant engineer in Digital's
Software Engineering Technology Center, an organization that collaborates with
development groups to adapt or invent world-class methods for use in their
product development activities. He joined Digital in 1987 after leading reengi-
neering projects in software development, verification, manufacturing, and dis-
tribution at Computervision. Paul also led proto-SEl process assessment and
maturation drives at Control Data Corporation, using techniques drawn from
IBM's Federal Systems Division.

Benjamin C. Jedrey, Jr. Ben Jedrey is an information systems consultant
within Corporate Telecommunication Software Engineering. He has program/
project management responsibilities for developing telecommunications soft-
ware and hardware solutions. He also manages next-generation routing-bridge fil-
tering and network cost-reduction projects. Since joining Digital in 1966, Ben has
contributed to information systems and programming and system development,
and has provided support for financial applications at the corporate and field oper-
ations levels. Ben was previously en~ployed by the brokerage firm Estabrook S; Co.

Stephen T. Knox Steve &lox is a principal software engineer with the
Software Engineering Technology Center. Currently, he is assigned to the
Networked Systems Management organization to improve software and develop-
ment processes. Steve came to Digital in 1989 from Tektronix, Inc., to further
develop the Contextual Inquiry process. A Quality Engineer certified by the
American Society of Quality Control, Steve received the 1991 High Performance
Systems Technical Leader Award. He holds an M.S. (1986) in psychology from
Portland State University.

Douglas W. Muzzey Doug Muzzey is a software engineering manager in
Workgroup Systems. He is the development manager for the TeamLinks for
Macintosh and TeamRoute workflow products, and he sponsored the usability
and customer partnering for the TeamLinks product family. In prior work, Doug
contributed to communications and systems products and managed programs
in Software Manufacturing, License Management, and Corporate Programs.
Doug joined Digital in 1979. He holds a B.S.C.S. (1978) from Florida Technological
University and an M.B.A. (1991) from Rivier College.

Christine M. Pietras A senior engineer in WorkGroup Systems, Chris collab-
orates in designing effective business solutions, incorporating field research
data about customer work throughout the software development process. Her
concentration is in user interface design and usability evaluation for TeamLinks
products on the Macintosh and Microsoft Windows platforms. Chris joined
Digital in 1985, after receiving an A.B. in mathematics from Smith College. In
1991, she earned an M.S. in industrial engineering and operations research from
the University of Massachusetts-Amherst.

Bruce J. Taylor A principal software engineer, Bruce Taylor is the software
architect of the DEC TP WORKcenter project. Prior to joining Digital in 1991,
Bruce worked in CASE tool development at Intermetrics, Inc. He designed the
repository database for the SLCSE software development environment and has
published many papers on the use of database technology in the software devel-
opment environment. He has a B.A. in English and an M.A. in computer science
from Duke University. His current research interests include repository support
for complete software life-cycle environments and software q~~a l i t y strategies.

Robert G. Thomson A senior software engineer in the OpenVMS AXP Group,
Robert leads the validation of Volume Shadowing's port to the Alpha AXP plat-
form. During the OpenVMS port, he measured quality and contributed to func-
tional verification, for which he was co-recipient of an Alpha AXP Achievement
Award. Since joining Digital in 1986, Robert has also contributed to in~provements
in system availability measurement and in symmetric multiprocessing and Backup
performance. He has a patent pending and two published papers based on this
work. Robert holds an M.S. in computer engineering from Boston University.

Dennis R. Wixon Dennis Wixon has worked in the area of user interface
design for 20 years. He helped design the VT200 series keyboards and the
DECwindows, Motif, and most recent windows interfaces. Currently a principal
engineer in the Usability Expertise Center User, Dennis manages the Contextual
Inquiry Program and conducts user needs analysis training. Before coming to
Digital in 1981, he designed and programmed statistical analysis tools at Clark
University. Dennis holds B.A., MA., and Ph.D. degrees in psycholog)7 and has pub-
lished more than 25 papers in psychology, statistics, and interface design.

Driss Zaaf Principal engineer Driss Zaaf of Corporate Telecommunications is
a project leader for several network applications and products. In earlier work,
he led software projects in the Publishing Technologies Group in Galway, where
he helped develop a distributed library system. Before joining Digital in 1985, he
was employed by CPT Corporation and Bull Groupe. Driss received an M.S.

(1980) in science from the Faculty of Science, Rabat University, Morocco, and a
Degree in Telecommunications Engineering (1983) from the Ecole Nationale
Superieure des TeKcommunications de Paris, France.

I Foreword

Tony F. Hutchings
Technical Director of
SofLware Process and the
Software Engineering
Technology Center

In the early 1980s, when the semiconductor and
microprocessor industry was still relatively young,
a few wise people recognized that the distinguish-
ing factor for the winners in the race would be pro-
cess, i.e., base technology, design methods, and CAD

tools. They were right. Great processes are among
the key reasons why Intel is today "top of the pile"
and why our Alpha AXP chips achieve exceptionally
high performance.

The formula works as follows: Brilliant, innova-
tive people plus outstanding process produce con-
sistently great results, repeatedly. This is in fact true
of all product development efforts and is also there-
fore the case with software in the 1990s. We have
thus devoted an entire issue of the Digital
Technical Journal to software process and quality.

The most popular and effective models and
methods for quality and process improvement hold
several characteristics in common:

All put the customer first, including knowing
when customers and their requirements are
being satisfied and when we and they are
achieving desired results in the marketplace.

All have a basis in applied measurement, using
data from the application of the processes to
help determine what changes to make.

All are closed Loop; that is, there is a clear path
for feeding back observations to improve the
current state of the process.

We are increasingly being asked: What is Digital's
overall vision for software quality and process
improvement? From a completely mature organiza-
tion, the answer to that question would be some-
thing like the following: Every project sets its own
clearly measurable, customer-driven cluality goals;
puts appropriate learning and improvement prac-
tices in place; continually monitors its progress
toward its goals; and makes adjustments to process
as needed to ensure it meets its goals. Fine words,
but in reality we are not yet at that state in our cor-
porate life. We have, however, tleveloped a process-
improvement strategy, or vision, which we hope
will encourage all projects and groups to move
toward the kind of state described above. That
vision is best illustrated by the following diagram.

RESULTS-DRIVEN
CONTINUOUS

We imagine this vision woultl map to an imple-
mentation model as follows:

DEFINE PRODUCTS
THROUGH "VOICE PERFORM SEl
OF THE CUSTOMER" ASSESSMENT
PROCESSES

\ J
DEVELOP PROCESS
IMPROVEMENT PLAN

EXECUTE IMPROVEMENT
PLAN ON PROJECTS

The strategy comprises three important concepts:
Using Voice of the Customer techniclues to imple-
ment the intention of being a customer-driven

company; basing our process application on assess-
ing our current levels of performance and therefore
the opportunities for introducing new "best prac-
tices" to overcome our weaknesses; and continu-
ously using quantitative and qualitative analysis to
determine how we might achieve better and better
results. Our Voice of the Customer concept
embraces such powerful techniques as Contextual
Inquiry (for understanding customers' work and
what might delight them in the future) and Quality
Function Deployment (for rigorously prioritizing
customers' req~iirements and how to satisfy them
with world-class product concepts). Our applica-
tion of the Software Engineering Institute's (SEI)
approach to improving processes relies 011 per-
forming organization-wide assessments of process
capability and on developing long-lasting improve-
ment plans, drawing on the rich pool of best prac-
tices described in their Capability Maturity Model.
Our notion of Continuous Improvements rests on
empowering engineering teams to study the results
of their work with measurable data, analyzing the
root causes of any process problems, and systemati-
cally implementing improvements to their pro-
cesses such that they achieve better results.

The relationship between these concepts is sub-
tle yet vital: All our process work needs to be cus-
tomer-driven, and yet these Voice of the Customer
techniques themselves need to be open to improve-
ment as we learn from real data coming from their
application; the advice in the SEI's Capability
Maturity Model is sound and we need to choose
judiciously the most appropriate best practices
according to the state of maturity of each organiza-
tion; nevertheless, as these practices are applied,
we need to learn what is working and what is not
and adjust their definition and application accord-
ingly; these practices should also be chosen, at all
times, to maximize the benefit for our customers as
well as for ourselves.

None of the three mutually reinforcing elements
of the composite strategy is sufficient individually
to drive the massive and sustainable changes we
want to see in software engineering process at
Digital. The SEI's Capability Maturity Model frame-
work alone under-emphasizes the extraordinarily
important and powerful Voice of the Customer and
Market; the Voice of the Customer and Market alone
provides insufficient structure on which to hang an
entire process improvement strategy; Continuous
Improvement alone, as likely to be practiced at
Digital, is at a level of intervention too low to move
entire organizations sufficiently quickly toward

orders of magnitude improvement in productivity
and quality.

How are others in the industry tackling the prob-
lem of improving their quality and productivity?
Many of the techniques and processes which we
are now mastering or planning to are also in use by
other leaders in our industry. For instance, Voice of
the Customer processes (as typified by Quality
Function Deployment) are in regular use at
Hewlett-Packard; Formal Inspection (called Peer
Reviews by the SEI) is practiced at Hewlett-Packard,
IBM, and a host of other industry leaders; the use in
software metrics is commonplace at Hewlett-
Packard and Motorola; Continuous Improvement
teams abound at Motorola, IBM, etc.

We have made great strides in the past two years
in the application of better and more modern qual-
ity processes in Digital's software engineering com-
munity. No longer is the notion of using Voice of the
Customer techniques really contested; few doubt
the cost-effectiveness of Formal Inspections as a
defect-detection technique; there is a ground swell
of support for the SEI's organizational assessment
model and a belief that its associated Capability
Maturity Model offers a rich source of really good
advice on the steps to take to improve one's pro-
cess capability; and so on. We are even beginning to
compile case studies from within Digital that
demonstrate the positive impact of these pro-
cesses, techniques, and concepts on project quality
and schedule. Of course, we need many more such
experiences before we can say that we are truly
"best in class" in these areas.

Readers may well ask how the various papers in
this issue relate to the strategy described here.
Different aspects of the application of our Voice of
the Customer techniques are emphasized in two
papers: Contextual Inquiry and Rapid Prototyping
are discussed in the paper "Changing the Rules: A
Pragmatic Approach to Product Development"; an
approach to using Quality Function Deployment
across different geographies is covered in "Defining
Global Requirements with Distributed QFD."
Examples of how we are applying the SEI's assess-
ment and Capability Maturity Model approaches
are covered in "SEI-based Process Improvement
Efforts at Digital." Another form of quality assess-
ment is shown in the paper "Assessing the Quality
of OpenVMS AXP: Software Measurement Using
Subjective Data"; the business case for implement-
ing SEI-like programs is covered in the paper
"Modeling the Cost of Software Quality." Finally,
in the paper "DEC TP WORKcenter: A Software

Process Case Study," many of these separate con-
cepts are shown in practice: the use of a require-
ments analysis process, of defects metrics, and of
overall continuous improvement.

Digital's software engineering processes are
improving quite quickly and radically. To be com-
pletely successful will require a high degree of
commitment and significant effort by management
and engineers alike. The opportunity is, however,
clearly there.

Stephen 3: Knox I

Modeling the Cost of
Software Quality

This paper off is an extrapolation of the manufacturing and service industries'
Cost of Quality Model to the business of software development. The intent is topro-
vide a theoretical account of the changing quality cost structure as a function of a
maturing software development process. Thzu, the trends in expenditures due to
the four major quality cost categories-appraisal, prevention, internal failures,
and external fail~tres-are presented over the five levels of software process matu-
rity, according to the Software Engineering Institute's (SEI's) Capability Maturity
iModel for Software (CMM). The Software Cost of Quality Model conservativelypro-
poses that the total cost ojquality, expressed as a percentage of the cost of develop-
ment, can be decreased by apprmimately two-thirds as process maturity grows
from Level 1 to Level 5 of the SEfk CMM.

Introduction
Two questions often asked of quality function pro-
fessionals by a software project manager are, How
much will working on these quality processes cost
me? and What can I expect in return for my invest-
ment? The manager recognizes that to implement
a quality improvement project, resources must be
allocated toward processes not currently being
undertaken, and prior management experience has
proven that usually the resources available are
barely adequate to meet aggressive project and
schedule deliverables. Also implicit in the man-
ager's questions is the expectation of some point of
diminishing returns: Even ifthere is benefit from an
investment in quality-related work, help me under-
stand the point at which the investment will be
more costly than what I can get in return.

Background-The Traditional Cost of
Quality Model
The concerns expressed by our present-day hypo-
thetical software manager are the same concerns
expressed by industrial management during the
1950s. At that time, the quality function profes
sionals saw the need to extend quality attainment
efforts beyond the traditional inspection and test
activities to the processes further upstream in the
manufacturing and product clevelopment groups.
Quality function managers, hoping to increase the
scope of the quality effort, were faced with the task

of convincing upper management of the necess-
ity to allocate additional resources to quality attain-
ment. Management demanded that the quality
function quantitatively demonstrate the amount
of resource investment that was necessary and the
expected return on that investment.

The quality function professionals responded by
developing an investment model that expressed
quality in terms of costs-the cost of attaining qual-
ity (the investment) and the cost of not attaining
quality (the return). Their argument was that mod-
erate increases in the former (typically, appraisal
processes, such as inspection and test, and some
defect prevention processes) would result in signif-
icant decreases in the latter (e.g., defects, scrap,
repair and warranty costs), up to some point of
diminishing returns. The traditional Cost of Quality
Model shown in Figure 1 graphically represents
their investment model.' The three curves portray
moderate increases in prevention and appraisal
costs resulting in dramatic decreases in failure
costs. The point of inflection in the total cost of
quality quadratic curve represents the point of
diminishing returns on quality investment.

Figure 1 reflects the belief of the 1950s' quality
function professionals that attaining 100 percent
conformance to specification would be prohibi-
tively expensive. The rationale was that zero-defects
production would require extensive testing and
inspection at every point in the design, manufacture,

Digital Technical Journal Vo1.5 No. 4 Fall I993 9

Software Process and Quality

TOTAL COST
OF QUALITY

COST OF FAILURES

COST OF DEFECT
APPRAISAL AND
PREVENTION

100
CONFORMANCE TO SPECIFICATION (PERCENT)

Figure I Tmditionnl Cost of Quality Model

and delivery process. Consequently, they con-
ceived of a point of diminishing returns on quality-
related investments. This point of maximum
quality attainment for the minimum amount of
investment is exactly the point of interest to our
hypothetical software manager.

The modeled point of diminishing returns,
however, was not verified by empirical cost of qual-
ity data.',3,4 In actual practice, investment in quality
attainment shifted from appraisal to prevention pro-
cesses as the quality fi~nction moved upstream into
the manufacturing process and product design
groups. Defect prevention processes, such as statis-
tical process control and robust product designs,
actually reduced the overall cost of attaining qual-
ity, contrary to the expectation of the quality func-
tion of the 1950s. Designing durable products to
delight customers and manufacturing these prod-
ucts in a well-controlled environment resulted in
fewer defects at the point of final inspection. Thus,
appraisal costs were reduced significantly. (The
author has participated in cases where successfi~l
application of defect prevention processes led to
the complete elimination of expensive inspection
and test.5)

The Revised Cost of Quality Model
The quality fi~nction managers of the 1950s could
not conceive of a quality investment model that did
not rely heavily on inspection and test. Actual expe-
rience, however, uncovered that an increased
emphasis on defect prevention processes led to sig-
nificant reductions in appraisal costs and, in some
cases, eliminated final inspection. The empirical
cost of quality data resulted in a revised model,
published in 1988.2 As shown in Figure 2, the

COST OF DEFECT
APPRAISAL AND
PREVENTION

0 100
CONFORMANCE TO SPECIFICATION (PERCENT)

Figure 2 Revised Cost of Quality Model

Revised Cost of Quality Model extracts the point of
diminishing returns.

The three curves express the changing quality
cost structure as quality attainment efforts shift
from appraisal processes to the processes designed
to achieve higher-quality output before final prod-
uct test. In the revised model, the costs due to
defect appraisal and defect prevention rise moder-
ately as investments are made to improve product
quality. The moderate increases in the costs of
appraisal and prevention result in dramatic
decreases in the failure costs. Unlike the corre-
sponding curve in Figure 1, appraisal and preven-
tion costs do not increase exponentially, since the
means of quality attainment shifts from defect
appraisal to defect prevention. The total cost of
quality curve in Figure 2 consistently decreases as
quality improves; therefore, the curve does not
have a point of diminishing returns.

The Software Cost of Quality Model
The Revised Cost of Quality Model has been used
extensively in the manufacturing and service indus-
tries as a benchmark against which actual quality
costs are compared. The model has thus helped
organizations identLfy opportunities for continuous
improve~nent.~ Also, a leading government research
corporation, MITRE Economic Analysis Center,
recently advocated using this method for reducing
the cost of quality in software de~elopment .~ What
is lacking, however, is a model of quality costs in
the domain of software development.

Important differences exist between the domains
of the industrial environment and the software
development environment. Wl~ile an extrapolation
of the Revised Cost of Quality Model can be made

1/01 5 No. 4 Fall 199.3 Digital Technical Journal

Modeling the Cost o f Software Quality

to monitor software quality costs (as suggested
by MITRE), the author believes greater detail on
and adjustments to the cost trends are required
to account for differences between the domains.
This paper presents a model that incorporates
these differences. The Software Cost of Quality
Model offers a rationale that addresses the reason-
able concerns expressed by our hypothetical soft-
ware manager.

Modeling the Cost of Sofizuare Quality
As background for a discussion of the Software Cost
of Quality Model, this section deals with the subject
of attaining software quality cost data and lists the
software quality cost categories.

Software Quality Cost Data
Whereas the literature has sufficient data to sup-
port estimates of the costs related to not attaining
software quality (e.g., defect and software mainte-
nance costs), the author has been unable to locate
rigorous accounting of costs related to attaining
quality (e.g., testing and defect prevention). This is
not surprising, given the relative lack of cost met-
r i c ~ tracked in software development. Capers Jones
asserts that fill1 quality costs have been tracked in
some projects; in a personal conversation with the
author, Jones cited his own work at International
Telephone and Telegraph (ITT).' Other consulting
firms (e.g., Computer Power Group) reported to
the author that some clients kept limited metrics of
defect costs. In follow-up investigation, however,
the author has not found any rigorous accounting
of defect appraisal and defect prevention costs in
software development.

Consequently, the Software Cost of Quality
Model offered in this paper extrapolates two key
concepts from Gryna's Revised Cost of Quality
Model (shown in Figure 2): (1) moderate invest-
ments in quality attainment result in a significant

Table 1 Software Qualitv Cost Categories

decrease in the cost of not attaining quality, and
(2) an emphasis on attaining quality through defect
prevention processes results in an overall decrease
in the cost of traditional testing activities.

Software Quality Cost Categories
Following the modern trend in the industrial and
service industries, the Software Cost of Quality
Model subdivides the driving cost elements into
four categories: appraisal and prevention (the costs
of attaining quality, i.e., the investment), and inter-
nal failures and external failures (the costs of not
attaining quality, i.e., the ret~rn).~,3."able 1 pro-
vides some examples of these elements in software
development. The list of elements within each cost
category is meant to be exemplary, not exhaustive.

Appraisal Costs Traditionally, the costs associ-
ated with appraisal activities are those incurred
by product inspection, measurement, and test to
assure the conformance to standards and perfor-
mance requirements. In software development,
these costs are usually related to the various levels
of testing and to audits and assessments of the soft-
ware development process. Appraisal costs also
include costs (e.g., quality assurance) incurred by
organizations that provide test support and/or
monitor compliance to process standards.

Prevention Costs While appraisal costs are those
used to find defects, prevention costs are those
incurred by process improvements aimed at pre-
venting defects. The examples of prevention costs
listed in Table i are the costs that worried our hypo-
thetical software manager, because for the most
part, defect prevention processes in software are
not traditional. Such processes are perceived as
"front-loaded" processes, which lengthen the ini-
tial development schedule and threaten the proba-
bility that a project will deliver on the scheduled

Appraisal Prevention Internal Failures External Failures

Unitllntegration Contextual Inquiry1 Defect Management Problem Report
Testing Quality Function Management

Deployment (QFD)
Quality Assurance

FieldlAcceptance
Tests

AuditslAssessments

Project Management

Requirements
Management

Formal Inspections

Test Failure Rework

Design Change Rework

Requirement Change
Rework

Warranty Rework

Customer Support

Lost Market Share

Digital Techrzicnl Journal 1/01. 5 No. 4 F~1111993

Software Process and Quality

target date. Ironically, field testing (an appraisal
cost) and the subsequent rework of found defects
(internal failure costs) are traditionally accepted by
software managers as legitimate yet frustrating tasks
in the clevelopment cycle. One goal of software
defect prevention processes is to reduce (and possi-
bly eliminate) the need for expensive field testing.

Internal/External Failure Costs Failure costs are
primarily due to the rework, maintenance, and
management of software defects. Internal failures
are software defects caught prior to customer
release, whereas external failures are detected after
release. Consistent with the initial cost of quality
findings in the manufacturing industry data, the
majority of quality costs in software are incurred by
internal and external failures. The literature indicts
the rework from software defects as the most signif-
icant driver of all development costs. Independent
studies show costs associated with correcting soft-
ware defects that range from 75 percent of the
development effort at General Motors, to an aver-
age of 60 percent for U.S. Department of Defense
projects, to an average of 49 percent, as reported in
a survey by 487 respondents from academia and
industry.*,y,lO

The Model
Figure 3 depicts the Software Cost of Quality
Model. The curves represent how the quality cost
structure changes as a software development
environment improves its capability to deliver a
high-quality, bug-free product. Whereas the x-axes
in Figures 1 and 2 reflect improving process capa-
bility in an industrial environment, the x-axis in
Figure 3 is based on the Software Engineering
Institute's (SEI's) Capability Maturity Model for
Software (CMM)." The Software Cost of Quality
Model incorporates the CMM, which offers a
descriptive road map for improving software devel-
opment processes. The details of this road map
provide a rationale for theorizing the changing qual-
ity cost structure within the domain of software
development.

The Maturing Software
Development Process
The CMM is too extensive to describe fully in this
paper. (Humphrey presents a detailed account-
ing.I2) The central concept of the CMM is that a soft-
ware development environment has a measurable
process capability analogous to industrial process

CMM LEVELS
KEY:

EXTERNAL FAILURES
! I INTERNAL FAILURES + APPRAISAL
0 PREVENTION

TOTAL

Figure 3 Software Cost of Quality Model

capability. In the software domain, process capabil-
ity can be measured through assessment. The CMM

proposes five levels of capability, ranging from
the chaotic, ad hoc development environment
to the fully matured and continually optimizing,
production-line environment.

The SEI estimates through their assessment data
that most software development environments are
at the initial, chaotic level of capability. The SEI has
also declared that although some individual proj-
ects show the attributes of the highest level of capa-
bility, no organization measured has demonstrated
full maturation. Since no organization has made the
journey to full maturation, and since scant data
exists on the appraisal and prevention costs as they
apply to software development, the Software Cost
of Quality Model uses CMM Levels 1 to 5 as the dis-
crete n~ilestones at which the appraisal, preven-
tion, and internal and external failure cost trends
can be theorized.

Softw~re Cost of Quality
Model Assumptions
Before the cost trends in Figure 3 are examined in
detail, two data-driven assumptions need to be
declared. First, the total cost of quality (the sum of

Vol. 5 No. 4 I.i.111 1933 Digilal Technical Jozrmal

Modeling the Cost of Software Quality

the costs associated with appraisal, prevention,
internal failures, and external failures) at CMM Level
1 is equal to approximately 60 percent of the total
cost of development. This assumption is based pri-
marily on internal failure cost data taken from the
literature and external failure cost data tracked at
Digital. The estimate of internal failure costs comes
from recent data collected by Capers Jones. The
data indicates that software rework due to internal
failures consumes 30 to 35 percent of the develop-
ment effort for projects the size of those typical
at Digital.'j The lower range of this figure has been
added to the cost of the Customer Support Center
(cSC) management of external failures, which an
unpublished study by the Atlanta CSC estimates to
be 33 percent of the development costs (available
internally only, on TPSYS::Formal-Inspection, Cost
of a Software Bug, Note 31.0). Thus, the estimate of
a total cost of quality equal to 60 percent of the
development cost is based on the sum of the esti-
mates of just two of the many cost elements,
namely, rework due to internal failures and CSC
management of external failures.

The second assumption is that the total cost of
quality will decrease by approximately two-thirds
as the development process reaches hull maturity,
i.e., CMM Level 5. This assumption is based on nor-
mative case-study industrial data cited by G r ~ n a . ~
The data details the recorded change in the total
cost of quality at the Allison-Chalrners plant during
seven years of its quality improvement program.14
Table 2 summarizes the reduction in the total cost
of quality at Allison-Chalmers and relates this
reduction to a similar change theorized in the
Software Cost of Quality Model.

Although it may be unwise to assume that a nor-
mative trend for the manufacturing industry can be
applied to software development, note that the
assumed two-thirds decrease in the total cost of
quality is more conservative than the estimates of
SEI's Dr. Bill Curtis. He claimed return on invest-
ments (KOIs) in the range of 5: 1 to 8: 1, as an organi-
zation progresses in process maturity.15 (Note:

These claims have received empirical support
from Quantitative Software Management [QSM]
Associates, who report measured decreases in
required effort and overall development cost on the
order of 5: 1. 16)

The Changing Cost Structure
Given the two grounding assumptions just dis-
cussed, the paper now presents a theoretical view
of the changing cost trends between Level 1 and
Level 5. The theory is based on the expected
returns on investing in process maturity as outlined
by the CMM. This section examines the details of
Figure 3.

CMM Level 1
The SEI estimates that 90 percent of the software
organizations today are at Level 1, which is charac-
terized by an ad hoc, undefined, and sometimes
chaotic development environment, highly depen-
dent on heroic individual effort to meet delivery
dates. Little attention is given to fundamental pro-
cess management in this highly reactive atmo-
sphere, and rework to correct internal and external
failures is often perceived as necessary "fire fight-
ing" to avoid disaster. At this level, the major costs
of software quality are due to rework and mainte-
nance. Testing is sporadic, so appraisal costs are
minimal and most defects are experienced by the
customers, resulting in expensive warranty costs
and loss of market share. The costs associated with
defect prevention approach zero.

CMM Level 2
A software organization at Level 2 has instituted the
fundamental processes to manage resources, arti-
facts, and change. Project management, configura-
tion management, and requirements management
are the key processes that characterize a CMM Level
2 development environment that is, at the least,
repeatable. In Figure 3, appraisal and internal fail-
ure costs increase at this level, primarily due to the

Table 2 Reduction in Total Cost of Quality (TCQ)

Allison-Chalmers Software Cost of Quality Model
(% of Cost of Sales) (% of Cost of Development)

Initial TCQ 4.5 60.0
Improved TCQ 1.5 18.0
TCQ Decrease 67.0% 67.0%

Digital Tecbriicul Jorrmal Vo1. 5 No. 4 F6~11 1 9 3 13

Software Process and Quality

formation of a quality assurance organization that
monitors compliance to proscribed testing stan-
dards. Since, at Level 2, the organization applies
testing activities more rigorously, more defects are
found and reworked internally.

The increased testing activity and aclditional
resources allocated to fix defects cause the appre-
hension that our hypothetical software manager
expressed earlier. The manager experiences fear
and uncertainty about being able to fix all the found
defects and deliver the product on the scheduled
date. Although our hypothetical software manager
is probably aware that adherence to rigorous test-
ing results in fewer defects shipped to the cus-
tomer, a manager's success is often measured on the
ability to deliver a product on time. The reduction
in external failure costs at Level 2 occurs too late in
the process to mitigate the career risk of seriously
missing the delivery date.

CMM Level 3
According to the CMM literature, the major gains
at Level 2 are the creation of repeatable processes
that provide the base underpinning of a maturing
development environment. Figure 3 illustrates that
the investments to improve quality have been
primarily in the appraisal categor).. But at CMM
Level 3, the development environment has achieved
a point of stability A defined, documented frame-
work exists within which the creative act of soft-

ware design can be executed in a controlled
manner. Quality attainment now emphasizes invest-
ing in the prevention activities, such as Contextual
Inquiry into customer problems and Formal
Inspections of specification and design documents.
Such prevention processes are intended to ensure
a more accurate understanding of and a greater
conformance to customer requirements. Invest-
ing in prevention results in a steep decline in the
external failure costs and gaining back lost market
share.

Our hypothetical software manager is entitled to
be more than skeptical about such claims; however,
empirical data substantiates them. For example,
Figure 4 details the 66 percent increase over pro-
jected revenue for IIAX RALLY version 2.0, a direct
result of improvements made to earlier versions-
improvements suggested by the Contextual
Inquiries conducted with VAX RALLY version 1.0
customers." Figure 5 clearly demonstrates that
Contextual Inquiry leads not only to increased rev-
enue but to the higher productivity and lower
defect density experienced by POLYCENTER System
Census version 1.0, when compared to four other
system management applications.18 These applica-
tions, represented in Figure 5 as A, 9, C, and D, were
developed without the use of this critical defect
prevention process.

While generally considered to be part of the
appraisal process, Formal Inspections, when applied

VERSION 2.0 VERSION 2.0
REVENUE 66% SHIPS -

VERSION
SHIPS

GREATER THAN
PROJECTED

NOTE: The bars represent the relat~ve revenue per quarter: the dotted l~ne represents the linear
fit of projected revenue, based on version 1.0 performance. Vers~on 2.0 includes the
improvements suggested by Contextual Inquiry.

PROJECTED
REVENUE

Figure 4 Effects of Contextz~nl Inquiry on VAX RALLYRevenue

Vol. 5 No. 4 A t 1 1 1397 Digital TechnicalJournal

Modeling the Cost of Softzvare Quality

C POLYCENTER
SYSTEM
CENSUS

QUALITY
(PRE-RELEASE DEFECTS /ONE THOUSAND NONCOMMENTED SOURCE STATEMENTS)

I
POLYCENTER
SYSTEM
CENSUS

PRODUCTIVITY
(NONCOMMENTED SOURCE STATEMENTS / PERSON WEEK)

NOTE: POLYCENTER System Census used Contextual Inqu~ry. Applications A, B, C, and D did not use Contextual Inquiry.

Figure 5 Effects of Contextual Inquiry on POLYCENTER System Census Quality and Prodz~ctiuity

to source documentation such as specifications
and design, are similar to process control monitors.
These inspections ensure that critical functiollality
is not omitted as the development process pro-
ceeds from the stated requirement for a solution to
the specification and design of that solution. The
effectiveness of the Formal Inspection process in
preventing potential inconsistencies and omissions
accounts for its rating as the most efficient defect
removal method, as shown in Table 3.l9 Thus, apply-
ing Formal Inspections as a defect prevention pro-
cess means fewer defects to test and fix internally
and a more satisfied customer using the product.

The data in Table 3 is not intended to fully
account for the magnitude of the trends at Level 3.
Rather, the data offers a rationale for the overall
direction of these trends. If a disparity exists
between the data and the acceleration of decreas-

Table 3 Defect Removal Efficiencies

Method
Efficiency
(Percent)

Formal Inspections 65
Informal Reviews 45
Unit Testing 25-50
System Testing 25-50
Regression Testing 20-50
Field Testing 30
Beta Testing 25

ing failure costs in Figure 3, bear in mind that the
model is the more conservative estimator.

CMM Levels 4 and 5
Although it has seen evidence of CMM Levels 4 and
5 in a few discrete projects (e.g., one Japanese proj-
ect reported to be at Level 5), the SEI reports that
it has not yet measured a Level 4 or a Level 5 organi-
zation. At these higher levels of maturity, the
dominant cost of quality is due to the prevention
elements, primarily from the cost elements of
metric-driven continuous improvement and pro-
cess control. The software process at these levels
has become so well characterized by metrics that
it has achieved a state where development schedules
are predictable. Requirements are now understood
quantitatively. The costs attributable to traditional
appraisal activities, especially field testing, are dra-
matically decreasing, since product quality can
now be appraised by monitoring the development
process as opposed to expensive testing of the
product. By Level 5, appraisal and failure costs have
dropped to the level expected of a Six Sigma organi-
zation. The model proposes that the total cost of
quality has decreased by approximately two-thirds,
which is consistent with the normative industrial
data.

Conclusion
This paper is not an endorsement of the SEI's
Capability Maturity Model for Software, which is
used here to describe discrete states within a

Digital Technical Jozrrnal Vol. 5 No. 4 Fa11 1993 15

Software Process and Quality

maturing software development process. Although
the CMM offers a rational, staged approach to
achieving a predictable and highly productive
development environment, the C M M is not the only
road map to improving Digital's software process.
For example, the variety of customers served in
commercial software development offers special
challenges to ensure that these customers' work
experiences are brought into the design and devel-
opment process. The CMM does not detail Voice
of the Customer processes, which are practiced
increasingly at Digital. In addition, some key pro-
cesses specified for C M M Levels 3, 4, and 5 (e.g.,
Formal Inspections and metric-driven Continuous
Improvement) are effective in reducing defects.
These processes are already used in many of
Digital's organizations, even though it is doubtful
that any of the software development groups at
Digital would be assessed as being beyond C M M
Level 2.

The author believes that CMM Level 5 is the goal,
regardless of the road map for attainment. The
Software Cost of Quality Model explored in this
paper offers the same argument for improving pro-
cess capability that was offered in the manufactur-
ing industries: the major costs of quality are the
waste and the resource loss due to rework, scrap,
and the lost market share when products do not
possess the quality to address the problems faced
by customers. The key to reducing quality costs is
to invest in defect prevention processes, many of
which are detailed by the CMM.

So, the response to the initial concern expressed
by our hypothetical software manager is the follow-
ing: You will not experience a point of diminishing
returns from investing in quality-attaining pro-
cesses. Certainly, there is a steep learning curve,
and the short-term gains are not apparent. Given
the software life cycle, most of the short-term gains
will be experienced after the development is com-
plete and the product has been shipped.

Since investments in quality, however, are not
meant to realize quick, dramatic returns, the defect
prevention processes probably offer the most
immediate visible evidence that the overall cost
of quality has been reduced. Yet, regardless of
whether the investment is made according to the
C M M road map or using some other quality attain-
ment plan, software managers must keep in mind
that quality attainment processes require a great
deal of hard work. Also, the investment must be
constant to achieve the significant, long-term

payback, as reflected in the Software Cost of
Quality Model.

References

1. J. Juran and E Gryna, Quality Planning and
Analysis (New York: McGraw-Hill, 1980).

2. E Gryna, "Quality Costs," Jurants Quality
Control Handbook, 4th ed. (New York:
McGraw-Hill, 1988).

3. J. Campanella, Principles of Quality Costs,
2d ed. (Milwaukee, WI: ASQC Quality Press,
1990).

4. J. Atkinson et a]., Current Trends in Cost of
Quality: Linking the Cost of Quality and
Continuous Improvement (Montvale, W:
National Association of Accountants, 1991).

5. S. Knox, "Combining Taguchi Signal-to-Noise
Metrics with Classical Regression for Robust
Process Optimization," Technical Rej~ort ISB

Quality (Marlboro, MA: Digital Equipment
Corporation, 1990).

6. E. deGuzman and T. Roesch, "Cost Analysis
Provides Clues to Spot Quality Problems," 7be
IVIITRE Washington Econofnic Analysis Cen-
ter Newsletter (McLean, VA: April 1993): 2.

7. C. Jones, Applied Software Measurement
(New York: McGraw-Hill, 1991).

8. B. Boehm, Software Engineering (Redondo
Beach, CA: TRW, 1976).

9. J. Hager, "Software Cost Reduction Methocls
in Practice," IEEE Transactions on Soflw~zre
Engineering, vol. 15, no. 12 (December 1989).

10. W Goeller, "The Cost of Software Quality
Assurance," 1981 ASQC Quality Congress
Transactions, San Francisco, CA (1981):
684-689.

11. M. Paulk, B. Curtis, and M. Chrissis, "Capabil-
ity Maturity Model for Software," Technical
Report C&lU/SEI-91-TR-24 (Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie-Mellon
University, 1991).

12. W Humphrey, Mancging the Software Process
(Reading, MA: Addison-Wesley, 1989/1990).

Vol. 5 No. 4 FLIII 1993 Digital Technical Jourrral

Modeling the Cost of Softtuare Quality

13. E. Yourdon, The Decline and Full of the
American Programmer (Englewood Cliffs,
N J : Yourclon Press, Prentice-Hall, 1992).

14. 0. Kolacek, "Quality Cost-A Place for Finan-
cial Impact:' Transactions of the I976Annual
Conference of ASQC, Milwaukee, W (1976): 131.

15. B. Curtis, "The Superior Software Organiza-
tion,'' Software Process Improvement Net-
work Meeting, Boston, M A (January 1993).

16. L. Putnam, "The Economic Value of Moving
up the SEI Scale," Technical Report QSMTR93-01

(McLean, VA: Quantitative Software Manage-
ment, Inc., 1993).

17 J. Neilsen, Usability Engineering (New York:
Academic Press, 1993): 4.

18. S. Knox, Newsletter of Continuous Improve-
ment for Networked Sjrsterns Management,
vol. 2 (Maynard, MA: Digital Equipment Cor-
poration, April 1993).

19. C. Jones, "Software Metrics and Total Quality
Management," Case Outlook, vol. 6, no. 4
(1992): 1-11,

Digilul Techtzical Jourrcal h l . 5 No 4 F611l 1993 17

Paul K. Huntwork
Douglas W Muzzey

Christine M. Pietras
Dennis R. Wixon

Changing the Rules:
A Pragmatic Approach to
Product Development

Developing quality software rapidly and at low cost has been an elusive goal.
Nevertheless, meeting this goal is essential in today's competitive environment
zuhere more and better prodztcts appear at accelerating rates and customers
demand systems that szipport "zuhat users need to do" in a natural and cost-
effective manner This paper disczisses the processes used by the TeamLinks for
Macintosh project team to achieve customer focus throughout the development of
a groupware ofliceprodzict. Listening to customers radically reshaped the product
and led to more rapid decisions, shorter development cycles, higher qualitj4 and
greater customer satisfaction.

Where We Started
Product Overview
TeamLinks software allows Windows PCs and
Macintosh computers to be integrated into enter-
prise-wide networks. The product utilizes Digital's
extensive line of network applications and ser-
vices, such as electronic mail, file sharing, work-
flow procedures, and work group applications.

The TeamLinks product also makes use of the
latest personal productivity and client-server tech-
nology as a platform for comprehensive office solu-
tions. Just as Digital's ALL-IN-1 Integrated Office
System (10s) allows organizations to rapidly develop
organization-wide network applications in a time-
shared environment, TeamLinks software provides
capabilities that allow the creation of company-
wide client-server office applications tailored to
meet the needs of any operation.

TeamLinks software provides customers with an
intuitive graphical user interface that integrates
their powerful personal productivity tools, such as
word processing and spreadsheet applications, into
local and wide area networks. This feature is inde-
pendent of whether the user's desktop system is a
Windows PC or a Macintosh computer.

both PC and Macintosh desktop computers. The
introduction of TeamLinks for Windows during the
spring/summer of 1992 further highlighted the
need to immediately introduce similar functions on
a Macintosh platform. The use of inside-outside
strategic planning identified three primary factors
that required consideration during the develop-
ment of admissible product delivery strategies.

First, we must satisfy the wants of the potentially
available market. Customers require both Windows
and Macintosh desktop solutions for their enterprise
work group computing. Both the TeamLinks Pro-
gram Office and customers requested a Macintosh
platform that supported the core TeamLinks ser-
vices of mail, ad hoc worldlow, and filing, with
product availability within six to nine months.

Second, we must deliver an acceptable solution
with the available resources. Macintosh users are
frecluently recognized as demanding consumers of
software applications. Although the breadth of expe-
rience in developing Macintosh products within
the group was limited, the development team con-
sciously planned objectives aimed at satisfying
demanding consumers. The team's goals consisted
of satisfying customers' basic office needs and hav-
ing the product recognized as a cluality TeamLinks
implementation on the Macintosh platform.

Product Goals Third, we must develop a product within the
For enterprise-wide work group computing strate- opportunities and constraints of today's environ-
gies to have customer appeal, they must address ment. In many development environments, the

18 Vol. 5 No. 4 Full 1993 Digital Technical Jotirnnl

Changing the Rules: A Pragmatic Approach to Product Develop~nent

reality of budgets with minimal and ever-decreas-
ing resources is rapidly becoming today's normal
mode of operation. Changing strategies, require-
ments, and management infrastructure are also
particularly characteristic of current development
environments.

Product Strategy
After resolving our initial project goals, we devel-
oped strategies to satisfy the goals. We chose to
establish design partnerships with customers
to iteratively obtain comments to use as a basis for
refining the project's specific deliverables.

Most problem-solving strategies are simple varia-
tions of (1) define the problem, (2) develop solu-
tions, (3) test, and (4) refine the solutions. The
TeamLinks project team chose an iterative and con-
current adaptation of this strategy.

First, we identified our implicit working assump-
tions. Initially, the project assumed that all com-
ponents present in the TeamLinks for Windows
product would simply be ported to the Macintosh
platform and retrofitted with a Macintosh user
interface.

Second, we tleveloped product plans basecl on
our initial goals and implicit working assumptions.
Iterative design techniques require prototypes
that customers may evaluate and comment on.
The project's initial product plans were utilized
as the first product prototypes for collecting cus-
tomer responses.

Third, we verified and refined our plans based on
validated information. As product prototyping got
under way, the team analyzed information from
competitive products, industry consultants, and
customers. A key consideration for the develop-
ment team was that throughout the life cycle of
the project, specific product deliverables would
be changed as customer opinions became clear. As
incoming data evolved into information, the cost
and benefits of each change would be caref~~lly
weighed against the project's goals.

Product development thus proceeded on two
fronts: one formulated in advance, the other cre-
ated in response to new developn~ents, customer
comments, and experience with successes and fail-
ures of the plan.

Select the Best Work Model
Since the emergence of the software industry and
continuing through the present, the ability of soft-
ware groups to produce high-quality software has

fallen far short of customer needs and demands. In
response to this condition, government and aca-
demic specialists proclaimed a "software crisis" in
1969 and endorsed a concept of software engineer-
ing based on authoritative, hierarchical organiza-
tions and sequential application of specialized
fi~nctions.~ This model of software engineering is
still prevalent in textbooks. Ironically, the model
was created at a time when the competitive advan-
tage of total worker participation in cross-functional
teams, an outgrowth of Deming's approach to man-
agement, was being demonstrated in other indus-
tries:$ The cross-functional approach is now widely
recognized as a superior method of new product
development. Figure 1 shows how cross-functional
teams speed up work. Twenty-four years of the
sequential model have not diminished the software
crisis. We feel privileged to have been able to apply
the cross-functional model to the development of
the TeamLinks for Macintosh product. Descriptions
of other best practices used by the TeamLinks team
follow.

Find Out What Your Customer Needs
Determining the needs of our customers involved
field research, quantitative research, and design jus
tification through grounding.

Field Research One of the most powerful ratio-
nales for field research is the realization that effec-
tive design begins with the discovery of exactly what
users and customers want and do. Field research
methods are designed to provide such in-depth
understanding. These methods emphasize openness
to user experience ancl create a dialog with users
about that experience. Direct contact with users at
early stages of design is viewed as an essential step,
and the barrier between users and designers has
been cited as a significant cause of suboptimal
design.'.5

Quantitative Research Given that discovery is
the first stage to effective design, the next stage is
decision.Wost likely, a team will not be able to
respond to all user needs. Thus, it needs a system-
atic and objective way to make decisions. Quanti-
tative methods provide a basis for decisions because
they establish a dimension along which features
can be compared.

Grounded Design Unfortunately, many designs
have an insufficient basis. Third-hand information,
brainstorming, anecdotes from trade shows, and

Digital Technical Journal Vo1. 5 No. 4 k 1 / 1 1993

Software Process and Quality

IN CONVENTIONAL WORK GROUPS, DIFFERENT STEPS ARE DONE BY DIFFERENT PEOPLE;
COMMUNICATION BETWEEN STEPS IS THROUGH DOCUMENTS.

UPSTREAM
PROCESS,
e.g., DESIGN 0 DELAY TO WRITE DOCUMENT

DELAY TO UNDERSTAND DOCUMENT
MANY QUESTIONS
SLOW ANSWERS
OVERENGINEERING TO COVER UNCERTAINTIES

DOWNSTREAM
PROCESS,
e.g., CODING 0

IN CROSS-FUNCTIONAL TEAMS, DIFFERENT STEPS ARE DONE BY THE SAME TEAM, COMMUNICATION
BETWEEN STEPS IS THROUGH SHARED VISION AND SHARED EXPERIENCE.

NO DELAY
UPSTREAM FEW QUESTIONS DOWNSTREAM
PROCESS, QUICK ANSWERS PROCESS,
e.g., DESIGN EXACT FEATURES e.g., CODING

Figure I IIozu Cross-functional Teams Speed Up Work

speculative talk about "what the customer really
wants" within an isolated team all contribute to
designs that do not meet customer needs and
designs that do not reflect customer work. To
ground a design means that all aspects of the design
are rooted in customer data rather than in specula-
tion. Providing mechanisms for this grounding is
critical to producing an effective design.

Design Your Product Based on
What You Learn
Demand pull, customer involvement, and design
metaphors all contribute to a customer-focused
product design.

Demand Pull Using customer interaction to pull
design features out of the development team greatly
reduces the number of design decisions and the
time required to make these decisions. A customer
focus on work essentials and not on "bells and
whistles" provides unambiguous feedback that sup-
ports direct decisions.'

Customer-driven Design Design is a process of
refinement and elaboration embedded in a cycle of
creation and evaluation. Customer-driven design
involves the evaluation of a tentative design (the
creation) with the customer's evolving understand-
ing of their work vis-a-vis the protluct.

Design Metaphors Metaphors are an effective
way to generate a design from customer work and

technical capabilities. Examples include the "desk-
top" metaphor that drives much user interface
design today. Although often criticized, metaphors
have been shown to be very powerful and funda-
mental to human tbought.H~~1°

Refine Your Product with Customers
Using an iterative approach to product design com-
bined with prototyping helps refine the product
design.

Iterative Requirements The need to break the
development of complex software into manageable
pieces has led to schemes such as "separation of
concerns," "top-down development," and "step-wise
refinement." Iterative design addresses this problem
with a "basics first" approach. A basic idea is embod-
ied in a prototype implementation and reviewed
with customers. The iterative approach allows solu-
tions to come into being and quickly converge to
finished products under the influence of user inter-
action, even while users are discovering what they
need. Detailed requirement specifications are not
necessary to begin implementation, so there is no
time lag between gathering requirements and pro-
viding solutions. This approach minimizes miscom-
munication and eliminates obsolete re~luirements.'~

Protot-$!!ing Prototyping supports a customer-
driven design process, providing custon~ers with an
effective medium to respond to current system
thinking.'? For instance, user interface designs

20 Vo1. 5 No. 4 Full 1993 Digital Technical Jourrrnl

Changing the Rules: A Pragmatic Approach to Product Development

embody a theory about the way users work.'j The
most straightforward way to get feedback on the
theory is to express it in a prototype. A prototype
allows users to try the system directly instead of
translating their work into an unfamiliar symbolic
language. l4

What We Did
The project team developed customer partnerships
early in the project life cycle. Through Contextual
Inquiries, focus groups, and artifact wal k-throughs,

the team internalized customer needs and require-
ments. The new data helped establish a shared
understanding among team members and mani-
fested itself in a new product design. Vector Com-
parative Analysis (VCA) data summarized team
learnings and provided the foundation for new
designs. Figure 2 diagrams this process.

Find Out What Your Customer Needs
Cross-functional Teams The team comprised
product managers, engineering managers, engineers

START u
------------: '-----------

FORM CROSS-FUNCTIONAL
TEAM, SELECT CUSTOMER Q PARTNERS PROTOTYPE

I

CUSTOMER SURVEY
INQUIRY

CUSTOMER DAY INTERFACE

COMPETITIVE
BENCHMARKING FUNCTION-

ARTIFACT
WALK-
THROUGH n I

CROSS-VALIDATION OF

VECTOR COMPARATIVE

USABLE

KEY.

--+ INFORMS - DIRECT TRANSFER

0 PROCESS ACTIVITY

CONTEXTUAL INQUIRY

0 PROTOTYPING

< VECTOR COMPARATIVE ANALYSIS

FUNCTION-
ALITY

Figure 2 Overall "Find Out" and "Refine" Activities

Digital Technical Journlrl Vo1. 5 No.4 Fall 1993 21

Software Process and Quality

(including some from companion products),
account managers and support people, customer
personnel, and specialists in marketing, human fac-
tors, graphic design, user publications, and compet-
itive analysis. This cross-functional team took
training, visited customers, analyzed data, and made
decisions as a whole or in cross-functional sub-
groups. The mutual understanding that grew out of
the shared experience and the shared data enabled
faster, more stable decisions and shorter schedules.

Customer Partners We formed product-life-cycle
partnerships at the start of the project with cus-
tomers who represented the four industries that
most heavily use PCs on the desktop: u.s. govern-
ment contractors, manufacturing, pharmaceuti-
cals, and banking. Within these industries, we
identified Digital customers from the office partner
group who used Macintosh PCs. Working with the
account teams and the customers themselves, we
selected partners who represented their intlustries.
Each partner designated a specific person to coor-
dinate their participation.

These partnerships allowed more interaction,
better follow-up, clearer communication, and more
consistent direction. For example, we could model
their work in detail in later versions of the proto-
types, and the partners could perform con~plex
evaluations. Since we were familiar with their work
and they were familiar with our product, no one
experienced a high cost of learning at any stage of
the projea.

Contextual Inquif-y We decided to train the team
in Contextual Inquiry methods so that they could
interact more effectively with customers Con-
textual Inquiry techniques are adaptations of
the methods used by anthropologists and sociolo-
gists to understand other cultures. The Contextual
Inquiry framework emphasizes three principles:
(1) context, i.e., study user work in its natural envi-
ronment; (2) partnership, i.e., engage customers as
co-investigators to help develop your understand-
ing; and (3) focus, i.e., clarlfy j70ur interests and
assumptions and be willing to change them based
on what customers tell you.li Contextual Inquiry
techniques have been used widely at Digital and
have shown a positive impact on market penetra-
tion and revenue."

Customer Survg~ Information from customer
visits was organized into a single hierarchy with
benefits and needs at the top and desired capabili-

ties and features at the bottom. A questiomiaire was
created to obtain quantitative customer impor-
tance weights for each node and leaf of the hierar-
chy. The questionnaire was sent to the customer
partners. We encouraged ~nultiple responses from
each partner to get data from both Information
System professionals and end users. We also col-
lected importance weights from an industry con-
sultant and additional customers beyond the
partners. Figure 3 shows a typical question from
the questionnaire.

ALLOCATE 100 POINTS AMONG THE FOLLOWING
CHARACTERISTICS TO INDICATE THEIR RELATIVE
IMPORTANCE TO YOU AS COMPONENTS OF "SUPPORT
PERSONAL DIARY."

- PROVIDE TIME, TASK MANAGEMENT
- SUPPORT SEARCHING CALENDAR FORWARD,

BACKWARD IN TIME

- PROVIDE QUICK, SIMPLE NAVIGATION TO ANY DATE

- PROVIDE VARIED CALENDAR VIEWS

Figure 3 Sample Questionnaire Question

CzistomemP Day Representatives from the four cus-
tomer partners brought con~pleted questionnaires
to a customer day. We inquired about their experi-
ence with the questions, loolzing for omissions ancl
refinements. We asked them to describe their top
10 issues and explain why they are important in
their environment. The customer day information
provided additional insight into user needs as well
as a sanity check of the quantitative survey data.

Competitive Benchnzarking We created a score
sheet from the features at the lowest level of the
hierarchy developed for the customer survey.
Engineers on the TeamLinks project, an industry
consulting firm, and customers scored our existing
products, alternative versions of our planned prod-
uct, and competing offerings. The scoring by engi-
neers directly contributed to their understanding
of customer requirements. The information also fed
the VCA process. Figure 4 shows a typical question
from the score sheet.

Cross Validation To minimize investment risks
and to maximize the return on the wealth of infor-
mation obtained from the data-gathering exercises,
we revalidated the information to determine its
applicability to the project. The information was
cross-validated by comparing multiple sources,
including the competition, industry consultants,

Vol. 5 No. 4 P6111 1993 Digital Technical Journrrl

Changing the Rules: A Pragmatic Approach to Prodzict Development

SCORE EACH OF THE FOLLOWING FEATURE CATEGORIES
FROM 0 TO 5, BASED UPON THE DIMENSIONS OF
COMPLETENESS AND GOODNESS AS COMPONENTS OF
"SUPPORTING DIFFERENT WORK STYLES".

- SUPPORT OFF-LINE WORK
PROVIDE TOOLS THAT SUPPORT CONSENSUS
MANAGEMENT

- PROVIDE TOOLS THAT SUPPORT LOCAL CULTURE
- PROVIDE TOOLS THAT SUPPORT TELECOMMUTING

NONE TOTAL
GOODNESS

Figure 4 Sample Score Sheet Question

and customers. We verified that we could under-
stand different responses as true expressions of dif-
ferent needs before we used the data.

Vector Comparative Analysis We input the cus-
tomer importance weights from the questionnaire
and the feature scores from the score sheet into the
computer-based VCA tool.I7 This tool rolls the fea-
ture scores up through the hierarchy by a method
of weighted averages to provide a score at each
node. VCA can create a vector diagram for each
node showing graphically how well each product
satisfies the user needs represented by the node.
Figure 5 shows the top few branches in the
TeamLinks VCA hierarchy. Digital developed VCA for
use with or as an alternative to Quality Function
Deployment (QFD). For the TeamLinks project, no
QFD was conducted.

ArtiJact Walk-throughs Based on Contextual
Inquiry principles, artifact walk-throughs allow a
design team to look at processes that take place
over time and that occur among groups of people.
The name is derived from the approach of asking
customers to bring the actual artifacts of a process,
e.g., notes, memos, forms, and documents, into the
walk-through as a reminder of the full complexity
of the process. In the presence of the artifacts, we

PROVIDE COMPUTER SUPPORT FOR MY WORK

HELP ME WlTH MY
OFFICE WORK

HELP ME WITH MY
JOB-SPECIFIC WORK

CONTROL COSTS OF
USING COMPUTERS

SUPPORT MANAGEMENT OF TIME

SUPPORT
WORK-SHARING

Figure 5 Simplified TeamLinks Hiwnrchy

FACILITATE MANAGING
INFORMATION

ask for the overall process goals, any known issues
and problems, and a list of process steps. For each
step of the process we ask, Who makes requests?
Who does work? Who approves? What is the cost in
person effort, materials, and equipment? What is
the normal cycle time? and What problems and
issues exist with this step? Each type of information
is recorded on a colored Post-it note and assembled
into an annotated flow diagram of the process.
Thus, these walk-throughs emphasize articulating
a process in detail, grounding it in a specific cus-
tomer example. We chose artifact walk-throughs as
the natural approach to gathering data in order to
customize our prototypes to each customer situa-
tion. At the same time, the walk-throughs uncov-
ered additional general requirements.

Design Your Product Based on
What You Learn
Team Discussions The Contextual Inquiry results
contained surprises. Even though the inquiry focus
was on office products, customers expressed more
requirements about cost containment than about
product features. The messages, discussed in detail
in the section What We Learned, were clear in the
raw data and became the basis for revised plans
even as the rigorous VCA was being completed. At
this time, an early prototype, seen only by the
development team, was redirected. Real customer
data enabled rapid consensus within the team on
changes to the project's direction.

Competitive Positioning The survey and bench-
mark data, which was processed by VCA, allowed
us to track our competitive position at all times.

Digital Technical Journal Vo1. 5 No 4 Fh11 1993 23

Software Process and Quality

We could sax for instance, "If we built1 this alterna-
tive, we will satisfy more customers than competi-
tor A but will need more mail features to compete
with B." In addition, when the engineers performecl
the benchmarking in person, they learned iiiore
than just scores. One engineer decided to keep
the competitive product he benchmarked as a
working tool until our own replacement procluct
was reacly, because the competitor's product was
better than the tools he had been using. Such espe-
riences challenge the engineers to build better
products.

Trade-off Analysis The computer-based VCA tool
allowed precise numerical comparisons to be
made on demand. Many alternatives, ranging from
the most probable plan, through minor variations,
to wild "what-if" scenarios, could be analyzcd.
The graphical displays allowed the trade-offs
between alternatives to be understood at a glance.
Low customer-impact branches of the hierarchy
could be identified and ignored during the period
when basic directions were being established,
thus simplifying the design process. Figure 6 is a

representation of a VCA display, annotated to clar-
ify how the charts are to be read. In particular,
the importance of an item is indicated by the
angle of the vector representing it-the more
important the item, the nearer the angle is to verti-
cal. The length of a vector shows how well the item
is realized in a given plan-the better the realiza-
tion, tlie longer tlie vector. Therefore, long vertical
vectors represent important items that are iniple-
mented well, and short horizontal vectors repre-
sent unimportant itenis t h ~ t are not implemented
well.

Refine Your Product with Customers
In addition to the techniclues already described to
bring customer input into tlie design of TeamLinks
for Macintosh, we used four cycles of prototyping
to confirm and ref ne our designs. In preparation
for the third cycle, we conducted artifact walk-
throughs with each customer partner as described
e;irlier. The walk-through itiforniation enabled us to
simulate real processes during the final prototype
cycle, thus putting our products to an ultimate test.
The four cycles are shown in Table 1.

t'roov~dc compulcr w p p n Tor my work Nodc
Confrt~l a)\t of ~ ~ \ i n g comp~~rcn 1%

Poor ~ ~ ; l ~ i , i t u o ~ l or 4
unlrnponnnt ltcln

,r

- -
I'caiiL~~~hs bl.s C<>~~ipcl~lnr I

Figure 6 Representc~tion of a VCA Ector Display

24 Vil 5 iVo 4 F ~ i l l 1993 Digital Technical Jout.rrfl1

Changing the Rules: A Prng~natic Approach to Product Development

Table 1 The TeamLinks Prototyping Cycles

Cycle Content Presentation Data Collection

1 User Macintosh One-on-one
interface Powerbook contextual
facade interviews

2 User inter- Client Sample tasks
face and software (scenarios), user
limited only diaries, and
functionality phone calls

3 Usable Client and Customer forms
workflow, server and work tasks,
filing, and software user diaries, and
basic mail phone calls

4 Full Client and Daily use, visits
functionality server by team, and

software phone calls

What We Learned
Significant changes in functionality and the user
interface were made based on user reaction to the
prototypes. This section discusses these changes.

Unlearning Things We Thought We Knew
Throughout this paper, we focus on three main
themes: (1) find out what your customer needs,
(2) design your product based on what you learn,
and (3) refine your product with customers.

The previoiis section of the paper discussed
tools and techniques that we used to achieve these
goals. Before actively gathering data, we developed
a set of assumptions about our customer's needs
ant1 preferences for working. On subsequent visits
we discovered that some of our assumptions were
flawecl and that we needed to change our original

plans to better satisfy customer demand. In this
section, we describe our initial assumptiot~s, dis-
coveries made throughout the data-gathering pro-
cess, and new designs derived from our discoveries.
Table 2 lists a comparison of our original and
revised designs.

Lesson One
Our initial assumption was that customers need an
information manager to navigate and to view file
cabinets. TeamLinks for Windows provided an
information manager to assist Windows users in
viewing, naming, and navigating the ALL-IN-1 IOS

and DEC MAILworks file cabinets. The file cabinet
is a logical container based upon the physical
metaphor of a filing cabinet. It enforces a hierarchi-
cal relationship, providing drawers that contain
only folders and folders that contain only docu-
ments. The file cabinets represent the central stor-
age areas for all objects within the TeamLinks
environment.

To parallel the TeamLinks for Windows environ-
ment, the team proposed an information manager
for the Macintosh product. Figure 7 shows the pro-
posed information manager window. Users would
be presented with a single, world view of the file
cabinets through the information manager. This
proposal adds an additional document manage-
ment layer on top of the native document manage-
ment. The team planned to display the information
in a manner as similar as possible to the Macintosh
desktop display.

However, our customers stressed: "Document
management should look and work like the Mac."
The Macintosh desktop presents a single, world

Table 2 Comparison of Original and Revised Designs

Original Design Discovery Revised Design
- -

Mail
Develop new X.400 TeamLinks
mail client for Macintosh.

"Build one mail client and
do it right."

Leverage existing X.400 mail client
and focus on developing mail-
enabled workflow applications.

Workflow
Develop information manager "Help us utilize our available Develop independent components
application that contains desktop resources." "Build that work well with existing
routing services. a 'real' Mac product." Macintosh applications.
Filing
Develop information manager "Document management Provide access to ALL-IN-1 IOS
application, in addition to Mac should look and work like file cabinet as an extension of
file system. a Mac." the Macintosh file system.

Digital Techtiical Journal Vo1. 5 No. 4 F~r11 1993 25

Software Process and Quality

I Cwrent Location:

Figure 7 TeamLinks for Windows Information Manager

77. - .
MAIL

[rU MAIN
0 CREATED
U DISTRIBUTION LISTS

INBOX
n ou'rsox a READ

.+I- I +

view to the users. Tlley do not want a replacement.
Our partners urged us to support document views
and navigation that is native. After attending the
Apple Developers Conference, the project leader
also concluded that we would build a noncompeti-
tive application if we followed our proposed plans.

'The team decided not to build an integrated infor-
mation manager. The revised design in Figure 8
shows how users can access the remote ALL-IN-1 IOS

file cabinet as they do remote network volumes. In
this approach, the ALL-IN-I IOS file cabinet becomes
an extension to the file system. This paradigm
builds upon the Macintosh user's prior knowledge,
making the interface comfortable and familiar.

4 -
-

-
t

Lesson Two
Our initial assumption was that we should follow
the TeamLinks for Windows lead and create one
tightly integrated application. Given the TeamLinks
for Windows working model, the team proposed to
develop a similar application for the Macintosh plat-
form. Original plans detailed a large, integrated
application. The information manager window
would provide the central world view of the file
cabinet. This window would have its own set of
menus and a tool bar. All other services would be
available through the information manager menus
and tool bar. Mail messages, workflow packages,
and other documents would be stored in file

cabinet folders. Users would open these objects by
double-clicking to invoke the appropriate editor.

Each service would be represented by its own
window with unique menus and a tool bar Services
would include mail, workflow, address book, direc-
tory lookup, and distribution list editing.

Rather than enhancing the existing X.400 mail
client, DEC MAILworks for Macintosh, the team
planned to create a new mail client for the
TeamLinks product. This decision would have
resulted in two competing mail clients.

However, our customers stressed: "Help us uti-
lize our available desktop resources." Digital's office
products need to work with existing Macintosh
applications. Customers want to use their existing
word processing, graphics, and other business
applications while working with our office applica-
tions. The customers emphasized that TeamLinks
components must work well together.

Throughout our interviews we heard: "Build a
real Mac product." Our customers stressed that our
Macintosh office products must look and feel like
Macintosh applications as well as adhere to the
Apple Human Interface Guidelines. They encour-
aged us to take advantage of color, direct manipula-
tion, and point-and-click paradigms. In following
these standards, we enable users to transfer their
skills from one application to another, thus reduc-
ing training costs.

26 VoI. 5 A'o.4 Fall 1993 Digital Technical Joarttal

Changing the Rules: A Pragmatic Approach to Prodz~ct Development

u File Edit

Figz~re 8 New Design for ALL-IN-I IOS File Cabinet Access

We also heard: "Build one mail client and do it
well." Customers want consistency across our appli-
cations. If two Digital office products provide X . 4 0 0
mail support on the Macintosh platform, each
should present the same user interface. This prac-
tice will help reduce customer costs by eliminating
additional user training. From Digital's perspective,
it makes good business sense to take advantage of
existing products and resources where appropri-
ate. Our customers cautioned against developing a
new X . 4 0 0 mail client for the TeamLinks product
when DEC WLworks for Macintosh already exists.
They encouraged us to direct resources toward
developing a single, strategic mail application that
is simple to use, X . 4 0 0 compliant, reliable, and avail-
able for the popular desktop computers. They
mentioned mail-enabled applications, such as work-
flow, conferencing, and time management.

The team decided to take advantage of existing
components. Rather than build a new mail client, the
TeamLinks and DEC ~MAILworks for Macintosh proj-
ect teams collaborated to enhance the existing DEC
iWLworks client and provicle workflow support.

The TeamLinks team focused on developing the
workflow component that would assist users with
routing forms and documents for review and

approval. As a result, the TeamLinks design migrated
from a large, integrated application to components
that work well together and allow users to
exchange information that they have created with
other popular Macintosh applications. Depending
upon specific needs, customers can purchase a
mail-only package, a workflow package, or a com-
prehensive package with mail, workflow, remote
ALL-IN-1 IOS file cabinet access, and conferencing
applications. Throughout development, the team
refined designs, adhered to Macintosh guidelines
where possible, used color to add value, and imple-
mented point-and-click paradigms.

Lesson Three
Our initial assumption was that time management is
important, but we still have time before missing the
opportunity to implement this feature. Although
time management was viewed as an important
product requirement, the team did not fully appre-
ciate the consequences of not implementing a time
management solution. Due to limited resources,
the team relied on another internal group to deliver
these services. If a time management product were
to become available before the TeamLinks release
date, it might be integrated into the package.

Digital Technicirl Jozt?-nal 1/01 5 Ao. 4 Full 199.3

Software Process and Quality

However, our customers stressed: "Help me man-
age my time." Customers often described their
struggle in trying to schedule a meeting with a
group of people and quickly followed this descrip-
tion with a request for time management support.
People spend a great deal of time trying to manage
their calendars. Two of our four partners rated time
management support as their top priority. People
want to browse one another's calendars, get assis-
tance in finding common meeting times, and schecl-
ule resources and events across their organization
or company.

One partner stated that they would not be able to
migrate their ALL-IN-1 IOS users to TeamLinks for
Macintosh until a time management solution was in
place. VCl\ data indicated that if TeamLinks for
Macintosh had an integrated time management
model, the product would be in better competitive
standing.

An office industry consultant told us that we had
only six months to release an integrated time
management module. If we delayed any longer, we
would miss the opportunity.

The team had been considering third-party time
management providers, but negotiations had stalled.
The team decided to reemphasize negotiations. A
contract was signed within a short time.

Lesson Four
Our initial assumption was that we would port
TeamLinks for Windows to the Macintosh platform
and Mac users would like the results. We originally
planned to port the TeamLinks for Windows appli-
cation first and then retrofit a Macintosh user inter-
face. The team proposed an initial design that
contained a rich set of functions identical to those
in TeamLinks for Windows but gave little thought to
what Macintosh users really wanted from a group-
ware office application. The importance of simplic-
ity and ease of use was not clear to all team members.

However, our customers stressed: "I don't learn
new functions unless I see clear value to my work."
"[The] most valuable tool is the one you [already]
know how to use:' "Less is better." "All I want to do is
create mail and read it." "Build a real Mac product."

People use tools and applications to simplify
work tasks. Tools should support existing work
rather than create new work. People use tools if
they add value; otherwise, they quickly abandon
them. Customers want simple, elegant solutions.

Porting TeamLinks for Windows to the Macintosh
platform would not succeed e\7en ifa user interface

that resembled an actual Macintosh user interface
were provided. Macintosh users easily spot and
freely reject a ported Windows application Vendors
who have ported Windows applications to the
Macintosh platform have failed to gain product
acceptance.

The team decided to adopt simplicity as a theme.
Although mail and worldlow add value, they must
be simple to use. We decided to take advantage of
our users' previous knowledge of electronic mail
and the postal mail metaphor in the design of our
workflow package. The team first concentrated on
designing the most frequently used functions and
then on refining them.

Our VCA results indicated that we hacl an oppor-
tunity in the workflow area but that the window of
opportunity was qi~ickly closing. To complete our
designs and develop customer-specific templates
for prototyping, we needed to learn more about our
custon~ers' business processes. We used artifact
walk-through to study three workflow examples- a
rnanufact~~ring procurement request, a pharmaceu-
tical regulatory submission, and a banking credit
approval.

Rather than port the Windows application, the
team created a new design utilizing user interface
prototyping tools. We adhered to Macintosh guide-
lines, incorporating standard system fonts, point-
and-click selection, stantlard text selection routines,
standard menus and accelerators, consistent button
placement, and dialog layout.

Discovering Deli'qliters
Through the discovery process, several of our ini-
tial assumptions proved to be inaccurate or mis-
guiclecl. As a result, the team changed plans to
better satisfy customer requirements. We learned
from the experience and adapted appropriately.
The team also discovered that certain product
attributes delighted customers.

Button Bar Surprisingly, the button bar or tool
bar within the TeamLinks components is a
delighter among customers. The buttons provide
point-and-click access to freq~~ently used mail and
workflow functions, reducing menu navigation and
recall of keyboard accelerators. Colorful icons indi-
cate button function. Context-sensitive help is also
available as users pass the mouse pointer over but-
tons in the bar.

Workflow Automation Data from Contextual
Inquiries, artifact walk-throughs, and VCA revealed

Vo1. 5 No. 4 F d 1 199-7 Digital Techtrtcrrl Journnl

Cl7nngirzg the Rules: A Prc~gmcitic Approach to Product Deuelolnnent

that business process reengineering and automa-
tion is an emerging opportunity within the office
automation market. Today, businesses lose time and
money tracking materials through approval life
cycles. Tools that support workflow automation
can potentially yield substantial savings for a corpo-
ration. In some industries, trimming one hour from
a process can save millions of dollars.

One customer exprebsed his interest in workflow
support as follows: "It will mostly save everyone's
time which is now wasted in tracking down who
has the material and who still needs to sign it. It
should speed up things, because it doesn't have to
physically be sent from office to office (sometimes
even different states) for approval. I would think it
could save time at year end for summary reports."

The development team capitalized on this infor-
mation, focusing the corporate office strategy on
developing leadership workflow tools. Rather than
provide a set of "me too" features, the team decided
to concentrate on a specific customer problem and
provide a simple, well-clone solution. The TeamLinks
Routing product is the outcome of these efforts,
and the group intends to focus the marketing mes-
sage on its tracking capabilities Six months later,
leacling competitors are now hastening to announce
workflow product offerings.

Refinement during Prototype Reuiezo Our VCA
results indicated that customers place great value
in ease of use. Items from the benefit hierarchy
such as "Make the product usable-match the way
I work," "Make the UI consistent within itself," and
"[Make a] product [that] adds value to my work"
were all rated as highly important by our customer
partners. Users are specifically interested in mini-
mal keystrokes, consistent interfaces and functions
across components, point-and-click paradigms,
adherence to Macintosh user interface standards,
and short-cut keys.

The team focused on satisfying these require-
ments within the TeatnLinks components. We
employed a design methodology that involved users
throughout the development life cycle, allowing
users to see product improvements on a monthly
basis. During early prototyping, the team con-
ducted one-on-one sessions with users to study
concept learning and ease of use. Feedback from
these sessions was used to progressively change the
design. Subsequent testing revealed that the design
modifications improved ease of use, A summary of
specific design changes follows.

Redesign of Main Window for TeamLinks Roziting
A user receives new packages for review and
approval in the mail in-box folder To view the pack-
age, the user double-clicks on the package in the in-
box folder, opening a window. The original screen
design for the TeamLinks Routing package window
appears in Figure 9.

Prototype testing demonstrated that users had
difficulty focusing on important information in this
window. The button bar immediately caught their
attention, and their eyes were then drawn to the
distinctive "Routing List.. ." button and the corre-
sponding list of names. Several users overlooked
the list of attachments at the bottom of the window.
Many users were unable to locate their role instruc-
tions, which outlined their specific tasks. Finally,
several users commented that important informa-
tion, such as, What do I have to tlo with this? When
do I have to respond? and What's my role? was not
visible on the main screen.

Users had difficulty understanding that the win-
dow represented a package that contained several
attachments and signatures. Users were familiar
with mail messages. They easily understood the
concept of message attachments and the postal
metaphor as it relates to electronic mail. They associ-
ated a workflow package with a special type of mail
message that needed approval, yet the package win-
dow did not resemble the familiar message window.

Users overwhelmingly liked the button bar,
because frequently used functions were more
accessible and visible.

After going through several design iterations, the
package window now appears as shown in Figure
10. The team applied the mail metaphor to work-
flow, rearranging some of the information to create
distinct header and attachment areas as seen with
mail messages. The header contains Initiator
(From), Initiated (Date), To, and Subject fields.
Additionally, we added a Role field to the header in
response to user requests. Text labels are displayed
in a bold font to improve readability and to help
users focus their attention.

We simplified the window by removing noncriti-
cal information. For example, although the data in
the routing list is important to users, they do not
require this information in the main window, as
long as it is available with a single mouse click.
Therefore, we added an Editwiew-Routing-List
button on the left-hand side of the tool bar. Users
are also able to quickly view the routing list by
double-clicking on the To field. In addition, we

Digital TecbnicalJournal Vo1. 5 1Vo. 4 Full 1993 29

Software Process and Quality

& File Edit Enclosures View Options Help

Route
Initiated: 6 /1 1 /92 8:35 AM

I In i t ia tor : Sharon Dean

Type: Action Item

I That t ime agaln . . . group action:s fur quarter ly repclrt I
[Routing List ...]

Sharon Dean (Deaneamesnwbrdj
-1 Chr is Owen (0ven@am@swmmr) Reviewe

Sue Palmer (Palmer@am+tennis)
Dave Mark is jMarkis@arn@hghjmp)

Figure 9 Original BamLinks Routing Des i~n

Figure 10 New Teamlinks Routing Design

30 Vo1. 5 No. 4 Fa11 1993 Digital Techtzical Jourfral

Changing the Rules: A Prg?natic Approach to Product Development

removed the Routing List button, which needlessly
distracted users.

The graphic designer created smaller buttons
and used subtle shades of gray to create a three-
dimensional look. Shading was used to invite users
to press the buttons. Icons were designed to be
understandable in international settings. Below the
header, shading was used to define the attachments
area, and a paper clip icon was added to reinforce
the metaphor.

To address the difficulty users had in locating
role instructions, we placed them in the attach-
ments list. If instructions are present, they always
appear as the first attachment and are denoted by
a distinct document icon. Users simply double-click
on the list entry to find out what they need to do
with the package.

In subsequent evaluations with the prototype,
customers commented: "I think it's pretty good.
Once you get into it, it's pretty easy to use, pretty
logical." "I was already somewhat familiar with it
because I saw base-level one. It was pretty easy
coming back to it. Just from using it the first time, it
became familiar. I had some problems with the last
one [base-level one], and I think you've solved a
lot of the problems with this one [base-level
two] ." "Anyone familiar with a Mac shouldn't have a
problem."

In designing the package window to look more
like a mail message, we enabled users to transfer
their mail knowledge to workflow. The concept of
creating a package could be related to the concept
of creating a mail message, namely, addressing the
workflow package, attaching documents to the
package, and typing in a subject. These changes
help to reduce the need for user training.

By simplifying the main window, we enabled
users to focus on important information, i.e., their
role instructions and the attached work materials.

Table 3 TeamLinks Workflow Terminoloav

Providing icon buttons for frequently used fiinc-
tions helps to minimize keystrokes and save time.

Terminology Review The original TeamLinks
Routing product used a series of technical terms in
the title bars of package windows to i d e n t ~ pack-
ages and states. These terms were not very mean-
ingful to users. The original terms are listed in
column one of Table 3.

Team members working on the Windows and
Macintosh platforms agreed to review terminology
with the goal of reaching consensus on simple
terms that users could immediately identify. The
team reflected on the traditional terminology for
routing paper packages to develop the new termi-
nology. The new terms are listed in column two of
Table 3.

By using terms that reflect the paper process,
users can immediately i d e n t e packages they
receive and understand the appropriate actions to
take. The terms Template, Original, Carbon Copy,
and Routing Copy describe both package type and
status in simple, familiar terms rather than in tech-
nical terms. The package name is placed in the title
bar of the package window and is readily visible to
the user. The revised terms help to minimize new
learning and reduce frustration. Consistent use of
terminology across platforms allows users to speak
in common terms with colleagues using alternate
desktop systems.

Focus on the Package The team made a con-
certed effort to focus on all components of the
TeamLinks Office package: mail, workflow, filing,
and conferencing. As discussed earlier, the process
of iterative design yielded excellent results with
TeamLinks Routing. Studies of prototypes demon-
strated that the use of buttons, color, larger fonts
and professional graphics, the mail metaphor, and

Original Title Bar

TeamRoute - Template
TeamRoute - (Master, Routing)
TeamRoute - (Master, Completed)
TeamRoute - (Master, Unsent)
TeamRoute - (Master, Sent)
TeamRoute - (Routing Copy, Pending)
TeamRoute - (Routing Copy, Sent)
TeamRoute - (Carbon Copy, Read)
TeamRoute - (Tracking Report, Read)

Revised Title Bar

Template - cdocument title>
Original - <document title>
Completed Original - <document title>
Draft - cdocument title>
Original - <document title>
Routing Copy - <document title>
Carbon Copy - cdocument title>
Carbon Copy - <document title>
Latest Copy - <document title>

Digital Technical Journal VoL 5 No. 4 Fa11 1-3 3 1

Software Process and Quality

adherence to Macintosh standards all contributed
to ease of use and acceptance of the TeamLinks
Routing product.

VCA results indicated that our customers viewed
consistency across components as essential to min-
imizing training and increasing accessibility. Given
this information, our goal was to produce a family
of products with a consistent look and feel. The
team spent six weeks working on mail enhance-
ments, modifying the screens to be more consistent
with TeamLinks Routing. For example, the graphic
designer created more meaningful icons for the but-
tons, adding color to reinforce metaphors and make
the buttons more distinct from one another. The
team agreed on consistent button placement across
components, moving all buttons to the top of mail
windows. Similar font styles and sizes were used
across components to increase readability. Figure
11 shows the original mail file cabinet n4ndow.
Figure 12 shows the same window with the
enhancements just mentioned.

In addition to focusing on consistency across
user interfaces for mail, workflow, filing, and con-
ferencing, the team employed the same graphic for
the on-screen "About" boxes and for the packaging
and documentation cover designs.

Consistency across product components and
with other Macintosh applications received rave

6 File Edit Windows SDesial

reviews from customers: "I liked the buttons across
the top real well. Real nice." "The fact that it's con-
sistent with other Mac applications is the best
news." "Support for point-and-click-you did a
good job here."

By creating a similar Look and feel across com-
ponents, the team reduced customer training needs
by increasing the transfer of learning. Employing
the same graphics for all components created a
recognizable product identity for the Te;tmLinks
family.

Filing
The original design to access the remote N.1,-IN-1

IOS file cabinet on the Macintosh replicated the
TeamLinks for Windows information manager. The
VCA process demonstrated that this design would
not be competitive nor would it satisfy customer
needs.

The team developed a more viable solution by
visualizing the ALL-IN-1 IOS file cabinet as an exten-
sion of the Macintosh file system. Team members
cleveloped a TeamLinks file cabinet extension.
Users connect to the ALL-Ihr-1 10s file cabinet
through the chooser window. Once a user is con-
nected, a volume, visually represented by a file cab-
inet icon, appears on the user's desktop. The user
clouble-clicks on the file cabinet vol~r~ne to view the

= Uraset- Local Template,

Folders: 5c7

1 i 19193 09: 47 Chr I z F I e t r

5/'24."3.3 i l l : 47 Shomt- Campb

O L~rrrbgn Copies Messages I

competit ive info Messages: I

3 2 Wl. 5 No. 4 Fnll 1993 Digital Techlrical Jourtzrrf

Changing Lbe Rules: A Pragmatic Approach to Product Development

6 File Edit Mail Tools

- - ---

, File Cablnet

(~ ~ ~ i i = a ~ n
Nvw Mall Create RrpllJ FarWard Flle In Delete

~ B E ~ I Title
e MAIL [5 0 fo lders]

ES. a c c n l ~ r ~ t request 12 rriessagesl
!a THT:Prnc!rr-ement Request

FWD: N1ght.1~ Bu i l d Complete ...
Carbon Copies I I messages]

I CI C e r t i f i c a t i o n (2 messages]
carnpet. i t ive in fo [I messages1

0 Condo [I messages]

1 / 1 9 / 9 3 09:47 Chris P ie t ra
5 / 2 4 / 9 3 0 1 :47 Shawn Canip

I F E D . BIIOK R e Y l e W 101-1 Y~:tIrdOn's latest. Look 7 / lfi/92 rj 1 4" ~ol . lg f l ~ ~ i ~ y 1.1

Figure 12 Nezu TeamLinks Mail Design

contents in a new window. N-L-IN-1 IOS drawers and
folders arc visually depicted as their real-world
counterparts, as seen in Figure 13. Users can manip-
ulate files in a familiar fashion.

By using the standarcl Macintosh user interface to
manipulate drawers, folders, and documents in the
ALL-IN-1 IOS file cabinet, users do not need to learn a
new paradigm. This approach minimizes new learn-
ing, increases accessibility and ease of use, and adds
value. This design is compatible with the future
Apple Open Collaborative Environment (AOCE) and
will create a better return on investment for the
program team.

Conclusions
The success or failure of any product can ~lormally
be attributed to the product's initial plans and the
implementation of those plans. For this project,
one can evaluate the development strategy against
the initial project goals and against the customer
needs.

The development strategy satisfied the program's
goals. The initial version of the product was deliv-
ered in less than a year of development time and
with minimal resources. By-products of the devel-

opment strategy allowed the team to take addi-
tional "informed" risks (seven months into the
project, the team received additional responsibility
for delivering the mail client), to deliver three sepa-
rate products with minimal resources, and to better
engage and motivate the development team
through consistency of purpose.

As for the customers, they say it best in their own
words:

Major government contractors: "I thoroughly
enjoyed testing the product. I am definitely going
to buy it-our company is committed to
TeamLinks.. . ." "Excellent adherence to Mac
Interface."

Major manufacturing companies: "Simple
enough to use and it works." "I'd say yes [in
response to a question regarding whether they
would purchase the product], it ties in well with
ALL-IN-1 and meets the needs."

Major pharmaceutical companies: "Logical
enough to use without the need to read documen-
tation." "We're very excited and encouraged by
these changes. Looks like a Winner!!!!" One cus-
tomer stated publicly in Computerworld that
TeamLinks/DEC MNLworks is their standard.

Digital Technical Jozinzal Vol. 5 No. 4 Fall 1993 33

Software Process and Quality

-C File Edit Uiew Label Special

3 i t e m s zero K i n disk 3 1 . 9 MB available

I

I JUNK MAIN TEST DRAWER

- MAIN
40 items

D 0 BENEFITS - folder

C 0 CALLINGCARD INFO - folder

0 COMPANY INFO - folder

D COMPETITIVE INFO - folder

CONFERENCINC; HINTS - folder

1 b I7 CONTACTS - folder - kd

.
Chris's A L L - I N - 1 F i l e Cab

Figure 13 Browsing the ALL-IN-1 IOS File Cabinet

Selected government agencies: "Really like mail; Meg Lustig (product management); Keith Brown,
like the graphic UI, color, bit buttons, the file cabi- Tina Boisvert, Rick Palmer, Tim Sagear, and Tony
net.. . ." "Easy to use." "I love this! Our whole branch Troppito (quality assurance engineering); and Peter
will want this." "It is exactly what I've imagined and Mierswa, for leading the team to develop customer-
desired for months." "They [customer's users] are focused products.
going crazy over it. They love it!" Special thanks to our customers, without whose

involvement none of this would have been possible.

Acknowledgments
Many people were involved in the development of
TeamLinks for Macintosh from its inception to its
shipment. The authors would like to acknowledge
the following contributors: Dave Brown, Dave
Burns, Gary Floyd, George Gates, Sabrina Prentiss,
Janna Rhodes, Charles Robbins, David Stutson, John
Wise, Nam Hoang, and Eunice Zachry (account and
support managers); Jennifer Dutton, Nina Eppes,
Peter Laquerre, Terry Sherlock, Ricky Marks, Barb
Mathers (documentation); Paul Clark, Debbie
Christopher, Beth Doucette, Jim Emmond, Mark
Grinnell, Steve Hain, Dean Jahns, John Lanoue,
Bruce Miller, Stan Neumann, John Quirnby, Tom
Rogers, Larry Tyler, and Steve Zuckerman (engi-
neering); Peggy Doucet, Mike Pfeiffer, and Beverly
Schultz (management); Robert Lehmenkuler, Steve
Fink, and Steve Martin (marketing); Phil Gabree and

References

1. D. Ziemer and l? Maycock, "A Framework for
Strategic Analysis," Long Range Planning, vol.
6, no. 2 (1973): 6-17

2. I! Naur and B. Randall, eds., "Software Engi-
neering: A Report on a Conference Sponsored
by the NATO Science Committee," North
Atlantic Treaty Organization, 1969.

3. J. Womack, D. Jones, and D. Roos, TheMachine
That Changed the World, ISBN 0-89256-320-8
(New York: Rawson Associates, 1990).

4. J. Gould, S. Boies, and C. Lewis, "Making
Usable, Useful, Productivity-enhancing Com-
puter Applications," Communications of the
ACM, vol. 34, no. 1 (January 1991): 75-85.

34 1401.5 No. 4 FUN 1993 Digital Technical J o u d

Changing the Rules: A Pragmatic Approach to Product Development

5. J. Grudin, "Systematic Sources of Subopt-
imal Interface Design in Large Product
Development Organizations," Human Cow-
puter Interaction, vol. 6, no. 2 (1991): 147-196.

6. T. Gilb, Principles of Software Engineering
1Management (Reading, M A : Addison-Wesley
1988).

7 T. Ohno, The Toyota Production System
(Cambridge: Productivity Press, 1988).

8. F. Halasz and T. Moran, "Analogy Considered
Harmful," Human Factors in Computer Sys-
tems Proceedings (March 1982): 383-386.

9. S. Pepper, World Hypotheses (Los Angeles:
University of California Press, 1966).

10. G. Lakoff and J. Johnson, metaphors We Live By
(Chicago: University of Chicago Press, 1980).

11. Subcommittee on Investigations and Over-
sight, Committee on Science, Space, and
Technology, Bugs in the Program: Problems
in Federal Government Computer Sofhuare
Development and Regulation (Washington,
D.C.: Government Printing Office, September
1989).

12. J. Wilson and D. Rosenberg, "Rapid Prototyp-
ing," Handbook of Muman-Computer Inter-
c~ction (New York: North-Holland, 1988):
859-873.

13. J. Carroll and R. Campbell, "Artifacts as Psy-
chological Theories," Behavior and Informa-
tion Technology, vo18. (1989): 247-256.

14. I! Ehn, Work-Oriented Design of Computer
Artif~cts (Stockholm: Arbetslivscentrum,
1988).

15. K. Holtzblatt and S. Jones, "Contextual
Inquiry: Principles and Practice," Technical
Report DEC-TR 729 (Maynard, IMA: Digital
Equipment Corporation, October 1990).

16. D. Wixon and S. Jones, "Usability for Fun and
Profit," Human Computer Interface Design:
Success Cases Emerging Methods and Real
World Context (San Mateo, CA: Morgan Kauf-
man, Spring 1994, forthcoming).

17 J. Gilmore, Jr., "A Quantitative Comparative
Analysis Technique for Benchmarking Prod-
uct Functionality and Customer Require-
ments," Eleventh International Conference
on Decision Support Systems (Providence, RI:
Institute of Management Sciences, June 1991).

Digital Techtrical Jourtral W)l . 5 No. 4 Full 1993 3 5

John A. Hrortes, J1:

Benjamin C. Jedrey, J1:

Driss Zaaf

Def iinjng Global Requirements
with Distributed QFD

Obtaining valid data on customer needs and translating it into optirnzim product
functionality is always a challenge, but especicil& so when the customers are geo-
graphically, culturclll~i, and functionally diverse. Digitc~l's Corl~orwte Telecom-
munications Software Engineering (CTSE) used groupware techniques supported
by the distributed use of Quality Function Deploylnent (QFD) to identify prodc~ct
features that meet custo~?zer needs By linking engineers, customers, c~izdprodz~ct
personnel from across tl?eglobe, CTSE redesigned the QFD model to optinzize the use
of local andglobcilgroups in definingproduct requirements. During one year; three
software products, including Automatic Callback version 2.1, were defined using
the Distributed qua lit)^ Function Deplq~ment (DQFD) technique. Lessons [earned
from each interactive session were applied to continuouslj~ refine the approach to
i~~zprovingprocess. The critical follow-~lp steps after the DQFD ultimate[y deternzzne
the success or failure of the eflort.

The Challenge of Global Repirements
Corporate Telecon~munications is responsible for
managing Digital's worldwide telecommunications
resources including voice, video, and data networks.
The engineering organization within Corporate
Telecommunications develops tools, applications,
and solutions to optimize the use of telecommuni-
cations services. Developing the right product for a
customer depends largely on the accuracy of the
requirements defined, which in turn depends on
the approach used to gather information about the
customer's needs. Traditionally in Digital's Corpor-
ate Telecommunications Software Engineering
(CTSE), product managers have obtained customer
requirements from various geographies by using
electronic mail or electronic conferencing. This
method was deficient in the delivery of a customer-
focused product in several ways.

Input did not come from all the corporate
geographies that used the product.

CTSE had no direct contact with the customer.

No data was available on the importance of cus-
tomer requirements.

There was no clear correlation between product
features and customer needs.

This paper discusses the approach taken by U S E
to improve the process used to define customer
needs and product features worlclwide.

Commitment to Improving the Process
of De f ining Requirements
I n January 1992, Cl-SE made a commitment to utilize
Total Quality Management (TQM) as the foundation
for the development and maintenance of their procl-
ucts. As part of this commitment, C'I'SE began a set
of initiatives to increase customer and user satisfac-
tion with Digital's worldwide telecommunications
products and services.

CTSE customers are from three internal geogra-
phies the United States, Europe, ancl the Asia/
Pacific and Americas (MA) (formerly General
International Area [GIA]). Each area has its own
business needs and practices. Product development
must ensure that technical solutions meet the
common needs of each group. CTSE recognized
that the creation of successful products is based
on the quality of the requirements against which
these products are created. Consequently, CTSE

Vo1. 5 No. 4 FaL1 IYY3 Digital Technicnl Journal

Defining Global Requirements with Distributed QFD

mandated the use of the Quality Function Deploy-
ment process for all scheduled projects.

Quality Function Deployment
Quality Function Deployment (QFD) is a structured
approach for proactive planning. QFD provides
product planners with a process that translates cus-
tomer neetls into prioritized product features. This
method emphasizes the use of quantitative tech-
niques to evaluate various product features based
on the impact each has on providing benefits to the
customer.

QFD has been used extensively as a product plan-
ning tool for companies both in the U.S. and in
Japan. Digital, Hewlett-Packarcl, ATSrT, Ford, and
Toyota are but a few of the companies that have
successfirlly applied the QFD process to ensure that
they are building proclt~cts that meet customer
needs.

As practiced at Digital, the QFD process begins by
assembling a cross-functional team that includes
customers, customer experts who have timely data
on customer needs, and technology experts who
know the product capabilities and the competition.
The team gathers for a concentrated and focused
meeting, usually two or more days in duration.

Team activities tluring the QFD include

Brainstorming. Attcndees state as many cus-
tomer needs and product features as they can
and docun~ent each need or feature without
regard to merit.

Affinitizing. The team associates and categorizes
the customer needs and product features into
appropriate groupings.

Value setting through consensus. The team eval-
uates customer needs according to various
attributes, such as customer value, goals, and
improvement targets, and assigns a weight to
each need.

Correlation analysis. The team correlates the
~ e e d s with the features to determine which fea-
tures impact which needs and to what extent.

Throughout the QFD, a chart called the "House of
Quality" (see Figure 1) graphically displays the
work of the team. The customer needs become the
rows of the House of Quality, and the features
become the columns. The House of Quality allows
you to view directly the relationship between any
customer need and product feature.

The final result of the QFD is a prioritized list of
features, each with an associated numeric sum of
weights. This list is often displayed as a Pareto
chart, which is a bar graph of the total weights in
left-to-right descending order. Figure 2 is an exam-
ple of such a chart.

The Distributed QFD Concept
Traditionally, the QFD process is conducted with all
participants in one physical location, thus allowing
constant personal interaction. This scheme works
well when participants are not widely scattered;
however, Digital develops most of its products for
the global marketplace. Busy schedules and the
high cost of travel prevent all QFD participants from
gathering in one location at the same time. 'The
challenge was to overcome the one-location issue
and utilize the QFD process in a modified manner to
get people in various locations working together.

CUSTOMER VALUE
I TODAY

CORRELATION MATRIX

Figure I House of Quality Chart

Digital Tecbnicnl Jourrrnl 1/01 5 iVo 4 In11 1993 37

Software Process and Quality

A B C D

FEATURE

Figure 2 Prioritized QFD Product
Feature Weights

CTSE calls the practice of running a QFD with
involvement from multiple physical locations a
Distributed QFD (DQFD).

Instead of conducting a regular QFD session at
one site, the DQFD session is conducted sirnultane-
ously at the two or more sites where the par-
ticipants are located. Every site has a facilitator. At
each site, the DQFD participants are organized into
teams connected by means of teleconferencing or
videoconferencing equipment. These teams work
together through the regular QFD process adminis-
tered under the control of the designated "primary
facilitator."

In the DQFD process, distributed team members
discuss product requirements during interactive
sessions moderated by facilitators. The result of
these discussions is the QFD data (i.e., features,
ranks, and needs) and documents (e.g., the House
of Quality and the data spreadsheet). The primary
facilitator and the organizer collect and process the
information from all participating sites and prepare
the final QFD documents, such as the product busi-
ness requirements.

Before starting the session, the organizer and the
primary facilitator clevelop the schetlule and the
agenda. They select the list of participants, which
should include all geographies and span the
involved functions such as engineering, sales, sup-
port, service, and customers. Often, a question-
naire is distributed to the participants. This
questionnaire describes the customer information
that is important, such as the tools they use and

what unfulfilled needs they have, and should there-
fore be gathered and brought to the DQFD session.
If solid customer data is missing in certain areas
described, participants then have the opportunity
to collect additional information during the weeks
leading up to the DQFD. The best data comes
directly from the customer while the customer is
actively involved in the activity that the product or
service will support. Digital has fostered a tech-
nique called Contextual Inquiry, in which the prod-
uct developers visit the customer's workplace and
observe and interview various users while they are
engaged in their normal work activities. This tech-
nique yields timely and detailed data that often is
not forthcoming in surveys, problem reports, and
other passive approaches to data gathering.

In addition to the important issues of cultural dif-
ferences, business relationships, and working envi-
ronments, the time zones of participating sites are a
major consideration when developing the schedule
logistics for the DQFD. The DQFD process usually
takes two or three sessions (working days). There-
fore, while developing the DQFD workflow and
schedule, the DQFD organizer and the primary facil-
itator must review the QFD process with respect to
site requirements/time zones and determine the
activities that best suit the participating sites.

The LQFD Model
Figure 3 portrays the basic steps of the DQFD
model. Though similar in appearance to a typical
QFD, the DQFD differs in the areas of logistics and
training of participants, and in the order and man-
ner in which the actual QFD sessions are con-
ducted. The DQFD model uses videoconferencing
and teleconferencing for the overview meeting and
throughout the three-day DQFD itself.

Prepnra l-io n
Preparation is a key element of a successful DQFD.
Some important parts of the preparation are

Planning. The primary facilitator and the orga-
nizer determine the goals and feasibility of the
DQFD, the most appropriate participants, and
the logistics that will work best.

Training the team. A short (one-half day) tutorial
in the basics gives the participants sufficient back-
ground in the process to contribute effectively.

Gathering customer data. The need for accurate,
complete, and current customer data as input
for the DQFD cannot be overstated. Many

Vo1.5 No. 4 Fall 1993 Digital Technical Journal

Defining Global Requirements with Dislr.iDuted QFD

START Q
SELECT TEAM
AND PLAN
LOGISTICS

GATHER
CUSTOMER I DATA

TRAIN
PARTICIPANTS
FOR DQFD

EVALUATE AND DQFD
CORRELATE SESSIONS
PRIORITIZE FEATURES

TARGET
CUSTOMERS
AND PREPARE
FOR DQFD

OVERVEIW
MEETING

BUSINESS
REQUIREMENTS
DOCUMENT

MORE DETAILED
ANALYSIS
FACTOR IN PROJECT
RESOURCES

Figure 3 Logistics of the Distribzlted QFD

POST-DQFD
WORK

techniques are useful for collecting data, includ-
ing surveys, interviews, problem reports, sugges
tions, and free-form interview.

Overview Meeting
The overview meeting serves several main pur-
poses. This meeting

Helps the participants from the various sites to
get to know one another.

Provides participants with an understanding of
the DQFD process and their roles in the process.

Gives the planners an opportunity to summarize
the project at hand and the issues that the DQFD
is intended to address.

Allows the team to decide who the customers
are for the product or service and, furthermore,

which customer is to be considered "primary"
for the purposes of the DQFD. Distinguishing the
primary customer can help avoid conflicts in the
development of the House of Quality.

Informs the participants about the preparation
required.

Answers questions about the logistics and
mechanics of the forthcoming DQFD meeting.

The two options for handling the overview meet-
ing in Distributed QFDs are videoconferencing and
teleconferencing. CTSE prefers videoconferencing
for several reasons.

Participants from the various sites who will be
working together can see one another, possibly
for the first time. The visual image thus created
will enhance communication during the DQFD
meeting.

Participants gain an understanding of the work-
ing styles of the facilitators at each site, which
helps to move the process along.

The visual aspects of the meeting help promote
the feeling of "teamness," which fosters coopera-
tion in the subsequent activities.

QFD Meeting
In the western Europe-eastern U.S. DQFD model,
the QFD meeting spans three days. The major sites
involved in the CTSE meeting described in this sec-
tion were Valbonne, France, and Littleton, Massa-
chusetts. A six-hour time difference exists between
the two locations, so we scheduled the mutual meet-
ings for mornings in the U.S., i.e., 8:00 A.M. to 12:OO M.

(noon) eastern standard time (EST), and afternoons
in Europe, i.e., 1400 to 1800 coordinated universal
time (UTC) (known as Greenwich mean time).

Although undoubtedly inconvenient for some
participants, DQFDs are possible in locations where
the time difference is greater than six hours. During
an earlier DQFD, one team member resided in
Australia and worked with the rest of the team from
10:OO P.M. to 2:00 A.M. his time. A better approach is
to schedule the DQFD over six days with overlap-
ping sessions of two hours, as described in the sec-
tion Observations about the DQFD Model.

Figure 4 shows a design of the western
Europe-eastern U.S. DQFD model, as managed by the
U.S. Note that the two sites work together for four
hours each day. Working in overlap for just one half
of each workday provided the following advantages:

Digital Techtricnl Journal Vo1. 5 No. 4 Fa11 1993

Software Process and Quality

2:00 P.M. - EUROPE - 6:OO P M. (U.S. ONLY)

AFFlNlTlZE NEEDS

FEATURES SEND RESULTS
TO EUROPE

8:00 A M . - u.s - 12:OO M 1:OO - U.S. - 3:OO
(NOON) P.M. P.M

EUROPE (A.M.) 2100 P.M. - EUROPE - 6:00 P.M (U.S. ONLY)
I I I I I I

I I I 1-
(EUROPE ONLY) 8100 A.M. - U.S. - 12:OO M 1:00 - U.S. - 3:OO

(NOON) P rd.

DAY 2 , RE:::r:: (A.M.) P.M. - EUROPE - 6:OO pM,, ,
AFFlNlTlZED PRODUCT

ADJUST AFFlNlTlZED FEATURES

DAY 3 FEATURES COMPLETE CORRELATION MATRIX REQUIREMENTS
(APPROXIMATELY DOCUMENT

SUMMARIZE-FUTURE STEPS

(EUROPE ONLY) 8100 A.M. U.S. - 12:OO M.

(NOON)

Figure 4 DQFD Model, as ~Mcrnagedfro~n the U S

REVIEW
AFFlNlTlZED NEEDS

(APPROXIMATELY
I HOUR)

Since interactive QFDs are concentrated efforts,
meeting for only four hours per day allows the
team to devote their peak energy to this part of
the QFD.

The schedule allowed part of each day for those
sections of the QFD that could not be performed
through teleconferencing, such as affinitization,
administration, and computer logging of the
results. The team that is managing the particular
DQFD performs most of these activities.

ADJUST AFFlNlTlZED NEEDS t ATTACH CUSTOMER VALUES TO NEEDS

COMPLETE PLANNING MATRIX

Each team had time between the larger group
sessions to review the work of the previous day
and to make a list of issues for discussion and
resolution.

AFFlNlTlZE
FEATURES

SEND RESULTS
TO EUROPE

At the start of each group session, participants
have a hard copy of the House of Quality with
data derived from the previous clay's session.

A description of each of the three days of the
DQFD follows.

DQFD-Day I
The first day of the DQFD starts in the morning for
the eastern U.S. and in the afternoon for western

Europe. As is typical for all Digital QFDs, the team
begins by brainstorming to identLfy ciistomer needs.
Participants contribute icleas alternately, one from
Europe ant1 one from the U.S. Both sites record each
iclea and tlie contributor's initials on a Post-it note.
Later in the QFD, the contributor may be asked to
clarlfy the content of the Post-it note. The team also
marks each note sequentially with a number for easy
reference. The ocld numbers represent the icleas
that came from Europe, and the even numbers rep-
resent those from the U.S. Once the brainstorming
session is complete, a so-called scrubbing process
takes place to ensure a common understanding of
the content of each Post-it note. The team exam-
ines each idea statement and rewrites it if the idea is
not clearly untlerstood by all participants. No evalu-
ation of the idea takes place during scrubbing.

At this point, the DQFD diverges from tlie standard
QFD, which would now move to the Planning Matrix.
Extending the DQFD to four days would preserve the
normal sequence of QFD. To complete our work in
three days, however, we elected to follow the cus-
tomer needs brainstorming session with a similar
brainstorming exercise for product features, which
are the columns of the House of Quality. Again, we

40 Vi1. 5 No, 4 Fa11 199.3 Digital Techrrical JoztrnaZ

Defining Global Requirements with Distributed QFD

scrub the ideas after con~pleting the brainstorming.
The initial mutual session between Europe and the
U.S. is now over. We did not find that the change in
sequence had an impact on the process.

While the European team goes home for dinner
and to sleep, the u.s. team meets during the after-
noon to affinitize the customer needs specified in
the morning. Affinitizing is a free-form method of
grouping like ideas together into categories that
will become the rows of the House of Quality
Affinitizing is a highly interactive activity involving
constant physical movement of the Post-it notes.
Affinitizing woultl have been difficult across conti-
nents without supporting hardware, so we elected
to confine this work to a single site.

lifter completing its afternoon session, the u.s.
team sends the results of the affinitization to
Europe in an electronic message. When computers
are not available, information can be transferred
using facsimile machines.

DQFD-Day 2
On Day 2, while the U.S. team sleeps, the European
team reviews the affinitization of the customer
needs and compiles a list of questions and issues.
When the two teams meet during the European
afternoon and the [J.S. morning, they raise issues
about the customer needs and negotiate to resolve
the issues.

The combined groi~p now assigns customer val-
ues to each neetl and enters these values in the first
column of the Planning Matrix, which is on the
right side of the House of Quality. Next, the group
fills in each row of the Planning Matrix with corre-
sponcling values for how the customer rates our
current product, how the customer rates our com-
petition, our goal for the next product release, and
a sales point that indicates the natural attractive-
ness of the customer need. The group can now cal-
ciilate weights for each need as input to the
CorreJation Matrix. Once the Planning Matrix is
complete, the team can add ideas to the product
features and scrub them.

After the European team departs at approxi-
mately 1800 UTC, the U.S. group goes through an
affinitization exercise for the product features and
again sends the results to Europe.

DQFD- Day 3
During their morning of Day 3, the European team
members review the product features' affinitiza-
tion ancl compile a list of questions and issues,
which are acldressed with the U.S. team later that

day The major joint activity for the third day is com-
pleting the Correlation Matrix, which is at the cen-
ter or "heart" of the House of Quality. For each
(feature, need) pair, the teams decide how much
the feature, if implemented, will contribute to satis
fying the need. Each correlation is then multiplied
by the weight for that need. The sum of the weights
is entered at the bottom of each column.

Now, all the information is available to build a
Pareto chart of prioritized features. This chart,
which is the desired end product of the DQFD, pro-
vides an informed basis for future product direc-
tion. The teams do a sanity check of the chart
results. If the results appear rather different than
expected, the teams may review the steps that led
to the results to ensure that those steps were com-
pleted accurately, and to understand what data led
to the results. In some cases, accurate results lead
to counterintuitive but valid conclusions.

At the conclusion of the DQFD, the teams review
the issues list, assign action items as appropriate,
and then enumerate the next steps. These steps
may include determining the resources needed to
implement various features and perhaps doing fol-
low-on QFDs to determine more detailed informa-
tion about the various features.

Observations about the DQFD Model
In the model design just described, the U.S. team
did all the affinitizing. This scenario best suited
the particular circumstances, i.e., the scheduling
constraints and the fact that the most experi-
enced facilitator was located in the U.S.

The DQFD could have been managed from
Europe with all the affinitization performed
there, as illustrated in Figure 5. If the European
team members were to do both affinitizations,
these activities would take place during their
morning hours of the seconcl and third day. Note
that using this approach, the U.S. participants
milst begin no Later than 7:00 A . M . EST in order
to be ready to meet with the European team at
8:00 A.M. EST.

A third approach would have been to have one
affinitization take place in Europe and the other
in the U.S., a s shown in Figure 6.

The model described in detail earlier in this sec-
tion is appropriate for DQFDs between the east-
ern U.S. and western Europe and can be used in
other instances where the time difference is six
hours or less. DQFDs across locations with a

Digital Technical Journal Vo1.5 No. 4 Full 199.3

Software Process and Quality

2:00 P.M. - EUROPE - 6:00 P.M.

BRAINSTORM BRAINSTORM

NEEDS FEATURES

8100 A.M. U.S. p 12:00 M.
(NOON)

9:00 - EUROPE - 11 :00
(U.S. ONLY)

,,, AMk,

k,:oo P.M. - EUROPE - 6:OO p.M,

AFFlNlTlZE NEEDS ADJUST AFFlNlTlZED NEEDS
AFFlNlTlZED NEEDS

A n A C H CUSTOMER VALUES TO NEEDS
SEND RESULTS (APPROXIMATELY

1 HOUR) COMPLETE PLANNING MATRIX

(EUROPE ONLY) U.S. (EARLY A F A) 8.00 A M - U.S. - 12:OO M.
(NOON)

9:00 - EUROPE - 11:OO
A.M. (US. ONLY) 6:00 P.M.

AFFlNlTlZED PRODUCT
ADJUST AFFlNlTlZED FEATURES

COMPLETE CORRELATION MATRIX REQUIREMENTS
SEND RESULTS (APPROXIMATELY DOCUMENT

SUMMARIZE-FUTURE STEPS

(EUROPE ONLY) U.S. (EARLY A.ht) 8100 A.M. U.S. - 12:OO M.
(NOON)

Figure 5 DQFD Model, as Managed from Europe

2:00 P.M. - EUROPE - 6:00 P.M. (U.S. ONLY)

AFFlNlTlZE NEEDS FW-~ l t n FEATURES SEND RESULTS

TO EUROPE

8:00 A M - U.S. - 12:OO M. 1:OO - U.S. - 3:OO
(NOON) P.M. P M

DAY 2

DAY 3

10:OO EUROPE 1 2 : 0 0 ~
EUROPE (EARLY A.M.) A.M. (NOON)

AFFlNlTlZE
AFFlNlTlZED NEEDS

(APPROXIMATELY I I SEND RESULTS
1 HOUR) TO U.S. I

I I I

(EUROPE ONLY) (EUROPE ONLY)

6:00 P.M. (U.S. ONLY)

ADJUST AFFlNlTlZED NEEDS AFFlNlTlZED

FEATURES

COMPLETE PLANNING MATRIX
(APPROXIMATELY

8100 A.M. - U.S. - 12:00 M. U.S. (P.M)
(NOON)

2:OO P.M. - EUROPE - 6:00 P.M.

I 1-
ADJUST AFFlNlTlZED FEATURES

COMPLETE CORRELATION MATRIX

SUMMARIZE-FUTURE STEPS I u
8:00 A.M. U.S. - 12:00 M.

(NOON)

Figure 6 DQFD Model, as Managed Alternately fronz the US. and Ez~rope

Vol. 5 No. 4 Fall 1993 Digital Technical Jozrrnal

Defining Global Requirements with Distributed QFD

time difference greater than six hours are possi-
ble but require that the sessions be conducted
over more days and the daily overlap in work be
confined to a shorter time period of two hours.
Even with the expanded schedule, the teams
must be willing to work during the early morn-
ing and the evening hours to accommodate the
time difference. Figure 7 displays the possible

organization of activities for long-distance
DQFDs. The DQFD is spread out over six days.
Note that the team that meets in the early morn-
ing hours does the affinitization work. In order
for the team at the other location to perform the
affinitization, participants at that site would
have to work earlier morning hours or the DQFD
would take longer than six days to complete.

SITE A (A.M.) SITE A ONLY (P.M.) . h

AFFlNlTlZE NEEDS F H - t my I igz'''M 11 (2 HOURS I
(2 HOURS) SEND RESULTS

TO SlTE B

SlTE B (P.M.)

SlTE A (A M)
I I I I

I REVIEW LI ADJUST AFFlNlTlZED NEEDS

AFFlNlTlZED NEEDS
DAY 2

ATTACH CUSTOMER VALUES TO NEEDS I
SITE B ONLY (A.M.) SITE B (P.M.)

(APPROXIMATELY
1 HOUR)

DAY 3

START PLANNING MATRIX

(2 HOURS)

DAY A

SITE A (A.M.)

COMPLETE PLANNING
MATRIX

(2 HOURS)

SlTE B (P.M.)

SITE A (A.M.) SITE A ONLY ~P.M.I

BRAINSTORM AFFlNlTlZE I PRODUCT c-1 I
FEATURES (2 HOURS)

1 (2 HOURS) I I SF:FfULTS I
SlTE B (P.M.)

SITE A (A.M.)
I) I

DAY 6

DAY 5

SITE B ONLY (A.M.) SITE B (P M)

SlTE A (AM.)

I I -
REVIEW
AFFlNlTlZED FEATURES

(APPROXIMATELY
1 HOUR)

ADJUST AFFlNlTlZED FEATURES

START CORRELATION MATRIX

(2 HOURS)

I 1-
SlTE B (P.M.)

COMPLETE CORRELATION MATRIX t+ SUMMARIZE-FUTURE STEPS

(2 HOURS)

~\lote: Site A has early morning time when Site B has later afternoonlevening time.

BUSINESS
REQUIREMENTS
DOCUMENT

Figure 7 DQFD Modelfor Sites Located Far Apart

Digital Tecbnical Journal Vof. 5 No. 4 Fa11 1993 43

Software Process and Quality

Case Study: Automatic Callback
Version 2.1
The Automatic Callback (ACB) software product
provides customers, both internal and external,
with remote host access and user authentication
from personal computer platforms. A goal of the
planned update release, ACR version 2.1, was to
support the increasing number of customers who
use mobile computing solutions while traveling or
while otherwise remote from their home offices.
A cross-functional team of product developers,
planners, technical experts, and user representa-
tives from Valbonne, France; Geneva, Switzerland;
and Littleton, Massachusetts, was given the respon-
sibility of developing the product priorities
through the DQFD technique.

Planning
Several weeks before the DQFD, while in the U S . ,

the technical project leader and facilitator for the
seven-person Valbonne contingent met with the
primary facilitator of the five-person Littleton
team. They planned all sessions and created ready-
to-go materials, such as flip charts with the House
of Quality and appropriate matrices predramrn. This
preparation helped ensure that the sets of visual
materials used at both sites were exactly the same.

AII overview meeting took place one week prior
to the DQFD using videoconferencing media. After
a discussion of the process, the team discussecl the
customer base for the product and decided on
"security managers" as the major customer.

Logistics
The DQFD took place over three days, with corn-
bined Valbonne-Littleton sessions lasting four
hours, as described in the section The DQFD Model.
Using teleconferencing, the two teams alternated
between site-based activities, such as brainstorm-
ing, and interactive activities, such as attaching cus-
tomer values, goals, and correlations. Throughout
the DQFD, the project manager kept track of issues
important to the project but not those that would
be resolved at the DQFD meeting itself. At the end of
the three days, the team associated action items
with these recorded issues. The team then con-
ducted a sanity check on the House of Quality
results shown in Figure 8. The figure does not con-
tain the detailed subcategories of features and
needs that the brainstorming produced. The proj-
ect team used this additional information after the
DQFD to make specific detailed product decisions.

The project leader assigned further work to figure
in cost-benefit data ancl to subdivide the prioritized
product features.

Post-QFD
The cross-fi~nctional alliances forged at the DQFD
continued into the design and development phases
of the project. Concurrent engineering was applietl
to deliver ACR version 2.1 on schedule within a
nine-month time frame.

Lessons Learned
ACB was the first successful DQFD conducted by
CTSE, in terms of the participants getting what they
sought out of the process. To repeat that success,
OTSE examined the factors that helped the process.
At the conclusion of the Automatic Call back DQFD,
CTSE conductecl a short postproject review, asking
what went right, what went wrong, and what might
be improvetl. The following are some lessons
Learnecl:

1. Planning. The detailed planning done prior to
the overview meeting and the DQFD eliminated
potential problems and helped the process run
smoothly. It is essential that the facilitators at
each site understancl the process as it has been
modified to function in the DQFD setting.
Though not an expert at QFD, the technical proj-
ect leader's experience working in team situa-
tions balanced the primary facilitator's QFD
expertise.

2. Automated tools. This DQFD was the first in CTSE
to use the QFD/Capture tool in real time during
the QFD sessions.' After each day's activities, the
Littleton site sent a Postscript file or a facsimile
of the results of that day's work to the other site.
Each site entered the results on the flip charts
used to display the information. The automated
tool performed all the calculations and displayed
the results in an easy-to-read graphical format.
CTSE now sees the QFD/Capture tool or a similar
tool as a necessity for a smooth-running DQFD.

3. Issues list. Maintaining an issues list accessible to
all sites allowed the teams to remain focused.
Topics that might sidetrack the tliscussion were
duly notecl by the project manager, and the DQFD
moved aheatl.

4. Videoconferencing. Most participants were
impressed with the use of videoconferencing
ant1 would have preferred that the entire DQFD,

Vol 5 i\'o 4 FoLl 199 j Digital Technical Jozrrnrrl

Defining Global Requirements with Distributed QFD

FEATURES RAW WEIGHT

Figure 8 Automatic Callback Version 2.1 DQFD Results

not just the overview meeting, take place via
videoconferencing. Something is lost when you
do not see the person with whom you are talking.

5. Competitive data. Although the teams had good
customer data, they did not have much informa-
tion about competitive offerings. Such competi-
tive data would have helped the teams establish
more accurate weighting to the customer needs.

Recommendations
With each Distributed QFD conducted, CTSE learns
more about how to improve the process and
applies this knowledge to future DQFDs. The follow-
ing are some CTSE recommendations for conduct-
ing successfill DQFDs:

1. Al.1 participants shoulcl be educated in the QFD
process, i.e., know their roles and the kinds of
results to expect. Unknowledgeable participants
only add to the confusion of the DQFD. CTSE has

developed two half-day learning motlules,
"Introduction to QFD" and "Improving the
Effectiveness of QFDs." Participants who com-
plete the first module consistently contribute
effectively at our DQFDs. Those that complete
both modules help organize and lead the DQFD
and follow-on activities.

2. Designate a primary facilitator. Although it is
important to have facilitators at each site, specify-
ing one primary facilitator, with the responsibil-
ity of designing and managing the organization
of the meeting, works best. Having two "expert"
facilitators who independently "know what is
best" and who implement their separate ideas
can have a disastrous effect because information
may not be in a compatible form for the concur-
rent sessions.

3. Use a computerized QFD package. Having a sup-
port package is nearly essential in DQFD to pro-
vide an accurate and quick way to ensure that

Digital Tecbrricul Journal Vi. 5 No. 4 Fall 1993 4 5

Software Process and Quality

each team is viewing the same information. We
have used QFD/Capture and take advantage of
both facsimile and electronic communication to
mail updated versions of the House of Quality
each day.

4. Be clear about the target customer before the
DQFD sessions begin. If the product or service
has an array of customers, be sure to speclfy a
primary customer at your overview meeting.
Doing so will help you decide which customer
or set of customers to differentiate between,
should there be a conflict during the DQFD.

5. Encourage attendance throughout all sessions.
The work of the DQFD is most effective if all who
participate in the overview meeting attend each
day of the DQFD. People who arrive for later ses-
sions but have not participated in earlier ones
usually have difficulty contributing effectively
without extensive updating and rehashing of the
work of previous sessions. In addition, latecom-
ers may have trouble adjusting to the different
format of the DQFD.

6. The preparation is as important as the DQFD
itself. In order for the DQFD to be fruitful, the
customer information must be current and accu-
rate. Such data helps establish goals that are
competitive in the key areas about which the
customer is concerned. When the list of partici-
pants is being selected, special care should be
taken to ensure a diverse and comprehensive
representation of customer interests and corpo-
rate functions.

Summary
The Distributed Quality Functioll Deployment
technique provides an efficient and effective mech-
anism to bring together customers and multifunc-
tion representatives from across the globe into an
interactive setting to exchange information and pri-
oritize product actions in real time. The success of
the DQFD rests on a sound implementation model,
trained facilitators and participants, preparation
and planning, and a team willing to work toward
solutions through brainstorming and consensus
building. Flexibility is important because adjust-
ments must be made throughout the process to
accommodate the multiple physical sites involved.

Corporate Telecommunications Software Engi-
neering has defined and refined a set of DQFD tech-
niques that has successfully met the goal of
establishing consistent and valid product features

to meet the business needs of its customers. DQFD
has been adopted as a standard part of Digital's soft-
ware development process.

Reference

1. QFDICAPTURE (Milford, OH: International
TechneGroup Incorporated, 1988).

General References

Y. Akao, Quality Function Deployment: Integmt-
ing Customer Requirements into Product Design
(Cambridge, MA: Productivity Press, 1990).

D. Clausing, Quality Function Deployment:
Applied Systems Engineering (Cambridge, MA: MIT
Press, 1991).

L. Cohen, "Quality Function Deployment: An Appli-
cation Perspective from Digital Equipment Corpo-
ration,'' Natio.na1 Productivity Review (Summer
1988).

J. Hauser and D. Clausing, "The House of Quality,"
Harvard Business Review (May-June 1988).

B . fing, Better Designs in Half the Time (Methuen,
MA: Goal QPC, 1987).

B. Jedrey, Jr., Planning and Conducting Dis-
tributed Qzrality Function Deployment (Littleton,
MA: Digital Equipment Corporation, Corporate
Telecommunications Software Engineering, 1992).
This internal document is unavailable to external
readers.

L. Tse, J. Bolgatz, and R. June, "Using Quality Func-
tion Deployment to Design the Colormiv Widget,"
Technical Report DEC-TR 739 (Maynard, MA: Digital
Equipment Corporation, November 1990).

G. Van Treeck and R. Thackeray, "Quality Function
Deployment at Digital Equipment Corporation,"
 concur^-ent Engineering (January/February 1991):
14-20.

Vo1. 5 No. 4 FQN 1995 Digital Technical Journal

Ernest0 Guerrierzerz
BruceJ Taylor I

DEC TP WORKcenter:
A Sofitware Process Case Study

DEC TP WORKcenter is Digital's object-basedproduction system development envi-
ronment for Application Control and Management System TP applications. Goals
for the DEC TP WORKcenterproject were to meet customers' requirements, to Po-
vide superior product quality, and to maintain schedule predictability Modern
softzuare process techniques helped to achieve an appropriate balance in resolving
the inevitable conflicts between project goals. A critical analysis of each software
process shozus its effect on the engineering team, the product, and the project sched-
ule. Changes to the process were implemented based on the team's experience and
qzulity metrics. Recommendations to other project teams are offered based on the
conclusions drawn from the DEC TP WORKcenterproject.

The DEC TP WORKcenter product is an interactive
production system application development envi-
ronment specifically customized for Application
Control and Management System (ACMS) transac-
tion processing (TP) applications.' Development of
the DEC TP WORKcenter object-based development
environment started in 1991 in response to requests
from a number of Digital's ACMS customers. They
wanted a tool that could help them to

Perform configuration management of ACMS

application components

Track ACMS application components

Obtain a more efficient build mechanism for
ACMS applications

The product development team consisted of a
team leader, an architect, six software engineers,
a quality engineer, two test engineers, and two doc-
umentation writers. The average experience of the
team was seven to eight years of industrial experi-
ence (with at least three members having over ten
years of experience) in a wide variety of software
industries, including defense-oriented develop-
ments. This breadth of experience was important
in the creation and adoption of the development
process.

The key goals of the project were to provide

Customer-defined product requirements

Compliance with the product requirements
specification

A high-quality product

Delivery on schedule

For the customer satisfaction goal, we describe
our use of Contextual Inquiry, Quality Function
Deployment, conceptual modeling, and rapid pro-
totyping. We also describe a formal requirements
documentation technique to analyze requirements
and guide later software phases.

For the quality goal, we describe the use of the
requirements document, the interface and design
review process, and the use of inspections. We
mention functional testing as guided by the require-
ments document.

For the schedule goal, we discuss the organiza-
tion of the team into working groups and the use of
the requirements document to ensure coverage of
a requirements matrix.

Finally, we describe several management pro-
cesses for balancing conflicting goals and assessing
project dependencies and risks through process
metrics. From this experience, we have formulated
a collection of recommendations that we feel are
true not only for the DEC TP WORKcenter project
but for all projects.

Theme
Every engineer on the DEC TP WORKcenter develop-
ment team had experience with formal or semifor-
mal software development processes. The positive
experiences came from projects that were devel-
oped smoothly and without incident. The negative

Digital Technical Journal Vo1. 5 No. 4 Full 1993

Software Process and Quality

experiences stemmed from projects that enclecl in
disaster in spite of (or because of) formal develop-
ment methodologies. The entire engineering team,
however, was enthusiastic about formal policies, as
long as the team could be in control of the process.
The team's unofficial motto was

"Use the process, but
don't let the process use you."

Throughout the development cycle, we looked
for formal techniques to control various parts of
our work, and then tried to adapt these techniques
to the particular requirements and capabilities of
our development team. In some instances, we were
able to install a formal mechanism with little or no
modification; but for most cases, we had to refine
the mechanism, using the following steps.

1. Document the mechanism.

2. Test it on a realistic sample task.

3. Collect objective measures of how well it worked.

4. Adapt the mechanism.

5. Repeat until satisfied.

We never used complex metrics, software
physics, or deep analysis; the key to any success
was to keep the process simple and to continually
adapt it to fit the nature of the task and the team.
Once we were satisfied with the process, we tried
to apply it uniformly and consistently across the
product development.

Design Requirements
Because the DEC TP WORKcenter product was the
result of a customer-driven process, we were faced
with a number of challenges, which can be catego-
rized into the following three areas.

Gathering customer requirements efficiently,
accurately, and objectively

Capturing and integrating the requirements
of several customers into a single, coherent
specification

Recording the requirements specification so
that it could be used as a reference during design
and testing phases

With the help of Digital's Software Engineering
Technology Center (SETC), we focused on two
techniques for gathering requirements: Quality

Function Deployment and Contextual Inquirjl.
Furthermore, we utilized a formal requirements
specification clocurnent to capture the results of
these techniques. We also utilizecl prototypes to
validate our understanding with the customers and
documented this in another document, the DEC TP
WORKcenler Conceptual Model.

Ouality Function Deployment -
Quality Function Deployment (QFD) is an exercise
in forming consensus among team members
(including customers and development partners)
for identifying key rec~uirements .~~~ In a previous
project, QFD techniques had been performed for
many of the same functionalities of the DEC TP

WrORKcenter product. We evaluated the validity of
the data and results of QFDs for that project to
determine if they could be applied to the overlap-
ping features in the DEC TP WrORKcenter product.
This method allowed us to take advantage of valid
QFD data and results without incurring the cost of
producing them.

Apart from the reuse of valid QFD results, we
found QFDs to be a fairly expensive way to gather
requirements. The QFD techniques involve a great
deal of preparation, customer participation, and
analysis. The results, however, justified the effort
expencled. We emerged from the QFD process with
a prioritized list of requirements. For each require-
ment, we also identified (1) how well the current
products satisfy the requirements, and (2) how
well the competition satisfies the requirements.

All of these factors were expressecl as numbers
and could be readily ranked for importance, cost,
and benefit. Once the requirements were ranked,
we determined the features to be included in the
product based on resources and projected market
dates. These decisions were then validated by the
customers who had been involved in the initial
requirements gathering.

Recomnzendntion: Reuse QFD d a u . Existing QFD

data (either QFD input data and/or requirements
resulting from the QFD) may be reused upon assess-
ment of their validity

Co9ztextual Inquiry
Acting on the advice of the SETC, we used Con-
textual Inquiries (CIS) to gather recluirernent~:~,~ Crs
are structured visits to selected customer sites to
record exactly how the customer develops ACMS

applications today, and exactly how a proposetl

Vo1. 5 No. 4 F ~ ~ l l l 9 9 . 3 Digital Techrrical Journal

DEC TP WORKcenter: A Software Process Case Study

solution could improve the customer's productivity.
This technique involved a great deal of analysis and
was an expensive way to gather requirements. We
feel it was worth the cost because it gave us confi-
dence in our requirements list. We were able to
compare the requirements against actual customer
activities to determine:

1. Those requirements on the list that would not be
used by the customers

2. Those customer activities that would not be sup-
ported by the product as described in the
requirements list

Both the CI and QFD techniques yielded firm,
objective requirements specifications that could be
compared, rankecl, and further analyzed.

In retrospect, the Cls that had the most impact
were the ones that were properly documented for
future reference immediately after the CI visit.

Recommendation: Document Contextual Inquiry
data. In order to trace information to the CI
and/or reuse its data, the CI visit needs to be for-
mally documented.

Requirements Speczyication
We needed an effective way to capture and com-
bine the product requirements into a formal speci-
fication that could be used as a benchmark for
development. Several engineers on the team had a
background in programming for the Department of
Defense and were familiar with the D O D - S T D ~ I ~ ~ A
development process.6 These engineers convinced
the team that the process is beneficial if it is simpli-
fied and streamlinecl.

Accordingly, the team analyzed the DoD-STD
2167A Software Requirements Specification format
and moclified the format to the project's needs.
As a result, the team produced a requirements spec-
ification document that matched the scope of
the project, reflected the background of the team
members, and traced the origin of the customer
requirements. The final document was 40 pages of
semiformal prose and has remained current for the
duration of the project.

We have used the requirements document as an
important data source in later development phases.
During software design, we compared design fea-
tures to the requirements document to eliminate
unnecessary design frills and to detect requirements
that were not met. We referred to the requirements
specification to develop a test suite for complete

testing of all product features. To ensure the use of
the requirements specification, the documentation
should be kept as short as possible, as concise as
possible, and as descriptive as necessary.

Recommendation: Customize the requirements
specification The level of formality of the require-
ments specification should reflect the purpose of
the document. Furthermore, it should be as short as
possible, as concise as possible, and as descriptive
as necessary.

Prototypes and Conceptual Model
While we were preparing the requirements specifi-
cation, we also built two prototypes of the human
interface for the DEC TP WORKcenter environment.
The first prototype existed only on paper as a series
of Motif windows that illustrated how we imagined
the main functions of the DEC TP WORKcenter
would operate. We showed this paper prototype to
customers, asked for their feedback, and made
extensive modifications based on their reactions.
We repeated this process at least three times. In
retrospect, it was an expensive way to refine the
interface, but it gave us confidence that we were
building the correct interface to our product. This
paper prototype was captured in a formal docu-
ment called the DEC TP WORKcenter Conceptual
Model and would later support the DEC TP
WORKcenter Functional Specz'ji'cation and the user
interface design.

To demonstrate that the product was practical
and to get some initial performance results, we also
constructed an executable prototype of a few prod-
uct functions. This activity was valuable in demon-
strating feasibility, but it had two unfortunate side
effects. First, it distracted the team from the design
process, which caused the schedule to slip. Second,
we did not have the sense to discard the prototype
after it served its purpose. The engineering proto-
type suddenly became the first base-level code and
entered the main line of development. Eventually,
we had to rewrite most of the prototype code,
which was a more costly procedure than starting
with a clean design. The engineering prototype can
be a valuable step if it has a well-defined purpose
and if it is discarded when that purpose is served.

Recommendation: Restrictprototype usage. The
engineering prototype can be a valuable step in
product development, if it has a well-defined pur-
pose and if it is restricted to that purpose.

Digital Tecbrfcal Journal Vo1.5 No. 4 Fa11 1993

Software Process and Quality

Design Phase
We used several techniques during the design
phase, including

Feature-based working groups

Electronic design notebook

Layered approach to object-oriented design

Detail-level design header files

The feature-based working groups allowed the
team to develop the high-level design in parallel in
a concentrated period of time. The output of each
feature-based working group was kept in an elec-
tronic design notebook and formed the evolving
high-level design. Once the high-level design was
completed, the team reviewed the design to vali-
date consistency and integrity to product require-
ments and between interacting or dependent
product features.

A layered approach to the object model was used
to describe the design of the product. The layered
approach allowed for easy separation of the object-
oriented design from the object-oriented features
of the product. After the high-level design was com-
pleted, header files were used to define the detail
design of the product.

Feature-based Working Group Technique
During the design phase, we defined the major fea-
tures of the product and determined which require-
ments affected which feature. We then formed
feature-based working groups (FBWGs) to develop
the design of each feature with respect to its asso-
ciated product requirements. Team members par-
ticipated in the FBWG of interest to them, and a
designated responsible individual (DRI) led each
FBWG. Since the number of team members was less
than the number of working groups, team members
participated in more than one FBWG. There were
approximately twice as many features as there were
team members. Consequently, each team member
was a DRI of approximately two FBWGs and partici-
pated as a member of approximately six other
FBWGs. Once membership of the various FBWGs
was established, the FBWGs met, depending upon
the availability of the members. Meeting conflicts
were avoided by tracking FBWG meetings on a
white board.

Table I illustrates the team members' participa-
tion in the various FBWGs for the DEC TP
WORKcenter project. The columns in Table 1 repre-
sent the various FBWGs, and the rows represent the

project team members. The entries in the table indi-
cate the role that a specific team member played in
the specific FBWG. The load column indicates the
overall role (number of FBWG DRI roles, number of
FBWG member roles) the team member played
across all FBWGs.

Dependencies or interactions between product
features needed to be managed. If a team member's
participation overlapped with the interacting fea-
tures, that person provided a means of communi-
cating among the associated FBWGs. Otherwise, the
corresponding DRIs provided this exchange of
information. Also, the project leader and the archi-
tect attempted to attend all meetings to guarantee
consistency across the various FBWGs. This allowed
us to resolve many issues consistently, but we
would have benefited from a more formal mecha-
nism for settling design disputes.

The FBWGs continued to a lesser extent during
the detail-level design, but the issues were nar-
rower in nature and were dealt with by the FBWG
DRI and the affected component DRIs.

In conclusion, the FBWGs provided clear assign-
ment of responsibility and guaranteed that the
design was covered by more than one team mem-
ber. Due to their parallel nature, the FBWGs had no
adverse affect on the schedule. Unfortunately, even
for small groups, the FBWG generated too much
specialization of knowledge.

Recornmendation: Adapt the design process. The
design process should be adapted to meet the
schedule and resource constraints.

Electronic Project Notebook
The minutes and draft/final design of each FBWG
were recorded in an electronic project notebook.
The electronic project notebook provided a means
of communicating the evolving design of the prod-
uct among the team members. Once entered into
the notebook, the information was made available
to the team. Also, the entries posted in the notebook
during the day were collected and mailed electroni-
cally to the team members every night so that the
team remained current on all design issues and
decisions. This proved an efficient method for com-
municating the information to the entire team as
well as for recording the information for later use.

Without a goal to produce a formal design docu-
ment, the team members were not as carehl in doc-
umenting their design. Furthermore, the design
was dispersed over a set of notebook entries that
created issues in two areas:

Vol. 5 No. 4 Fa11 1993 Digital TecbnicalJournal

DEC TP WORKcenter: A Software Process Case Study

Table 1 Feature-based Working Group Matrix

Team Load WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG WG
Member D/P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Engineer 1 1111 P
Engineer 2 215

Engineer 3 2/8 P
Engineer 4 219 P P

Engineer 5 418 D P D
Engineer 6 119 P
Engineer 7 1/2

Engineer 8 314
Engineer 9 2/7 P D

Document
Writer 1 011

Document
Writer 2 1/3

P D P P P P P P
D D P P

P P D D

P P D P
P P P

P P P P P

Notes:

D - Designated responsible individual for the WG

P - Partici~ant in the WG

D D

P D P P P

P P P

D P

Configuration management: Which notes formed
the current set of design notes?

Inspection difficulty: Which version of a design
note was a source document?

The electronic project notebook was not limited
to the design phase but was used to record and
exchange information throughout the phases of the
product development life cycle.

Recommendation: Cal~ture project information.
The electronic project notebook is an easy way to
share knowledge and exchange ideas, issues, solu-
tions, futures, etc., about a project.

Recommendation: Generate formal design speci-
fications. Although the electronic project note-
book contained the design, it is not a substitute for
a formal design specification.

Layered Approach to
Object-oriented Design
Since the product would be object-based, we used
object-oriented design (OOD) techniques. Due to
the inexperience of some team members, the dis-
tinction between abstraction levels was not always
clear. To allow the team to recognize the different
abstraction levels, we used different languages for
the two levels of abstraction. At the product level,
object-oriented terminology was used. At the prod-
uct architecture level, a constrained layered model

was used in which the constraints allowed a simple
mapping into an object-oriented model.

The following constraints were applied to the
various layers in the model.

1. Each layer provides one and only one specific
type of resource.

2. Each layer provides a set of services to manipu-
late that resource.

3. The resource and/or its services may use other
layers to provide needed resources and services.

These rules allowed the team to distinguish
between the design of the product and the data
model of the objects manipulated by both the prod-
uct and its object-based operations. Although this
layered approach to OOD was formulated to make
use of the team's background, the resulting design
was not a pure OOD.

Recommendation: Understand the purpose for
modifying a process. Although the layered
approach to OOD attempts to bridge traditional
design methods to OOD methods, it should repre-
sent only a phase in a planned transition to OOD
techniques.

Detail-level Design Header Files
During the detail-level design stage, we refined the
various layers required to implement the resources
and services to support the product features. This

Digital Tecbnical Journal fill. 5 No. 4 Fall 1993 51

Software Process and Quality

included determining the final interface of each
layer, defining the resource controlled by the layer,
and describing the functionality of the services pro-
vided by each layer.

To optimize consistency and effort, the detail-
level design was represented as a C header file that
provides the services of a layer implemented in a C
module. Furthermore, if a module represents an
object, then the header file consists of the visible
operations that can be performed on the object.

The header files were placed under configura-
tion control while issues and resolutions concern-
ing a layer were recorded in the electronic design
notebook.

Since several features required the services of
a specific layer (later implemented as a C module
or component), we captured the relationships in a
feature/component matrix. Table 2 gives the feature/
component matrix for the DEC TP WORKcenter
product. The columns in Table 2 indicate the vari-
ous product features, and the rows indicate the
components of the product. An entry in the matrix
indicates that the component implements or sup-
ports part of the product feature.

A DRI was assigned to each header file to coordi-
nate the needs of the various features on that layer.
The component DM met with several FBWG DRls to
ascertain the needs of each feature and present

Table 2 FeatureIComponent Matrix

Components Features
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 3
2 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3
4 2 2 1+ 2+ 3 3 2+ 3 2 + 3 2 2+ D

5 3 3 3 3 3 3 3 3 3 3 3 3 D

6 2 2 2+ 2+ 3 3 2+ 3 2 + 3 2 3 D
7 2 2+
8 2 2+ 2+ 3 3 2+ 3 2+ 3 D

9 3 2+
10 3
11 2+

12 2+

13 1
14 1+ 1+ 2+ 3 3 2+ 2 3 2

15 2 1+ 1+ 2+ 3 3 2+ 2+ 3 2

16
17
18
19
20
21 2
22 2+

23

24

Notes:

1 : Base Level 1
1+ : Base Levels 1 and 2
2 : Base Level 2
2+ : Base Levels 2 and 3
3 : Base Level 3
D : Deferred

5 2 Vol. 5 No. 4 Fa11 19.93 Digital Technical Journal

DEC TP WORKcenter: A Software Process Case Study

a satisfactory interface. On the other hand, each
FBWG DN needed to coordinate with several com-
ponent DRIS to provide the capability for the associ-
ated feature.

Recommendation: Share information across
development phases. The use of header files as
part of the detail-level design provided (1) a central-
ized location for all interface information about
a module, (2) no redundancy of interface informa-
tion, and (3) an up-to-date interface in the corre-
sponding code.

Design Reviews
The entire team reviewed the high-level design for
consistency across the various product features and
for integrity of the dependencies between features.
Due to time constraints and the amount of design
information, this review was inefficient and was
not formally completed. Marathon high-level
design review did not work since it was too intense
and too long. We concluded that the review pro-
cess must be streamlined.

The detail-level design was represented as C
header files. Consequently, they were targets for
code inspection.

Recommendation: Review the design in manage-
able pieces. Divide the high-level design into
modules so that its review is manageable.

Code Inspections
Although inspections were used for the require-
ments document and the data model design, most
of the inspections occurred during the DEC TP
WORKcenter cocling phase. The technique was
modified to deal with time constraints and the
amount of coding, and to gain the acceptance of
the team on the usefulness of inspections. Basically,
we defined a formal inspection and a semiformal
inspection.

The formal inspections follow the guidelines as
described by Fagan.7.8 The semiformal inspections
had the following restrictions:

1. Only two engineers participated in the
inspection.

2. The moder;~tor was also the reader.

3. The author was also the recorder.

The following criteria were established to decide
which type of inspection would be performed.

1. Complex code was formally inspected.

2. Critical code was formally inspected.

3. Remaining code was informally inspected.

The complexity of the module was determined
by computing the McCabe cyclomatic complexity
of the m0dule.9'~~ The threshold for complex code
was initially set at 7 and would be periodically
adjusted based on feedback on the effectiveness of
the inspections. Note that the literature has usually
determined 10 to be this threshold. At 7, approxi-
mately 17 percent of the code was considered com-
plex. This may be attributed to either the tendency
of modules to represent objects in the design or the
use of the X Window System and Motif as the graph-
ical user interface.

The project leader determined the critical code
according to the nature of the code or intermodule
dependencies in the system. This information was
available from the detail-level design. One example
is DEC TP WORKcenter parsers, where the flow of
control is based on pattern triggers rather than on
sequential execution of statements. Consequently,
the DEC TP WOKKcenter parsers were deemed to be
complex.

All remaining code was inspected using semifor-
mal techniques. To discourage the engineers from
artificially constraining their code to be noncom-
plex, the project leader could randomly choose
code for formal inspections (this was never
needed).

As another refinement to the inspection process,
we reduced and adapted the set of codes used to
characterize a defect according to the type of docu-
ment being inspected. This technique allowed us to
accelerate the inspection and continue to capture
the information of interest.

In another attempt to refine the inspection pro-
cess, the recorder defined the defect codes. This
accelerated the semiformal inspections but slowed
the formal inspections.

Recommendation: Understand the purpose for
modifying a process (revisited). Under schedule
or resource constraints, consciously decide how to
formally relax the inspection process and under-
stand the consequences.

Recommendation: Choose tools to support the
process. Given unbiased criteria to select the level
of inspection, choose the appropriate tools to sup-
port the decision process.

Digital Technical Journal Vo1. 5 Ab. 4 Fall 199.3

Software Process and Quality

Scheduling
Project scheduling played an important role in man-
aging the project. Scheduling tools associated with
personal computers (such as program evaluation
and review technique [PERT], critical path method
[CPM], precedence network, and resource leveling
capabilities) were used to manage the schedule.
Tasks were classified as either process-related or
product-feature-related. The process-related tasks
covered activities such as Digital's Phase Review
Process or customer interactions. The product-
feature-related tasks were activities directly related
to the design, implementation, and testing of prod-
uct features.

One distinction of the DEC TP WORKcenter prod-
uct is that most of the product-feature-related
schedule was determined from the feature/compo-
nent matrix (see Table 2). When a specific feature
was planned to be added into the product, the com-
ponents supporting that feature were also sched-
uled to be added. The entries in the matrix in Table
2 indicate in which code base level the component
implements or supports the product feature.

The engineer(s) assigned to a task submitted an
estimate of the time needed to accomplish the task
to the project management. If the estimates were
considered unreasonable based on past engineering
experiences, an in-depth analysis was performed to
understand the discrepancy. These discrepancies
were due to either a misunderstanding by the proj-
ect management of the complexity of the task or an
inefficient solution plan by the engineer to build
upon existing components or processes.

Recommendation: Share information across
development phases (revisited). Use require-
ments analysis and design information to define the
schedule.

Reconzme~zdation Get team sztpport for the
schedule. For any schedule, obtain commitment
from the team.

EfSiczCZency Factor
We also calculated an efficiency factor to account
for activities that would lower the efficiency of
engineers in performing their tasks. These activi-
ties included periodic mail reading, attending non-
project-related meetings, sick time, jury duty, and
code inspections. We revised all work estimates to
reflect the engineer's efficiency factor. Initially, the
efficiency factor for most of the engineers was calcu-

lated to be 60 percent. Although the efficiency factor
was intended to achieve the most realistic schedule
possible, it was the cause of several problems:

The efficiency-related activities were counted
twice if the engineer's estimates included these
activities.

There is an assumption that the efficiency-
related activities are spread uniformly over all
tasks. This is true for repetitive activities that
occurred within the resolution of the tasks
being estimated, but other efficiency-related
activities occurred rarely (e.g., sick time) or
were associated with a specific phase of the proj-
ect (e.g., code inspections).

As a result, the schedules needed to be refined
and adjusted frequently.

Recommendation: Understand the factors that
impact the schedule. The efficiency factor
attempts to capture those separate activities that
were not worthwhile but impact the efficiency of
other activities.

Unplanned Tasks
During the initial phase of the project, the project
management recognized that schedule predictabil-
ity was highly influenced by unplanned tasks. To
better understand the nature of unplanned tasks,
the project management participated in a Software
Metrics In Action (SMLA) course offered by the SETC.
The SMIA course was applied to our problem of
unplanned tasks over the next phase of the project.
To our surprise, we concluded that, no matter how
well one plans, one always has an additional 20 to
25 percent of unplanned tasks. This included new
tasks, existing tasks that took longer, and existing
tasks that were completed.

Recommendation: [Jnderstand the impact of
unplanned activities. No matter how well one
plans, one always has an additional 20 to 25 percent
of unplanned tasks. This includes new tasks, exist-
ing tasks that took longer, and existing tasks that
were completecl.

Milesto~zes
The difficulties of estimating tasks and the exis-
tence of unplanned tasks would sometimes render
the schedule invalid. Milestones within the project
scheclule allonled the team to meet the associated
deadlines. Milestones also caused two events that
affected the project:

W)1. 5 No 4 Fall 199.3 Digital Techtrical Jozcrnal

DEC TP WORKcenter: A Software Process Case Study

Unplanned tasks were prioritized against
planned tasks, causing readjustment of mile-
stones based on the prioritization criteria.

Engineers became more efficient, causing the
efficiency rating to be revised and allowing
some of the unplanned tasks to be included
without impacting the schedule.

Recommendation: Define milestones. The team
works best when well-defined milestones for goals
are established.

Feature "Hit List"
Toward the end of the design phase, we determined
that the planned date for completion could not be
met unless we reduced the functionality of the
product. We created a feature "hit list" in the elec-
tronic project notebook in which we listed the can-
didates for elimination from the product. The
feature hit list was used in a Pugh process to deter-
mine, in a structured manner and with group con-
sensus, the features to be eliminated in order to
meet the projected market date."

Some of the features that we eliminated through
our hit-list technique originated in the QFD pro-
cess. During field test training, customer feedback
indicated that some of the eliminated features were
needed for a viable product. This event caused us to
reevaluate and readjust the projected market date
in order to include the missing features. Thus, we
reaffirmed the validity of the results supporting our
customer satisfaction goal.

Furthermore, the readjustment of the projected
market date had high management visibility, but
the utilization of the customer satisfaction pro-
cesses permitted us to adequately document the
rationale for and justification of the readjustment.

Recornnzend~tion: Manage and adapt the change
process. When making a change that is visible to
the customer and/or management, one needs (1) a
formal process for defining the change, (2) con-
sensus among the team, (3) traceability to facts
supporting the original decision and its change,
(4) impact analysis of change, and (5) agreement
from customer and/or management.

Final Phase
In the final stages of the DEC TP WORKcenter prod-
uct development, we conducted field tests at cus-

tomer sites, identified defects, and determined the
final changes to be made to the product.

Field Test Advocacy Program
During field test, we took a proactive approach in
our relationship with the customer field test sites.
Under our Field Test Advocacy Program, an engi-
neer is assigned to monitor the progress and to
resolve any issues or problems at the customer's
field test site. The engineer monitors the cus-
tomer's software problem reports (SPRs) in the field
test SPR database to understand (or be aware of)
any patterns in SPRs.

In one example, a customer raised a series of fea-
ture suggestions that were all attempts to use the
DEC TP WORKcenter environment for an unsup-
ported object type. Although the suggested fea-
tures would be useful, they would not be as
important if the main feature was provided.
Monitoring customer SPRs provided us with an
understanding of how the customer was testing
and assured the customer that the engineering team
understood the customer's concerns.

Recommendation: Adopt zuefulprocesses. Adopt
processes in which the benefits outweigh the
costs, but understand the time frame of both.

Tracking Defects and Monitoring Fixes
As the product was being developed, all (internal
and external) problems were tracked using a prob-
lem tracking tool. Every problem was entered into
the problem database and given a unique identifier.
This allowed the engineer to associate a fix with the
corresponding problem identifier. Furthermore,
the problem tracking tool allowed us to monitor
the defect identification and fix rate on the project.
Figure 1 shows both the number of problems
entered over time as well as the problems fixed
over time.12 Interesting points in the graph are the
slopes, plateaus, change in slope, and vertical dis-
tance between the two lines.

The tracking tool also allowed us to verify that
the priority of the fixes was consistent to the sever-
ity of the problem. Figure 2 shows the same graph
for the two highest severity classes and indicates
that the problems with the highest severity classes
were monitored closely and fixed immediately.

Tracking the problems worked well to identify
issues during the DEC TP WORKcenter product
development. More analysis, however, was needed
to understand trends as soon as possible.

Digital Technical Journal Vo1.5 No. 4 Fa11 1993

Software Process and Quality

" 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

DAYS
KEY:

- TOTAL SPRS ENTERED
- - - - TOTAL SPRS PROCESSED

Figure I Trend of Total SPRs
Entered and Processed

DAYS
KEY:
- TOTAL PRIORITY 1 SPRS ENTERED
- - - - TOTAL PRIORITY 1 SRRS PROCESSED
. TOTAL PRIORITY 2 SPRS ENTERED

TOTAL PRIORITY 2 SPRS PROCESSED

Figure 2 Trend of Priority I and 2 SPRs
Entered and Processed

Recommendation: Adopt processes to collect valzl-
able metrics. Understand the rationale for adopt-
ing a metric and set up a process that achieves the
goal of the metric.

MUST-DO Lists
As we approached major code freeze dates, we pri-
oritized the defects to be fixed and compared them
to our MUST-DO criteria. Usually the criteria con-
sisted of the following.

The defect was a priority 1 or 2.

The defect impeded testing efforts of critical
functionality.

The defect represented a regression from a pre-
vious stable version of the product.

The defects were added to the MUST-DO list if
they met the criteria. This list indicated backlogs of
defects that needed to be resolved prior to declar-
ing a code freeze. Figures 3 and 4 show MUST-DO
count patterns prior to reaching code freeze. The
solid line (total) indicates the outstanding MUST-DO
items over time.

Recommendation: Define valz~able metrics (or
focus on important issues). The MUST-DO list
helps prioritize the tasks that require focus during a
specific activity and provide well-defined goals for
the team.

Product Stability
Once the product had reached feature freeze, a
change control board was put in place to guarantee
the stability of the product and to avoid any major
regression that would impact the schedule. The
board approved the inclusion of any defect fix after
(1) review or inspection of the code modifications,
and (2) adequate testing.

Furthermore, we monitored the defect discovery
rate to determine i f it was stable enough to warrant
a code freeze.J2 In this case, we measured a running
total of the number of MUST-DO items added over
the last five days. Figures 3 and 4 show this metric.
The broken line (five-day cumulative) indicates the
five-day running total and measures if the changes
are stabilizing.

0 . 0 0 ~ " " " " " ' " " " " " ' " " " ' " " " " " " " " " " "
10 20 30 40 50

DAYS
KEY:

- TOTAL OUTSTANDING MUST-DO ENTRIES
- - - - LAST FIVE-DAY RUNNING CUMULATIVE OF

OUTSTANDING MUST-DO ENTRIES

Figure 3 Trend for MtJSTDO Processing and
Stabiltty Metric for Code Freeze I

&>I. 5 No. 4 Fa11 1993 Digital Technical Journal

DEC TP WORKcenter: A Software Process Case S t d y

; " " " " " " ' 10 20

DAYS
KEY:

- TOTAL OUTSTANDING MUST-DO ENTRIES
- - - - LAST FIVE-DAY RUNNING CUMULATIVE

OF OUTSTANDING MUST-DO ENTRIES

Figure 4 Trend for MUST-DO Processing and
Stability Metric for Code Fyeeze 2

Recommendation: One can always improve. It is
never too late to set up a change control board to
reduce the introduction of new problems and
regressions.

Conclusions
The DEC TP WORKcenter object-based development
environment (version 1) was developed over
approximately 24 months. During this time, we
were presented with a variety of situations that
could have impacted our project goals. This paper
presents several of the processes that the team
adopted to meet the project goals. Table 3 summa-
rizes the recommendations based on our experi-
ences on adopting processes to support our goals.
In retrospect, we see that the project functioned
smoothly when all of the following conditions
were met.

Everyone understood what development phase
was in progress.

We identified a set of processes to govern each
phase.

We adapted the process to suit the project team.

We adapted the process to the realities of the
project schedule.

All the team members understood and accepted
the process.

We followed the process conscientiously.

In short, the entire experience of the DEC TP
LVORKcenter project can be summed up as:

Software development processes should be as
simple as possible.

The team should formally adapt the processes to
its own needs.

The team should understand the consequences
of modifying the process.

Although these rules of thumb do not ensure
a smooth, productive project, the DEC TP
WORKcenter team found them to contribute to a
successful conclusion.

Our recommendations can be adopted by any
project team; however, the team would benefit by
taking part in a similar process of identQing its goals
and supporting them with appropriate processes.

Acknowledgments
The authors would like to acknowledge the mem-
bers of the DEC TP WORKcenter team, past and pre-
sent, that helped define and adopt the various
processes presented in this paper. Also, the
detailed comments from the many reviewers were
very helpful.

Table 3 Recommendations Based on
the DEC T P WORKcenter
Development Project

1. Reuse QFD data.
2. Document Contextual Inquiry data.
3. Customize requirements specification.
4. Restrict prototype usage.
5. Adapt the design process.
6. Capture project information.
7. Generate formal design specification.
8. Understand the purpose for modifying a

process.
9. Share information across development phases.

10. Review design in manageable pieces.
11. Choose tools to support process.
12. Get team support for the schedule.
13. Understand the factors that impact the

schedule.
14. Understand the impact of unplanned activities.
15. Define milestones.
16. Manage and adapt the change process.
17, Adopt useful processes.
18. Adopt processes to collect valuable metrics.
19. Define valuable metrics (or focus on important

issues).
20. One can always improve.

Digital Technical Journal Vo1.5 No. 4 Fa11 1993

Software Process and Quality

References

1. T. Speer and M. Storm, "Digital's Transaction
Processing Monitors," Digital Technical Jour-
nal, vol. 3, no. 1 (Winter 1991): 18-32.

2. J. Hauser and D. Clausing, "The House of Qual-
ity," Harvard Business Review, vol. 66, no. 3
(May-June 1988): 63-73.

3. L. Cohen, "Quality Function Deployment: An
Application Perspective from Digital Equip-
ment Corporation," National Productivity
Review, vol. 7, no. 3 (Summer 1988): 197-208.

4. K. Holtzblatt and S. Jones, "Contextual
Inquiry: Principles and Practice," Technical
Report DEC-TR 729 (Maynard, MA: Digital
Equipment Corporation, 1990).

5. D. Wixon, K. Holtzblatt, and S. Knox, "Contex-
tual Design: An Emergent View of System
Design," Technical Report DEC-TR 686 (May-
nard, MA: Digital Equipment Corporation,
1990).

6. "Military Standard Defense System Software
Development," Technical Report DoD-STD

2167A (Washington, D.C.: U.S. Department of
Defense, 1988).

7 M. Fagan, "Design and Code Inspections to
Reduce Errors in Program Development," IBM
Systems Journal, vol. 15, no. 3 (1976):
219-248.

8. M. Fagan, "Advances in Software Inspections,"
IEEE Transactions on Software Engineering,
vol. SE-12, no. 7 (July 1986): 744-751.

9. T. McCabe, "A Soft ware Complexity Measure,"
IEEE Transactions on Software Engineering,
vol. SE-2, no. 6 (December 1976): 308-320.

10. T. McCabe and C. Butler, "Design Complexity
Measurement and Testing," Communications
of the ACM, vol. 32, no. 12 (December 1989):
1415-1425.

11. S. Pugh, Total Design: Integrated Methods for
Sz~ccessful Product Engineering (Reading,
M A : Addison-Wesley, 1991).

12. R. Grady, Practical Software Metrics for Proj-
ect Management and Process Improvement
(Englewood Cliffs, NJ: Prentice-Hall, 1992).

58 Vol. 5 No. 4 Fa11 1993 Digital Technical Journal

Neil L. M. Davies
Margare t M. Dumont I

SEI-based Process Improvement
Eflorts at Digital

The Software Engineering Institute is chartered with advancing the state-of-the-
practice of softzuare engineering to improve the quality of the systems that depend
on sojizuare. Digital has based its software process improvement program on the
Cal~ability Maturity model and Software Process Assessment developed by the SEI.
As software organizatiomgain process maturity, tlwyprodzice higher-qualityprod-
ucts. Case studies report the experiences and learnings of two softzuare orgnniza-
tions at Digital that have introduced the SEI framework and methods into their
process improvement efforts.

During the late seventies and early eighties, the
state-of-the-practice of software development and
management at Digital improved significantly.
Examples of these improvements include the
following.

Software and hardware architectures, notably
the VAX VMS and the Digital Network Archi-
tectures, were developed.

Higher-level languages (BLISS and C) were intro-
duced into common use in systems development.

Debuggers and language-sensitive editors were
developed and used widely.

Code management systems were introduced
into widespread use.

The phase review process for managing soft-
ware projects was used extensively.

Although the complexity of software develop-
ment projects has grown exponentially over the
last few years, relatively few changes have occurred
in the practice of developing and managing soft-
ware projects. The lack of effective process man-
agement techniques impacted Digital's ability to
predictably deliver quality software products that
satisfy customers' expectations both in feature and
time-to-market needs.

This paper describes the use of software process
methods to improve the quality and predictability
both in time and function of Digital's software
products. Specifically, it describes the approaches
of two organizations actively involved in software
process improvement efforts. In addition, it pre-

sents the conclusions drawn from case studies of
their process improvement programs as well as the
challenges to be faced in the future.

S o f i w a r e Process
I m p r o v e m e n t Program
The software process improvement program at
Digital is based on the framework developed by
the Software Engineering Institute (SEI). The SEI

is a federally funded organization chartered with
advancing the state-of-the-practice of software
engineering to improve the quality of the systems
that depend on software.

The SEI promotes the belief that software produc-
tivity and quality gains can be achieved through a
focused and sustained effort toward building a pro-
cess infrastructure of effective software engineer-
ing and management practices.' Case studies on
process programs at Hughes Aircraft and Raytheon
support this premise.l3 Although the importance
of a quality process to the end quality of the prod-
uct is gaining acceptance, this idea is not prevalent
within software organizations. A strong fear still
exists that development of a process structure is
equivalent to the creation of a bureaucracy.

We chose the SEI's framework as the basis for
our process improvement efforts because its focus
is specific to software organizations. A key element
of improving software process is the ability to
develop effective structures and the discipline
to manage the process. The SEI has developed a
process framework and method that deal specifi-
cally with the complexity of software practices and
organizations.

Digital Technical Journal Vo1.5 No 4 f i l l 1993 59

Software Process and Quality

SEI CnpnDility Maturity Model
The framework, known as the Capability Maturity
Model (CMM), asserts that a project is an instantia-
tion of the organizational processes in which it was
developed. Therefore, to improve a project's pre-
dictability or quality, one must improve the struc-
ture and discipline of the process (or develop the
process maturity) in which the project is developed.
The capability of a process to deliver a quality prod-
uct predictably is determined by how well the pro-
cess is defined and how consistently it is applied.

As shown in Figure 1, the CMM framework
defines five levels of maturity: Initial, Repeatable,
Defined, Managed, and Optimizing. Each level is a
buildi~lg block for the next level. To see improve-
ments, organizations must proceed from the lowest
level to the highest level. Since each level is a pre-
condition for the next, the organization cannot skip
a level. Organizations can determine their process
maturity and the processes they should develop by
undergoing an SEI process assessment.

SEI Process Assessment
The SEI has developed a method called the SEI pro-
cess assessment to enable organizations to deter-
mine their process maturity. The assessment is used

OPTIMIZING (5) 0
CONTINUOUSLY
IMPROVING
PROCESS

PROCESS
PREDICTABLE

STANDARD,
CONSISTENT
PROCESS t

DISCIPLINED
PROCESS

INITIAL (1) 0
Figure I Floe Levels of Process Maturity

as Defined by the CMM

to determine process awareness in the organization
and to devise an action plan for improvement of the
process. The assessment involves all levels of the
organization in a structured method aimed at build-
ing consensus on the primary problems the organi-
zation faces. A by-product of a well-run assessment
is organizational agreement on the actions of how
to address the problems. For more information on
the process maturity framework and assessment,
see Managing the Software Process by H~imphrey.~

SEI Guidelines for Process Improvement
Once the organization decicles to introduce a pro-
cess improvement program based 011 the SEI model
and method, two questions require answers: (1)
What does this mean? and (2) How do we get
started? Process improvement work is unique ancl
involves a level of abstraction beyond the usual
work done in software organizations. This effort
must be staffed with individuals who can blend
organization knowledge with process improve-
ment techniques. Unless the organization is serious
about applying adequate resources to the effort,
including a substantial amount of time and commit-
ment from management, we suggest that the effort
not be undertaken. The SEI has developed guide-
lines on staffing a Software Engineering Process
Group (SEI'G).5

In the next two sections, we offer our different
experiences in implementing SEI-based process
improvement progrzdms as case studies from which
other organizations can learn. In the first case study,
an organization started with a small boundecl
improvement and used that to launch a process
improvement effort that started with an SEI assess-
ment. In the second case study, an organization built
SEI concepts into existing quality processes to gain
momentiim for a process improvement program
based 011 the SEI framework and SEI assessment.

Case Study 1: Using an SEI
Assessment to Initiate the
Process Improvement Program
Undertaking an SEI-based process improvement
effort is a huge task. The effort officially begins
with an SEI assessment; hom7ever, we have found
that months or years may be needed to prepare for
an assessment. In our case, nine months passed
from the time we began work to improve our
processes until we considered an SEI assessment.
Another four months was needed to complete
the assessment. As our first step, we sought

1/01, 5 No. 4 Fall 199.3 Digital Techtzicnl Joziraal

SEI-based Process Improvement Efforts at Digital

commitment for change within the organization.
To this end, we initiated a test involving a small
bounded improvement plan.

Obtaining Commitment for Change
Often there is a perception in the organization that
it is easy to change. In our experience, however, it
is a difficult process even when an organiza-
tion wants to change. To prepare for the larger pro-
cess improvement effort, we devised a small
bounded improvement effort to evaluate if the orga-
nization was ready to change. The test is beneficial
in two ways. First, it gives the organization experi-
ence in dealing with change. Second, it creates
energy for process improvement and helps to enlist
sponsors within the organization.

The first improvement was to update the code
management system. The organization had recently
undergone changes in organizational structure and
product strategy. These changes put new require-
ments on the system we used to build and integrate
our sources. The improvement was to choose a
new source management system and to establish
its use in the development and release processes
within one product release.

The success of our improvement plan was mea-
sured in two ways. First, the introduction of the
code management system did not impact the sched-
ule of the release in which it was introduced.
Second, during the retrospective of the release, the
new code management system was viewed posi-
tively by both the release management and engi-
neering organizations. In addition, 30 percent of
the people involved in the retrospective responded
that updating the code management system was the
highest positive change we made to the process. As
a result of this success, we proceeded to the SEI
assessment and SEI-based process improvement
program.

Choice of SEI Model and Method
We chose to use the CMM and SEI assessment as part
of an overall effort to improve the software devel-
opment environment in our organization for two
major reasons.

First, the CMM provided a framework for priori-
tizing process improvement efforts to develop the
organization's capabilities. In the months prior to
adopting the CMM, we tried unsuccessfully to agree
on the priority of improvement in the organization.
In time, we reached the point where we agreed that
use of the CMM and SET assessment would enable us

to establish priorities for improvements. The major
benefit we saw was that the assessment involved all
levels of the organization from senior managers to
individual contributors in the prioritization and
implementation of changes. In addition, we consid-
ered the cross-functional involvement to be essen-
tial to sustaining the effort.

The second major reason we chose the CMM was
its focus on the software industry. In the future, we
hope to be able to benefit from the programs in risk
management, software education, and software
measures, now being developed at the SEI.

The assessment is designed to help determine the
process areas that the organization must address in
order to move up the capability levels of the CMM.

In our case, the assessment was led by a trained SEI
facilitator and a team of people within the engineer-
ing organization. We tapped the knowledge of
approxrrnately 60 people from within the organiza-
tion through questionnaires, interviews, and free-
form meetings. The data collected was analyzed
and developed into a findings and recommenda-
tions document that was presented to senior man-
agement. This document is the basis for process
improvement work in the organization. It is
required reading for new managers at the staff level.

Extensions to the Framework of the CMM The
CMM has its roots in the government systems and
defense-oriented areas of the software industry. It
has only recently made inroads into the commercial
software industry. Although it is the most complete
method available for software process irnprove-
ment, it makes certain assumptions about software
development organizations that may not be true in
the commercial sector. While implementing our
software process improvement project, we found it
necessary to extend the CMM.

As stated earlier, the CMM provides a set of levels
that allow an organization to determine the matu-
rity of its processes. Each level defines a set of key
process areas (KPAs) required to reach that level's
capability. For example, there are six KPAs at the
Repeatable Level 2:

Subcontractor management

Software project planning

Software project tracking and oversight

Software configuration management

Software quality assurance

Requirements management

Digital Technical Journal Vo1. 5 No. 4 Full 1993

Software Process and Quality

Each KPA is defined by a set of practices that cover
the goals, the abilities and commitments to per-
form the process, the activities the organization
must perform, and the mechanisms to measure and
verlfy those activities.

The first extension we made to the CMM

occurred during the assessment process. The CMM
does not address resource management and devel-
opment, that is, employee development, changes in
the way resources are applied to new processes,
and communication within the organization. These
are necessary to develop the practices required to
implement a KPA. For example, to develop a project
plan, one must be able to negotiate effectively to
share resources among interdependent projects;
or, to verify that an activity is performed, feedback
loops must exist in the organization's communica-
tion processes.

Our findings indicated that the areas of commit-
ment and communication needed improvement.
The CMM describes attributes for these areas in
each KPA; however, it provides no guidance on the
goals, activities, and abilities of commitment and
communication as process areas in their own right.
We have some activity in each of these areas but
have not s~~ccessfully developed them into an inte-
grated plan for the organization.

The next extension to the CMM required us to
implement processes from the Defined Level 3,
even though we had not achieved the Repeatable
Level 2. First, we needed to establish an SEPG to
carry out the activities to improve the process.
Second, we needed to establish guidelines and
methods for a training program. Without a training
program, we could not ensure that the organization
would have the abilities to perform KPAs at the
Repeatable Level 2. Third, we needed to define the
processes used in the organization. Definition of
process and training are perceived by the organiza-
tion as major causes of frustration. These areas tend
to embody the organization's recognized need to
change and its overall resistance to change. These
two areas involve problems related to understand-
ing how other functions in the group work, devel-
oping good peer-to-peer communications, and
transferring responsibilities between people.

Finally, we introduced a KPA for the definition of
the software development process. The CMM is based
on first providing a good management framework
and then developing the engineering framework. The
assumption is that, as engineers, we tend to focus
first on the engineering process for improvements.

In implementing process improvement, we found
that we needed a process model specifically for
development of software components within our
overall software product process.

Turning Recommendations into Actions Our
experience has shown that with organizations
assessed at the Initial Level 1 of maturity, two
aspects of turning recommendations into actions
need to be considered. The first is the skill set of
the people who develop the process improve-
ments; the second is the framework for developing
and delivering process improvements to the organi-
zation. We found that the individuals and teams
who deliver process improvement must possess
project management skills and organizational
development skills.

Project management skills are essential because
the environment does not otherwise foster the
discipline or ability to create a set of plans from
a set of recommendations. We structured the pro-
cess improvement work into a project with a set
of goals, objectives, and deliverables. The high-
level goals and objectives were integrated into a set
of long-range milestones. Currently, each person
working on process improvement has a set of
project plans that describe individual deliver-
ables based on the project goals. The next step for
the project is to attain the same level of detail in
all the plans so that we can integrate the work as
a single set of deliverables into the organization.
Our recommendation to anyone starting a process
improvement effort is to staff the effort with a
strong emphasis on project management skills.

Organizational development skills are also essen-
tial. The process improvement team needs to assess
the organization to determine the root cause of prob-
lems, to determine the rate of change for the process
improvement efforts, and to institute feedback mech-
anisms to measure progress. In addition, the team
needs to understand how to overcome resistance to
change, to deal with change at all levels of the organi-
zation, and to sustain change at a manageable rate.

Our experience has convinced us that a frame-
work is essential to develop and deliver pro-
cess improvement to the organization. Our process
improvement framework has three aspects:

Skills development

Process definition and improvement

Operational environment and technology
enhancements

62 Vol. 5 No. 4 Full 1993 Digital Techttical Jozrrnal

SEI-based Process Improvement Efforts at Digital

For example, we had been working in the area of
improving the organization's planning processes.
After evaluating the existing planning pro-
cesses, we determined that we would have to
develop the organization's planning skills. First,
we introduced a tool to enable people to imple-
ment schedules. Second, we developed require-
ments for the operational environment for the tool
and process, specifically for access, archival, and
retrieval of project-related information such as proj-
ect plans and schedules. Third, we determined the
requirements for training based on the needs of key
individuals in the organization. Finally, we defined
the organization's planning process and developed
continuous improvement cycles for the process.

Each of our process improvement efforts included
the three factors from our project framework. These
efforts were tracked by the organization to ensure
that the schedule and resource needs of the work
were met. In addition, process improvement
work was prioritized according to the organiza-
tion's business needs. The delivery methods for
the process improvement work must be agreed
upon and understood at all levels of the organiza-
tion. This provides the context and enables the
work to be better understood in the day-to-day
routines of the organization.

Case Study 2: Building Support
for a Formal SEI-based Process
Improvement Program into
Ongoing Projects
Initially, the amount of engineering time needed for
a formal SEI-based process improvement program
was intimidating to management and engineers. To

demonstrate that the process could benefit the
organization, we took several introductory actions.
First, since the organization was already committed
to project retrospectives, we introduced the basic
SEI concepts into the existing retrospective pro-
cess. Second, we worked with engineering manage-
ment to ensure that formal quality planning was
undertaken at the start of each project so that qual-
ity goals and processes were consciously selected.
Third, we designed a metrics program to support
our quest for maturity.

Project Retrospective
We developed a retrospective process based upon
the principles in the SEI model for process improve-
ment and applied it to our most recent product
release. We wanted to ensure that we covered all
the key elements in the SEI model (sponsorship,
organizational preparedness, employee involve-
ment, working first on KPAs at the Repeatable Level
2). As shown in Figure 2, the process was designed
by the forerunner of the SEPG.

First, the SEPG met with the sponsor (the head of
the engineering organization) to define the particu-
lar attributes of the SEI process we wished to inte-
grate into our retrospectives. They included clear
sponsorship, employee involvement in all aspects of
the process, and creation of action teams to make
improvements. The sponsor communicated to her
organization the goals of the enhanced retrospec-
tive and her commitment to act on any findings.

Next, we designed and distributed a survey
aimed at obtaining a broad view of what worked or
did not work on the most recent large release. The
retrospective team was assembled and conducted

I SPONSOR h

GROUP
MEETING

- - - - - - - - - * : SOFTWARE : I
I
I

RELEASE r------
I EXPERTS I - - - -, , , , - 4

REPORT
TO GROUP

ACTION

Figure 2 Release X X X Retrospective Process

Digital Techtrical Journal Vo1. 5 No. 4 Fa11 1333 63

Software Process and Quality

a facilitated meeting of the larger group to obtain an better results than a traditional retrospective. We
alternate view of what had happened during the recommend this process to other groups conduct-
project. The team used the findings from this meet- ing process improvement programs.
ing and the survey to develop a prioritized list of Serendipitously, our retrospective was led by the
problems. manager of the next release. As we discussed

The following problems were identified as being the project's problems, he was heard to say, "We are
applicable to both hardware and software. doing the same thing in my release; I'd better talk

Design continued during debugging.
to.. . ." We could not have asked for faster implemen-
tation! Furthermore, we changed our process to

Component quality ranged from faultless to recommend that the manager of the next release
untested. participate in all retrospectives. We also believe

that too much intuition was at work during the ret-
Check-in criteria were inconsistent. rospective. At our next retrospective, we will
Check-in criteria were unclear and changed closely compare the problem list with the key prac-
the project progressed. tices for our C M M level before we produce a list of

findings.
Team members discussed the problems in a

series of structured interviews with the key people
concerned with the release. The interviews QualityPlanning
focused on identifying the root causes of the prob- Often the action plans from sE1, from other process
lems. Sample root causes are listed below. improvement task forces, or from total quality con-

trol (TQC) teams are not carried forward to day-to-
Different assumptions were made about code

day project activities. A new technique is invented
freeze.

and prototyped by the action team and then turned
Changes to check-in criteria were not communi- over to the SEPG for widespread implementation. At
cated. this point, the process improvenlent usually ends.

In other cases, a small group improvement activity
Hardware was not available for tests early in the

may create an improved engineering process, but
project; builds and tests were time consuming.

its success is unknown outside the immediate team.
Consistent success or failure was not rewarded Ideally, quality planning selects the processes
or fixed. to be used at the start of each project. Quality (pro-

Known problems were allowed to continue.
cess) plans close the gap between improved
processes and project activities. We have asked

The team then distilled these root causes into a set each subsequent team to prepare a quality plan.
of findings that were fed back to the originators for The process for institutionalizing practices works
confirmation and then to the sponsor for action. well at our current CMM level. After we complete
The findings from the retrospective team were the our first full SEI assessment and improvement cycle,
following. we should see the necessity of these activities to

We planned only one release at a time.

The overall testing model was unclear.

Check-in procedures were unclear.

achieve process maturity. The best quality plans are
fully embedded in the release or project plan pre-
pared by each team. We do not require a separate
quality plan for each release, merely that the follow-
ing questions are answered for each new release:

- -

The final list of findings can be mapped to the What attributes of quality are important for this
Initial Level 1 of the CMM. The latter two issues

release?
relate to software quality assurance (SQA), and the
first issue relates to the requirements definition. How will those quality goals be measured before

The enhanced retrospective boosted our process and after the release?
improvement program. It showed that management

What are the goals for the protiuct before and
needed to sponsor the project, that employee

after the release?
involvement facilitated the improvement plans, and
that an SEPG was required to handle the results. In rn What processes will be put in place to ensure
addition, the enhanced retrospective produced that the goals are met?

64 Vol. 5 No. 4 Full 1W.j Digital Technical Jourrial

SEZ-based Process Improvement Efforts at Digital

What are the expectations for each component
in a release and at what milestone?

For example, if the release is to have 10 percent
fewer defects than the last release, then the clues-
tions above might be answered as follows. The
defect reports from customers are important. The
goals might be to have 10 percent fewer defect
reports per 100 customers, to increase pre-release
test coverage by 10 percent, and to continue testing
until a rate of less than 1 defect per 1,000 hours of
testing is achieved.

To ensure that the goals are met, formal code
inspections for 100 percent of all new code would
be introduced and regression testing coverage
increasecl by 15 percent. All components would
be required to meet this standard 2 weeks before
integration.

Our early experiences with quality plans have
confirmed our need for a more mature software
engineering process. We have seen a tendency to
"abandon quality to the quality person"; alternately,
some plans have been rejected as "trying to tell engi-
neering how to do its job." It is difficult to separate
the testing plans from the quality plan. As a result,
the early quality plans have focused on release cri-
teria and have included large sections of back-
ground information justkying their very existence.

In the long term, we believe that the quality
plan should cease to exist as a separate document
and should be included in the overall project plan.
In the future, quality plans will be created from
known good practices in engineering. As we climb
the maturity ladder, we will more and more use a
repository of good practice as the basis for creating
these plans. An SEPG will be chartered with main-

taining the repository (or life cycle as we know it).
The life cycle will be updated based upon SEI assess-
ments, retrospectives, small group improvement
activities, and so on.

The SEPG is aimed at long-term process improve-
ment across multiple projects. The quality plan is
the document to connect these general process
improvements to day-to-day project work. Every
project or release now has a person designated as
responsible for quality. This person is responsible
for liaison with the SEPG and bringing the best prac-
tices into the teams.

The Software Metrics Program
As shown in Figure 3, full benefit from metrics is
experienced only when the processes are under
real control, as at the CMM Managed Level 4 or
above. In addition, measured SQA is one of the
major criteria for attaining the Repeatable Level 2.
Therefore we created a metrics program with a dual
thrust: we instituted project- and release-related
metrics of doneness, or SQA. We also created a met-
rics program throughout the organization to mea-
sure and track our long-term intent for process
improvement. These process metrics are not pure
because the underlying processes are not under rig-
orous statistical control; however, they provide a
point of focus for the organization's improvement
efforts. Our early efforts showed that the organiza-
tion did not think in terms of processes whose yield
can and should be measured over time. We need to
start these metrics today so that we will have an
effective collection system when we reach the
Managed Level 4, and we will also have a popula-
tion familiar with process management.

Figure 3 SEIBe~zefits of Met/-ics by Level

OPTIMIZED

1

Digital Technical Journal Vo1. 5 IVO. 4 Fh11 199.3 65

MANAGED

DEFINED

REPEATABLE

BENEFIT
, RECEIVED

FROM
METRICS

SQA RELEASE
METRICS

Software Process and Quality

Organization-wide Metrics We have tried to
ensure that our metrics provide a business focus for
our improvement activities throughout the organi-
zation. We have also tried to present the metrics
in such a way as to promote continuous process
improvement. We have metrics for product reliabil-
ity, performance, predictability of schedule, i.e.,
estimating quality factor (EQF), responsiveness to
customers, and cost-effectiveness. Each of the met-
rics is displayed in a format that embodies the
Shewhart/Deming cycle (plan, do, check, act) as
shown in Figure 4. In future quality planning ses-
sions, we will review each plan for its impact on
these metrics. The SEPG is responsible for preparing
and analyzing these metrics.

SQA Metrics Our SQA metrics are relatively simple
and are based upon a convergence during a series
of checkpoints at the end of our testing cycles. We
are measuring test coverage, time under stress with-
out failure, incident arrival rates, and unresolved
incidents in the classic way. These measurements
ensure that the product has been tested enough to
ship. We are now starting to measure early quality
indicators such as design stability, which predicts
eventual SQA problems. The SEPG is defining
improved metrics and is analyzing the effectiveness
of our test programs. Day-to-day project decisions

as to whether or not to ship are the responsibility of
the project teams.

PLAN: ACHIEVE EQF OF 90% OR BETTER

ACTUAL:

R3 R5

Conclusions Drawn from
Both Case Studies

1 .oo

p 0.80
z
W

$ 0.60-
W
a

0.40
B

0.20

0.00

We have drawn two conclusions based on our expe-
riences using the SEI framework. Both conclusions
apply whether the organization begins its process
improvement efforts with an SEI assessment or uses
the SEI framework in support of existing quality
activities. First, involving people in the change
process is important. At the Initial Level of the
CMM, organizations are characterized by ad hoc
processes. The processes are not described or
enforced, and there is a high dependence on heroic
efforts to meet schedules. At the Initial Level of
maturity, people are the process. Lack of focus on
the importance of people in improving the process
causes confusion and chaos in the organization.
Examples include:

-
R1 R7 RE

- , ,
R6

R2 R4

-

-

A process is not adopted or becomes a "jump
through the hoop" exercise when people are
unsure of how the change benefits their goals.

DATE SHIPPED

ANALYSIS OF DEVIATION:

PROPOSED ACTIONS:

Confi~sion and conflicts arise when the people
involved in carrying out the process are not
included in making changes to the process.

By involving people in the change process, we
have found that new processes are adopted more
quickly and are better suited to the work that peo-
ple perform. In fact, the introduction of new pro-
cesses becomes transparent to the organization.

Second, the use of the alternate method bolsters
the primary process improvement method. For
example, when we started with an SEI assessment
in the first case study, we found that incorporating
the sE1 framework into our product retrospectives
raised the group's awareness of the SEI methodology.
The SEI framework continued to reassert the impor-
tance of process improvement within the organiza-
tion. In the second case study, we incorporated the
SEI framework into ongoing activities. We con-
cluded that, for future process improvement efforts,
an SEI assessment would align the organization
behind a single common vision and set of priorities.

Current State and Future Challenges
In this section we describe our current state and
some of our next challenges in implementing the

Figure 4 Organizational Metrics SEI-based process improvement programs.

66 VoL. 5 No. 4 Full 199.3 Digital Tecbnical Journal

SEI-based Process Improvement Efforts at Digital

Case Study 1 -Formal SEI-based Process
I~nprovement Program
As previously described, the process improvement
program provided the assessment, an action team
was formed, and we introduced improvements
based on its recommendations. Our major learning
from this program is that actual process change is
risky to introduce in spite of strong organizational
commitment and difficult to keep on track because
factors that interact with the organization are
changing. The change in business goals and restruc-
turing within the organization had the highest
impact on our process improvement efforts.

In implementing our process improvement
efforts, we founcl that it was important to tie the
improvements in our product process to the busi-
ness goals of the organization. When the business
goals changed, we were required to realign our pri-
orities to meet those changes. For example, we set a
business goal to meet the first revenue ship date for
key hardware products. This required 11s to move
from a sequential product release model to a concur-
rent release model, where we might have the devel-
opment of several releases occurring in parallel, e.g.,
one or more functional releases and one or more
hardware releases. This placed new requirements
on our processes; as a result, we had to shift the pri-
orities within the process improvement efforts.

Of the two changes, restructuring the orga-
nization had a greater impact for us. As a Level 1
organization, we had the practice of overreliance
on a small number of people with special skills
to perform critical functions. They understood
and supported the process improvement work.
The restructure resulted in these people leaving the
organization or changing positions. Since many of
the key sponsors for the process improvement
work left the group, we had to rebuild support and
sponsorship within the new management and orga-
nization structure. This had an impact on both the
priority and the methods to deliver the process
improvement work.

The basic problem in both changes was that we
had no way to transfer knowledge or skill sets dur-
ing changes. We expect that the system in which we
work will continually change and shift. Our major
future challenge is to develop process improve-
ments and support for these in~provements that
transcend changes to the system in which the orga-
nization exists. We intend to continue to bolster
our SEI activities with the addition of metrics and
quality planning to ongoing organization activities.

Case Study 2-Adding SEI to an Existing
Process Improvement Program
Currently, the organization is focused on delivering
two key products and on developing a new organi-
zational structure. As a result, it has been difficult to
maintain progress on major process improvements.

The retrospective process is now in use on all
major releases of our products with positive
results. The first action plans from the retrospec-
tives took a long time to complete and are only
being implemented today (August 1993). Metrics
and quality plans are now in use by 100 percent of
our releases

We could have made faster progress throughout
the improvement program if we had better funda-
mental knowledge about quality and process in our
organization. The additional learning from retro-
spective~ could have been more effective if we also
had a broadly based education program in quality.

The retrospectlves have produced real benefit
and some goodwill toward process improvement.
In addition, they have acted as an excellent way of
educating their participants about the fundamen-
tals of process management. We recently held the
first meeting for the formal SEI program; both atten-
dance and enthusiasm were high. The prototyping
work with the retrospectives, however, has not
overcome the concerns of the organization. For
example, concern remains that an SEPG will take
ownership of the process away from the engineer-
ing groups despite repeated assurance that it will
not. The full benefits of quality planning and the
metrics program and their connection to our break-
through productivity objectives remain to be
achieved.

We believe that the visible commitment for an SEI
assessment is needed to galvanize the organization
to achieve breakthrough levels of process improve-
ment and higher benefits, and we are continuing
with our formal SEI program. The initial organiza-
tion-wide training is scheduled for the first week of
September 1993, and the assessment is tentatively
scheduled for April 1774.

Acknowledgments
Neil thanks his team partners Bryan Jones, Brian
Porter, Tom Saleme, Nick Craig, and most especially
his sponsor Laura Woodburn.

Both authors acknowledge Barbara Kelczewski,
who helped edit this paper. She turned a random
collection of thoughts and experiences into a for-
mat for communication.

Digital Technical Jourtzal Vol. 5 No. 4 Fcdl 1993 67

Software Process and Quality

References

1. M. Paulk, B. Curtis, M. Chrissis, and C. Weber,
Capability Maturity Model for Software Vl.1
(Pittsburgh, PA: Carnegie-Mellon University, Soft-
ware Engineering Institute, Technical Report,
CMU/SEI-9 3-TR-24 ESC-TR-93-177, February 1993).

2. W Humphrey, T. Snyder, and R. Willis, "Software
Process Improvement at Hughes Aircraft," IEEE

Softzuare (July 1991).

3. R. Dion, "Process Improvement and the Corpo-
rate Balance Sheet," IEEE Softwure (July 1993).

4. W Humphrey, Managing the Software Process
(Reading, MA: Addison-Wesley Publishing Com-
pany, 1989/1990).

5. I? Fowler and S. Rifken, Software Engineering
Process Group Guide (Pittsburgh, PA: Carnegie-
Mellon Universit): Software Engineering
Institute, Technical Report, CMU/SEI-~O-TR-~~
ESD-90-TR225, September 1990).

General References

R. Ackoff, Creating the Corporate Future: Plan or
Be Planned For (New York: Wiley, 1981).

T. DeMarco, Controlling SoJtzuare Projects (New
York: Yourdon Press, 1982).

A. Duncan and T. Harris, "Software Productivity
Measurements," Digital Technical Journal, vol. 1,
no. 6 (February 1988): 20-22

D. Kauffman, Jr., Systems One: An Introdzlction to
Systems Thinking (Future Systems, Inc., 1980).

M. Paulk, C. Weber, S. Garcia, M. Chrissis, and
M. Bush, "Key Practices of the Capability Maturity
Model V1.1" (Pittsburgh, PA: Carnegie-Mellon Uni-
versity, Software Engineering Institute, Technical
Report, CPlU/SEI-93-TR-25 ESC-TR-93-178, February
1993).

J. Thompson, Organizations in Action (New York:
McGraw-Hill Book Company, 1967).

68 Vol. 5 No. 4 Ibll 1993 Digital Techtrical Jozrnznl

Robert G. Thomson I

Assessing the Quality of OpenVMS AXP:
Software Measurement
Using Subjective Data

In the absence of a zilell-dejined dez~elopmentprocess and a set of objective metrics,
sz~bjective data can be used to assess the quality of a softu~are release. This assess-
ment can identify and characterize development risk, focus testing and validation
eflorts, and indicate zi~here and hm~process management should be improvecl. The
Open VMS Engineering organization has developed a questionnaire, a set of quality
indicators, and a data reduction methodology that implement such an assessment.
This assessment approach is flexible and can be applied generally to the measure-
ment of'software quality during the evolution of a repeatable developmentprocess.

Porting the OpenVMS operating system from the
VAX to the Alpha AXP architecture was a tremen-
clous technical challenge for the OpenVMS
Engineering organization. Part of this challenge was
to achieve the high degree of quality that customers
expect o f the OpenviMS system ancl would require
before migrating their mission-critical OpenvblS
applications ant1 operations to a new hardware
platform.

To assure that this quality challenge was met
before releasing the product, the engineers
involved in the port needed to answer the intiritive
question, How will we know that it's right? The
quality assessment approach tlescribed in this
paper was an integral part of the answer. Following
an overview of the quality challenge and the assess-
ment framework, the paper describes the quality
indicators and assessment process usetl to measure
software quality during the development of
OpenVMS AXP versions 1.0 and 1.5.

Quality Challenge
OpenVMS Engineering considered schedule, func-
tionality, and quality all to be critical factors in suc-
cessfully porting the OpenVMS system to the Alpha
AXP platform. Although both aggressive and com-
plex, the port had several characteristics that
favorecl its success:

An est;tblished product with well-defined
capabilities

Carefully controlled source code and build pro-
cedures for the system

A very experienced development team

A consistent project management system for
managing progress against the schedule

What the port lacked was a uniform development
process with a comprehensive set of objective met-
rics for measuring software quality. As the project
progressed, engineers were added when their
expertise became needed. But with the engineers
came a variety of engineering processes. Given the
size and complexity of just the initial release of the
OpenVMS AXP system, this lack of process consis-
tency represented a significant deficiency.

The version 1.0 development effort kept to a
demanding schedule spanning more than two
years. During that time, more than 170 engineers
made approximately 68,000 separate modifications
or additions to the source code in order to port,
build, and test the OpenVMS AXP system. These
modifications were integrated and tested in stages
with weekly software builds that resulted in
roughly 1,200 system base levels. At its release for
customer shipment, the base system of OpenVMS
AXP version 1.0 comprised an estimated 3,045,000
lines of noncomment source statements. Yet, the
existing metrics for measuring software quality
were limited primarily to weekly statistics on incre-
mental test hours, source code modifications, and
problem reports.

Digitul Technicnl Journal Vil. 5 iVo 4 I i 111 1923

Software Process and Quality

Quality Assessment Framework
Despite its dearth of software metrics for the initial
release, OpenVMS Engineering had the following
clear goals for the quality of its version 1.0 and ver-
sion 1.5 releases on the Alpha AXP platform:

Correctness goals, which focused on completing
all critical functionality

Reliability goals, which focused on minimizing
defect introduction, stabilizing the code base,
resolving all significant defects, and meeting
availability targets

Performance goals, which focused on meet-
ing SPECmark and TPC Benchmark A (TPC-A)
projections

Migration goals, which focused on supporting
easy and reliable application porting or execu-
tion of translated images

Usability goals, which focused on providing reli-
able system installation, documentation, and
tuning guidelines

Maintainability goals, which focused on support-
ing easy problem diagnosis

Measuring progress against these goals with
objective data would have required OpenVMS
Engineering to define appropriate metrics, inte-
grate procedures for collecting metric data into the
existing development process, and accumulate suf-
ficient data to validate the collection procedures
and establish baselines. The aggressive OpenVMS
AXP development schedule made this approach
impracticable for version 1.0.

As an alternative, OpenVMS Engineering devel-
oped an approach for assessing release quality
based on subjective data. This approach built on
the organizatjon's historic reliance on the techni-
cal expertise of its engineering teams for assuring
quality. At the same time, the approach laid the
foundation for defining a practical set of quanti-
tative metrics guided by experiences with the sub-
jective data. Over time, OpenVMS Engineering can
implement these metrics as part of its Continuous
Improvement effort for the OpenVMS development
process.

Quality Assessment Indicators
Seven quality indicators provide the framework for
the process of assessing quality in the OpenVMS
AXP operating system. Each indicator is intended to

show the presence or absence of a meaningful char-
acteristic of software quality. These indicators cor-
respontl to seven sets of data provided by projects
that constitute a particular software release. Table 1
lists these indicators together with a summary of
the subjective data and objective metrics over
which the indicators are defined. The table also
shows the significance of each indicator with
respect to the quality assessment process. This sec-
tion presents a more detailed discussion of the data
sets that define the indicators and the information
that these indicators provide.

Explicit Statement
A project most clearly indicates quality through
explicitly stated judgn~ents from the engineering
team that the software elements

Possess all planned fi~nctionality

Currently pose little technical risk to the release

Embody equal or superior i~nplernentation 011

the Alpha Axr platform as compared to the VAX

platform

Meet the project's criteria for release readiness

Because it most firlly reflects a project's overall
quality, explicit statement is the most important
indicator of quality.

Elernent Expertise
The accuracy of a subjective measure of quality is a
function of a team's expertise regarding the imple-
mentation of their project's elements. Moreover,
lack of expertise may indicate a higher likelihood
of introducing defects during implementation.
Such expertise is based on the team's knowledge of
how the project's elements were implemented and
behaved on the VAX platform. The expertise is
bounded by areas where a team perceives difficulty
in working with the elements on the Alpha AXP
platform. A project indicates high element exper-
tise when it involves engineers who

Have significant experience with the OpenVMS
systeru

Are already familiar with the elements involvetl
in the project

Encounter little teclu~ical difficulty in modeing
project elements

Vol. 5 iVo 4 Fall 1,993 Digital Tech~ricnl Jozrrnal

Assessing the Qzlality of OpenVMS AXP: Softzvare Measurement Using Subjective Data

Table 1 Summary of Quality Assessment Indicators

Quality Indicator Significance Subjective Data Objective Metrics

Explicit Statement Judgment from engineering Implementation Source code change
team that release quality; outstanding rate; problem report
requirements are met risks; completeness rate

Element Expertise

Technical Ease

Process Consistency

More accuracy in quality
judgments; less likelihood
of introducing defects
Less susceptibility to
defect introduction;
less need for element
expertise
Less quality variation
within and across
development phases

Engineered Changes Better defect prevention;
less reliance on
methodical testing

Methodical Testing

Defect Detection

Better defect detection;
less reliance on well-
engineered changes
Indicates progress
where change and testing
processes are strong;
indicates risk where they
are weak

Experience with
OpenVMS and with
project elements
Quality requirements;
portability; maintain-
ability

Coherence of
requirements, design,
reviews, and testing
Use of specifications
and inspections in
development
Testing effort,
regularity, variety,
and code coverage
Percent of detected
defects being logged;
percent of logged
problems that
describe defects

Structural
complexity

Defect counts

Technical Ease
Project elements that are technically easier to main-
tain are also less vulnerable to the introduction of
defects during changes. The less element expertise
possessed by the project team, the more significant
technical ease becomes as an indicator of quality. A
project indicates technical ease if the team judges
that their project has

A relatively low priority on technical quality

Simple fi~nctionality, code, and data structures

Little nilnerability to instruction atomicity or
memory granularity problems

Process Consistency
The uselillness of a process-related indicator of
project quality depends on the consistency of the
software development process that a project team
employs. This consistency encompasses the team's
understanding as well as their implementation of
good software engineering process. A project indi-
cates process consistency when software delivery
involves

Rating product suitability based on a good
understanding of customer expectations

Removing technical and operating risks as a pre-
cursor to release readiness

Defining an effective development process
based on requirements, design, specification,
inspection, and testing

Using tests with good code coverage for method-
ical testing

Reviewing or inspecting the code developed in
one-person projects

Engineered Changes
Careful engineering of changes to a project's source
code can catch defects before its elements are inte-
grated into a running system. A project indicates
the quality of code ports, modifications, fixes, or
additions through the extent of

Expenditures of engineering resources on design

Functional or design specification completeness

Inspections or reviews of code changes

Digital Technical Journal Vo1.5 No. 4 Fa11 1993 7 1

Software Process and Quality

Methodical Testing
Regular and deliberate ad hoc, regression, and
stress testing is needed to find the defects intro-
duced into a project's elements through additions
or modifications to its source code. The less effec-
tively a team engineers changes to the elements
to prevent defects, the more significant testing
becomes as an indicator of quality. Methodical test-
ing of a project's elements is indicated where tests

Run each week and on each software base level

Involve ad hoc, regression, and stress tests

Cover a significant portion of main program
code and error-handling code

Use a significant portion of a project's total engi-
neering resources

Defect Detection
When compared against the number of defects
detected in prior releases, the number detected
within a project's elements for the current release
provides an indication of its current quality. A low
ratio of tlie current defect count to the past clefect
count may indicate either an improved develop-
ment process or inadequate detection; a high ratio
may indicate the reverse. The more effectively a
team engineers changes to an element and performs
the element's tests, the more reliable the defect
detection indicator becomes as a measure of quality.

Defect counts are available from the defect track-
ing system; however, defects that are readily resolved
are frequently not logged. Therefore, clefect counts
across a release are normalized by having project
engineers estimate the percentage of defects identi-
fied during inspections, debugging, and testing that
they actually log in the defect tracking system.

Quality Assessment Process
The assessment process applies these quality indi-
cators to data gathered primarily through a ques-
tionnaire, which is administered to a subset of the
projects included in a software release. Applying
the quality indicators to questionnaire data yields a
set of quality profiles. The usefi~lness of these pro-
files for assessing quality depends both on the accu-
racy of the data and on the ability of the targeted
projects to represent the quality of the overall
release. This section describes the quality assess-
ment process in terms of our experiences across
two releases of the OpenVMS AXP system, versions
1.0 and 1.5.

Select Assessment Targets
The assessment process begins by selecting a set of
projects within the software release to serve as tar-
gets for measuring the release's cluality. We made this
selection for a particular OpenVMS AXP release by
ranking the projects based on the following factors:

The functional areas where the project manager
believed quality was critically important to the
success of the release

Whether a project provided latent, limited, or
full support of ported or new functionality for
the release

The number of problem reports filed in prior
releases against the elements of the project

Because the version 1.0 development effort was
quite large, we focused the assessment on 57 proj-
ects, which constituted the top 17 percent of the
resulting ranked list. Those projects accountetl for
74 percent of the total source code involved in the
release. Because the version 1.5 development effort
was smaller, we targeted only 38 projects and yet
encompassed more of those projects that dictated
tlie release's quality.

Administer an Assessment Questionnaire
The assessment process uses a questionnaire to mea-
sure the quality of the targeted projects. Because all
answers to the questiomaire are assumed to be sub-
jective, its effectiveness relies more on the com-
pleteness of the responses than on their accuracy
With tliis in mind, we designed the question set for
each OpenVMS AXP release to be large and varied,
yet easy to answer.

For the version 1.5 release, 29 questions, some
multipart, provided 75 data values for each project.
The version 1.0 questionnaire was slightly smaller.
Most questions could be answered by indicating on
a graduated scale either a percentage value or a
qualitative judgment (such as easy versus hard, or
low versus high). Typically, respondents were able
to complete the version 1.5 questionnaire in less
than 15 minutes.

Figure 1 shows the steps involved in deriving an
individual quality score and a composite quality
score using a questionnaire. The three questions
from the OpenVMS AXP version 1.5 questionnaire
illustrated in Step 1 of the figure form the question
set that provides the data for assessing element
expertise. The example shows the questions as
completed for Project-20.

7 2 Vol. 5 No. 4 l i ~ l l 199.3 Digital Techrrical Journcil

Assessing the Quality of OpenVMS AXP: Software Measurement Using Subjective Data

STEP 1 ADMINISTER A QUESTIONNAIRE TO GATHER SUBJECTIVE DATA.

2. What percentage of the engineers were famll~ar with this area
of the system when the OpenVMS AXP V1.5 project began?

3. What percentage of the project's engineers were experienced
VAX andlor Alpha AXP developers?

4. How difficult is it to complete this project with respect to its
technical obstacles? I -... t..X.--b -- - I

easy avg hard

STEP 2 NORMALIZE THE DATA AND AVERAGE ACROSS THE QUESTION SETS THAT DEFINE EACH QUALITY INDICATOR.

QUESTION 2 QUESTION 3 QUESTION 4 AVERAGE

PROJECT-20 0 10 5 5

PROJECT-36 10 10 10 10

STEP 3 SYNTHESIZE QUALITY PROFILES USING A COMPOSITE OF THE QUALITY SCORES FOR EACH PROJECT.

INDICATOR PRO

EXPLICIT STATEMENT
ELEMENT EXPERTISE
TECHNICAL EASE
PROCESS CONSISTENCY
ENGINEERED CHANGES
METHODICAL TESTING

COMPOSITE

NORMALIZED SCORES

PROJECT.

8
10
10
7
5
2

RELEASE
AVERAGE

7

7

4

8
3
4

NORMALIZED, WEIGHTED, AND
SCALED SCORES

PRO, JECT.

22
18
9
6
9
4

RELEASE
AVERAGE

19
13
4
7
6
7

Figure I Deriving Quality Indicator Scores Using Element Expertise Data for Project-20 and Project-36

To mitigate bias and uncover inconsistency Apply the Quality Indicators
within the questionnaire data, we selected a broad The purpose of applying q~lality indicators to
range of questions that measured Progress against tionnaire responses is to convert qualitative judg-
quality goals from three perspectives: ments into quantitative measures of quality. To

facilitate database entry and quantitative analysis,
A process perspective, which covered design, we first normalized the questionnaire responses,
specification, coding, inspection, and testing. using a scale of 0 to 10, where 10 generally repre-
These process elements were measured with sented greater contribution to product quality.
respect to project resource expenditures and Numeric answers were entered directly into the
product element coverage. database without scaling; unanswered questions

A product perspective, which covered element
size, complexity, technical risks, implementation
quality, completeness, release readiness, and
suitability relative to customer expectations.

A project perspective, which covered priorities,
clifficulty, team size, and engineering experience.

For both releases of the OpenVMS AXP system,
participation in the assessment survey was high.
More than 90 percent of the project teams returned
questionnaires with an a17erage of more than 90 per-
cent of the questions answered.

Digital Techrrical Jorrnral k 1 . 5 No. 4 Fall 199.3

were assigned the value of - 1.
Given this scale, responses of 3 or less repre-

sented low (weak) assessments and responses of 7
or more represented high (strong) assessments. A
response of 5 represented an implicit norm among
the development teams for what constituted an
acceptable process, product, or project. All assess-
ments were interpreted in light of how this norm
related to organizational goals or prevailing indus-
try practices.

Step 2 of Figure 1 shows the normalized and
averaged data used to assess element expertise
for Project-20 and also for Project-36. Note that

Software Process and Quality

dividing by 10 normalized the responses to ques-
tions 2 and 3. For question 4, the five gradations
from easy to hard were normalized by mapping
them onto the values 0,3,5,7, and 10. Easy comple-
tion with respect to technical difficulties indicated
greater element expertise and hence received the
higher value. Averaging the normalized data across
the question set yielded the element expertise qual-
ity score for each of the two projects.

Note that for the process consistency indicator,
this averaging occurs not over the sum of all
responses in the question set but over the dif-
ferences between pairs of responses that should
be close in value to be consistent. The resulting
average is then subtracted from 10. For example, a
project that rates its ability to meet customer
expectations as 9 but its understanding of those
expectations as 5 would score 10 - (9 - 5) or 6
with respect to this pair of responses.

The mean value of all quality scores for a particu-
lar indicator reveals the engineering team's collec-
tive perception of how strong the overall release is
with respect to the group norm for that indicator.
Ranking the quality scores and then graphing them
as variances from this mean facilitates Pareto analy-
sis of the projects by indicator. This analysis reveals
those projects with a particularly strong or weak
score for a specific indicator.

Figures 2 and 3 show the qi~ality scores for ele-
ment expertise and technical ease that we derived
for OpenVMS AXP version 1.5. These figures suggest
a relatively high perception across the projects of
overall element expertise contrasted by a lower and
more varied perception of technical ease. Pareto
analysis of these distributions highlights projects
such as Project-36, whose quality scores were high
for both indicators, and Project-20, whose scores
were both low.

Synthesize Quality Profiles
Because our derivation of the indicators was based
on engineering experience rather than on statisti-
cal modeling, no single indicator is a reliable predic-
tor of overall project quality Moreover, because the
quality indicators are based on inexact data, the
application of a particular quality indicator may be
inconclusive with respect to some projects. To
overcome these obstacles to comparative assess-
ment of project quality, we synthesized quality pro-
files using a composite of the quality scores for
each project.

BELOW
' AVERAGE

, ABOVE
AVERAGE

PROJECT
AVERAGE

5
5
5
5
5

6-
7
7
7
7
7
7

10
10
10
10

INDICATOR VALUE

Figure 2 Assessment of Element Expertise
at Alpha Test of OpenVMSAXP
Version 1.5

Repeating Step 2 of Figure 1 using the responses
to other question sets yields normalized scores for
each quality indicator. The table presented in Step 3
shows the quality profiles for Project30 and
Project-36. Also shown is the quality profile arrived
at by averaging the quality scores across all the tar-
geted projects in the version 1.5 release.

Figure 4 depicts the quality profiles of the proj-
ects targeted for OpenVMS AXP version 1.5. These
composites use six of the seven quality indicators.
Due to insufficient questionnaire data regarding
defect detection and removal, the corresponding
indicator was not employed in the assessment.
Consequently, the identification of error-prone
modules and the assessment of defect removal effi-
ciency occurred separately within the ongoing ver-
ification efforts for that release.

74 Vol. 5 No. 4 Fall 1993 Digitcrl Technical Jozcrtral

Assessing the Quality of OpenVMS

,ABOVE
AVERAGE

PROJECT
AVERAGE

I
0 2 4 6 8 10

INDICATOR VALUE

Project-31 '

Project-09
Project30
Project-21
Project-1 9
Project-20
Project-23
Project-22
Project-24
Project-37
Project-08
Project-07
Project-32
Project-05
Project-1 3
Project-25
Project-06 .

Figure 3 Assessment oj.TecI:7nical Ease at Alpha
Test oJOpenVMS AXP Version 1.5

1
1
1
1
1

BELOW 2
'AVERAGE 2

3-

To reflect the relative capacity of each indicator
to independently provide meaningfill information
about project quality, we formed the composites by
weighting the individual quality scores as follows:

Explicit statement has a weighting factor of 3.

Project-01 4
Project-I 5 4
Project-04 4
Project-I 0 4
Project-1 6 4
Project-27 4

Methodical testing, engineered changes, and ele-
ment expertise have weighting factors of 2.

Project-1 7 '
Project-26
Project-29
Project-38
Proiect 28

Technical ease and process consistency have a
weighting factor of 1.

5
5
5
5
5

This weighting was based on OpenVMS Engineer-
ing experience and reflects relative contribution to
the assurance of quality within the current develop-
ment process. Because field data regarding the
actual quality of the released product was unavail-
able during the assessment effort, statistical analysis
of the questionnaire data was inconclusive.

AXP: Softzuare Measurement Using Subjective Data

Using this weighting, the resulting maximum
score across all six indicators totaled 110. To make
the range of values for the composite quality pro-
files more intuitive, we further scaled this aggre-
gate by 0.91 (100 divided by 110) so that the
maximum totaled 100. Multiplying the individual
scores by the weighting and scaling factors yielded
the second set of scores shown in Step 3 of Figure 1.
For reference, an indicator composite that consists
of the maximum possible scores for these weighted
and scaled indicators appears at the bottom of
Figure 4. A similar composite profile of the average
project scores for the release also appears.

Interpret the Quality Profiles
Clustering the projects according to their com-
posite quality profiles highlights relative product
quality, project risk, and process deficiencies. For
OpenVMS AXP version 1.5, we identified nine
groups of quality profiles with similar distinguish-
ing characteristics relative to the average profile. In
Figure 4, braces delimit these groups.

The average composite score for the targeted
projects in the version 1.5 release was 55 out of 100,
with 76 percent of the projects scoring in the range
of 45 to 65. Only Project-29 scored at or above the
average for each indicator; only Project-33 and
Project-38 scored at or above the norm for each.
Consequently, most projects fell within the Needs
Ongoing Validation region of Figure 4. Scoring in
this region indicated that a project required some
form of validation work to improve quality prior to
beta testing and customer shipment of the release.

In several instances, the questionnaire data was
sufficiently scant or the quality issues sufficiently
numerous to suggest that additional data on a proj-
ect's actual condition was needed before com-
pleting that project's quality assessment. Because
a value of -1 was assigned to each unanswered
question, projects for which such a value was
assigned generally exhibited low indicator com-
posites as depicted in Figure 4 by the bars ending in
the Needs Further Investigation region. Project-01
and Project-09 are examples of projects in this
category.

If the quality indicators were sufficiently strong,
little further assessment or validation work
appeared to be needed. Projects that exhibited high
indicator composites are depicted by bars ending in
the Needs Final Confirmation region. Only
Project-33, Project-36, Project-37, and Project-38
fell into this category

Digital Technical Journal Vo1.5 No. 4 Fa11 1993 75

Software Process and Quality

I NEEDS I

NEEDS FURTHER I ONGOING I NEEDS FINAL
INVESTIGATION VALIDATION CONFIRMATION

Project 01
Project. 02
Project-03
Project 04
Project 05

Project-06
Project-07
Project-08

Project-09
Project-1 0
Project-1 1
Project-12
Project 13

Project 14
Project 15
Project 16
Project 17
Project-1 8

Project 19
Project -20
Project 21
Project-22
Project-23

Project 24

Project 25
Project-26
Project 27
Projecl -28
Project 29

Project-30
Project..Sl
Projecl-32
Project-33

Project34
Project-35
Project36
Project-37
Project-38

OVER 15% OF
QUESTIONNAIRE

QUESTIONNAIRE
COVERS MORE THAN
240,000 NCSS

1'11

V l l

') LOW READINESS TECHNIC ;ALLY DIFFICULT

STRONG EXPERTISE
AND STATEMENT

AVERAGE PROJECT PROFlLt
KEY TO COMPOSITE INDICATOR

EXPLICIT 1 ENGINEERED I L Z p I C A L I
STATEMENT CHANGES

METHODICAL ELEMENT PROCESS
TESTING EXPERTISE CONSISTENCY

RANGE OF INDICATOR VALUES

Figlire 4 Con~posilc Profile of Project Q u ~ l l i t j ~ at Alpha Test of OpenVMSAXP Verslon 1.5

Quality Assessment Results
Taken together, the composite quality profiles, the
quality inclic;~tor distributions, and the project
questionnaire data fortn an assessment continuum
within which to meilsure progress against quality
goals. From a release perspective, the composite
quality profiles and the indicator distributions iclen-
tify process tleficiencies. They also ch;~racterize
areas of risk for the protluct. From ;I project per-
spective, a comparison of quality profiles and
scores focuses ongoing verification efforts where

they can have the greatest impact on the overall
quality of a release. The questionnaire data itself
can help determine the form this verification work
takes. The results from the assessment of data
obtained from the alpha test of OpenVMS AXP ver-
sion 1.5 illustrate these measurement perspectives.

Identification of Release Deficiencies
The projects that made up the version 1.5 release
were known to have a widely varying ant1 typic;llly
incomplete process for engineering cl~anges in

76 W)/. 5 iV(>. 4 Fh11 199.3 Digital Techrricnl Jorrrnrrl

Assessing the Quality of 0)enVMS AXP: Softzuare iWeasurement Using Subjecti~~e Datc~

their code base. From the quality assessment
administered when alpha testing began, we clari-
fied the following deficiencies in the process and
product for that release so that steps could be taken
to ensure that the release was ready for customer
shipment:

Sixteen percent of the projects had significant
risk due to outstanding dependencies, unresolved
technical problems, or operational instabilities.

Although 76 percent of the project teams rated
their technical capacity as high, 71 percent
reported having significant difficulty complet-
ing the project due to schedule, equipment, or
personnel constraints.

Ad hoc, regression, and stress tests were regu-
larly executed on the code of 34 percent of the
projects.

Fifty-five percent of the projects had some por-
tion of their code implementation described by
a functional or design specification.

Thirty-seven percent of the projects were han-
dled by just one engineer. Of these 14 projects,
5 had above-average technical difficulty and 5
expended no engineering resources on reviews
or inspections.

Twenty-six percent of the projects lacked a
strong understanding of customer expectations
against which to evaluate product attributes.

Code reviews across the projects averaged only
30 percent coverage of ported source code, 40
percent coverage of rewritten or added source
code, and 60 percent coverage of source code
fixes.

Similar kinds of results from the quality assess-
ment for the version 1.0 release led to the imple-
mentation of a process for enhancing product
stability prior to customer shipment. The results
also contributed to decisions within OpenVMS
Engineering to establish more rigorous software
metrics within the clevelopment process. Moreover,
clarifying the process deficiencies for OpenVMS
AXP versions 1.0 and 1.5 has contributed to an
increased emphasis on defect prevention in the
follow-on release.

Focus for Project Verification
In the context of the product risks and process defi-
ciencies just summarized, the quality assessment
results for version 1.5 provided the following frame-
work for focusing the ongoing verification efforts:

Project-01 through Project-05 were missing
more than 15 percent of the questionnaire data.
(See Figure 4.) These projects required h~r ther
investigation to determine the current condition
of constituent elements as well as the form,
focus, and priority of needed verification work.

Project-06 through Project-18 exhibited com-
posite scores that were below average overall.
Verification work that focused on compensating
for the weak change and testing processes was a
high priority for these projects.

Project-19 through Project-24 exhibited at least
average values for engineered changes ancl
methodical testing; these projects also exhibited
significantly below average values for technical
ease and, in most cases, element expertise.
Verification work for these projects needecl to
focus on the functionality that posed the great-
est technical difficulty or risk given schedule
and resource constraints.

Project-25 through Project-29 exhibited aver-
age quality profiles. Their verification work
needed to focus on specific portions of the code
where defects may exist due to technical diffi-
culty, inadequate changes processes, or poor
test coverage or effectiveness.

Project-30 through Project-32 had strong pro-
cesses. Because their technical ease or element
expertise indicator values were below average,
however, verification work needed to focus
existing processes on mitigating current risks
and improving the product's readiness to meet
customer expectations.

Project-33 through Project-38 were evidently
on-track to a high-quality release and therefore
required only a confirmation of quality prior to
customer shipment.

Given the limitations of the assessment data and
its pervasive reliance upon engineering judgment,
following all assessments with some form of verifi-
cation work was important. In some cases, the data
as provided and interpreted within the assessment
indicated a level of quality that we knew was not
actually present.

By removing defects from the product as proj-
ects completed their planned firnctionality, the
ongoing verification effort for version 1.5 con-
tributed to improved implementation quality
relative to the VAX platform, mitigated risk due to
technical or stability problems, and increased the
satisfaction of release readiness criteria.

Digital Technical Journal Vol. 5 No. 4 Fa11 1993

Software Process and Quality

Conclusions
To assure the quality of its product while improving
the quality of its development process, OpenVMS
Engineering implemented a process for assessing
the quality of its releases using subjective data. This
assessment process has proven usefill in character-
izing product risks, focusing verification efforts,
and identifying process deficiencies during the
development of versions 1.0 and 1.5 of the OpenVMS
AXP operating system. The assessment identified
areas that needed attention; the resulting actions
led to improved quality.

Using the Assessment Process
By focusing only on those projects key to a release's
success, the assessment process described in this
paper limits the cost and turnaround time for an
assessment of quality without significantly dimin-
ishing its value. By focusing on subjective data, this
process captures the judgment of engineers on the
project teams regarding overall progress toward
release readiness.

The OpenvMS AXP questionnaire covers various
product, project, and process aspects of a release.
The questions may be tailored for different soft-
ware releases or even different software products.

Using seven quality indicators, which are defined
over subsets of questions from the questionnaire,
the assessment process synthesizes quality profiles
for each project. These profiles are based on quality
norms that are implicit within the development
organization. By administering the assessment pro-
cess as a release enters its alpha testing, these
profiles can guide the project's movement toward
its quality goals for the release.

Improving the Assessment Process
Several opportunities exist for improving the use-
fulness of this assessment process. As the process is
repeated across successive software releases, the
organization can

Validate the predictive value of the assessment
process through statistical analysis of quality
indicators and questionnaire data against
selected quality results when a release begins
shipping to customers

Refine the questionnaire to ensure that the ques-
tions remain relevant to the development pro-
cess, unambiguous, and internally consistent

Complement the developer assessment adminis-
tered during alpha testing with a similar cus-
tomer assessment during beta testing

As an organization's software measurement pro-
cess matures, subjective measures should be
replaced with objective metrics for which data can
be economically and reliably collected. Such met-
rics should reduce reliance on the subjective data,
but not eliminate it: the perceptions of an experi-
enced engineer can usually add clarity to the assess-
ment of release quality.

Ackrnowledgments
Development of this assessment process was
sparked, encouraged, and facilitated by the mem-
bers of the Quality Assessment project for
OpenVMS AXP version 1.0: Jeff Pilsmaker, Pam
Levesque, Ralph Weber, and Bill Goleman. Its form
was refined and its usefulness validated by the
members of the OpenVMS AXP 1Jerification Group.
Curt Spacht and Tim Beaudin, the validation proj-
ect leaders for versions 1.0 and 1.5, were particu-
larly supportive during the implementation and
repetition of this process.

General References
As representative of current trends in the definition
and deployment of software measurement pro-
cesses, the following references proved particularly
useful during the effort described in this paper:

W Humphrey, iMGlnaging the Softzuare Process
(Reading, n4: Addison-Wesley, 1989/1790).

C. Weber, M. Paulk, C. Wise, and J. Withey, "Key
Practices of the Capability Maturity Model," Tech-
nical Report CMU/SEI-91-TR-25 (Pittsburgh, PA:
Software Engineering Lnstitute, Carnegie-~Mellon
University, 1991).

J. Baumert and M. McWhinney, "Software Measures
and the Capability Maturity Model," Technical
Report CMU/SEI-92-TR-25 (Pittsburgh, PA: Software
Engineering Institute, Carnegie-Mellon University,
1792).

R. Grady and D. Caswell, Software Metrics: Estab-
lishing a Company-Wide Program (Englewood
Cliffs, NJ: Prentice-Hall, 1987).

R. Grad y, Practical Softzuare iMetrics for Project
Management and Process Improvement (Engle-
wood Cliffs, NJ: Prentice-Hall, 1992).

Vol. 5 No. 4 Fall 199.3 Digital Techtiical Jozrrtral

I Further Headings

The following technical papers were written by
Digital authors:

R. Abbott, "Scheduling Real-Time Transactions:
A Performance Evaluation," ACM Transactions on
Database Systems (September 1992).

B. Aichinger, "Futurebus+ Profile B," OPEN BUS
SYSTEMS '91 (November 1991).

B. Aichinger, "Profile B Modules in a Profile A/F

System," OPENBUS SYSTEM '92 (October 1992).

W Anderson, "Logical Verification of the NVAX

CPU Chip Design," IEEEInternational Conference
on Compzrter Design (October 1992).

l? Aniclc, A. Gunderson, A. Rewari, M. Swartwout,
M. Carifio, and M. Adler, "AI Research and Applica-
tions in Digital's Service Organization," A1 Magazine
(Minter 1992).

S. Apgar, "Interactive Animation of Fault Tolerant
Parallel Algorithms," lEEE Workshop on Ws~ial
Lang~iages (September 1992).

J. Arabian, K. Lentz, and E. Ulrich, "The Com-
parative and Concurrent Simulation of Discrete
Event Experiments," Journal of Electronic Testing:
Theory and Applications (JETTA) (May 1992).

B. Archambeault, "EM1 Modeling of Air Vents and
Slots in Shielded Cabinets," IEEE Intenzational
Symposium on Electromagnetic Compatibility
(August 1992).

N. Arora, D. Bell, and L. Bair, "An Accurate Method
for Determining MOSFET Gate Overlap Capaci-
tance,'' Solid-State Electronics (December 1992).

S. Batra and M. Mallary, "Improved Cross-Talk
Performance for Shielded Flux Sense Heads,"
Thirty-seventh Annual Conference on Magnetism
and iVIngnetic Materials (December 1992).

J. Blanchard, \! Murthy, and D. Jones, "Quality and
Reliability Assessment of Hardware and Software
during the Total Product Life Cycle:' Quality and
Reliability Engineering International (September
1992).

J. Brown, D. Bernstein, R. Stamm, and G. M. Uhler,
"AWAX and WAX+: Single Chip CMOS VAX Micro-
processors," IEEE International Conference on
Computer Design (October 1992).

D. Byrne, "Computer Aided Design of High Speed
Optical Data Links," lEEE Lasers and Electro-Optics
Society 1992 Annual Meeting (November 1992).

E. Cheng, "A High-speed Open Journal System in a
Distributed Computing Environment," IEEE Second
International Cotnp~iter Science Conference (ICSC
'92) (December 1992).

J. Clement, "Vacancy Supersaturation Model for
Electromigration Failure under DC and Pulsed DC
Stress," ~Mnterials Research Society Symposium
Proceedings (April 1992).

M. Cornard and J. Cuellar, "Rapid Development,
in a Manufacturing Environment, of a l u m Triple-
Level Metal CMOS Process Through the Use of
Cross-Funct ional Teams," IEEELTEIMI Advanced
Semiconductor Manufacturing Conference
(September 1992).

D. Dossa, "Piezomodulated Reflectivity of Asym-
metric and Symmetric Alxl Gal-xlAs/GaAs/
Ak3Gal-x3As Single Quantum Wells," Applied
Physics Letters (June 1992).

B. Doyle, K. Mistry, and D. Jackson, "Examination
of Gratlual-Junction p-MOS Structures for Hot
Carrier Control Using a New Lifetime Extraction
Method," IEEE Transc~ctions on Electron Devices
(October 1992).

M. Elbert and T. Weyna, "Performability Analysis
of Large-Scale Packet Switching Networks,"
SUPERCOMM/lnternational Conference on
Com~nzlnicntions '92 (May 1992).

R. Evans, "The Close Attached Capacitor:
A Solution to Switching Noise Problems," lEEE
Electronic Components and Technology Con-
ference (May 1992).

C. Gordon, "Time-Domain Simulation of Multi-
conductor Transmission Lines with Frequency-
Dependent Losses," IEEE Internntiolzal Conference
on Computer Design (October 1992).

T. Guay, "Object-oriented Diagnosis," Journal of
Object-Oriented Propmming (October 1992).

G. Hoglund, E. Valcarce, L. Jansen, and L. Baillie,
"ESSENSE: An Experiment in Knowledge-Based
Security Monitoring and Control," UNZXSecurity
Symposium III Proceedings (sponsored by the
USENM Association) (September 1992).

T Hongsmatip and S. Hsu, "Influences of Backside
Gold Conditions on Silver/Glass Die Attachment,"
International Electronics Packaging Society
Conference (IEl?S '92) (September 1992).

Digital Technical Journal Vo1.5 No.4 FCIN 1993

Further Readings

J. Ide and R. St. Amand, "PGA Failure Analysis
['sing Acoustic Microscopy and a Novel Sample
I-'reparation Technique," Eighteenth International
Symposiunz for Testing and Failure Analysis
(ISTFA '92) (October 1992).

R. Jain, "A Comparison of Hashing Schemes for
Atldress Lookup in Computer Networks," IEEE
Trnnsc~ctions on Commztnicc~tions (October 1992).

R. Jain, "Myths About Congestion Management in
High-Speed Networks," Proceedings of the IFIP TC6
Fourth International Conference on Inf&-rnntion
Network and Data Communication (March 1992).

A. Ladd, "Measuring Process Migration Effects
Using an MI' Simulator," Scalable Shared Memo y
Multiprocessors (Norwell, MA: Kluwer Academic
Publishers, 1992).

P Martino, "Simplification of Feature Based
Models for Tolerance Analysis," ASJVIE Cornp~lters
in Engineering (August 1992).

T. Michalka and S. Poh, " An Electrical Comparison
of Multimetal TAR Tapes:' IEEE Transactions on
Components, Hybrids, and Manufacturing Tech-
nology (August 1992).

B. Mirman, "Microelectronics and the Built-Up-Bar
Theory," ASME Journal ofElectronic Packaging
(December 1992).

P Mop, M. Hannigan, S. Bradley, J. Choi, ant1
E. Allen, "Design and Process Considerations
for Heatsink At taclment," 1992 International
Electronics Packaging Society Conference (IEPS
'92) (September 1992).

\! Peng, D. Donchin, and Y. Yen, "Design Method-
ology ant1 CAD Tools for the NVAX Microprocessor,"
/EEL International Conference on Computer
Design (October 1992).

A. Philipossian, "Fluid Dynamics Analysis of
Atmospherjc Thermal Silicon Oxidation Reactors
LJsing Dispersion Models," IEEE International
Electron Devices Meeting (December 1992).

A. Philipossian, H. Soleimani, and B. Doyle,
"A Study of the Growth Kinetics of SiO2 in N20,"
IEEE International Electron Devices Meeting
(December 1992).

M. Raven and D. Wiuon, "Total Quality Manag-
ment Using Vector Comparative Analysis," IEEE
I~zternational Technical Communication
Conference (October 1992).

M. Register and N. Kannan, "A Hybrid Architecture
for Text Classification," Fourth fnter~zatio~zcrl1EI:E'
on Tools wilh Artificial Intelligence (TAI '92)
(November 1992).

W Samaras, "Futurebus+ Electrical Simulation,"
OFEN BlJS SYSTEfilS '91 (November 1991).

S. Sathaye, "hrchitectural Support for Real-Time
Computing Using Generalized Rate Monotonic
Theory,"Jozcrnal ofthe Society of Instrument
and Control Engineers (July 1992).

S. Sathaye, "Distributed Real-Time System Design
Using Generalized Rate Monotonic Theory,"
Second Intel-national Cotzference on Automation
Robotics and Conzputer Vision (ICARCV '92)
(September 1992).

M. Stick, "Systems of Linear Equations," Sin- Sipna
Research Institute (April 1992).

S. Swan and D. Corliss, "Micro-Trenching During
Polysilicon Plasma Etch," SPIE's Microelectro~zic
Processing '92 (September 1992).

T. True, "Volume Warping," IEEE Vis~iuliznliorz '92
(October 1992).

M. Tsuk, "Efficient Techniques for Inductance
Extraction of Complex 3-D Geometries," lEEE/AC/W
International Conference on Computer-Aided
Design (ICCAD9.2) (November 1992).

(;. Wallace and R. Hagen, "Image Decornpres>ion
Circuit for High-speed Document Printing,"
Sixth International Congress on Adr~ances in Non-
Impact Printing Technologies (October 1990).

G. Wallace and R. Szabo, "Design Consideratio~ls
forJPE(; Video and Synchronized Autlio in a Unix
Workstation Environment," USENIX' 7i?chnicu/
Conference and Exposition (June 1991).

A. Vitale, "Issues in Speech Technology for
Individuals with Disabilities," Journd oJtl9e
American Voice Inpul/Ozitpzlt Society (July 1992)

A. Vitale, "Review of Voice Processing by
Walt Tetschner," Journal of the American
Voice Input/Output Society (July 1992).

E. Zimran, "The Two-Phase Commit Performance
of the DECdtm Services," IEEE Eleuenth ,Y~~~nposir~rnz
on Reliable Distributed Sjistems (October 1992).

80 Vt l 5 No. 4 Fa11 1993 Digital Technical Jortmal

ISSN 0898-90LX

Printed in U.S.A. El'-P920E-DP193 I2 02 16.0 Copyri&ht Q Digital Equipment Corporariolr. All Rights Reserved

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	Modeling the Cost of Software Quality
	Changing the Rules :A Pragmatic Approach to Product Development
	Defining Global Requirements with Distributed QFD
	DEC TP WORKcenter: A Software Process Case Study
	SEI-based Process Improvement Efforts at Digital
	Assessing the Quality of OpenVMS AXP: Software Measurement Using Subjective Data
	Further Readings
	Back cover

