

Editorial
Jane C. Islake, Managing Editol-
K~thlecn M. S t c t s o ~ ~ , Editor
Helen L. I'attcrson, Editor

Circulation
Carhcrine IM. Phillips,Administ~-ator
Dorothca K. <:assad)!, Secretary

Production
'rerri Aurieri, Production Ed~ror
Anne S. Kat/.cff, 'I'ypographcr
I'cter li. PVoodb~~ry, III~~strator

Advisory Board
Samucl H. Fuller, Chairman
Richard W. Bcanc
1)onald Z. Harbert
William R. Ha\\rc
kchard J. Hollingsworth
IGchard F. Larp
Alan C. Ncmcrh
Jc.ui A. Prouls
Robert M . Supnik

Cover Design
DEC FUSE sohvarc, dcscl-~bcd in rhls issue,
is an ilitcgratcd set of programming tools
for UNIX developers. Our cover image of
unique puzzle pieces being fi tted togctllcr
conveys the DEC FUSE concept of an inte-
grated collcction of independent tools
coopcrati~lg \tithin a graphical dcvelopmc~lt
CIIV~~OIIIIICII~.

The cover \\,as designed by Lucinda O'Ncill
of Digiral's Design Group.

The Di<qiial ~i.cl~tceca~/oerrw~tl is a refereed
journ;ll published qu~irtcrly by Digital
Equiprncnt Corporario~i, 3 0 l'orter liond
l ,J02/D 10, Littleton, A.lassachusctts 0 1460.
Subscriptions to the.lo~rrr?alarc $40.00
(non-U.S. 560) for four issues and $75.00
(non-U.S. $1 15) for eight issucs and n ~ u s t
be prepaid in U.S. funds. University and
collcpe professors and Ph.11. students in
the clcctrical engineering and compnter
scirnce fields rccci\,c complimentary sub-
scriptions up011 rcqucst. Orders, inquiries,
and address changes slioultt be sent to the
D(qiia1 Tech~~ical,/oier~ccrlnt the p~~blislicd-
by address. Inquil-ics can nlso bc sc~ l t clcc-
tronically to dtj@digltal.com. Single copies
and back issucs arc a\.ailable for $16.00 each
by calling 1)ECdirect at 1-800-DIGITAL
(1-800-344-4825). llcccnt back issues ofthe
Jolrrrralare also a\,ailable on the Internet at
htrp://\\~\.wv.digital.com/info/DTJ/l~onlc.
hrml. Complete Digital Internet listings can
be obtained by sending an clcctro~~ic mail
message to inf&digital.com.

11igiral c~nployecs may order subscriptions
t h r o ~ ~ g h Readers Choicc by cnrcring VTX
PROFILE at rhc system prompt.

Com~ncnts on rhc contcnr of any paper
are \velcomcd and may be selit to the
managing editor at the published-by or
network address.

Copyright 0 1995 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies arc 11lade
for use in educational institutions by hculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of 11igital Equipment Corporation's author-
ship is perm~rtcd. All r~ghts reserved.

The illfornlntion in theJo~tri~crl is subject
to change \virhour notice and should not
be constrtled ns a comrnirnienr by Digital
F.cluipmcnr Corporation o r by the colnpa-
nics herein represented. Digital Equipment
Corporation assumes n o responsibility for
ally crrors that may appear in the./o~orrrrral.

ISSN 0898-901 X

Documentation Number EY-U001E-TJ

Book production \\.as done by Quantic
Co~nlnl~nications, Inc.

The follo\\,lng .lrc tradc~llarks of Digital
Eq111p1ncnr Corporation: Digital, the
L~ICII 'AL logo, ACILIS, CD13/ IZcposiror!:
DEC, DE(: FUSE, DE<:l,tdcbug, DE(:mcc,
DECnct, LIECstnrion, lIEC\vindo\\~s,
ObjccrKroker, OpenVlMS, I'KI'HCVORKS,
l'OLY<:ENrER, ULTRIX, VAX, VAX 10000,
VAX <;,and VAXcluster.

AIX and IRIM are registered trademarks
and C o m m o ~ i User Access is a rmdc-
mark of11lrcrnarional Business Machines
Corporation.

ATLOT and SccSoft arc rcgistcrcd
trademarks of American ?'clcplionc
and 7'cle~r.lph Corrlpan!~.

KT is a registel-cd trademark of Rritisli
Tclcco1i11nul11c~tio11s plc.

Fujitsu is a I-cgistcrcd rradcmilrk of
Fujitst~ Limited.

Heurlett-Packard, HI' SoftBench, and
HP-UX are rcgistcrcd trademarks of
Hcwlctt-Packard Colnpally.

Hirachi is a registered trademark of
Hirachi, Ltd.

Hype'-tlclp i s n traticmark of Kristol
Technology, Inc.

L.cgo IS .I rcglstered rradernark of
Intcrlego AG

blotif, OSF, rntl OSF/Motif arc regis-
tered trademarks of Open Sohvare
Foundation, Inc.

MS and IMS-LIOS are rcgistcred tradc-
marks and Windo\vs and Windows N T
are trademarks of Microsoft Corporation.

NEC; is a registered trademark of NEC
Corporation.

ObjcctPl~~s 1s a trademark of Protosoli, Inc.

OPEN LOOI< 1s a rcgistcred rradernark
of UNIX Systcm Laboratories, Inc.

Sun I\.l~crosystenis is a rcgistcrcd rradc-
mark and SI'Al<Cworks and SunOS arc
trademarks of Sun Micros)rsterns, Inc.

UNIX is a registered trademark in the
United Starcs and other coulltries, licensed
esclusi\~cly through X/Open Colnpa~ly Ltd.

X/Opcn is a trademark of X/Open
Company Limited.

X Window Systcm is a trademark ofrhc
Massncliuscrts Institute of'l'ech11olog)r.

Contents

Foreword

GRAPHICAL SOFTWARE DEVELOPMENT

DEC FUSE: Building a Graphical Software
Development Environment from LlNlX Tools

Adding a Data Visualization Tool to DEC FUSE

SYSTEMS ENGINEERING

Multivendor Integration Architecture: Standards,
Compliance Testing, and Applications

Integrating Applications with Digital's
Framework-based Environment

Project Gabriel: Automated Software Deployment
in a Large Commercial Network

Mahendra R. Patel

Richard 0. Hart and Glenn Lupton

Donald A. Zaremba

Eric A. Newcomer

James R. IGrkley and William G. Nichols

Owen H. Tallman

Digital Technical Journal Vol. 7 No. 2 1995

Editor's
Introduction

The integration of distinct parts to
form a useft11 and effective \\rliole is
the underlying theme for nvo sets of
topics in this issue. The opening papcrs
describe the integation of program-
ming tools to create a graphical sofi-
\vase develop~nent environment. The
second set of papers addrcsses the intc-
gration of large, complex systems-
systems that encornpass all the s o b a r e
and hard\\lare components needed to
serve the user's purpose.

The DEC FUSE sohvare develop-
ment product is designed to take
ndvantage of UNIS \vorkstations'
graphical capabilities, supporting
such programming larig~lagcs as C ,
C++, and Fortran. h c h Hart and
Glenn Lupton revie\\? the origins

llron- of DEC FUSE in the FIELD en\ '
luent de\feloped at Brolvn Uni\lersity
and compare FUSE with similar en\+
ronments based on a tool integration
model. The authors present nvo 1<ey
aspects of the product design: graphi-
cal user interfaces built o n top of
UNIS conirnalids and a ~nulticast
messagiug ~nec l ia l~ i sn~ that alloa~s
the tools t o work together.

A tool recently integrated into the
DEC FUSE suite is the Data Visualizer,
which allo\\~s soft\vare developers t o
displa!~ thousands of lines of code with
associated statistics. Don Zare~nba
describes the process of taking the
tool fi-om advanced development
through implementation and relates
\\that the engineers learned as they
adapted current visualization research
to their goals and built prototypes of
the tecl111o1ogp. H e collcludes with
a description of the resulting product
and plans for future \vorl<.

O u r nest three papers esplore
cspericnces with different aspects
of systems-level engineering and inte-
gration. Eric Newcomer's overvie\\,
of tlie ~Multivendor Integration
Architectwe (MIA) effort, initiated
by Nippon Telegraph and Telephone
(NTT), highlights many hctors that
in general n~altc systelns integration
challenging. NTT sought, through
standardization, to resolve the costly
problem of i~icoriipntible application
environn~ents. Eric discusses the MIA's
chosen direction based on the need
for portabiliy, interoperability, and
a cornmon user interface. Hc then
describes Digital's contribution in
the area of distributed transaction
processing and su~liniarizes the [MIA
consortium's successes and continu-
ing \\fork.

A specific object-oriented p r o d ~ ~ c t
developed t o integrate systems appli-
cations is thc subject of Jim Itirldcy's
and Wick Nichols' paper. Compris-
ing Jacobson's and R ~ ~ m b a u g h ' s
methodologies, third-party sohvare,
and Digital's CORBA-compliant
ObjectBroker, the Framework-based
En\ironrnent (FBE) product addresses
the need for new and legacy applica-
tions to interoperate in a distributed
manufacturing system. The authors
step through a typical integration
project and expand o n trade-offs that
must be addressed in an integration
project that takes an object viecv of
the system environment.

A major systems engneering proj-
ect to sol\le tlie problem ofongoing
introductions of sohvare into a large
computer networkis described in the
concluding paper by Owen T3llman.

The project, commissioned by a large
French bank, estended o\#er a net-
work of data center clustered servers,
branch servers, and thousands of
\\,orkstations and pcrsonal computers.
Owen outlines the customer's require-
rnents and Digital's role as developer
of the automated sohvare deploy-
ment facility. H e re\lic\\rs the configu-
ration management model (CkIM)
and other models that \\/ere the basis
for the project team's \47ork. His dis-
cussion of the implementation encom-
passes exarnples that illustrate the
intricacies of a rigorously ~iianagcci
s o h a r e deployment process.

The editors thank Miltael Rolfha~nre
of Digital's UNIX Business Segment,
Ed Ballto\~icli of Digital's Corporate
Research Group, and Hank Jakiela
o f the Systems Business Unit for their
help in developi~ig this issue. At the
end of the issue, \Ire also acknowledge
and thank the referees for their very
\~aluable revic\\~s ofmanuscripts sub-
mitted during this past year.

Upcoming topics in the Journal are
Digital's high-perfor~ila~ice Fortran
compiler and parallel sohvarc envi-
ronment, and the Sequoia 2000
global change research project.

Jane C. Blake
Managing Editor

2 Digital Technical Journal Vol. 7 No. 2 1995

Foreword

crlneer- Systems engineering is the en,'
ing of complete systems as opposed
to parts ofsystems. Esactly \\)hat this
means depcnds o n one's point of
view. O n e person's system is another
person's component. From chips
t o boards t o boxes t o clusters to net-
cvorks, subsvstems are combined into
ever larger and more complex aggre-
gates. At Digital, systems engineering

Mahendra R. Patel
Corpomle Consr~ltirrg Engineer means the engineering ofsystems at

Vice Presi&p?t, ~ y s t e ~ n s ~m-,-i,lg a level of aggregation above individ-
ual hardware o r sohvare products.
Individual processors, storage subsys-
tems, network I111 bs, operating systems,
database systems, and applications are
viewed as components of the system.
For csample, a nation~vide network
for interactive securities trading, built
from hundreds o f nodes at dozens o f
sites, is one system.

A number of trends in the computer
industry makc it more challenging for
a computer company t o practice sys-
tems engineering:

Commoditization: Component
products, from microprocessors
t o applications, are increasingly
becoming lo\\!-cost, high-volume
commodties. Ironically, as the
cost of the components drops,
the cost ofintegrating them into
complete systems becomes a larger
fraction of total system cost.

Distributed systems: While they
provide new opportunities for bet-
ter performance, scaling, and fault-
tolerance, distributed systems also
present new engineering challenges
for ensuring these same attributes.

Heterogeneous systems: Increas-
ingly, computers from a varienr of
vendors, running a variety o f oper-
ating systems, are being connected

together and are expected t o work
together correctly.

Coniplesity: Distributed systcnis
arc becoming more complex for
a number ofreasons. The number
ofcomponents is gro\ving. The
number of types of components
that must fork together is grow-
ing. And the variety of unique
configurations is growing.

During the last decade, the
computer industry has changed from
one that offered vertically integrated
systems built from proprietary CPUs,
disks, networks, operating systenls,
and layered products t o one that pro-
duces commodity products conform-
ing t o de jure o r d e facto standards.
U~dike the manufacture of automo-
biles o r aircrafi, a single computer
manufacturer seldom produces all
the components of a complete work-
ing system. The hard\vare, system
sohvare, and applications otien come
from three different vendors. Systems
engineering, as now practiced in the
computer industry, places less empha-
sis on top-do~vn design oofardware
and sohvare components and their
interfaces t o meet system-level goals.
Rather, it is based o n anticipating
a broad spectrum of system designs.

From the poiilt of view of a com-
puter company, systems engineering
must now be concerned with assem-
blies of commodit)~ hardware and
sofnvare products. Thus, four areas
are of special interest t o systems engi-
neering in the computer industry:
interoperability, performance, scala-
bility, and availability.

Interoperability of components,
including components from different
vendors, is difficult t o veri@ because

Digital Tech~iical Joclrnal Vol. 7 No. 2 1995

of the virtually infinite number of
possible con~binations of compo-
nents. For example, the introduction
of a new component often can expose
bugs in system components previously
thought to be worhng. Systems engi-
neering work in this area includes the
development of tools for effective
testing and the de\~elopment of indus-
try standards for interoperability.

The performance of a system can
depend in a complicated way on
the performance of its components.
Sophisticated tools are needed to
predict the performance of a complex
system from the performance of its
parts or to diagnose subtle interac-
tions benveen components. Today,
performance tools for distributed sys-
tems are not as sophisticated as those
for individual computers.

Scalability refers to the ability of
a system to start small and grow big.
Size may be measured in terms of
numbers of users, computers, disks,
applications, or a combination of
parameters. The ability to scale up
distributed systems over two orders
of magnitude by adding components
is one of their most attractive attrib-
utes. However, scaling effectively
requires careful analysis and design
of the system. For example, a system
design based on cost-effective pack-
aging of functionality at a small scale
can exhibit bottlenecks as computers
are added to the system to handle
increased workloads.

A distributed system is inherently
less reliable unless care is taken to
improve availability by adding redun-
dant components. Simply partitioning
functionality benveen a client and
server computer requires that both
the client and the server be working
for the hnctionality to be available.
Given technology with the same fail-
ure and repair characteristics, distrib-
uting hnctionality between two
computers results in a system that is
less available than one with the com-
plete functionality on one computer.
Often this is an academic point in
simple systems, given the levels of
component reliability. However, dis-
tributed systems with critical availabil-
ity requirements (e.g., a nationwide

network for interactive securities
trading) demand carefill analysis and
design to add appropriate redundancy.

Systems engineering is important
to Digital because even the best com-
ponent products are of no value to
customers until they are integrated
into complete working systems that
meet business needs. Ideally, one
would like to be able to build large,
complex systems by simply snapping
together small, simple components,
as if they were Lego blocks. It is
tempting to assume that this should
be easy because many of the compo-
nents are available as inexpensive,
mass-produced, reliable commodities.
However, building complex systems
from simple parts is still difficult and
requires engineering work, especially
when the overall system stretches the
limits of the technology.

Systems engineers play a vital role
in major systems integration projects
that push the edge of the technology
envelope in some way. The system
may combine components never
before used together. The trend
toward heterogeneous systems makes
this more likely. The system may
stretch scaling limits by having more
nodes or network connections or
users or data than ever before. The
trend toward large distributed systems
makes this scaling possible. The sys-
tem may need to meet demandng
requirements for overall system per-
formance or dependability. Increas-
ingly, heterogeneous, distributed
systems are being used for mission-
critical business applications.

Engineering analysis and design is
needed at all phases of a complex inte-
gration project, from the definition
of the technical requirements to the
design of the system to final testing
and verification. Custom software or
hardware may need to be developed,
either to glue together components
that were not built to work together or
to substitute for standard components
in order to meet demanding require-
ments for performance or scaling.

Systems engineers also develop
tools and methods to simpli@ the task
of integrating complete systems.
Digital's systems engineers are active

in the development of industry stan-
dards for ensuring the interoperability
ofcomponents from different ven-
dors. I n this issue of the Journal,
Eric Newcomer's paper describes
the development of standards for use
in the telecommunications industry.
Often, a system has legacy compo-
nents. Digital's systems engineers
are also active in the development of
frameworks that apply object-oriented
programming technologies to encap-
sulate legacy applications and data,
simplifying the incorporation of
legacy components into new systems.
A framework for the integration of
manufacturing applications is described
in the paper by James Kirkley and
William Nichols. The Systems Engi-
neering group has developed test
tools and methods, and operates an
extensive laboratory for testing, verifi-
cation, and performance characteriza-
tion of combinations of products
from Digital and other vendors.
Testing and characterization data are
the basis for configuration guidelines
for systems intended to run a number
of popular commercial applications.

Computers, disks, network switches,
database systems, desktop applications,
and many other components are now
available as inexpensive, reliable com-
modities. Hardware and sohvare
components from various manufac-
turers can be put together to build
a wide variety of systems, from one
as simple as a PC to one as complex
as a worldwide dstributed system.

While the cost of the components
has dropped dramatically in recent
years, the cost of integrating these
simple components into complex dis-
tributed systems remains high and
therefore represents a larger fraction
of the total cost of the system. Today,
Digital's ability to successfully build
complex distributed systems provides
great value for our customers, often
greater than the value of the com-
modity components from which the
systems are built. For the future,
improvements in tools and methods
for building comples systems will
lower the cost of these systems sig-
nificantly, making new types of appli-
cations feasible and affordable.

4 Digital Technical Joumal

Richard 0. Hart
Glenn Lupton

DEC FUSE: Building
a Graphical Software
Development
Environment from
UNIX Tools

DEC FUSE is an integrated programming envi-
ronment for UNIX systems. It is an evolution
of the FIELD environment developed at Brown
University. To take advantage of the features
of workstations developed during the 1980s,
these environments were designed to provide
graphical user interfaces for commands com-
monly used by UNIX software developers. DEC
FUSE uses two methods to create an environ-
ment from smaller and simpler software com-
ponents. These methods are sending messages
between components and layering graphical
interfaces on top of UNIX commands. DEC FUSE
uses these methods to create an easy-to-use,
integrated environment with more features
than its individual components.

The UNIX operating system originated at Bell
Laboratories in 1969 and rapidly grew more popular,
first within Bell Labs, then at universities and, since the
early 1980s, at commercial enterprises. One reason
cited for its success is that it is a good operating system
for programmers.' The wealth of simple tools and the
ability to combine them easily into new tools provides
an attractive environment for sohvare development.
Projects organize their development processes around
the capabilities of UNIX tools like sccs for version con-
trol and make for application building. Developers
build project-specific tools using UNIX commands
in shell scripts and have become proficient in the use
of tools like the dbx debugger and the emacs and vi edi-
t o r ~ . ~ Developers have also become accustomed to
commands for text manipulation (sed, awk), searching
(grep), and comparing (diff), and the use of these in
combination with other commands to do special tasks.

In the late 1980s, workstations came into common
use for sofnvare development. Workstations provided
addtional compute power and were capable of display-
ing complex graphics and providing point-and-click
interfaces. The UNIX tools and shell environment,
designed around character-cell video terminals and
hard-copy de\lices, did not make effective use of these
workstation capabilities. Different tools and a different
approach to combining them were needed to provide
an effective workstation-based developnlent environ-
ment that would take advantage of the additional
compute power available to workstatjon users and the
graphical interfaces available using the X Window
Systeni.3

In this paper, we define the characteristics of
some integrated software development environments
designed to take advantage of modern UNIX work-
stations. We describe the DEC FUSE product as an
example of one of these environments and present two
methods used to create the DEC FUSE product. With
the first method, we show how tools are built as
graphical user interfaces (GUIs) on top of esisting
UNIX commands. Then, we show how messaging
enables these tools to work together. We present
trade-offs and design alternatives for each method.

Digital Technical Journal V01.7 No. 2 1995 5

Integrated Software Development Environments

Integrated sohvare develop~nent en\ ~lronments ' are
collcctions of sohvare programs, or tools, that are used
together to accomplish one or more phases of soft-
n7are de\7elopment. DEC FUSE and other integrated
sofnvare development environments, including H P
SoftBench froni He\vlett-Paclcard and SPAl~C\\~orks
from Sun Micros)~stems, are based on a control inte-
gration m0de1.~-~ Control integration enables tools
to make requests of othcr tools for information o r to
d o required tasks.8

The DEC FUSE, HP SoftRench, and SPARCworks
environments were strongly influe~lced by work done
at Bro\vn University on the FIELD programming
en\iironnient by Steven P. Reis~. f i .~ DEC FUSE, in fact,
continues to use some code originally \witten as part
of FIELD. These environments share the following
features \\lit11 FIELD:

Environments are collections of cooperati~ig tools.
Each tool addresses a single aspect of the sofnvare
de\~elopment process such as editing, searching,
debugging, or building. This follows the UNIX
philosophy of making tools o r co~nmands simple
and focused o n a single problem. As a result, they
are easier to build, maintain, and use. The tools
cooperate \vitIi each other by performing opera-
tions at the request ofother tools. For cxaniple, the
builder tool can request that the source code cor-
responding to an error be displayed, and the text
editor will present the code.

Tools use a selective broadcasting colnmunications
method. Tools send simple, usuall\~ textual, mes-
uges to comniunicate with other tools.10 A ~nessage
may be either a request for a servicc or a notification
of the occurrence of an event. Tools register their
interest in receiving particular messages. A message is
then broadcast without requiring the sender to spec-
if) \vho \vill receive it. Since requests are not directed
to a particular tool, a tool can be replaced \vith a sim-
ilar tool that responds to the same messages \vithout
making changes to the sender. Because messages are
broadcast, ~nultiple tools can receive a notification
and each can take appropriate action.

Sourcc files and annotations are vieufed using a sin-
gle test editor. Each tool that needs to prescnt
source text to the user does so by sending request
mcssages that are processed by a single source test
editor. The text editor displays the desired source
files, and it may also place annotations next to
source lines of interest. Annotations are used to link
the sourccs with other parts of the enviro~lnient.
For esa~iiple, the location of breakpoints is pro-
vided by the debugger, the location of build errors
by the builder, and the location of strings matching
a pattern by the search tool. Each of these locations

is identified with an annotation symbol next to
a line of source code in the editor display.

GUIs are built 011 top of UNIX tools. Many of the
tools in the environment are GUIs fitted to existing
UNIX commands such as make, grep, and dbx.
These interfaces provide menu and button access to
these commands and their options; they also inter-
pret the results of the commands, presenting them
in fonnatted, interactive displays.

Program information is presented pictorially. The
graphical display capabilities of the workstation are
used to pictorially present information that may be
coniples or extensive. For DEC FUSE, this includes
a program's fi~nction call graph, the dependencies
in a maltefile, or the execution times of each func-
ti011 in a program. This issue of the Digital
Techizical .lournal presents another example of
displaying information pictorially with DEC FUSE
in the paper "Adding a Data Visualization Tool
to DEC FUSE."l]

Users continue to use familiar tools and methods.
Because the FIELD and DEC FUSE e~lvironments
are built using existing tools such as make, sccs, and
dbx, users can contini~e to use tools with which they
are falniliar. They can also use existing makefiles
and source libraries in the environment. In addi-
tion, users can make a gradual s\vitch to an en\ . won-
nient such as DEC FUSE. They can use DEC FUSE
when it is most advantageous and continue to use
older tools and methods when that is preferable.

DEC FUSE Overview

The primary goal of the DEC FUSE product was
t o create a commercially useful, integrated s o h a r e
development environment supporting a variety of pro-
gramming languages, including C, C + +, and Fortran.
The DEC FUSE environment t a l a advantage of the
capabilities of the UNIX \vorkstatioii, while allowing
sofn\lare developers to preserve their in\restnient in
familiar UNIX tools. DEC FUSE designers adopted
some FIELD components, which were converted t o
use Motif. Extensions were also made to the FIELD
environment to create the DEC FUSE product. These
extensions are described in the next sections. Several
tools have been added to the environment through
successi\le releases of DEC FUSE. The tools supplied
with DEC FUSE version 2.1 are listed in Table 1 and
are described in subsequent sections.

Selective Broadcasting Mechanism
The messaging used by DEC FUSE, called the multi-
cast ~nessaging system, has been extended in nvo ways
beyond its FIELD origins. First, messages have been
made more hnctional in nature. In the FIELD envi-
ronment, messages are strings that are assembled by

6 Dig~rnl 'I'cchnical Journa l Vol. 7 No. 2 1995

names match a regular expression. Queries can be
constrained by declaration types and locations
among other things.

The call graph browser graphically displays the
call relationships within a program. Relationships
between fi~nctions, source files, and source direc-
tories can be shown. The user can constrain the
display to selected parts of the program.

The C + + class browser displays the C++-class
hierarchy graphically. Inheritance paths and
detailed information about each member and class
can be displayed.

Editors include the DEC FUSE text editor, emacs,
and vi. The DEC FUSE and emacs editors allow
other DEC FUSE tools to supply annotations
on source text lines of interest. In addition, other
DEC FUSE tools can be invoked from the editor,
including the builder, the code manager, and the
man page browser. The DEC FUSE emacs editor is
a standard emacs, with additional keys defined for
DEC FUSE functions.
The help tool works with the HyperHelp tool from
Bristol Technology, Inc, to display on-line help and
training.

The DEC FUSE shell supplies a terminal emulator
window running a standard UNIX shell in the
context of the user's DEC FUSE development
environment.

In addition to the tools listed above, DEC FUSE
includes a control panel tool that starts tools and
manages their environment.

Using the DEC FUSE Tools Together
The messaging mechanism allows each of the tools to
make selected operations available to other tools. For
example, the editor makes its ability to open and dis-
play a source tile and to position to a specific line avail-
able to the other DEC FUSE tools through messages.
The man page browser accepts a message that causes it
to display a manual page for a specified topic. The fol-
lowing scenario, summarized in Figure 2, shows how
messaging ties together DEC FUSE tools into an inte-
grated environment.

1. To locate places in an application that need to be
changed, the developer starts the DEC FUSE
search tool and looks through C source files for
occurrences ofa particular name. The files and lines
containing a match are displayed in the search tool.
By double-clicking on a line, the corresponding file
is loaded into the DEC FUSE editor, and the line is
displayed with an annotation that the search tool
provided the location. (The search tool is used in
this scenario, but the cross-referencer can also be
used to d o this task.)

1. POSITION 4. COMPILE

SEARCH BUILDER

5. POSITION

Figure 2
DEC FUSE Tool Communications

2. After inspecting the source, the user decides to
modify the code, but must first check it out using
rcs. By choosing the "check out" menu item in the
editor, the user starts the DEC FUSE code man-
ager, which shows the user the revision being
checked out and allows the user to browse the
library before confirming the check-out operation.

3. The code manager sends a message to the editor
telling it to load the file to ensure that the user is
editing the latest version.

4. The user edits the file and then starts a compilation
using the "compile file" menu item in the editor.
This starts the DEC FUSE builder, which runs
make and displays compiler diagnostics.

5. By double-clicking on a diagnostic, the user gets
back into the editor on the line containing t l ~ e error.

The messaging mechanism allows for automated
switching between the tools. Information is passed
between the tools, thus eliminating retyping or cut-
ting and pasting. Other features also contribute to the
feeling of an integrated environment in DEC FUSE.
These include consistent GUIs for all tools, global
preference setting, saving and restoring of state infor-
mation, and centralized help and training. However, it
is the messaging that ties tools together, making DEC
FUSE an integrated environment rather than a simple
collection of tools.

We have now examined the features of integrated
software development environments in general and
the DEC FUSE environment as an example of these
environments. In the next two sections, we examine
two important aspects of the design of DEC FUSE.
First, we discuss the mechanisms used to add graphical
interfaces to existing UNIX commands. Then we pre-
sent the design of DEC FUSE messaging.

Digital Technical Journal Vol. 7 No. 2 1995 9

Building Graphical Interfaces for Existing
UNIX Commands

lMost DEC FUSE tools consist of a graphical program
that provides a point-and-click interface for invoking
UNIX conimands. This program interprets the results
from the execution of tlie commands and presents
these results graphically. This approacll has several
advantages over building a completely new tool.
r 7 1 liese are examined in this sectio~l, along \vith thc
implementation techniques used.

Rationale for Building a Graphical Interface for
Existing Commands
Using an existing command to perform functions
needed by a new com~iiand is a technique that is often
used on UNIX systems. DEC FUSE tools ~ 1 s t existing
commands for the following reasons:

User Investment Protection Two types of investments
must be niade in software development en\ u-onments. '

One investment is training: software developers have
learned the concepts and capabilities of the underlying
tools. Since the graphical interfaces of an integrated
environment are built on tools that are familiar to
users, they can be learned in considerably less time.
For example, the concept of revisions, the semantics of
revision numbers, and the capabilities of rcs are the
same ~vhetlier rcs is invoked from thc command line or
selected froni tlie DEC FUSE code manager.

Second, a project may have invested in proccdures
and sofhvare that depend on project tools such as
make and sccs. Users ofie~i use 1naliy nialtefiles that
have been tailored to meet the needs of their project.
Like\vise, most projects use sccs and rcs in ways that
must be supported by scripts. By building tlie code
manager and builder on the existing rcs, sccs, and make
~~tilities, this investment is preserved. (The 1)EC FUSE
code manager pro\~ides n~echanisms to support user-
written scripts used in combination with sccs and rcs.)

Easier to Invoke Operations Although the UNIX
co~nrnand line e~i\~ironment is extremely flexible, most
users find thcmsel\~es f req~~ent lp referring to reference
pages to check command syntax and option flags. Bj*
replacing commands with menu items and butto~ls
and by replacing flags with toggle buttons and fill-in-
the-blank dialog boxes, users interact wit11 the tools
faster \vith less hping and less bro\\/sing through refer-
ence pages. This is especially true for noviccs \\rho have
not defined their own collection of aliases and scripts.

For esample, searching all the header filcs in a direc-
tory hierarchy for tlie occurrence of a string requires
a command like the follo\ving:

f i n d / u s r / i n c l u d e -name " * . h M
- e x e c g r e p -i FLT-M 0 / d e v / n u l l \ ;

10 Digital Technical Jou r~ i a l Vol. 7 No. 2 1995

This is a typical example of a colilmand that a sofnvare
developer might need to use froni time to time. The
command \vould be entered on one line. A first-time
LIS~I-, ho\ilever, might not correctly input all the details
of the command for tlie following reasons:

The "*.hn designation includes quotation marks so
that it is not inimed~ately espanded by the shell in
the user's current directory, but instead expanded
by find in all the subdirectories in the /usr/include
tree.

If the search is to be case-insensiti\le, the -i sulitch
rniist be used with the grep command.

The grep command suppl~cs thc name of tlic file
where the string is found only if more than one
file is supplied in the grep argument 1st. /de\~/null
1s added to nlaltc grep include the tile names In
the output.

The find command requires that subcommands
that it \ \ t i l l esccute be terrninatcd with a semicolon.
Because a semicolon is also recognized by the shell,
it ~ i ius t be preceded with a bacl<slash (escaped),
so that find \\/ill scc it.

To d o the same operation from tlie DEC FUSE search
tool, thc user fills in some fields and sets a toggle (see
Figure 3). This can be done easily and correctly the
first time by both novice and expericnccd UNIX users.

Is - Buffer Options - Help -
-

I--
I kwp: wtnt Llarkl Directory: ~fussrs/lwtr

Search Dirartnnt" .Aatch:

I Expressio..

a Directory Tree

1 Not Matching

Figure 3
DEC FUSE Scarcli Tool

When the user spots an interesting occurrence in
the output from a grep command and wants to edit
the file, a command line interface requires the user to
enter the command to edit the file and to type the file
name and line number. Using the DEC FUSE search
interface, the user double-clicks on the interesting line
in the search tool and the editor automatically loads
the file and sets the position to the desired line, saving
typing and eliminating the possibility of errors.

Hiding Details Another advantage of graphical inter-
faces on underlying commands is the ability to hide
details of particular commands. For example, the DEC
FUSE code manager supports both sccs and rcs with the
same graphical interface. A user does not need to know
the differences between rcs and sccs; by using the
graphical interfaces, the user can see similar version his-
tory information from either underlying library format.

Graphical Presentation One advantage of a worl<-
station is its ability to present informati011 graphically.

A GUI layered on a command line tool can analyze the
output of the tool and present it to the user graphi-
cally, making the information in the output easier to
understand.

An example of this is the dependency graph in
the DEC FUSE builder, as shown in Figure 4. The
graph displays the build dependencies for the user's
application as specified explicitly or implicitly in the
application's makefile. This display is an analysis and
presentation of the output provided by make when
run with options that produce debugging information
about makefiles. Nodes designated orange in the
graph represent the files that have changed. Nodes
designated red in the graph represent the files that
need to be rebuilt because of their dependency on the
changed files.

Another example of using the graphical capabilities
of the workstation is the DEC FUSE compare tool,
which is built on the UNIX diff utility. The output of
the UNIX diff utility is textual; an example is shown in
Figure 5. In contrast, Figure 6 shows how the DEC

. .
-c c0Imt.c

oa/l&caplrs/ac/cfe: Error: cant.c, line 95: 'k' mbflned, r-r-t P for (j = 0: k < strlen (buf): ++j)

~usr/lib/cmplrs/+cfe: Error: -t.c, line 132: ' m ~ x ' de f ined , reocanr-s wi l l not

Figure 4
DEC FUSE Builder Tool with Dependency Graph

Digital Technical Journal Vol. 7 No . 2 1995 11 p-

c s h # d i f f f i l e l . t x t f i l e 2 . t x t
5,9d4
< T h e s e a r e L i n e s t h a t a r e o n l y i n f i l e l .
< T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e l .
< T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e l .
< T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e l .
< T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e l .
11a7,lO
> T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e 2 .
> T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e 2 .
> T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e 2 .
> T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e 2 .
14,17c13,16
< T h e s e a r e L i n e s t h a t a r e d i f f e r e n t i n f i l e l .
< T h e s e a r e l i n e s t h a t a r e d i f f e r e n t i n f i l e l .
< T h e s e a r e L i n e s t h a t a r e d i f f e r e n t i n f i l e l .
< T h e s e a r e l i n e s t h a t a r e d i f f e r e n t i n f i l e l . ---
> T h e s e a r e L i n e s t h a t a r e d i f f e r e n t i n f i l e 2 .
> T h e s e a r e L i n e s t h a t a r e d i f f e r e n t i n f i l e 2 .
> T h e s e a r e L i n e s t h a t a r e d i f f e r e n t i n f i l e 2 .
> T h e s e a r e l i n e s t h a t a r e d i f f e r e n t i n f i l e 2 .

Figure 5
Sample diff Output

3 w e lines that are also in both f ilel and , I

W e ara l~nes that we onlv I n f ~ l e ? .
These are Ilnez that at-s on14 In f ile2.
l ' l ~ ~ e w e l ~ n e s that are only rn f11e';l.
7 1 I _ _ _ . . I,..& _~._ __,.. i- P I , _ -

. . . . - - .
These are 111m that we different in file;).
Tliese w e l im that we different irr File:.
Tliese are lines that w e different in F i l e ,

Figure 6
DEC FUSE Compare Tool

12 Digital Technical Journal Vo1.7 No. 2 1995

FUSE compare utility displays these differences graph-
ically, using highlighting to indicate the differences
and shapes to connect regions in the two files that
relate. The display allows differences to be viewed in
the context of the lines before and after them and the
lines that correspond to them in the other file.

Reduced Tool Development Work An obvious advan-
tage for the developers of the interface is that building
on a command line tool may involve considerably
less work than designing and implementing a new
tool that includes all the capabilities of the command
line tool. Furthermore, not every capability needs to
be provided through the user interface of the tool,
because users have access to less-used capabilities
through the command line. For example, the seldom-
used administrative features of sccs and rcs can be omit-
ted from the user interface. Thus, with a minimum
amount of effort, it is possible to provide a convenient
interface to the most important underlying capabilities.

Managing Command Interfaces
I t is common on UNIX systems to use the output of
one tool as input to another. In the case of DEC
FUSE, the output of command-line tools is being used
as input to DEC FUSE tools. The DEC FUSE tools
construct commands and pass them to a separate
process for execution. The results of these commands
are then interpreted by the DEC FUSE tools so that
desired information can be presented to the user. The
methods used to issue commands and to analyze their
results vary from one DEC FUSE tool to another.

One method used by DEC FUSE tools is to directly
issue commands using the popen library function,
which both starts execution of the command and
creates a pipe to the process running the command.
This is done by tools like the man page browser and
search. Output from the man or grep commands
that they issue is parsed by the DEC FUSE tool, often
using a simple mechanism such as the standard C
library function fscanf, which applies a format string
to a line to parse it. Some tools also make use of lex
with or without yacc to aid in parsing the output of
the commands.'2J3

Other tools use PMAT (pattern matching) routines
for examining command output for desired patterns.
The PMAT hnctions were developed by Steven Reiss
as part of the FIELD environment. They are used in
FIELD both for managing messaging as well as for
interpreting the output of UNIX commands. For DEC
FUSE interfaces to UNIX commands, the patterns
used by the PMAT routines are organized in tables.
Portions of two of these tables are shown in Figure 7.
These examples are for the output of gnumake and
a make program supplied with Digital UNIX.14 For
this analysis, there are nvo significant parts of each

pattern table entry: a text pattern that may be found
in the command output, and the name of a routine
to be called if the associated pattern is found. For
example, when the error message "Failed to remake
target file '%ls7" is recognized, the function named
make-giving-up is called with arguments that match
specifications in the pattern string.

Additional values from the table (omitted in the fig-
ure) are also passed as arguments to the routine. The
string '%ls' in the pattern is similar to the conversion
specifications used by scanf. It represents a field in the
output that will be passed to the recognition routine
when a pattern is recognized. Some of the field specifi-
cation characters used are given in Table 2. The num-
ber preceding most field specification characters tells
the pattern match what position this field should hold
in the argument list passed to the recognition routine.
When there is no number with a field specification
character, that field is not passed to the recognition
routine.

Choosing the Appropriate Command
Interface Method
The DEC FUSE product was designed to be portable
across several hardware platforms and many operating
system versions. DEC FUSE was developed on the
ULTRIX system and has been ported to SunOS, AIX,
HP-UX, and Digital UNIX operating systems. It was
released to customers on all these platforms, except
AIX. Since portability across platforms and versions
is a goal, interfaces for different command implemen-
tations and versions need to be considered. The choice
of interface method is made based on the complexity
of the interface (the number of commands and
expected responses), the number of different inter-
faces needed because of system differences, and the
rate at which the interfaces are evolving.

Most common UNIX commands, such as grep, man,
and diff, have regular output that seldom changes. The
versions of these commands on the desired platforms
and operating systems have few differences, so it is not
difficult to write portable code that can issue these
commands and interpret the output using the lex, yacc,
or the scanf hnctions.

In cases in which the output is less regular and varies
across commands and platforms, the PMAT facilities
are more appropriate. This includes the DEC FUSE
builder, which must support several different make
programs on the supported platforms. The PMAT
facilities allow for interpreting a large number of dif-
ferent format lines and for selecting tables of patterns
appropriate to the underlying command. This makes it
easier for the builder to accommodate a variety of
make programs and interpret both output from make
and output from compilers.

Digital Technical Journal Vol. 7 N o . 2 1995 15

I * * * * * * P a t t e r n t a b l e f o r g n u make * * * * * * I
s t a t i c MAKE-PAT g n u - p a t t e r n - t a b l e [] = C

{ " R e a d i n g m a k e f i l e s . . .", g n u s c a n - m a k e f i l e , . . . I,
C U C o n s i d e r i n g t a r g e t f i l e l % l s " ' , g n u s c a n - c o n s i d e r , . . . I,
{ " F o u n d a n i m p l i c i t r u l e f o r l % l s ' " , g n u s c a n - f l a g s , . . .I,
C n U p d a t i n g g o a l t a r g e t s " , g n u s c a n - m a k e f i l e , . . . I,
C " F i l e ' % l s l was c o n s i d e r e d a l r e a d y " , gnuscan-done , . . .I,
{ " N u s t r e m a k e t a r g e t ' % I s 1 " , g n u s c a n - f l a g s , . . .I,
{ " F a i l e d t o r e m a k e t a r g e t f i l e ' % l s l " , m a k e - g i v i n g - u p , . . . I,
{"No n e e d t o r e m a k e t a r g e t ' % I s ' " , g n u s c a n - f l a g s , . . . 3,
C"# F i l e s " , g n u s c a n - f i l e s , . . .I,
C"# N o t a t a r g e t : " , g n u s c a n - n o t a r g e t , . . . 1 ,
C"# commands t o e x e c u t e " , g n u s c a n - s e t r u l e s , . . . I,
C"# P h o n y t a r g e t " , g n u s c a n - d e f f l a g s , . . . I,
C"# P r e c i o u s f i l e u , g n u s c a n - d e f f l a g s , ... I,
{ " # VPATH S e a r c h P a t h s " , g n u s c a n - f i l e s , . . .I,
C"# gnumake: E n t e r i n g d i r e c t o r y l % l s " ' , g n u s c a n - p r o j , . . .I,
C"# gnumake: L e a v i n g d i r e c t o r y ' % l s " ' , g n u s c a n - p r o j , . . . I ,
{ " % I s : % 2 r U , g n u s c a n - d e f , . . .?,
C " % l s : " , g n u s c a n - d e f , . . .I,
...-

I;

I * * * * * * P a t t e r n t a b l e f o r d e c make * * * * * * I
s t a t i c WAKE-PAT d e c - p a t t e r n - t a b l e C 1 = {

C"doname(%ls,%2d)" , d e c s c a n - c o n s i d e r , ... 1,
{ " s e t v a r : @ = % I s n o r e s e t " , d e c s c a n - f l a g s , . . .I,
C " s e t v a r : ? = X l r " , d e c s c a n - f l a g s , . . .I,
C " ! = % l r U , d e c s c a n - a d j u s t , ... 1,
{ " l o o k f o r e x p l i c i t d e p s . % I d " , d e c s c a n - f l a g s , . . .I,
C"1ook f o r i m p l i c i t r u l e s . % I d " , d e c s c a n - f l a g s , ... I,
{ " C u r r e n t w o r k i n g d i r e c t o r y f o r make i s % I s " ,

d e c s c a n - p r o j , . . .I,
{ " % I s : % 2 r V , makescan-de f , ... 1 ,
{ " % I s : " , m a k e s c a n - d e f , . . - 1 ,
{ " R e a d i n g % I s u , d e c s c a n - m a k e f i l e , . . . I,

Figure 7
make PMAT Patterns

Table 2
Some PMAT Field Specification Characters

Field
Character

d
X

C

s

9
r

e.f,g

Data Type

Decimal number
Hexadecimal number
A single character
A string, delimited by white space
A string, delimited by quotation marks
A string, from the current location to
the end of the line
Floating-point numbers

The tool with the most complex command interface
is the debugger. The debugger shares the following
issues with other tools, but demonstrates them most
forcefully:

1. Debuggers are big and complex. Debuggers are
more complex than the commands used in other
DEC FUSE tools. Each debugger engine accepts
many commands, all of which have their own out-
put that must be parsed. The debugger engine also
continues to run while the user works. Unlike most
other tools, the debugger engine is not restarted
ever), time the user wants more information, so the
debugger process must be managed over a long
period of time.

2. Debuggers are evolving more quickly. Debuggers
frequently change to support new needs (for exam-
ple, new languages like C+ +, threads, or hardware
architectures), so new debugger commands or new
output from old commands can be expected often.

3. Synchronizing the front end and the debugger
engine is a complex task. The graphical front end

14 Digital Technical Journal Vol.7 No.2 1995

niust renii~in synchronized with the debugger
engine it is running. Preserving this synchroniza-
tion is made more difficult for three reasons. First,
users can enter debugger co~iinlands directly as
test, making it difficult for the Ront end to deter-
mine their effect. Thcse commands may require
updates to the graphical displays or the internal
state information i~sed by the front end. Second,
the debugger may not be in a state where it can
accept com~nands (\vhen the user program is run-
ning for example), so the front end cannot update
displays. Third, spontaneous and unexpected
debugger cngine output may occur as the result of
traces o r ccrtain bred kpoints.

4. Different debuggers use different commands.
Commands on different debuggers can be different
in both name and design. For example, \+lit11 the
dbx debugger available on SunOS, AIX, and Digital
UNIX, the commands f u n c and f ~ l e can be used to
find the currently active function and the name of
tlie source filc wlierc that fi~nction IS defined. The
xdb debugger used on HP-UX, however, uses the L
co~nmand to present both thc current function and
the name of tlie tile where it is defined, as \\re11 as to
display the current source code line.

5. The same debugger commands have different out-
put. Other commands, althougli similar in name
and design, can produce output that is different
enough to cause problems. One example is the
where command used in dbx on both Digital UNIX
and S L I ~ O S platforms. This conirnand returns tlie
current stack information. The Digital version
includes a pojnter character (>) to show which
stack entry is the current scope; ho\ve\ler, the
SunOS version does not supply this scope informa-
tion. Therefore, a debugger GUI program must be
carefully desjgned to get needed scope information
if it must support both debugger engines.

6. The output ofsome debugger commands is com-
plex, and the results of some debugger commands
are difficult to parse. For example, in the display of
the content of a data structure, the format of the
output will vary depending on the source language
used in the application.

Experiences \\lit11 DEC FUSE suggest that there is
n o easy solution. Addressing these issues results in
many specialized routines in the DEC FUSE debugger
tool to both construct debugger commands and inter-
pret the results. Techniques that help to make the
problen~s more manageable include the following:

Cleanly separate generic-GUI and command-
specific code. The design of the debugger GUI
identifies the operations that it requires of the

debugger engine and the data that it must get from
the engine. These are provided by a sct of fi~nctions
whose implementation \\r i l l vary from one engine to
another. These fi~~ictions will be modified over time
to accommodate thc evolut~on of tlic engines.
Another method being designed now is to use
C+ + classes to encapsulate code for each sup-
ported debirggcr engine.

Limit the details that the GUI depends on. O n e
\\lay to limit the dependency of the GUI 011 the
details of the engine is to provide GUI support for
only the most frequently used debugger opera-
tions, while providing a command interface for the
re~iiaining operations. Another technique is to
avoid interpreting the output of the engine \vhen
possible and simply display the output of the com-
mand in a text windo\i~.

Implement special interface commands in the
engine. When it is possible to change tlie underlp-
ing debugger, special commands and output can be
implemented by the debugger designed exclusively
for use by the GUI front end. For example, the
DECladebug debugger enginc has been modified
with the introduction of two new commands for
use by the graphical interface that siniplitjl the task
of displaying data structures in the GUI. Although
other commands display data structures for the
user, the format of the output of these commands is
designed to be easily interpreted by the GUI. These
commands are designed for the exclusive use of the
GUI. They need not br changed for the user, for
esample, to improve readability; thus the evolution
is controlled.

Forti~nately, most UNIX tools are not as complex as
the debugger. In fact, building a GUI for coml-riands
with output that seldom changes and is consistent
across jrnplernentations is a straightfor\vard task.

Using Messaging to Make Independent Tools
Work Together

As described earlier, each DEC FUSE tool focuses on
a single, separate sofnvare development task. This
design philosophy, sometimes called "divide and con-
quer," combined with the DEC FUSE multicast mes-
saging system (MCMS) makes it easier to maintain or
replace tools. DEC FUSE tools can therefore be easily
replaced with alternative tools that provide the same
function.

MCMS is the key to nidung independent tools \vork
together. Any message sent by a tool is delivered to all
tools that espress an interest in receiving the message.
Some messages, called notifications, are defined to
have no response. Other messages, called requests,

Digltal '~ccl-unical Journal Vol. 7 No. 2 1995 15

have responses for which the s e ~ ~ d i n g tool usually waits.
A tool can also eavesdrop on requests that will be han-
dled by other tools. A DEC FUSE component called
the DEC FUSE message server keeps track of the active
tools and which messages each can send and receive.

Messaging with MCMS
Messages used by tools are easily defined in a TIL file,
written in the DEC FUSE tool integration language.
An example is the manager.ti1 file used by the DEC
FUSE code manager. Part of manager.til is shown in
Figure 8. Each TIL file can define one or more tool
classes. Each class definition describes how a single
DEC FUSE tool will be integrated with the rest of
DEC FUSE. A class definition contains three parts:

1. Attributes: This is a collection of tool attributes
such as the string to be used in the DEC FUSE tools
menu and the command to invoke the tool.

2. Messages: This section lists definitions for all mes-
sages sent and received by the tool, including their
arguments and return values. Messages that have
return values defined are called requests, and the
returned value is expected by both the message
switch and the tool that sent the request. Messages
with no return value (the type is void) are called
notifications. The keyword trigger is used if the
message should automatically start the tool.

3. States: This section describes when each message
may be used during the execution of the tool. This
section defines one or more states in which the tool

c l a s s MANAGER = C
A t t r i b u t e s C

l a b e l = "Code Manager " ;
a c c e l = "Meta+M";
p a t h = " $ (F U S E - S H - B I N) / m a n a g e r U ;
.... 3;

M e s s a g e s C
/ * m e s s a g e s a c c e p t e d b y t h e F U S E c o d e m a n a g e r * /
c h a r * T o o l R e c o n f i g u r e (c h a r * w o r k i n g - d i r e c t o r y ,

c h a r * t a r g e t - d i r e c t o r y , c h a r * t a r g e t , c h a r * o t h e r) ;

t r i g g e r c h a r * C h e c k I n (c h a r " L i b r a r y n a m e , c h a r " f i l e n a m e ,
c h a r * r e v i s i o n , c h a r "comment, i n t k e e p f i l e ,
i n t f i l e m o d e) ;

/ * m e s s a g e s s e n t b y t h e F U S E c o d e m a n a g e r * /
v o i d C h e c k I n N o t i f i c a t i o n (i n t i n s t a n c e - i d ,

c h a r * l i b r a r y n a m e , c h a r k w o r k d i r , c h a r " f i l e n a m e ,
c h a r * r e v i s i o n , i n t s t a t u s) ;

. . . . I;

S t a t e s C
s t a r t C

r e c e i v e s C
T o o l R e c o n f i g u r e , 3;
s e n d s C
. . . .);

1;
r u n n i n g C

r e c e i v e s C
T o o l R e c o n f i g u r e ,
C h e c k I n ,
C h e c k o u t ,
. . . . 3;
s e n d s C
T o o l R e c o n f i g u r e ,
C h e c k I n N o t i f i c a t i o n ,
. . . . 1 ;

3; I ; J;

Figure 8
DEC FUSE Tool Integration Language File

16 Digital Technical Journal

may exist. Tools can change their state, and within
each state only the listcd messages may be used.
Most DEC FUSE tools need only nvo states: an
initialization or start state used during tool start-up
and a running state. Other states may be needed by
some tools. For example, tlie builder uses a build-
ing state to advise the message server that a build
is in progress and that some requests (like another
build request) are not allowed.

A TIL compiler translates the TIL files of DEC
FUSE tools into the data files needed to run DEC
FUSE. Figure 9 summarizes how the files generated
by the TIL compiler for a DEC FUSE tool (named
hse-tool) fit into the architecture of DEC FUSE.

TIie TIL compiler combines informati011 from the
fuse-tool TIL file with TIL files for tools already
installed o n a system. The TIL compiler generates
three files:

1. hseschenia.msl - This file tells the message server
which tools wish to receive wliicli messages.

2. tools.rc - This file tells the control panel how to
start each tool. Tools may be started in response
to a trigger message or nianually from the Tools
menu found in each DEC FUSE tool.

3. FUSE-fuse-too1.c - This file contains functions for
each of the messages that the tool wishes to send.
This file is compiled and linled with hse-tool
along with 1ibfuse.a. Messages are sent by simply
calling these functions. This file also contains an ini-
tialization function in which callback functions for
messages that the tool receives are registered.

The use of the TIL compiler in DEC FUSE provides
a mechanism similar to a remote procedure call facility.

This allows tools to send a message using a single h n c -
tion call. This contrasts with the messaging mecha-
nisms used in the H P SoftBencli and Sun SPARCworlts
products, which require a number of calls to the mes-
saging application programming interface (M I) to
allocate, assemble, send, and free a message. These
mechanisms also require tools to assemble and register
patterns corresponding to the messages that they want
to receive, a hnction handled by the initialization h n c -
tion in the C source file generated by the TIL compiler.

To simplify the task of integrating tools, DEC FUSE
also supplies a DEC FUSE message monitor. This tool
monitors and debugs messages sent by tools and pro-
vides a mechanism for integrating sl~ell scripts as tools
that can send and receive messages.

Simplified Tool Replacement
MCMS does not require the user to speci@ the tool
that does the work. When a tool sends a message using
MCMS, it does not specify what tool should service
the message. This allows for replacement of the tool
that services the messages with an equivalent tool,
without making any change to the sender. This mech-
anism is used in DEC FUSE to allow users to select
which of three editors they want to use and whether
they want to use a GUI debugger based on dbx or
DECladebug.

This mechanism also facilitates upgrading the DEC
FUSE environment. Recently, the Motif help widget
in DEC FUSE was replaced wit11 the HyperHelp tool.
The replacement was facilitated by continuing to use
the existing messages. This isolated all changes to the
DEC FUSE help tool. The help tool continues to
receive messages of tlie form

fuse-tool TIL

I

MESSAGES
-- .

, MESSAGES
- - .

fuse-too1.c

Figure 9
Use oETIL-generated Filcs in the DEC FUSE Architecture

Digital Technical Journal Vol. 7 No. 2 1995 17

t r i g g e r void HelpShowTopic(char "product ,
char *mode,
char * t o p i c) ;

111 tlie previous version, the message argilmcnt, topic,
was a string that identified what kind of help was
desired. The new help tool uses numbers instead of
names to identi5 help topics. Consequently, a si~nple
mechanism was designed to translate the strings
received in the HelpShowvTopic messages to the
desired HyperHelp topic 11~111iber.

Conclusion

DEC FUSE provides an integrated programming envi-
ronment for UNIS sofnvare developnie~lt that takes
advantage of the graphical capabilities of\\~orkstations.
T\vo key techniques are used t o implement DEC
FUSE:

The layering of GUIs on existing UNlS command
line tools

A multicast messaging mechanism that permits
tools to interoperate without limiting the environ-
ment to specific tools

The GUIs provide point-and-click interfaces for
invoking operations and s,pecifying options and use
pictures and diagranis in addition to text to display
information. At the same time, the use of traditional
UNIX commands to perform programming tasks pre-
serves the user's investments in those ~~nderlying tools.

The GUIs interpret the output of UNIX com~nands
and present the information in pictorial and interactive
displays. A variety oftechniques can be i~sed to process
the ou tp~ l t of a command line tool, depending 011 the
complesity of the tool output. Simple text-processing
techniques are usually adequate for interpreting the
output of command line tools. When the underlying
tool output is s!~ntacticall!~ complex or e\~olvjng, or
when considerable state information is frequently
needed from the underlying tool, it becomes difficult
to apply these techniques. Under these conditions,
designs that a\~oid the processing of human readable
output are preferred.

The use of messaging is consistent with the UNIX
philosophy of creating simple tools and letting the
user combine them in any way that might be usefi~l.
The messaging mechanism ties the individual tools
together into an integrated cnvironment by allowing
tools to invoke operations in other tools 011 the user's
behalf. This eliminates steps for the user, and it also
eliminates the potential for errors. Bccausc tlie tools
are still autonomous and interface solcly by means of
the messaging, equi\falent tools that accept the same
messages can be substituted, allo\ving for user and
project preferences.

Acknowledgments

Wc \\~ould like to thank the many past and present
members of the DEC FUSE team who contributed to
the design and implementation of the DEC FUSE
product. We also \\rant to acluio~vledge the worlc 011
FIELD done at Bro\vn University by Steven P. Rtiss
and his students that laid the groundwol-k for DEC
FUSE and other soh la rc development em ~~~-onn ien t s . '

References

1. B. I(ernighan and R. Pikc, nnc lh\W Prc~~qi.niw~i?i?zg
Enuironrgzent (Engle\\,ood Cliffs, N.J. : Prcntice-Hall,
Inc., 1984).

2 . R. Stnllrnan, G~VliE~~zacsiW~~nzial (Cambridge, mass.:
Frce Software Foundation, 1988).

3. R. Scheifler and J . Gettys, "The X Window System,"
Act4 Trclnsactiorzs on Gru;~hics, \~o1. 5 , no. 2 (April
1986).

4. LIEC FUSE Hu~?dbook (Maynard, mass.: Digital Equip-
ment Corporation, Order No. M-Q8Zi\ln-TF,, 1994).

.5. DECFUSE E~I,CA.YI! / W L ~ ~ L L C I / (iMay~iard, MJSS.: Digital
Equipment Corporation, Order No. &4-Q8Zl'A-TE,
1994).

6. LM. Cagan, "Thc HP SoftBcnch En\~~ronnicnt: An
Architecture for a New Gencration ofSofnvare Tools,"
HeloLett-Puckdrd. Jo~11-1znl (June 1990): 36-47.

7 . C'onztnon Desktop B?uiro~i~ncut: Gettiizg Starte~~
Using ToolTalk cVle.ssaging ([Mountain View Calif.:
Sun Micros!:sterns, Inc., 1994).

8. S. Reiss, 7 % ~ FieM Prograini17i~zg E ? I L ' I I . ~ ~ I ? ~ L J V ~
A F~'ierzd(y Iiztegruted E I I U ~ ~ O I L I ~ ~ ~ ~ ? ~ Ji~i- Le~o'ni~ig
and Deuelopnefzt (Boston: IUu\.\rer Academic Pub-
lishers, 1995 j.

9. S. Reiss, "Interacting \\,it11 the FIELD Environment,"
So/iwrwe-Practise and Pjtperie?zce. vol. 20 (June
1990): 89-1 15.

10. S. Rciss, "Connecting Tools Using iMessage l'assing in
the Field En\~ironment," IliEE Sq/tzcc~~,e, JLI~!. 1990:
57-66.

11. 13. Zarcniba, "Adding a Data Visualization Tool to
11EC FUS1-;." Digital Tecb~z ica l~ /o~ i r~?~~/~ vol. 7, no. 2
(1995, this issue): 20-33.

12. iM. Leslc and E. Schmidt, "Lex-,\ Lcxicnl hlal!,zer
Generator-," Coinpt~&ei. Scier?ce Tcjchiiicul Rckort
NO. 39 (Murray Hill, N.J.: Bcll Laboratories, 1975).

13. S. C, Johnson, "Yacc: Yet Anotlicr compile^.-
Colnpiler" (~Murray Hill, N.J.: Ucll 1,aboratories).

14. R. Stallman and R. McGrath, GAiU iwakc-A P1.o-
gi-unx Jbi. Dirccting Recon7~1il~rtior~ (Cambridge,
Mass.: Frcc Sofiulare Foundation, 1993).

Vol. 7 No. 2 1995

Biographies

Richard 0. H a r t
Rich Hart joined Digital in 1980 and is currently a member
of the FUSE Group. Prior to Ihis work on the DEC FUSE
progranllning en\,ironment, Rich was a member of UEG
(ULTRIX Engineering Group) and led the first version of
the Palladii~m distributed printing project at IMIT's Project
Athena. As one of Digital's representatives to the X/Open,
POSIS, and ANSI srandards groups, Rich has contributed
to the development of sofnvare standards for transaction
processing, printing, and CASE environments. H e earned
a Ph.D. from the University of Connecticut and is a mem-
ber of ACM and IEEE.

Glenn Lupton
Glenn Lupton is a co~isulting software engineer and
has been with Digital for 20 years. During this time,
lie has workcd primarily on programming environments
and tools, including Bliss compilers and DECset. For the
last nvo years, he has been the technical director of the
DEC FUSE projcct with responsibility for the overall tech-
nical content of DEC FUSE. Glenn rcccived B.S.E.E. and
1M.E.E.E. degrees from Renssclaer Polytechnic Institute.

Digiral Technical Journal

I
Donald A. Zaremba

Adding a Data
Visualization Tool
to DEC FUSE

Digital's Data Visualizer tool uses condensed
file views to display thousands of lines of source
code. These displays can include the output
of many other tools. As part of the DEC FUSE

programming environment, the tool helps soft-
ware developers by providing capabilities for
displaying large bodies of text with associated
events or statistics. The Data Visualizer tool
combines the results of other tools into a single
display, keeps track of work items, and scales
up to support large software projects.

In January 1993, Digital began research on a tool for
visualizing large sets of data. The design of the Data
Visualizer tool was complete in March 1995, and the
tool is scheduled for inclusion with the nest major ver-
sion of the DEC FUSE software. DEC FUSE is a pro-
gramming environment for UNIX that provides an
integrated suite of graphically oriented tools built on
the commonly used UNIX programming tools. For
more information on the DEC FUSE envjronment,
see the paper "DEC FUSE: Building a Graphical
Software Development Environment from UNIX
Tools" in this issue.1

In this paper, we focus on the technology that was
used in the data visualization tool and the process by
which this tool was taken from an advanced develop-
ment project to become a part of an existing product.
We start with a discussion of the problems encoun-
tered when visualizing large sets of data, the various
graphical techniques that are used to solve these prob-
lems, and the implementation of these techniques in
a demonstration tool. We then describe the design of
the final tool, its evolution from the prototype into a
product, and its integration with the other DEC FUSE
tools. \Ve then give a functional overview of the tool
and scenarios of how it can be used. We conclude with
comlnelits on the process from advanced development
work into final product.

Development of a Data Visualization Tool

Sofnvare development of even a moderately sized
project typically involves working with many files and
hundreds of thousands of lines of source code.
Working \vitli so much data in so many files is difficult
because most sofnvare tools are written to \vork on a
single file at a time (like a compiler or an editor). Those
tools that do operate on multiple files (like a grep tool
used with \vildcards) produce a stream of output that
can be large and that can only be associated with the
source code by identi@ing a line number or by display-
ing a single line of source in context. Although these
tools do provide the requested answer, they provide lit-
tle of the context that \vould help the user see ho\\l thls
answer relates to the source code or how it \vould relate

20 Digital Technical Joul.nal

to other answers. I t is often hard to see ho\v these
detailed answers fit into the large picture.

One technique for solving this problem is to use
computer graphics in the display portion of software
development tools. Graphics are used to display infor-
mation such as build dependencies, cross-reference
data, call tree data, and class hierarchies.

Unfortunately, when the application becomes large,
the graphic displays become too dense to provide any
real insight into the relationships between the corn-
ponents in the application. The screen is simply not
largc enough to display all the information. The lay-
out of nodes on a two-dimensional display is often
inadequate to effectively represent the complesity
of the underlying structure and relationships in tlie
code. The cornmon use of overlapping windo\\a of
data actually hides data, preventing users from see-
ing important relationships among thc \\lindoc\/s or
even knowing \\~hich \+lindo\vs contain relcvant data.
In cffect, programmers who must work on today's
coniplex s o h \ ~ a r c applications are confronted with

a situation similar to entering a large dark room with a
complicated piece of machinery in it. Current technol-
ogy hands the engineers a penlight and says figure out
what the machine is, how its parts \\fork, and then
make enhancements to it.

The Data Visualizer tool addresses some of these
problems by providing a condensed view of source
code; the tool is capable of displaying thousands of
lines of code in a single viecv. This condensed display is
used as a backdrop for showing the output from tools
and how it relates to the source code. Figure 1 is a
sample screen output from the Data Visualizer tool
being used in conjunction with a search tool to find
occurrences of a particular string. This simple example
shows many of the features of the Data Visualizer. The
rendering of each file in the vie\\, sho\vs the indenta-
tion of the source code. S o ~ ~ r c e code is colored to
show comments in green, the beginning of fi~nctions
or procedures in red, and the actual code in gray. The
sizes of files and ti~nctions are readily apparent. The
results of the search inquiry arc Ihigliliglited.

Figure I
Main Windo\\; of thc Data Vis~~alizcr

Digital Technical Joul.n.11 Vol. 7 No. 2 1995 21

Graphical Techniques

During the early phases of this work, research was
done to find appropriate graphical techniques. This
section describes in dctail three tcchniques that intlu-
enced our design and appear in some form in the Data
Visualizer tool. I t also gives references to related work.

Condensed File View
One technique that looked promising from the very
beginning \\/as the condensed file representation done
by Stephen Eick in 1993. 111 his paper "Graphically
Displaying Text," he describes a program called
SeeSofi that is used to display statistics associated with
lines of t e ~ t . ~ . ~ H e has used this technique to show
statistics about lines of program source code and other
test files, such as test from the Bible or revision history
of text paper. H e also uses the technique to analyze
colnputer log files and describes that work in a sepa-
rate paper.'

The idea behind the SeeSoft program is to create
small pictures of files that reveal information about
a file in a ~~on tes tua l manner. The size of the rectangle
is scaled to the number oflines in the file. Each line of
text is shown with the correct indentation and length.
In addition, lines can be color-coded either to reveal
program structure o r to highlight some point of inter-
est. As an example, green lines could be used for com-
ments, red lines to indicatc the start of each function,
and gray lines for esecutable code. As can be seen in
Figure 2, the information reveals the size of each file
and some inforn~ation about the file contents. I t is easy
to see where function definitions begin, because the
red lines stand out. Also, the indentation of the code

Figure 2
Condensed File Vie\\?

helps the viewer recognize programming structures
like if then else statements o r case statements.

One of the appeals of this method was the ability to
display many lincs of source code. (Eick's Seesoft tool
claims to display as many as 50,000 lines of code.)
Programnlers can get a clear and co~nplcte o\ler\~ie\\l of
their code. From the simple view sho\iin in Figure 2,
with n o additional data, we can see the size of each file,
the relative size ofindividual functions in a file, and the
frequency and distribution of cornments.

Multiple Levels of Details
1% investigated a second technique that seemed
appropriate: the drawing of objects in multiple sizes
and in multiple le\rels ofdetails. The concept ofadjust-
ing the amount ofdetail presented to the Llser as a fi~nc-
tion of the apparent size of an object is a technique
developed in a unique computer interface model
called Pad.5 Pad provides an infinite two-dimensional
information plane that the user can browse sing por-
tals (analogous to magnifjling glasscs) to zoom into
the data.

The larger the object, the more details arc revealed.
This corresponds to thc notion that things that inter-
est us are the ones we bring closest t o us; they require
the greatest amount of detail. Those items of lesser
interest are placed in the background and dra\vn
smaller. As can be seen from the pictures in Figure 3,
as the size of the file increases, more details are shown
about the file. The smallest picture reveals only the
major structural parts of the file; we call this c h ~ l n k
level. Each chunk is drawn as a colored rectangle and
represents either a group of cornments (green), the
start of a hnction (red), o r lines of executable source
code (gray). The next picture shows line-level detail
like that shown in Figure 2, and the last picture shows
each line large enough to be drawn as readable text.
Note also that the largest picture begins to look like
a tcxt editor and that the scroll bar on the right is a
chunk-level rendering of the file.

-
a W H ~ .

-am = DolrurftSlze;

U (-window I= NULL)
{

get W m n d C m) ;
setea&gmnd(thls);

1
1

A

Figure 3
Multiple Sizes of Files

22 Digital Technical Jout~nal Vol. 7 No. 2 1995

The Use of the Third Dimension
We also chose to investigate tlie use of tlie third
dimension for ways to better \risualize large, dense
graphs. We did not pursue this work for several rea-
sons, which \\(e describe later in this paper.

We did find a simple i ~ s c of three-din1ensjonaI(3-D)
\~iewi~ig that was beneficial \\/hen tryil~g to \lisualize
certain types of data. We con\~erted the condensed filc
pictures into 3-D vicws by adding a small side to each
picture. We could use that area to show line-related
data as in Figure 4. This example shows a numeric
\lalue (the blue lines) associated \\lit11 a line of source
code. The horizontal dotted line is a threshold, and
\/slues that esceed tlie threshold are drawn in red.
We use this type of graphic to sho\v source code profil-
ing data, like execution counts and CPU time. Even
though it is a simple drawing, it uses a 3 -D effect that
helps the user \tisually organize a great deal of infor-
mation. I t is relatively easy for a user to look at the
front data at one molnent and put the side data off
i ~ i t o the bacltground, and then change focus and
esamine tile side data. :l?lie effect is even more notice-
able and usefill when many of these 3-D file pictures
appear in the same display. An example of this is given
later in the section on the SoftVis Program.

The Advanced Development Project

This section describes tlie advanced development
phase of the project. It disc~~sses the process used, the
sohvare prototypes produced, and the major design
decisions made during this phase.

The Advanced Development Process at Digital
The type of work done in Digital's Advanced
Development Group, working \\lit11 new technologies
and iil~plementing ncw ideas, is difficult to d o within

Figure 4
3-D File Picturc

a schedule-coi~strai~~cd product development organi-
zation. Altliougli the goals of advanced development
work may be well specified, only a vague idea of a pos-
sible solution and o f the time needed to find the solu-
tion is known. These nxJo facts make it i~~ipossible to
schedule advanced development work in a product's
project plan. At Digital, the Advanced l>cvelopment
Group is a separate organization that operates outside
the product schedule constraints of other groups. It is
staffed by engineers from the de\~elopment groups,
who rotate into the Ad\la~~ced Development Croup,
perform their work, and then return to their sponsor-
ing group to transfer the technology into a product.

The stated goal at the beginning of our project was
to enhance the soft\\iare bro\\!scrs available in the
DEC FUSE product by adapting the results of current
research in visualization techniques. Of particular
interest was the ability to bro\vse large sofnvare sys-
tems containing large amounts of source code. We
were also looking for techniques that ~vould provide
new inforniation about source code and new ways of
loolting at source code. Our objective was to add fea-
tures to DEC FUSE that were not currently available
in other products.

The process we used was to research as many dif-
ferent techniques as possible and select those that
appeared most promising for prototyping. The proto-
types gave us experience in tlie technology and helped
us in our evaluation. We then sought input from our
sponsoring group to determine \\lliicli prototypes
\\rere feasible to add to the product, and \\!e continued
to develop a i d refine thcsc.

Using 3-0 Computer Graphics
At the beginning of the project, we wanted to esplore
the 3 -D graphics technique. For this research, we used
a DECstation 5000/20 workstation with a 3-D grapli-
ics accelerator option installed. The code was written
in C+ +. We used the ~Motif'standard to build the \\{in-
do\vs and menu part of the user interface and the pro-
grammers hierarchical interactive graphical standard
(PHIGS) to write the 3-D graphics code.

We quickly built three demonstration programs to
gain experience in 3-D graphics programming. The
first progralii \\/as an instrumented C++ class library
that created and destroyed color-coded cubes in 3-D
space as constructors and destructors \\rere called.
Message passing was sho\vn by connections bet\vccn
the cubes. The z-axis \\,as used for time: the older an
object became, the farther back it \vould appear on the
z-axis. The second demonstration drew hierarchies in
3 -D space and gave the user limited capabilities for
manipulation in 3-D. The third de~iionstration \tisual-
ized a C+ + class as a cube in 3 - D space, \irith different
sides being assigned different types of data. One side

Digital Technical Journal Vol. 7 No. 2 1995 2

contained a class inheritance graph, anotlicr contained
a condensed view of the interface to tlie class, and the
third side contained a window into the source code of
the class.

After a short period, for several reasons, we stopped
worlung with 3-D graphics. We realized that the types
of vis~~alizations we were doing would require 3-D
accelerators on users' worltstations, and \\re Iuiew that
would not be acceptable. In addition, development of
this technology would take a great deal of time, and
we felt we could malte better progress ~vorking on
other graphics techniques.

Early Prototypes
Having seen the work done by Stephen Eick, we
decided to experiment using his technique. We also
started to think about the concept of building a frame-
work that we could use to build prototypes ofdifferent
tec.hniques. Eventually, tliis evolved into the design we
describe later in this paper. At this time, we also con-
sidered what platform to use. Our sponsoring group
had developed the DEC FUSE product for the UNIX
environment, but other groups were starting to work
on the Windows NT operating system for personal
computers. Since we were interested in learning more
about the Windows programming environment, we
decided to produce code that \vould \.clerk on either
platform and to build prototypes 011 both platforms.
In hindsight, our decision to support multiple win-
dowing sjatems was a diversion that did not directly
contribute to the project goals, but it \ifas a valuable
learning experience.

To achieve cross-window system portability, we
developed a class library that encaps~~lated parts of the
programming interfaces on the MS Windows system
and the X Window System. \Ye decided to restrict our
class library, collectively referred to as tlie "ZWindo\vn
or "ZWIN component," t o encapsulate only the lo\\!-
level graphics drawing routines (e.g., line and rectan-
gle) and avoid trying to encapsulate all the graphical
interface co~nponents like windo\\ls, icons, and menus.
We encapsulated at the level of the graphics device
interface (GDI) on MS Windows and the X library
interface (Xlib) on the X Windo\v System. This
worked well; we acliie\~ed portability of our graphics
dralving code, \vhich was our area of concentration. - - 1 he fact that \\re had to d o separate implementations
for tlie remainder of our user interface (that is, the
menus, toolbars, and dialog boxes) was not a hin-
drance since the bulk of our code was still portable.

Designing the %WIN interface was fairly straight-
forward. The line and shape drawing routines were
easy to encapsulate because they existed on both plat-
forms. The drawing contests were different. The MS
Windows system has color pens and brushes to control

drawing attributes; but on the X Window System, all
drawing attributes are defined in a single data struc-
ture, the graphics context (GC). We decided to create
classes for pens and brushes and to handle the X
Window System implementation by encapsulating an
appropriate GC in the pen and brush classes. The
largest class in tlie ZWIN component was the canvas
class. I t encompasscd a Dran~ingArea Widget on the X
Wilidou~ System and a windo\v on MS Windows. I t
had member functions that provided all the drawing
fu~ictions available (e.g., line or rectangle), as well as
functions to select the appropriate drawing object
(pen o r brush).

The condensed file view was implemented in nvo sets
of classes. A set of file-type-dependent scanner classes
was developed to handle the parsing of C, C+ +, Ada,
makefiles, etc. Once scanned, a single file visualization
class could perform the rendering of the object 011 the
display. Speed was a concern since we \\!anted to be
able to visualize an entire directory of files very
q~~iclcly. To d o this, we wrote a small, efficient scanner
for each type of file that could pick out o ~ ~ l y the rele-
vant information as q~~ ick ly as possible. Throughout
our work on all the prototypes and into the final prod-
uct, we found that we could always f i l l a complete dis-
play without any noticeable delay to the user.

Figure 5 sho\vs part of the first prototype. I t displays
a condensed tile view, of all the text files in the default
directory. Files nrere sized to fit within the size of the
\~ i~ido\ \ l , with an appropriate level of detail shown.
Files could also be individually selected and resized.
Files are shon~n in thc three different levels of detail
described in Figure 3. A4ost of the files are drawn at
the chunk level and r e \ ~ x l only the relative size and
location of each function in the file. Two of the files
have been enlarged to show line-level details, and one
file has been fi~lly enlarged to be a readable size.

Later prototypes improved upon the design of tliis
condensed file view. We also implemented other views
that \ile thought \vould be useful. The C + + class vie\v
rendered a condensed picture of a C + + class with its
member functions and data members. I t is described
later in this section.

SoftVis Program
Throughout the process of creating the first few pro-
totypes, we kept in mind the concept of building a
framework that we could use to speed up the delivery
of new graphical techniques. The SoftVis demonstra-
tion program used that design. Based on a View-
Object-Tool architecture, its concept \\!as tliat a view
\vould set the backdrop and style for the display, such
as the condensed file view. We ~vould render objects
into that view style and support many different types
of objects per view. Tools would then be written to

24 Digital 'l'cclinical Jou1.nnl Vol. 7 No 2 1995

Software WsualRer Dl 2

I I... I. I*.. A......... 1.11,.

, B.,..,....,, ..,,

...

.... ".-C.",--",".."

.I.,",, 11.111" 11 11. -I I,
I,.,", h,. I,,.. I

n,.,,,.., . ,lln.,IILI.,mm
8." ","..".""-.... -..-.,
..*.A. m..... .-
..A. A-
.I.,.,., . I.L,

Figure 5
First Demonstration Program

interact with the objects in the view. Our objective was
to develop a "plug-and-play" architecture that sup-
ported the following:

View
- Condensed file view
- Condensed file 3-D view
- C+ + class view

Object
- C + + source code
- C source
- Ada source
- .o (object files)
- .a (library files)
- executable files

Tool
- Magnifi tool
- Probe tool
- Cross-reference tool
- Search tool
- IF-DEF lens tool

The goal was to be able to create a view containing all
the files in a directory and displaying an appropriate
visualization for each of the file types (either a text file
or a binary file), and to enable the tools to operate on
all the objects in the view. For example, the magnify
tool would show a readable view of the text in a source
file; however, when used on a binary object file, it
would show information about the size, address, and
type of segments in the file.

Digital Technical Journal

Figures 6 and 7 are screen captures from the proto-
type. Figure 6 shows a cross-reference tool being used
on <:+ + source files. The list box sliocvs fi~nctions from
all the source programs, and the highlighted fi~~lction
color-coded lines point to where that hnction is first
declared, i~iiplernented, and called. Figure 7 slio\vs the
magni@ tool used in the 3-D file view to show source
code details and profiling data. In this case, the prof ling
data is a rnock-up of line execution cou~its; thc real tool
will use this space to report actual data.

Figure 8, also a scrcen shot from the prototype,
sho\vs the C+ + class \lieu$. This view uses a condensed
representation of a C+ + class. Each line in the class
corresponds to either a member f i~~lc t ion o r a data
attribute of the class. These are grouped together as
public, protected, and private nicmbers. Member
functions are sho\vn in red; data elements are sho\\rn in
blue. Inheritance is shown by connected arcs.

SoftVis Design
The system is divided into several components. Each
component can be built separately; has its o\vn make-
tile; and, in 111ost cases, its own test programs. Table 1
gives an overvie\\l of thcse components and their rela- Figure 7

tive sizes as of the latest basc level. Demonstration o f thc 3-11 View \\,it11 Prof ling Data

The SoftVis design begins by supporting the desired
prototype architecture of View-Object-Tool. A coni-
ponent \\{as developed for each of these; it contained
a base class, derived classes, and supporting classes.

From Advanced Development to End Product

This section describes the effort required to turn parts
of the final advanced development prototype into
a product-quality tool for release with DEC FUSE.

Figure 6
Demonstration of the Cross-refcrc~~ce Tool

Digital Technical Joul-nal

Finding a Place for the Work
At the co~lclusion of the ad\ranced development proj-
ect, we returned to O L I ~ spo~lsorillg group and
attempted to introduce the data visualization technol-
ogy into tlic product. A n ~ ~ r u b e r of obstacles had to be
overcome: The Sot'tVis program was written in C+ +,
and 11EC FUSE had been c\r~itten almost entirely in C.
Thc requirements for tlie nest release of DEC FUSE
had been gathercd, and the goals \\:ere sct. Where
exactly would the ne\tr data \lisualization technology fit
into the DEC FUSE product set?

At first we tried to build a class of reusable sohvare
cornpollelits that DEC FUSE tools could use to incor-
porate the new technology. This \\lould be a set of
Motif widgets that e~lcompassed the techniques pro-
totyped jn the SoftVis program. Although progress
was made on building the widgets, no progress was
made incorporating these into any of the DEC FUSE
tools. Their incorporation \vould ha\rc required major
changes to the user interfaces of these tools, and it was
not clear that the benefits \vould j~~s t i@ these changes.

In hindsight, \.\re realize that the plug-~nd-play
design wc used for the prototype did not match tlie
DEC FUSE design of loosely coupled separate tools
that passed data by means of simple mcssagcs.
Although the plug-and-play approach made it easy to
add new colilponrnts into the model, its tightly cou-
pled design made it difficult [or LIS to take parts ofthat
design aid use then1 in the DEC FUSE p i d u c t .

Thc proposal that \vas finally accepted was to develop
a new, separate tool, called the Data Visualizer, that

Figure 8
Demonstratio11 of the C++ Class Vic\\r

Table 1
Components in the Prototype Design

Lines
Component Description of Code Classes

VO Base classes, voobject, and voEditor. Also, voFile class and other classes 5,000 10
derived from voobject. Implements features for selecting, moving,
resizing, and drawing objects.

TOOL

VIEW

SDM

ZWlN

Base tool class, voTool, and classes derived from it. Includes volens,
voProbe, voMagTool, and voXRefTool.
The vBaseView class is derived from voEditor. The three main views
of the tool are then derived from vBaseView. The main views are
vFileView, vFile3dView, and vClassView. This component also contains
executable test programs for each view.
The software data model component contains the language-specific
scanners and parsers. The base class AnnotatedFile is used by text
and binary files.

Portable graphics interface. A single class interface for windowing and
drawing functions is provided. Two separate implementations of the
interface exist, one for MS Windows and one for the X Window System.

UTlL Various miscellaneous classes for data structures, file access, etc. It also
contains an interface t o some common operating-system-dependent
routines.

Total

Digiral Tcchnicd J o u r ~ l a l Vol. 7 No. 2 1995 27

- -

would build upon our advanced development work.
Building a separate tool had a number of advantages:
We could develop a data visualization tool apart from
the other DEC FUSE tools. We could implement it in
C++ and thus use some of the design from the
SoftVis tool, if not the code. The impact on current
tools was minimal: only small changes to their user
interfaces and an added capability for sending data to
the Data Visualizer were needed. By impleme~iting a
separate tool that receives messages from other tools,
we would be following the style of tool integration
used in the DEC FUSE environment.

Many changes had to be made to the prototype
to move this work from advanced development into
a product. Functions had to be added and removed.
The design was changed in a number ofplaces. Some
changes resulted from the requirement to follow the
tool integration standards for the DEC FUSE product.
Other changes were merely good ideas that came
about once we started the work of integration.

Data Visualizer Tool
Two major features were added to integrate the Data
Visualizer tool into the DEC FUSE programming
environment. First, all the data that composed the
view was coming from outside the tool, unlike the
prototype where data for the view was generated inter-
nally by analyzing source files. Now activities per-
formed in other tools would generate this data and
send it to the Data Visualizer. Second, multiple tools
would be sending data that would need to be merged
within the Data Visualizer into a single view. The
remainder of this section summarizes the features in
the Data Visualizer tool.

The Visualization DataSet File The Visualization DataSet
file is used to pass information to the Data Visualizer
for display. It contains two types of data. Software
component data describes the files, directories,
libraries, and hnctions to be visualized. Event data
describes the data to be associated with these compo-
nents. The types of events are defined in the file by the
tool creating the file, but they must adhere to one of
the predefined formats. An example of an event is
a memory leak detected by a memory analysis tool. In
the file, the memory analysis tool defines an event type
for memory leaks and then passes as many events of
this type as there are leaks detected. By allowing event
types t o be defined in the Visualization DataSet file,
the Data Visualizer can easily support any tool that
creates a file in this format.

Each set of events sent to the Data Visualizer from
a particular tool is logically grouped into an entity
called a DataSet. For example, a single DataSet con-
tains all the results from a single search tool inquiry.
Subsequent searches yield separate DataSets.

Condensed File Views In this paper, software com-
ponents are shown in both the condensed file view
introduced in Figure 2 and the 3-D view depicted in
Figure 4. Each of these gives the tool a concise, infor-
mation-dense representation capable of displaying up
to 30,000 lines of source code. Program structure is
revealed by the indentation and color coding.

Event Highlighting, Filtering, and Tracking Events in
the DataSet are highlighted on the screen in a number
of ways. Event types are assigned a color, and that
color is used to color the line of the associated event.
The coloring can occur in the foreground of the line
or the background. Once a user's attention has been
drawn to the line, the user can obtain more informa-
tion about the event at that line from the small
descriptive window that appears whenever a hot cursor
is moved near that line. Figure 9 shows an example
produced by the Data Visualizer tool. In addition,
when the event contains more information than can
be displayed on a single line, for example, when a com-
plete program call stack is logged with the event, a sep-
arate window appears with this inforniatio~i. This is
also shown in Figure 9.

The tool's legend/filter control window shown in
Figure 10 serves the dual purposes of providing a color
key to the events that appear in the view and a mecha-
nism for toggling on/off the appearance of events of
a particular type. This control windotv also allows the
user to toggle on/off the appearance of all the events
in a DataSet. When multiple DataSets are present, they
are placed on top of each other. Each DataSet can be
thought of as a transparency that contains only the
event's highlighted coloring. These transparencies are
stacked on top of each other (the user can control the
ordering) to show all the events together.

The Data Visualizer also provides a mechanism for
keeping track of events that are seen or unseen by the
user. This feature can be used \\{hen there are many
events to examine and the user needs assistance in
traclcing what work has been finished and what
remains to be done. This information can be saved
between invocations of the tool so that a user can put
this work aside and come back to it at a later date.

Merging DataSets As rncntioned earlier, one of the
important features that was added was the ability to
merge the data received from multiple tools into a sin-
gle displayed view. This allows the combination of the
res~~l ts of two or more tools that normally could not
be merged or even know of each other. For example,
the output from a memory analysis tool that shows
where memory leaks occur and their size can be com-
bined with the output from a search tool that locates
the occurrence of a function name in the program.

28 Digital Technical Journal Vol. 7 No. 2 1995

croup: H
- -

I;working Director
-- -

Figure 9
Highlighted Event with Call Stack

Took Llle Dataset gntroi gpllons -

cmup: r Working Directow: f
, !(m

UMl loat~d memory access erron

Events

Figure 10
Event Filtering

The tool uses a number of methods for merging
Datasets, and the type of merge that is performed
depends on the types of events. The simple trans-
parency model described earlier explains bow events
can be additively combined to display the sum of all
events. In this model, when two or more events are
associated with the same line in a file, they are treated
as separate events that pertain to that line. For some
event types, however, this is not the case. The tool sup-

ports the combination ofsame line events in different
ways. For example, two runs of a performance analysis
tool generate line execution times that can be com-
bined by averaging the execution time values to give
the user a reading on the average performance of the
code. As an alternative, these same two events can be
combined by creating a new event that shows the dif-
ference of the execution times to reveal improvements
that may have occurred between runs.

Digital Technical Journal

Integration with Other DEC FUSE Tools The Data
Visualizer is well integrated with the other tools in the
DEC FUSE programming environment. Thc profilcr,
the heap analyzer, and the search tool all havc the abil-
ity to send data to the Data Visualizer at a ~wer's
request. The Data Visualizer makes good use of the
DEC FUSE editors to examine source code in detail.
From within the Data Visualizer, the user can double-
click at any point in any of the displayed files to have
that source loaded into their preferred editor. This
capability is shown in Figure 11, where the results
obtained from the search tool are used to create a view
in the Data Visualizer and load files into the editor.

Revised Design
As seen in Table 2, some of the prototype cornponellts
were reused in the final product design. We changed
the SDM component internally to handle more data,
but we retained the basic design. We also retained the
design of the UTIL component. Since portability
between MS Windours and the X Window System was
no longer a concern, we redesigned the ZWIN com-
ponent into the WinDrau, component, Due to this
change, the size of this component decreased by 7,600
lines ofcode.

In addition to modifjling components, we developed
three newl components. The FUSETool component
handles the code common to all the DEC FUSE tools.

It contains abstract base classes that can be used to
derive new tools. The DVTool component contains the
main program and the bulk of the user interface code.
Thc View DataSet File (VDSF) component provides
hnctions for reading and writing these files. It contains
class libraries for C+ + programs and C routines.

Note that this design maintains some of the plug-
and-play characteristics of the earlier design. Although
the tool component no longer exists, the VO (Visual
Object) and the view colnponents are present and pro-
vide este~~sibility for future objects and views.

Conclusions

The last section gives a11 overvie\v of the sohvare design
from advanced development into final product. The
section co~lcludes with some future plans for this work.

Project History
During the process of transferring this work from
advanced development into a product, many impor-
tant features were added to enhance the usehlness
ofthis technology. The final product retained the abil-
ity to visualize large amounts of data in a condensed
yet comprehensible format; it also included features,
like event tracking and DataSet merging, that made it
a much Inore useful producti\~ity tool. Figure 12
shows how the design evolved over time. The events

304 bU1

339 hm
362 Wld

Figure 11
Integration with Other DEC FUSE Tools

30 Digital Technical Journal Vol. 7 No. 2 1995

Table 2
Components in the Data Visualizer

Component Description
Lines
of Code Classes

VIEW

SDM

WinDraw
VDSF

UTlL

Total

~

Base class for building a DEC FUSE tool. Contains code common to all
DEC FUSE tools.
The Data Visualizer main classes. Contains the main program and most
user interface classes.
Contains the svObject base class and its derivations, the svFile, t he
svDirectory, and the svlibrary.
Contains the svView class and its derivations, the svFileView and
svFile3dView classes.
Software data model component. Contains the language-specific
scanners and parsers. Defines the program's internal data model.
Provides C++ encapsulation of graphics drawing functions.
The VisualizationDataSet Format component provides reading and
writing routines for this file format.
Various miscellaneous classes for data structures, file access, etc. It also
contains an interface t o some common operating-system-dependent
routines.

described in this paper occurred over the course of two
years and three months. The advanced development
project began in January 1993, and the final design of
the Data Vis~lalizer tool \\/as complete in March 1995.

In Fig11i-c 12, the rectangles represent sohvare
components of thc design. A sohvare component is a
collectio~l of C+ + classes that \\/as designed to accom-
plish a single fi~nction; these components correspond
to the design compoilents described carlier in this
paper. Thc oval shapes represent prototypes that \yere
built from tllcsc componcnts. Solid arcs connecting
components \\tit11 prototypes sho\v which components
\\rere ~ ~ s c d to build that piece of sohvare. Dotted lines
between c o m p o n c ~ ~ t s she\\, lie\\, components evol\~ed
over time.

F i g ~ ~ r e 12 indicates that the work involving 3-D
objects , ~ n d sonic o f the carly prototype components
were never uscd. I t also shows that the condensed file
vie\\f compollcnt and thc ZW1N component did
evolve into the fi nal product, Figure 12 f ~ r t h e r reveals
that toward the end of 1994 several docu~nents were
prod~lccd, hilt no \vorlc was donc o n the dcsigi or any
of the colnponcnts. l>uring this period of negotiation
and redesign, the advanced development tcchnology
was being convcrtcd into a product.

Future Work
We \ v o ~ ~ l d like to eson~id the capabilities of the Data
Visualizer tool in scvcral arcas.

Many o f thc capabilities for merging Datasets are
not available for sclcction hy the user. Wc \vould like to
extend the tool t o havc thc addcd flcsibility of allo\v-
ing the user to dccidc ho\v 1)ntaScts sliotlld bc merged
and ho\v events should be combined. For example, the

tool might show only the intersection ofnvo DntaScts,
that is, display only those events that point to a file-Jine
combination that is common in both scts.

We will also consider other ways of displaying in a
condensed file format and additional types of files to
\risualize. The file types might be complctc directories
shown as a single, condensed object, or shared and
nonshared libraries as a single object.

We have an ongoing effort to take the output from
esisting tools and \risualize it in this tool.

Final Remarks

The decision to include the Data Visualizer tool in the
nest major release of the DEC FUSE: progran~niing
en\lironnient was not an easy one to maltc. Many
important features \\!ere being considered, but not
enough resources were available to perform the \\fork.
Prioritized goals were establislicd, and all \vorlc items
were evaluated against these goals. Thc Data
Visualizer tool was included for hvo important rea-
sons. First, it supported thc short-term gonls of the
project by adding features that current tools could L I S ~

in the upcoming release. Second, it providcd long-
term benefits by opening up the l>EC FUSE product
to new capabilities in the area of sohvarc visualization.
We believe that the presence of both these reasons \vas
necessary for its inclusion ill the 1)EC FUSE product.
Had it provided support for only thc short-term prod-
LICC goals, it \vould liu\le been c\taluated against the
many other short-term work proposals and probably
\vould not have been selcctcd. Had it supported only
the long-term goals, it would have been Icfi out for
lack ofties to the current tools.

32
D

igital T
echnical Journal

V
ol. 7

 N
o. 2

1995

r
.

& Y
2
 2 ,d

2
:

3
 .-

.cn 2
L

 s

- -

"3
m

Z

m

7

0

a

a

z 5
I

z
o

W

L
L

a-

n
G

f

s
z
 z;

i

p
O

4-
z
 0

2

g

<
Y

G

z
2 z;

0

%
5

s
z

6 0 v

m

c

P

a

"

6-
E

-
I

2

$
2
 0

m

z Z

2

c
2

8

a'
&

a

a-",

a: I
.rt
0

)

L

a

2 $
2

Y

W

a

$-
n

-
l

Z

8 %
z n

2 z
+

6

a

8
g

-
 a

n

h
5

E

Y

n. W
(I)

a

2

+ m

m

m

7

Z

2

>*
2 rr'
a

0

m

z a a I m
-

W

LL

i

5

Acknowledgments

I \ \ ' o L I ~ ~ like to thank a number of people \\,lie sup-
ported n1c during this effort: J o h n Ellcnberger for his
con t inu i l~g g ~ ~ i d a l ~ c c througliout t l ~ c cntirc proccss;
~Cliltc Cnl ldc l l~ for the early \\rork \vc did togcther in
the Ad\~nncccl l)c\leloprnent Group; Glenn Lupton ti)r
his help in dcciding h o w this prototype \\~ould tit into
tlic 1)EC FUSE product; the D E C FUSE management
teal11 for support ing and encouraging this \\fork; ;ind
finally, everyone o n t h e D E C FUSE development
tedlll.

References

1. K. Hart nnii C;. I .upton, "1)EC FUSE: Building a Guph-
ical Soft\varc l)c\.cloprncnr En\,ironmcnt from U N I S
Tools," I)igi/ul 7i.ch1rical~/orr1~11~11. vol. 7, no. 2 (1995,
this issue): 5-19,

2. S. Eick, "SccSofc-A Tool for Visunlizing I .inc Oricnrcd
Soth\~;lrc St.~tistics," lkEE ~ ~ U / I . S L I C ~ ~ ~ I I . ~ . 0 1 7 S(?/~II~LII"(>
E~z,r(i~lco-irt~, vol. 18, n o . 1 1 (1992): 957-968.

3. S, l<ick, "GI.,IPIIIC.III~ Displaying Tcst," ./orirr~al 01'
(, ~) I) ~ /) I I / (~ / I O I ~ L I ~ a n ~ l GI-aphical St~i/i.slics. vol. 3 , n o . 2
(1994): 127-142.

4. S. Eick, 1M. h'clsol~, and J . Schniidt, "Graphic~l Anal!.sis
of (:ounputcl- Log Files," C ' o n ~ ~ r ~ ~ i ~ ~ i c c i t i o ~ ~ s (?/'/l?eA(.:~1.I.
vol. 27, no . 12 (1994): 50-56.

5. I<. r'crlin a n d 1). Fox, "PAD-An Altcrnati\.c Approach
to the (:ornp~~tcr Intc~.f:nce," SIC;GIUl~f-1 9.Z I't.occ,c,t/
i~r~q.r. (1993): 57-64.

Biography

Donald A. Zaremba
The pwjcct Icadcr o f rhc FUSE Data Vis~~alizarion tc.lm,
1)on Zarcmbn is ;I p~.~ncipal soft\\larc engineer in Digital's
Unis I)cvclol>mcnt Environment Group. Hc \\..IS rcspon-
siblc tbr designing and iniplen~enting thc Data Visunlizcr
tool. Since joining Digital in 1980,L)on has contrib~~tcd to
the 1)E<: Tcst Manager project and has worked on sofnvnrc
dcvclopmcnr tools and hult analysis tools. Hc rcccivcd a
B.A. in matlicrnatics from h e State U~~i\rcrsity of Nc\\ York
and an k1.S. ill softwart' engineering from CVang Insritutc.

\Jol. 7 No. 2 1995 3.

Eric A. Newcomer

Multivendor lntegration
Architecture: Standards,
Compliance Testing,
and Applications

The Multivendor lntegration Architecture
(MIA) is a user-driven initiative that addresses
the practical application of open systems
software standards to business requirements.
'this paper provides historical background
and context for this standardization effort
and describes Digital's contributions to the
effort, particularly in the area of distributed
transaction processing. Digital complied
with the MIA specifications, integrated com-
pliant products into a complete platform, and
delivered a large application on the platform.

In today's competitive environment, an enterprise's
computer syste~iis help deter~iiine its success or failure.
The need for large enterprises to separately manage
applications on different computer vendors' platforms
distracts the enterprises from performing their main
business fi~nctions and adds to their operations cost.
Corporate mergers and acquisitions often compound
the problenl.

Wliile the business need for high-quality computer
systems has never been greater, established computer
users find themselves in a poor position due to the
tremendous burden of their legacy systems. Newer
companies almost automatically gain a co~npetitive
advantage korn their morc flexible, state-of-the-art
computer systems.

The availability of open, standards-based systems
enables critical business systems to be built on a com-
mon platform that can be purchased fro111 multiple
vendors at competitive pr-ices. This offers everyone the
same level of basic functionality with \\rhich to build
new systems. These s)~stcnis must be capable of
integrating components fi-on1 multiple vendors into
a single, large application.

This paper provides background information
for user-driven standardization efforts, with a focus
on Nippon Telegraph and Telephone's (NTT's)
Multivendor Integration Architecture (MLA). The
paper discusses the MIA's principles, including
three multivcndor interfaces, NTT's major types
of colnpilter processing, specification development,
and Digital's approach to addressing integration prob-
lems relatcd to transaction processing (TI'). Also dis-
cussed are implementation and systems integration
issues aild the deli~rery process. Digital's contributions
to the open systcms soh\lare integration effort are
described. Digital was instrumental in defining the
ivIW specifications for TP, and it de\geloped the first
MIA-compliant application.

User-driven Standardization Efforts

About 25 years ago, NTT, one of the world's largest
corporations, dc\reloped its first computing system pro-
curement specifications. These detailed specifications

Vol. 7 No. 2 1995

included dcsig~is for special hardware and operating sys-
tems to mcet the enterprise's dem;undi~ig requirements.

The procurement specifications focused on systems
of sufficient capacity and robustness \vith which to
automate the fundamental business operations of a
large telephone company. Thcy did not require porta-
bility or interoperability. N T T presented the specifica-
tions to Hitachi, Fujitsu, and NEC and ordered
hardware and sofnvare that conformed. 111 addition
to the Japanese suppliers, IBM also responded to the
procurement request and became an NTT supplier.

Follo\ving the si~ccessfi~l i~nplemcntation of the
original specifcations, NTT developed applications on
top of the \parious \fenders' platforms. Like many other
large enterprises, N T T created separate teams to tackle
the vendors' systems individually.

In 1988, NTT established the MIA consortiu~n to
resolve thc inefficient practice of having separate teams
develop and manage applications on different vendors'
platforn~s. The consortium was charged 114th address-
ing thc associated problems that interfere with the way
these applications communicate, share code, share
data, or move to a new technolog)l base.

The MIA initiative was conducted as a Japanese
industrial collaborative research project with the goal of
resolving the problems of multivendor application
environme~~ts. N T T invited computer vendors to join
the project by issuing a public subscription announce-
ment and then selected participants fi-om among tlie
respondents. Fujitsu, Hitachi, NEC, and IBM were the
first consortiun~ members. Digital was also selected
because of its espcrtise in nenvorking and client-server
con~puting. The MIA initiative set out not only to
resolve the problems ~vitli a multivendor environment
but also to move N'TT's computing systcms fortvard
by incorporating distributed processing functionality.

One of NTT's goals was to eliminate all visible
differences among the vendors' platforms. "Visible"
meant perceptible to (1) the hunialis wlio interact
with tlie computers as cnd users, ill application devel-
opnient and deployn~ent, in system administration,
and in nenvork configuration and management, and
(2) the protocols for communication between the dif-
ferent vendors' computers. A guiding principle of the
MIA initiative was that the systems \vith which people
interact should appear identical, regardless of the man-
ufacturer who created the hard\\larc or sohvarc being
used o r the purpose for which it was being used.

As a member of the MIA consortium, Digital
helped develop detailed specifications that met NTT's
requirements for open systems sofnvare components
that any vcndor could imple~iient. In particular,
Digital developed new multivendor specifications for
distributed TP, an area of computing for which stan-
dards did not exist.

The r e s~~ l t s of tlie MLA project were published in
1991 as 11 volumes ofdetailed procurement specifica-
tions that describe a complete application develop-
ment platform for large-scale systems.' Applications
created using software that conforms to the specifica-
tions can be developed and implemented on any
vendor's computer.

The concepts behind the MIA specifications were
put to the test at a public demonstration at Interop
Tokyo in July 1994. M e r considerable debugging and
testing, thc concepts were proven to ~ ~ o r k . 2 The ncst
measure of success is whether sufficient demand and
cost savings exist to induce vendors to market con-
forming products, in particular, off-the-shelf products.

Digital's in\~ol\~enient in specifiing solutions to user-
driven open systems sohvare requirements continues
at the Service Pro\giders' Integrated Requirements for
Information Technology (SPIRIT) consortium, which
is sponsored by the Network Management Forum.
SPIRIT members include the world's largest telecom-
munications service providers and computer vendors.
The MIA specifications were submitted as base input
docunients for SPllUT, along with other docunlents
from AT&T, Bellcore, RT, and ETIS (a consortium
that represents 27 European postal, telegraph, and
telephone admini~trations):~

I t is unlwo\\~n whether this user-driven approach to
standardization \\)ill succeed and meet the important
goals of portability, interoperability, and multivendor
p rocuren~en t .~ Nonetheless, users and vendors are
learning some important lessons as a result of the
users' strong efforts in this area.

MIA Principles

When N T T turned its attention to~vard creating the
MIA procurement standards, it began to attack the
problem of rnultivendorization, \vhich NTT believes is
strategic to its f i~ture business. "Because a computer
system must be able to provide as broad a range of busi-
ness services as possible, it is desirable to construct such
a computer systcni flexibly enough to include different
computers, each ofwhich covers the area of business in
which the vendor's model is the most po\verhl.""

Early in the MIA project, NTT established the basic
requirement that solutions be based on open systems
standards where possible. However, since the corpora-
tion's existing complex legacy of applications was criti-
cal to business operations, the standards had to
allon1 for the same degree of fuunctionalit)r and robust-
ness as the software for the existing platforms. Also, if
i t was to replace its current applications 114th applica-
tions that took advantage of commodity technology,
N T T needed a way to migrate to the new while inter-
operating ~vith tlie old. "Based on the assumption that

Digital Rchnical Journal Vol. 7 No. 2 1995 35

a variety of liard\vare and operating systems of vendor-
specific design is widely accepted in the general-
purpose computer market, MIA specifications must
be a feasible extension of, and coexist with, vendor-
specific architectures.""

The MIA effectively grouped related functionality
to match the existing requirements for business appli-
cations and added support for distributed client-server
computing. Using the resulting architecti~ral frame-
ulork, the MIA consortium matched existing standards
to NTT's needs, identified missing f~inctionality, and
created new multi\~endor specifications to achieve the
additional functionality.

Three Interfaces
At the start of the MIA project, N T T identified what
it considered the three most important issues of
multive~~dorization:

1. 13uplicated development of application programs

2. Difficulties in resource sharing

3. Differences in operating methods:

For each of these problems, N T T identified solutions
in terms of standard, i.e., multi\lendor, interfaces,
as follows:

Application portability using standard application
programming interfaces

Interoperability using standard communication
protocols

Common user interface using a windowing style
guide

Figure 1 illustrates tlie basic architecti~re as specified
by the ML4 consortium. The co~ifiguration incorpo-
rates three systems-the end user, the departmental
computer, and the host computer-and includes three
types of interfaces-human user interface (HUI) ,
application programming interface (API), and systems
interconnection interface (SII). The figure represents
the fundamental goal of MIA conformance for each

vendor, i.e., to offer conforming interfaces and proto-
cols that allo\v N T T to purchase the same level of
compatible sohvare functionality from multiple ven-
dors and create new applications that are inherently
distributable, portable, and interoperable. Another
reason NTT focused on these three interfaces \\!as that
ifthe MLA specifications contained too many low-level
interfiaces, the vendor-specific strengths would be
removed and the specifications woi~ld not support the
N T T strategy of multivendorization.

Through the standardization of tlie three interfaces,
N T T anticipated that an end user w o ~ ~ l d be able to
use any displajl device without knowing the vendor
(via the HUI), a programmer would be able to write
a program that would run equally well on all platforms
(via the Al'I), and a computer from one vendor could
be co~inected t o a coniputer from any other vendor
using common systems interconnection protocols
(via the SII).

Additional types of interfaces and protocols that
\\,ere outside the scope of the MIA specifications are
being addressed by the SPIRIT c o n s o r t i ~ ~ n ~ . For esam-
ple, SPIRIT has taken 011 tlie task of standardizing the
system management interfaces and protocols. At the
start of the MLA initiative, N T T decided that the best
use of time and resources \vould be to standardize the
HUI, tlie API, and the SII.

Major Types of Computer Processing
N T T categorized its computing activity into four types:
real-ti~iic processing, transaction processing, intcrac-
tive processing, and batch processing. Figure 2 illus-
trates the processing types and interfaces addressed
by the MIA specifications. Note that the specifications
did not address real-time processing issues.

NTT included the area of TP because the company
had a huge investment in developing and running TP
systcms and because its business relied on T P systems
such as billing, inventory control, and directory assis-
tance. The opportunity for return on investment was
therefore high for this critical application area. Data

DEPARTMENTAL
END USER WORKSTATION COMPUTER

APPLICATION

SII

SOFTWARE SOFTWARE

KEY:

HUI HUMAN USER INTERFACE
API APPLICATION PROGRAMMING INTERFACE
SII SYSTEMS INTERCONNECTION INTERFACE

Figure 1
MIA Systcm Configuration

111gital Technical Joul-nal Vol. 7 No. 2 1995

Figure 2
MIA Processing T Y ~ C S and Intcrf~ccs

integrjty, remote access, and system reliability are the
key characteristics of TP that needed to be supported
through standards compliance to fully realize the cost
savings potential of the MLA.

111 tlie area ofTP, no international standards existed
for the hvo most significant interface areas NTT had
identified as candidates for multivendorizatim: the API
and the SII. This deficiency created one of the biggest
problems that the MIA consortii~ln had to resolve and
latcr gave rise to a large systems integration and appli-
cation delivery challenge with respect to the MIA.

NTT required the MIA TP specifications to support
remote, distributed transactions. MIA T P comprised
specifications for multiple programming languages
and network protocols and therefore became the
widest integration point that had to be achieved.

INTERFACE

PROGRAMMING
LANGUAGE

Developing the Specifications
As the first step in specifVing solutions to the prob-
lems that it put forth to the MIA consortium, N T T
produced user requirements. The user requirements
evolved over tlie course of the project as new questions
arose that needed clarification from NTT's busi-
ness sector. Meeting user requirements was the final
verification of the specification output at the end of
the project. In addition, the consortium had to
develop specifications that could be implemented
by any vendor.

For tlie area of TP, N T T aslccd each vendor in the
MIA consortium to submit a proposal for a new rnulti-
vendor specification and selected Digital's Application
Control and Management System (ACMS) TP rnoni-
tor proposal as the base 011 which to build.6 A TP
monitor is a software component that provides f ~ ~ n c -
tions required for TP applications, such as transaction
coordination, display management, and performancc
improvements.

PROCESSING TYPE

SYSTEM
NTERFAcE

N T T selected the ACMS proposal as the base of the
new multivendor standard for two reasons: the ACMS
TP monitor included a higl1-level TP control language
called the Task Definition Language ('TDI,), which
c o ~ ~ l d be 111'1de portable more easily than a lo\iler level
API, and tlie monitor ~ ~ s c d a remotc procedure call
(RPC) communlcatlons ~iiodel, which is easier to pro-
gram than a peer-to-peer corn~nunications ~iiodel.
That is, the ACMS tecli~iology was determined to pro-
vide the best solution to NTT's requirements for mul-
tivendor portability and distributed processing.

The problems to be resolved by the consortiu~n
vendors, consistelit with the principles of multivcn-
dorization set by NTT, were

DATABASE
ACCESS

USER
ACCESS

-
COMMUNICATIONS
ACCESS

Portability

Interoperability

BATCH TRANSACTION

Common user access

INTERACTIVE

Historically, portability has best been achieved
among vendor platforms by using a high-level lan-
guage such as C o r COBOL. This pri~iciple was true
for the MIA, except that the MIA consortium found
it 1iecessar)l to produce profiles of programming lan-
gilage standards. The C and COBOL standards are
not sufficient to achieve portability because so many of
the specification rules are subject to a variety of inter-
pretations among \7endors, and architectural language
limits are not defi ned.zY

AII MIA profile of a programming language stan-
dard references the standard specification a11d modifies
it to improve portability. In the case of the MIA
COBOL profile, national text support is ~nalidatory
for portability of international languagc features. The
X/Open Company adopted this work as the basis for
their COROL national language support and accord-
ingly published the)(/Open COBOL specification.9

I I
COBOL
C

I

FORTRAN

I

SQL

Vol. 7 N o . 2 1995 3.

/

STRUCTURED
TRANSACTION
DEFINITION
LANGUAGE

~ ~ ~ ~ ~ ~ , ? ~ ~ ~
ENVIRONMENT

T h e MIA COBOL profile also deletes sections o f the
ANSI COBOL specification that contain optional syn-
tax that a vendor may choose t o implement . Finally,
the MLA COBOL profile sets c o m m o n language limits
such as the maximurn length o f a test string and t h e
number o f parameters supported o n a procedure call.
T h e resulting profile allo\vs programmers t o create
source programs that are portable t o any vendor \vllo
conforms t o the MLA specifications.

T h e MLA programming language profiles \\)ere
required because o f the \vay vendor-driven standards
are typically written. T h e goal o f vendor-dri\!cn speci-
fications \vork is t o allow the widest possible inter-
pretat io~l o f architecturally significant issues such as
integer precision, file system naming rules, and rncni-
ory manipulation, and tliereb!. t o allo\v the widest
possible implementation and adoption.

T h e MIA C profile adds rules for defining the con-
version o f a signed integer into an integer ofsmaller o r
ecli~al size and for defining the results ofdividing by n
negative integer. Neither o f these sem,~ntics is defined
in the ANSI specification because they tend t o \!a-y
according t o \rendor architccturc. T h e MIA C profile
also defines wide-character handling in the print and
file manipulation f i~nct ions so that programs support-
ing international l ang i~age character sets \\roi~ld be
portable.

Efforts t o address these portability issucs, such as
the X/Open XPG portability specifications, usually
describe o r catalogue tlie problems so that the pro-
grammer can avoid RiIIA places the burden o f
ensuring application source code portability o n the
vendor instead o f o n the progranirncr.

N o language standard existed for the MIA processing
area o f T P , ho\vever. Although some protocols existed
for various degrees o f interoperability, none existed for
complete distributed transaction coordination.

Solving the TP Problem
Perhaps tlie mos t significant aspect o f t h e lMIA effort is
its approach t o resolving problems associated rvith dis-
tributed TP. Typically, T P applications are \!cry large
and involve strict requirements for performance and
availability. TP applications implement the daily opera-
tions o f a business. Some o f the bcttcr-ltnown c u m -
ples include travel reservation s)lstc~iis and automatic
teller machines. Tlie term "transaction" is derived
from the term "business transaction," which means an
exchange o f goods o r money bct\\~ccn nvo indi\!iduals
o r businesses, o r some combination thereof.

Transactions, \?!hen automated, taltc 011 additio~lal
properties because coliiputer systems arc subject t o
f - . . ' a ~ l u ~ e In ways that manual systems arc not . C o ~ l i p u t e r
systems are electrical, and electrical failures can dam-
age data storage media. Computer systems are net-
\vorl<ed, and communication failures can interrupt the

cornpletioli o f a business transaction such as a travel
reservation that requires the participation o f multiple
computers a t multiple sites.

A computer transaction uses logging t o ensure that
business data is c ,~ptured reliably o r n o t a t all. Perhaps
most important , a computer transaction ensures that
business computer systems recover ql~icldy from any
type o f failure and begin processing data again u ~ i t h o u t
manual intel-vention.

Bec,u~se o f the highly demanding nature o f TI', \,en-
dol- iniplementations o f T P system s o h v a r c dcpcnd
o n the features o f specific hard\\larc and operating s!a-
t a n a rch i tec t~~res for the purposes o f performance
optimization and fast rcco\$cry. T h e mechanisms for-
accomplishing fast recovery are complex and difficlllt
t o i~i iplement o n a multiple-user systern. Although
business data is shared, operat io~is o n the data must be
isolated s o that o n e operation does no t o\lcr\vrite the
effects o f another operation. When two simultancous
reqi~ests arrive t o update the same bank account, for
example, the ending balance may be incorrect if the
two ~rpdates are not properly serialized. Sucli errors
can occur unless transactions arc used t o isolate and
serialize the updates. Failures o f media o r commu~i ica-
tions cun result ill inconsistent data . l l

These diffici~lties and others have deterred stan-
dards bodies from addressiug the area o f T P . Conse-
q i ~ u n t l b tlie ~iiarl<et is dominated by proprietary
s o l ~ ~ t i o n s . Users are liable t o be locltcd in t o a particu-
131- \rendor and t o have difficulty achieving the beliefits
o f competition.

T h e MIA T1' specifications \\!ere designed t o address
these prob len isand t o counter the shortcomings of
the traditional vendor-dri\len s o h i ~ a r e standardization
process. MIA T1' eliminates vendor-specific differenccs
b y adding a liigli-level language layer o n top ofpropri-
ctary T P monitors and by adding a c o m m o n protocol
,it the Io\vcr layers for interoperation." T h e o111!!
restriction that MIA places o n the underl!~ing s o h \ w e
o r platform is that it must be s~~f f ic icn t for implement-
ing the specified T1) functionality. Otherlvise, vendor
'ind user investment in existing systems is prcscr\,ed.

'The MIA c o n s o r t i ~ ~ m based the MIA TP protocol
standard o n tlic International Standards Org,inization/
O p e n Systems Interconnection (ISO/OSI) TP proto-
col, and o n the Open S o h \ i a r c Foundation's (OSF's)
l)~stributcd Comput ing F,nvironrncnt (DCE) Rl'C,
both o f which \\!ere ne\vly released.12 To balance the
risk o f adopting a ne\v technology, the MIA consor-
t iu~ i i chose IBM's Systems Network Architecture
(SNA) Logical Unit 6.2 (1,U 6.2) as a short- term alter-
native solut io~l .

T h e MIA transactional communication specification
combined I X E RPC as tlie data transport and OSI T1'
for tile two-phase commit protocol. Tlie resulting
protocol \\/as called tlie Remote Task In\!ocation (l<TI)

38 Digital Technical Journa l

protocol, which was s ~ ~ b s e q ~ ~ e n t l y adopted by
)(/Open as the basis o f their T s R P C specification.l"I4
Figure 3 shows the resulti~ig MIA T P model.

To solve the portability problem, the consortium
began with Digital's proposal based o n the ACMS T P
monitor's T D L and developed a new Structured Task
Definition Language (STDL), which is a modular,
block-structured language \/cry similar t o TDL.15 T h e
consortium eliminated vendor-spccific sylitas, ensured
that STDL's features met NTT's user requirements,
and conducted implementation studies t o veritj, that
the new language could be implemented o n t o p o f
each vendor's existing proprietary TP monitors.16
Figure 4 illustrates the laycring o f the nc\v MIA T P
language o n tlie MIA T1' protocol.

Because the MIA was based o n standards as much as
possible, tlie MLA T P work also had t o be largely based
o n standards. Therefore, the STL3L specification \\/as
integrated with the standard langi~ages C , COROL,
and S Q L t o provide complete, portable application
f ~ ~ ~ i c t i o n a l i t y . ~ ~ T h e consor t i i~m mapped tlie data types

PRESENTATION

a m o n g the h u r languages and specified interlanguage
call semantics.

STDL procedures can call and be called by C and
C O B O L procedures. STDL i m p l e ~ n e ~ i t s the TP-
specific functionality that standard C and C O B O L
lack. Examples o f this fi~nctionality are beginning and
ending a transaction, handling transaction exceptions,
automatic all!^ restarting transactions, and coordinat-
ing multiple transactional resource managers (i.e.,
databases, files, and queues) locally o r across remote
T P systems in a nenvorl<.

Adopting STDL as a ne\v languagc represented a
practical way t o add TP-specific f i~nct ional in in a mul-
tivendor environment while nllowing the C, COBOL,
and S Q L languages t o be i ~ s e d as specified in inter-
national standards. This approach did, l io\~e\m-, r e s ~ l t
in additional integration problems. I t \\>as necessary
t o ensure that STL)L procedures \\/orked with C and
C O R O L procedures as \veil as \vitIi S Q L and within
the entire T P environment, n~hicli encompassed
a large part o f a platform's capabilities. A11 additional

TRANSACTION
FLOW
CONTROL PROCESSING

I

t 1' SQL
C, COBOL, RESOURCES

C, COBOL

STDL TASK
DEFINITION

Figure 3
[MIA T r a ~ ~ a ~ ~ c t l o n Processing ~Moclel

APPLICATION PROGRAMMING INTERFACE

DCERPCDATA DCERPCDATA
TRANSFER PROTOCOLS

OSI TCPilP SNA

Figure 4
MIA Transaction Proccss~ng API and Protocol

Digital Tcchnic31 Jou~.nal Vol. 7 No. 2 1995 39

benefit results f i o t ~ ~ the use of a co~npiler to check
STlIL syntas dnd semantics, thus reducing the
i~ista~lcc of e s e c ~ ~ t i o ~ l errors.

Implementing the MIA Specifications

Because the architecture \\,as defined at the intcrhcc
level, the implementation and system integration prob-
lcni for vendors entailed identifying the components
\\lit11 conforming interfaces and assembling them on
the platform that mct the MIAspecificatio~ls. Although
focusing o n three interfaces was practical with respect
to completing the 11 volumes of the MIA specifica-
tions in approximately 18 months, such a scope left
~~ncovcrcd niany areas of technology that tlie vendors
intending to implement 1MIA ~vould have to provide
for tlic~nsel\~es. Systeni and network managen1ent,
co~~ip~t tcr -a idcd soft\\rare engineering (CASE) tools,
and testing and debugging tools are examples of items
that \vould have to be integrated \\!it11 the components
that complied with the specifications.

Table 1 lists thc primary areas of the 1VIA specifica-
tions and the types of standards included in each
area,7.X.12.14.15.17-24

The MIA specifcations' practical approach to
resolving tlie problems of portability and intcropcr-
ability include carefi~lly documenting where the vcn-
dor diffcrcnccs continued to exist among the
ilnplcmcntations of tlie standards. "In general, the
amount of information transferable between develop-
ment and cxecution environments under the original

MIA procurement specifications is less than that trans-
ferable when both environnients are provided by the
samc \'cndor."l Sonie vendor-specific codinp, for
esample, including file names in source coclc pro-
gmms, C O L I I ~ not be standardized by MIA bcca~~sc of
fi~ndamcntal \vendor diffcrcnccs. Instances of such
unrcsol\~ablc problcins \\,ere carcfi~lly documcntcd.

The an1oLunt of portability gained by follo\\ting the
MIA specifications \\:as significant, ho\\ JC\ f a ~ r , as com-
pared to the amount that would be gained without
using the specifications. The following example of
def ning tlie integer size illustrates the bcncft derived
fro111 having the MIA C specification.

A C progrxn written using a vendor's conipilcr that
interprets a long integer data type as having 16 bits will
not \vorl< correctly when portcd to another vendor's
compiler that interprets the same data type 3s I l ~ \ f i ~ l g
32 bits (\vllicli is an acceptable interpretation accord-
ing to the ANSI/ISO C: specification). T!,pic~l solu-
tions to this problem ha\re been to docunicnt the
problcm ; ~ n d instruct programmers to rccodc \\.lien
porting their programs, o r to have progmmmcrs \\.rite
their original programs so as to avoid the problem.

The MIA C, specification resolvcd this proble~n and
similar problcms in that it represents agrccnlcnt
among the ,MIA consortium vendors on a common
intcrpl-ctation of the ANSI/ISO C spccificatio~~.
13ccause the [MIA specifcatio~is arc procurenlent spcc-
ificatio~ls, \~cndors must conform to thc IMIA <: spccifi-
cation \\llien responding to MIA-compli'lnt 1.cc1~1csts
for 1.xocLwunent (lWI>s) from NTT.

Table 1
Areas of MIA Specifications and Associated Standards

Areas of MIA
Specifications Standards

API
COBOL
FORTRAN
C
STDL
SQL

HUI
OSFIMotif
IBM's Common User Access
OPEN LOOK

511
MIA TP protocol
OSI TP
MHS X.400
FTAM
TCPIIP, FTP, SMTP,
TELNET, SNMP, UDP, CMlP
X.25
ISDN
Ethernet

IS0 1989:1985, ANSl X3.23-1985
ISOIIEC 1539-1991, ANSl X3.198-1992
ANSI/ISO 9899
MIA specification adopted by SPIRIT and submitted t o XtOpen
IS0 9075-1 : 1992

OSF/Motif Style Guide, Release 1.2
No standard established
No standard established

MIA RTI specification adopted by XIOpen as the TxRPC specification
ISOIIEC 10026-1 11 992
ISOIIEC 10021-1 :1990, C C l n X.400-89
IS0 8571-1:1988
Internet protocol suite

ISOIIEC 8208:1990, CClT X.25-89
CCllT I Series
ISOIIEC 8802-3:1993, I E E E 802.3-93

Vol. 7 No. 2 1995

Implications for Systems Integration and
Application Delivery

NTT awarcled Digital the first contract to deliver an
MIA-compliant application. NTT sclected its List
Maintenance System (LMS), the application that man-
ages the telephone numbcr database used to produce
telephone directories for all of Japan.2 One purpose of
the LMS was to sufficiently test the specifications. The
LMS procurement involved 60 software products
from a variety of Digital engineering groups. The
components had to be modified to meet tlie specifica-
tions and then integrated, tested, characterized, and
deli\/crcd on the OpcnVMS operating system. The tar-
get configuration ofthrce VAX 10000-630 systems in
a VAXclustcr configuration supported more than 10
client sites tliroughout Japan. The contract includes
soft\varc, hardware, aod services. Figure 5 illustrates
thc LMS applicq c tion. '

Of tlie 6 0 software components in the LIMS plat-
form delivery, 27 \\rere required for conformance to
the MIA specifications. Although the remaining 3 3
components addressed application areas outside the
scope of the MIA specifications, these products had to
be intcgratecl \\lit11 the MIA-conipliant products,
tested, characterized, and verified, thus malting the
integration effort more complicated.

Even thougli N T T realized some benefits from the
standardized products that it procured according to
the MIA specifications, it faced a dual systems integra-
ti011 problem. Delivery recli~ired complying with the
specifications and also complyi~ig with the detailed
terms of the specific 1WP for the LMS.

Figure 6 illustrates the system verification and char-
acterization process carried out by Digital's Systems
Application Integration and Engineering (SAIE)
group. This was tlie Itey effort in responding to the
MIA-based procurenicnt request.

Digital established a special-purpose production
systems program office (PSPO) to oversee the entire
process of delivering the [MIA-compliant RFP. This
program office \\{as nodel led afier thc successfi~l Alpha
program office.25

A production systems board of directors repre-
sellted the various engineering departments whose
component products were included in the LMS. The
board's f~~nc t ion was to resolve priority and budget
conflicts among tlie various departments. This group
met monthly.

A special project foruni \\pas established with repre-
sentatives of thc individual products and engineers
\\!ho could resol\le technical problems and fis bugs
that surfaced in the integration and testing activities.
This group met weekly.

The SAIE group provided a "sandbos" for compo-
nent product groups to install and test their products
on the specific version of the OpenVMS operating sps-
ten1 o n which the colnponents \\/ere to bc delivered.
This process wns repeated for operating system
upgrades and was made more difficult because initially
a special version of the OpenVMS system was required
to fi~lly meet the terms of the RFP, in particular, to
provide Japanese l a n g ~ ~ a g e support.

Aker the components were installed in the
OpenVMS operating system, SAIE engineers verified
that the components worked together by running test

SPECIFICATIONS

CLIENT

CLIENT

3 VAX 10000-630 SYSTEMS IN A CLUSTER
11 CLIENT SITES
GO SOFTWARE COMPONENTS
STDL TP MONITOR
500-GB DATA REQUIREMENTS
MIA-COMPLIANT PLATFORM

Figure 5
List ~Maintcnancc Systcrn

VAX 10000 VAX 10000
MODEL 630 MODEL 630

I
CLIENT

-

-

Digital Technical Journal Vol. / No. 2 1995 41

MODEL 630

- -
VAX 10000

SPECIFICATIONS I NTT BUSINESS
REQUIREMENTS I

PRODUCT
REQUIREMENTS I I

DIGITAL
* CONSULTING

V SERVICES

PRODUCT
MANAGEMENT

v
PRODUCT
LOCALIZATION

v v
ENGINEERING + INTEGRATED , DELIVERY DELIVERY -b

DELIVERY CUSTOMER

CHARACTERIZATION

Figure 6
Digital's MIA Systems Integl-ation Process

applications and characterized the overall performance
of the platform as configured. Any problems that arose
during this testing and characterization work were
routed back to the component product groups by
means of the special project forum. Finally, the pro-
gram office coordinated the delivery to the local
Digital office in Japan and to the customer (NTT).

The integration effort for the LMS uncovered more
than 170 bugs, of which 25 were major obstacles. If
Digital had not tindertaken the integration eftbrt, the
problems would have shown up at the customer site
and jeopardized the contract. O f the bugs, nearly 50
percent were directly related to integrating thc various
components on the common platfornl.

For esample, one bug invol\led a fatal clash between
versions of a threading package. Two LMS component
products had incorporated illcompatible versions of
the same threadi~lg packagc without considering the
potential problems that might arise if the two sepa-
rately developed components were integrated and
tested on the same platform.

Another problem resulted from tlie upgrade fro111
the VAX C language compiler to the DEC C compiler,
which was to comply with the new ANSI standard for
the C language. While upgrading its C compiler to
comply wjth the ANSI C standard, Digital altered the
semantics of the associated run-time library. Most new
sofnvare components are coded using C, so nearly
every component 011 the platform was impacted.

During the 18-month period that the program
office, the board of directors, and the project forum
supported the LMS effort, 56 releases and patches
were provided for LMS integrated products. Each

time a newf version of the operating system o r a major
component was released, the integration, testing, and
characterization process had to be repeated.

The major lesson derived from the experience with
MIA was the type of project and program manage-
ment required to deliver a complete platform for
enterprise-level computing on a large scale. Addi-
tionally, Digital engineers learned to work with other
\lenders to ensure the compatibility of Digital's imple-
mentation of the MLA specifications with the other
vendors' implelneritations.

Digital remaills very interested in pl~rsuing oppor-
tunities to resolve enterprise-wide computing plat-
forms for its large customers. The most significant
problem to be solved is the systems integration prob-
lem. Tlie MIA effort proves that products kom difkr-
ent engineering groups within Digital need to be
installed, tested, verified, and characterized bcfore
being delivered to the custonier for use in a large appli-
cation. Systems integrators can anticipate that the inte-
gration problems discovered during the LMS project
will be compounded in an effort that involves software
components from multiple vclidors.

Large enterprjse-level applications such as the LLMS
cannot be mass produced. The number of thcse largc
applications is small, and tlie needs of individual enter-
prises call var)~ significantly, even within a single indus-
try segment such as telecommunications. Digital's
esperience \vith the SPIRIT consortium folloxv-on
to MIA has demonstrated this.

I t is therefore important to preserve the learnings
about how thc MIA platform \vas put together and, of
lesser importance, t o be able to exactly replicate the

42 Digital Technical Journat

platform de.livered to NTT for tlie LMS. Digital needs
to be able to work with large customers such as N T T
in the future and to complete large projects such as the
LMS, backed by an internal systems integration and
delivery organization.

Indeed, the systems integration problem grows
niore complex in a world in which products from mul-
tiple vendors arc routinely required to \vork together
in providing the solution to a large application's
requirements. Customers tend to look more and more
to\vard contracting for the technical expertise needed
to solve these problems.

Delivery

Delivering an MIA-compliant business solution
invol\les several levels of integration, each with its asso-
ciated problcnis. The first level is integrating the
required functionality in specifications developed by
independent standards bodies. The next is combining
standards-compliant component products o n a single
operating system and Iiard\vare platfor~n, while pre-
serving the rcquired interfaces and behaviors. Third
is incorporating the additional products and features
necessary to develop a specific application on tlie
standards-conipliant platform. Fourth is ensuring that
compliant platforms fi-om multiple vendors can work
together. The integrated product set must then pass
conformance testing and verification. When applica-
tion development begins, additional integration iss~les
arise tliat affect the overall process.

During Digital's implementation of the MIA
specifications and the sl~bsequent integration activity
to combine thc components on one platform, sev-
eral problems were discovered in the specifications.
These problems were reported to N T T and directed
to one of the specification working groups, \vhicli
had continued under the auspices of the consortium
for this purpose. For example, after testing interoper-
ability using the RTI protocol, tlic mapping of coni-
nlunication errors to STDL exception codes was foiind
to be incorrect.

Ultimately, not all thc goals of the MIA initiative
werc met. During tlie impleriientation and delivery
effort, it became apparent that specifying a stand-
ardized HUI would not be possible. The use o f a win-
dowing system with a common look and feel and
common principles ofoperation (e.g., a mouse, icons,
and pull-down menus) was sufficient for end users,
and the industry players \\/ere too widely split to
endorse a c o ~ ~ i n i o n solution. Specitjiing a standard for
the size and shape of an icon o r for how to entitle
entries o n a pull-down menu became unnecessary as
\vindowing systems converged on coninion design
principles of operation.

STDL Maintenance and Conformance
Because STDL was a newly specified language,
it required considerable maintenance. N T T care-
fi~lly monitored the vendor implementations of STDL
to ensure that all the MIA vendors interpreted tlie
specification in the same way. N T T procured several
STDL-based applications from different vendors.
Consequently, \~endors were able to experience the
inevitable implementation problems in realistic situa-
tions. If NTT determined that a problem was o r might
be related to the specification, it encouraged the ven-
dor to submit a problem report t o the appropriate
MIA consortium working group.

N T T defined conformance testing for MIA, includ-
ing STDL. Each vendor had to submit its completed
platform for testing. Whcrever possible, the MIA
co~iformance tests were based on existing industry
tests created by organizations such as the National
Institute ofstandards and Technology (NIST) and the
X/Open Company. After passing each basic test, for
example, proving conformance to ANSI C, a vendor
had to pass an additional test for the "MIA delta," i.e.,
for the part of tlie specification tliat was different for
MIA. In general, this difference consisted of Japanese
language character support and more restrictive intrr-
prctations of a specification's optional or u~idefined
parts. In the case of STDL, liowe\ler, a wholly new
suite of tests was needed to confirm conformance to
the basic specifi cation.

I t became clear during this stage of the project that
proble~ns existed with tlie way in which the solutions
had been specified. For example, tlie specifications
for ne\v TP technology had used existing standards
specifications as models. In its eagerness to accomplish
the task, the MLA consortium employed traditional
methods of co~npro~n i se and an~biguous wording to
obtain agreement among the participating vendors.
No t until the conformance tests began did the prob-
lem become apparent.

'The conformance tests for STDL were divjded
into syntax verification tests and semantic tests. Con-
formance testing for any language is a treniendous
undertaking because there are so many potential corn-
binations of language syntax and semantics to take
into account. The first problem for N T T was to
reduce tlie number of tests to a practical amount,
while keeping the results of the tests meaningful.

Initially, N T T took the approach of translating
the specification's syntax rules into syntax tests and tlie
general rules into semantic tests. The syntax tests were
designed on the assumption that a vendor's STDL
co~npiler would produce an error message for each
violation of a syntax rule. The semantic tests assumed
that a vendor's run-time system would produce an
error message for each violation of a general rule. -The

Digital Technical Journal Vol. 7 No. 2 1995 43

specification had not been written using the same
assumptions, however, and many of the syntas and
general rules for the language elements contained
a high degree of ambiguity concerliing whether the
rules had to be enforced at compile time or at run time.

Although this problem was never resolved for the
STDL conforma~lce tests, the tests were success-
fill after they \vcre redesigned to be niore flexible
in the method of catching errors. N T T was able to
caref~~lly monitor \lendor irnplen~entations for consis-
tcncy and compatibility.

MIA Applications
The intention of the MIA was to providc co~mpliant
s o h l a r e as the base, or heart, of a new application.
MIA specifications standardize the most important
interfaces and, consequently, enable users to realize
the benefit of lowver procurement costs, lower training
costs, etc.

The MIA initiative was different from usual stan-
dards activities in that the implementations of the
specifications were monitored by the same authority
that caused the creation of the specifications in the first
place. NT'T bought systems based on its specif cations,
and ~vorked with the vendors to maintain the specifica-
tions to correct proble~iis that arose during implcmen-
tation and application development.

For Digital, complying with the specifications
meant implementing s o h l a r e to meet the terms and
conditions of a large contract based on the specifica-
tions. Ofcourse, the specifications covered 0111~1 a por-
tion of the overall platform and consequently did not
address many conditions of the contract, such as CASE
tools and system management.

Even though Digital's contract was for a single-
\icndor application, thc source code had to be portable
ill case N T T decided to s~~bs t i tu t e another ve~~dor ' s
llardware for Digital's. Also, the new MIA-compliant
LMS application had to fulfill at least the same func-
tions as the old application. This application was there-
fore a good test of the MIA specifications; it would
slio\v ho\v ulell the user requirements had actually
been represented and met.

For Digital, the efrort required delivering, for the
first time, an integrated set of standards-compliant
products for a large-scale busi~iess application. Digital
had to combine componcnts from a wide variety of
internal product groups, make the111 all \vork together,
and then upgrade or enhance the products to meet the
MIA-specific requirenients. I n general, this entailed
ensuring that our products \li/cre adapted to the
Japanese market, i.e., that they supported the Japanese
language character sets. 111 addition, the)MIA required
the integration of other new open technology, such as
the RPC and other elements of OSF's DCE, DECIIICC,
and the new, ANSI-compliant version of DEC C.

Conclusions

Following the success of MIA, the MIA specifications
becaliie base input docu~nents for the SPIRIT consor-
tium, at which the user-driven standardization effort
continues. Also input to SPIlUT \\rere dc)c~~ments
from AT&T, RT, Bellcore, and ETIS. The consortium
model reduces vendor disagreements and yields a
solution based on business requirements rather than
on choice of vendor.

Tlie filnda~iiental requirelnent of the MIA was for
a common colnpi~ting platform for NTT's ne\v cnter-
prise applications that could be multisourced. This
fi~ndamental requirement is shared by tlie SPTNT
members, who represent the world's largest tclccom-
~nunications corporations.

MIA and SPIRIT are scelung to lower costs in \\11iat
has traditionally been the highest margin, lowest vol-
ume area of computing. The ultimate goal of a single,
integrated platfor111 that can be purchased offthe shelf
from a signifi cant number of vendors does not appear
to be co~iipletcl!l attainable. Partial gains arc more
Jil<ely, as in the case in \vhich suppliers integrate more or
less dynamically the components of the required plat-
form o r platfornis. Ultimatel)~, the industry will be
changed by tlie MIA and SPIN1' initiatives, altho~rgll
probably not in the exact way it was originally envi-
sioned. For instance, since the MIA initiative began, the
vertically integrated computcr manuf~cturer, i.e., tlie
manufacturer who supplies all tlie hardware and soft-
ware components of thc platform, has nearly vanished.

In the users' ideal vision, the software components
conforming to the specifications in tlie IMW and
SPITUT platforms are off-the-shelf products that fit
together easily. This goal has not proved to be the case
in Digital's esperience. Special product source code
nlodifications were oftcn required, and such modi-
fications created integration challenges for Digital.
For example, a special version of the 1)CE interface
definition language (IDL) compiler was necessary to
support the MIA. The new version mapped IOnji
character set encoding to thc I S 0 ASN.l/BER stan-
dard, whereas DCE 1U<: normalljr uses Numeric Data
Representation (NDR) encodi11g.~6>*~

A paradox in tlie user-driven standardization effort
derives from the h c t that the MIA and SPIRIT
platforms are intended for large projects, which are by
definition limited in number. Therefore, creating off-
the-shelf versions may be difficult due to limited plat-
form volumes based on demand. For a vendor such as
Digital, the effort appears to be best handled as a long-
term partnership with large customers, supplying base
technology and components to be integrated with
those of other vendors. Integration becomes a contin-
ual and dynamic process. The key problem becomes
sjatclns integration, and a key question becomes ~ l h o

dol. 7 No. 2 1995

among the multiple \lenders in\lol\.ed in suppl!ing
components \vill perform the integra.tion.

T h e systems integration issue, therefore, is more
important than ever before. As more and Inore \lei)-
dors, pursuing their own core competencies, develop
standards-based components, the greater the problem
of component integration for custonlers who seek
large-scale application solutio~is becomes. Enterprise-
level platforms of tlie future are less likely t o have corn-
ponents that are supplied entirely by a single \wmdor,
and large applications, e\Iell standards-based applica-
tions, \vill cont in~le t o require platform custorniza-
tions t o meet the demanding requirements o f these
large users.

Acknowledgments

Thanks to Roger Baust, Bob Bell, Peter Conklin, Bo
Erden, George Gajnak, Bob Ho\vell, Bob Wcst, and
Steve Young for their help in delivering the MIA
and for leaving a legacy of lear~li~ings.

References

1. ~Vl~rlti~~endor ~ntegrution A rchi/ec~irre, l>i~~ision I >
Oucni~eio. '/i?ck~ric.cil Rcqriir~rne?l.t.s (Tokyo, J ~ p a n :
Nippon Tclcgraph and Telephone COI-poration, NTT
Data Communications Syste~ns Corporation, IBlM
Japan, Lrd., Digital Equipment Corporation Japan,
NEC Corporation, Hitachi, Ltd., and Fujitsu L,imitcd,
1991).

2. i\'elwol-k /Vle// rage1ne1~1 FOI-II /TI Procee~ling~, SPIRIT
7'r~rcks. Gerro-ul ~Lfeetirz,y. Mnrne I.,a Valee, France
(Octobcr 1994).

3. SPIRIT /-'lnt/brrtt U / L I ~ ~ I - ~ I I I , Sl'IIUT 2.0, vol. 1
(Rcading, U.K.: S/Open Company Lrd., Nenvork
Management Forum, 1994).

4. 1'. Conklin i~nd E. h'c\\rcorner, "The I(eys to the Infor-
rnation Highway," Fittut-e of SoJi~~are. Chapter 3,
D. Lcebaert, cd. (Cambridge, Mass.: MIT Press, 1995).

5. tMr,i/lii~enclor lr~teg1~11io1~ Architect~tre, Corrcepts and
De.sigr1 Philr~sopL?y (Tokyo, Japan: Nippon Telegraph
and Telephone and NTT Data Communications
Systems Corporation, 1989).

6. K. Baaf, J. Oarric, W. Drur!; and 0 . Wiesler, "ACMSsp
Opcn Distributed Transaction Processing," Digital
' / ~ ' C / ~ I L ~ C U ~ , / ~ L L I . I Z L I I : \ r o 1 . 7, no. 1 (1995): 34-42.

7. l~cj?)rnzation S~:ste~rr.s-l't-ogr~~~~imi~z~q Langzgr,uge-
C; ANSI/ISO 9899 (Kc\,ision and redcsignntion of
ANSl S.3159-1989) (New York: Amcrican National
Standards I~lstit~~te/I~itcrnational Organization for
Standardization, 1989).

8. l'ro'qrz~~mnziurg Larzg~~6ge.s-COBOL: IS0 1989: 1985
(Endorscme~it of ANSI X3.23-1985) (Geneva: Inter-
national Organi~~~tion for St~ndnrdization, 1985).

9 . X/Ope17 CAE Speci/lcatio~z, C192 ISBN 1-872630-
09-X (Reading, U.K.: X/Open Conipan!. Ltd., 1991).

10. IVOpetz Porlahilit)~ G t ~ i ~ l e (XI'C.3): IS R N 0- 13-
685868-6 (supcrscdcd by X/Open C, C214, ISBN
1-872630-39-1, COBOL dropped in latest \rersion)
(Reading, U.K.: X/Opcn Company Ltd., 1989).

11. J . Gray and A. lieuter, T1w7~.sactio1~ IJroce.ssi~zg
Concepts and Tech~ziq~les (San Mateo, Calif.: Mor-
gan Kaufmann, 1993).

12. I i~fo1~7at io1~ Tcclonology-Open S>.stern.s Inlercon-
nec~ion-Distribsited Tr~1n~action Processing-Pat?
1: 051 7P Model, ISO/IEC 10026- 1 :I992 (Geneva:
Intcrnational Organization for Standardization/
International Electrotechnical Commission, 1992).

13. i1.iullii~endor 1rztegrntior.l A rchiteclri~'e. Vol . 8, Div. 3,
S]aletns I1ztelwo1~17eclior? Inlerjhcc SpeciJi'cutions,
Part 4, Renzote Task Inuocntiorr Sewice Definition
and Protocol Specz/ication (Tokyo, Japan: Nip pon
Telegraph and Telepho~lc Corporation, 1991).

14. X/Open t-',,elimirznr): Spccijicatior?, Dislrih~lted
Trarzsaction Processirlg: The TkilPC 5~ec~/i'ceiliow
(Rcading, U.l<.: X/Open Company Ltd., 1993).

15. P. Bernstein, P. Gyllstrom, and T. Winibcrg, "STLIL-
A Portablc Languagc for Tr:~.unsaction Processing," PI-o-
cccc1ing.s oJ'rL7e Nineleer~th Intertzc~tional C'orgerence
orz Ve1:1) Large Dutuba.ses, Dublin, Ireland (1993).

16. E. Ne\\xomer, "l'ionccring Distributed Transaction
~Managcrncnt," Bz,rlletin efthe Tecb~zicnl Committee
on Dutu Engirrecr-ing. vol. 17, no. 1 (New York: lEEE
Cornputcr Society, blarch 1994).

17. In/orn7utiorz T e c h n o l o g y - D a t a Lat7guuge.s-
SOL. ISO/IEC 9075:1992 (Geneva: Intcrnational
Organization for S t a n d a r d i z n r i o n / I n t m t i o n n l Elcc-
trotcclinical Com~nission, 1992).

18. Irvbrnration Technc)log,)l-Pt1ogra??7 iv i12g Lnn-
SI,~L~~~.~-FORTRA.V-E~Y~~I'I~/~~, ISO/IEC 1539:
1991 (Geneva: Intcrnational Organization for
Standardizatio~i/Intc~-national Electrotechnical Corn-
mission, 1991) and ANSI X3.198- 1992 (Ne\\i York:
Anicrican National Standards Institute, 1992).

19. OSF/IMotiJ Stvlc Gtiicle. version 1.2 (Cambridge,
Mass.: Opcn Sofnvarc Foundation, 1992).

20. Me.ssqqc Hal rdir lg Srstern and Service Oucr~~ieu!-
Dala Conin? tr nicntions /\'eti~~or~k.s a1 rd ~VIessng~
FIc~ndliri~q S] I S / C I ~ ~ S , Re~onin~e~ldation X.400-89
(Geneva: International l'clccomm~~nications Union,
Comite Consultarif Intcr~iiitionale de TCl6graphic)ue ct
TPltphoniquc [(,CITI'], 1989).

2 1. J11Ji,rn?alion Processitzg S)~.stenzs-Open Syste~?t.s
Irztel-co~tneclio~z-File TIZI 17.sJe1: A cce~ss, and 114elrr-
ncqct?ient, IS0 8571 -1 : 1988 (Geneva: International
Organization for Standardization, 1988).

Vol. 7 No. 2 1995 45

Opemtin,q in the Packet Mock and Connected to
Public Data Networks b y fjedicated Circuits-
Data Communication Netiuorks: Sewices and
Facilities, Inter-aces, Recommendation X.25 -89
(Ge~~eva : International Telecommunications Union,
Comitt ConsultatifIntc~.~iatio~iale de Tcldgraphique et
Tklephonique [CCITT], 1989).

23. ISDN, I-Series Recornmend~~tions (Geneva: Interna-
tional Tclccomnit~nications Union, ComitC Consul-
tatif Intcrnationale de TCldgraphique ct TiICphonique
[CCITT], 1989).

24. Information Technology-Local and Met/-opolitarz
Area ~Vet~vorks-Part -3: Carrier Sense Multple
Access u)i/h Collision Detection (CSMA/CD) Access
Methocl and IJh,ysical Lqer Specifications, ISO/IEC
8802-3:1993 (Geneva: International Organization (or
Standardization/International Electrotechnical Com-
mission, 1993) and IEEE 802.3-93 (New York: The
Ins t i t~~te o f Elcctrical and Electronics Engineers,
1993).

25. P. Conklin, "Enroll~nent Management, Managing
the Alpha AXP Program," Digital Technical Jo~~rna l ,
vol. 4 , no. 4 (Special Issue 1992): 193-205.

26. In/ilfbm~ution Technology-Open Systenzs Intercon-
nection-SpeciJication of'Busic Encoding Rzilesjhr
Abstmct Syntux Notation One (ASIV.~), ISO/IEC
8825:1990 (Geneva: International Organization for
Standardization/International Elccrrotechnical Com-
mission, 1990).

27. I~flot-mation Processi~zg-Representation of Nu~neri-
cal Va1~~e.s in Character Strings jbr In/ormalion
Interchange, IS0 6093:1985 (Geneva: International
Organization for Standardization, 198'5).

Biography

Eric A. Newcomer
Eric Ne\vconier IS a niembcr of the Corporatc Standards
Group at Digital Equipment Corporation. As Digital's
primary representative to thc SPIRIT co~lsortiunl in the
United Kingdom and formcr representative to the MIA
consorti~~rn in Japan, he works with representatives from
other coniputcr companies to create specifications for
open systems sohvare ~ ~ n d e r thc sponsorship of large
information tecli~loJogy users. Eric joined Digital in 1984.
H e has 17 years of experience in database and transaction
processing sohvare. H c holds a B.A. in American Studics
from Antioch University.

Digical Technical Journal Vol. 7 No. 2 1995

I
James R. Kirkley
William G . Nichols

Integrating Applications
with Digital's
Framework-based
Environment

Digital has developed the Framework-based
Environment to address the integration
and interoperability needs of manufacturing
and other business systems. FBE consists of
a method for integrating existing applications,
frameworks of industry models, and tools that
use Digital's CORBA-compliant ObjectBroker
integration software to manage the exchange
of information between cooperating servers
on the network. Using these products, Digital
Consulting and its partner systems integrators
provide FBE application integration services
to large organizations.

The increasing quality and cost-effectiveness of corn-
puter application software has revolutio~lized the way
organizations share and manage their information.
Rather than develop custom information systems with
their internal programming staffs, many businesses
now purchase software available in standard "off-the-
shelf" packages. A well-chosen standard pacltage can
save development time and cost. Bcfore it can be use-
ful, however, it must be integrated with other new
software and with the mature (legacy) applications
that hold current business data and processes.

Application integration can be a substantial effort.
If business changes are not anticipated during the
planning phase, an integrated system can be inflex-
ible. The existing applications, both legacy and new,
rarely meet current requirements. An ad hoc inte-
gration that starts with the existing applications'
interfaces will seldom be flexible in ways that accom-
modate h t u r e business changes \\~ithout widespread
program changes.

hi integration derived from a clear model of
current and expected business processes provides
a basis for growth and flexible change. Digital has
developed the Framework-based Elivironment (FBE),
consisting of reference models, methodologies, and
a toolkit. Together, these products provide tlexible
systems integration.

In this paper, we provide a brief overvie\\/ of FBE
and characterize the projects that can benefit from
using it. We describe flexible application integration
and the benefits of model-driven integration. Finally,
we discuss our experience using FBE.

Overview of the Framework-based Environment

FBE consists of the following components.

MethodF is an object-oriented methodology based
011 two systems integration methodologies recog-
nized in the industry: Jacobson's use case analysis
and Rumbaugh's Object Modeling Technique.l.2J,*
These methodologies are explained in the section
Model-driven Integration with FBE.

Digital Technical Journal Vol. 7 No. 2 1995 47

ObjectPlus is a modelilig tool from Protosoft,
Inc. that has been tailored for MetliodF with a11
FEE-specific code generator. In addition to the
methodologies described above, the tool has esten-
sions tliat provide the ability to create an imple-
mentation model. The implementation model
describes how objects arc distributed among the
various applications.

ObjectBrol<er, Digital's object-oriented integration
sofware product, is compliant with the Common
Object Request Broker Architecture (C O M A)
specification from the Object Management Group
(OMG).5.6

A suite of supporting libraries and tools includes
reference models and associated code libraries that
have been abstracted fro111 previous projects and
made available for reuse. The reference ~iiodels
atid associated code libraries are organized into
frameworks of industry-oriented business objects,
as given in Table 1.

The tools include two iniportant cornponcnts:
(1) The FBE Design Center is an extensible ~vorlc-
bench architecture tliat supports the analysis,
design, and implementation of CORBA-based
distributed object systems. (2) l'lie FEE Adapter
Development System, which fits into the FBE
Design Center, automaticalljl generates C O M A -
or ObjcctBrolcer-compliant code and tlie necessary
files to compile and link the code into platform-
specific executables.

Integration Projects Appropriate fo r FBE

Any integration projcct automates previously manual
processes involving existing applications. FBE and its
flesible approach to systems integration allow a busi-
ness to replace or add component applications effi-
ciently as business conditions change.

FBE providcs tlie most benefits ~vlien many differ-
ent kinds of \\!ell-defined business transactions occur
between a misture of commercial and custom applica-
tions. Not all projects can benefit from FBE or its style
of development. For example, iftlie primary task is to
integrate data sources for decision support, a database
integrator or a data \\larehouse may solve the problem

quicldy. If a company is nor trying to gain an advan-
tage by automating accounting more cheaply or
completely than its competition, an off-the-shelf
accounting package map be the right choice. At the
other extreme, if the task to be automated is coni-
pletely new, there tilay be no appropriate packages
available, even as components of an integrated solu-
tion. New development would also be preferable if
high-performance or real-time operation \\,ere more
important than thc flexibility to plug in existing,
unmodified applications.

As an example of an appropriate FEE integration,
consider a manufacturing operation auto~iiating
a manual procedure that collects orders fi-o~ti an order
processing system, schedules production runs, and
passes the schedule to the manufacturing floor. In this
example, t l ~ e company lziants to obtain a competitive
advantage by dynamically rescheduling production
based on new customer orders, at once reducing
inventory costs, and improving delivery performance.
This is more than a decision support system: the
integration reqi~ires that applications intcract \vitli
each other. Although finding a turnkey package that
can opcrate the entire factory is unlikely, factory
scheduling applications are readily available. Buying
one \vould be more cost-effective than iz~it ing one
in-house. The project .rvould then need to integrate
the legacy order processillg system with the newly
purcliased scheduling application. The order process-
ing system is too important to the company to risk
modifying it significantly at thc same time as introduc-
ing new automation.

Aftcr the integration project has been completcd,
t l i o~~g l i , the order processing system might be made
more cost-effective by moving its fi~nction f io~i i
a mainframe application developed in-house to a stan-
dard client-server product. Perhaps busi~less condi-
tions \ \ t i l l have cl~anged and the order processing
system necds to be augmented so customers can s ~ ~ b -
rnit orders directly by electronic data interchange
(EDI). The projcct manager might decide to purchase
an ED1 processor to augment or replace the csisting
order processing system.

Later, after the manual processes have been auto-
mated on the factory floor, another project could
extend the integration to send the scliedulc directly

Table 1
Frameworks of Industry-oriented Business Objects

Base Business Models Manufacturing Business Models Industry Business Models

Activity management Order management Semiconductor

Production management
Resource management

Schedule management
Product management
Process management

Oil and gas
Pharmaceutical
Batch process

Quality management Banking and finance

Digital Technical Jour~ial

t o factory cell controllers. Then, if a more efficient
scheduling package becomes available, it could be sub-
stituted for the older one. The modular design ofFBE
wou Id minimize tlie programming changes required
for this substitutio~l and give the organization the flex-
ibility to use the most cost-effective solutions.

Model-driven Integration wi th FBE

An integration project needs a clear process and a
means to avoid being biased by the assumptions built
into its component applications. We use object model-
ing to plan and document an integrated system in
a uniform manner. The abstraction inherent in object
~liodeling hides detail. This makes the model mean-
ingfi~l and allocvs modeler and client alike to ensure
that the model matches the intended busjness
processes. The abstraction also helps to separate the
interface from the implementation. The interface
describes whnl is to be done; the in~plementation
describes hozo. The ii)hat of a business process changes
coniparativelp little over time: a factory takes orders
and schedules production runs, a stockbroker trades
stock, a mail-order business ships packages. The hofu
changes dramatically from year to year.

111 thc follo\ving sections, \ve tracc the steps of
a typical systems integration project as conducted by
Digital Consulting o r by Digital's partner systems
integrators. We show how a modeler might use thc
FBE method, tools, and frameworks to provide appli-
cation integration services.

Object Modeling
Before we start object nodel ling, we ensure that
a business process model, or jts equi\lalent, is co111-
pleted. Sometimes a business process model results
from a formal business process reengineering. More
often it comes from a less formal understanding of
existing processes and required changes. In both cases,
the modeler will cooperate closely with someone
who understands the process well. As always, the
better we understand our goals, the more likely \\Ie
are to achieve them.

With this Icno\vJ.edge, we can start FBE's object-
oriented analysis and design process, known as
MethodF. ~McthodF begins with Jacobson's use case
analysis method. A use case traces a chain ofevents ini-
tiated by a single person (or other entity), acting in
a single role, as he, she, or it works through some task.
For example, we might trace what happens when
a customer calls an order desk through the clerk's
responses, catalog checks, inventory checks, order
placement, picking list generation, and finally, package
sliipnient. As we d o this, we note all the objects and
the uses that the actors make of them. Then we follow
another use case. Perhaps this time the customer asks

for a product that is out ofstock. \Ve follocv the discus-
sions about back-ordering and price guarantees that
will make our business attractive to this customer.
After analyzing many use cases, \lie have a list of hzrsi-
ness a17alysi.s objects (objects that describe require-
ments in busjness terms) and a list of the finctions and
attributes of each object.

We the11 co~npare the analysis objects with the busi-
ness design objecrs in FBE's reference model library.
Here, we may well find similar objects that use differ-
ent names and detailed constructs to describe the same
functions and attributes. The nest step in MethodF
is to merge these design objects into the niodel. By
using objects from the reference library, we take
advantage of previous nodel ling experience built into
the reference models and prepare to reuse code associ-
ated with the reference models as \veil.

We use the ObjectPlus modeling tool to capture
use cases in diagrams according to Jacobson's con-
ventions. We prefer the Rumbaugh Object Modeling
Technique (OMT) notation, however, for describ-
ing the busi~less objects. OMT diagrams, with FBE
extensions, define objects and the interfaces between
them in enoi~gh detail that a tool can use them to gen-
erate interface definitions that can be compiled. ?'he
Objectl~lus tool also captures OMT diagrams.

A direct connection exists from the use case models,
through the business models, to the design models,
and to the code. We use the term nrodel-dr?uen to
describe the FBE approach, because necessary changes
are first made to the models and new code is then gen-
erated from the models.

Generating Interface Code
Once \ve have completed tlie design objects, we
use FBE tools that work with the ObjectPlus model-
ing tool to generate CORBA Interface Definition
Language (IDL) from the design object definitions.6
We chose C O M A because it is an emerging industry
standard designed to build distributed objcct-oriented
systems that include esisting noli-abject-oriented appli-
cations. A C O M A implementation, such as Digital's
ObjectBrolzer product, generatcs interface stub rou-
tines that marshal data to be sent to an object, whether
the object is on the same computer or across a nenvorlc.
For example, tlie stubs convert integers sent from big-
endian to little-endian computers. A CORBA imple-
mentation also pro\,ides an object request broker:
a run-time library that routes requests to objects in a
distributed system. This allows applications running o ~ i
different systems to coniniunicate without the need for
applications to lcno\\l which systems \\,ill be involved.

We use the IDL interface definitions to guide pro-
grammers as they develop adaptets between this
object interface and the existing application's inter-
face. For example, an existing program might take its

DigitalTechn~cal Journa l \fol 7 No. 2 1995 49

input as a formatted file and deliver its output in
another type of file. Since the rest of the integration
should not know about these files or their formats, we
write an adapter that translates bet\veen thcse files and
the methods and attributes of tlie objects defined
in our model. Perhaps an alternative application uses
a remote procedure call for 1 / 0 instead of the files our
existing application uses. When we replace the existing
application, we write new adapters using the same
object interfaces. As a result, the rest of the integration
needs no changes. V\Jriting these adapters is not neces-
sarily easy; application integration requires substantial
effort, whether the integrator uses FBE or not. By
restricting the changes to a single module, FRE mini-
mizes the development and testing effort required to
replace component applic~t ' ' lons.

\iJc us~~ally write the adapters in C, rather than C + +
or a pure object-oriented language, because much of
their interaction is with the applications being
adapted. The existing applications were seldom built
with object-oriented principles. In many cases, ~ ~ s e h l
tools such as database translation programs and
"screen scrapers" are available to comniunicate wit11
applications that expect tcrminal I/O. These tools also
were seldom built for object-oriented languages.

In some cases, an adapter needs to be so large that it
is a small application in itself. In these cases, we might
use an object-oriented language for the bulk of the
code. A f'ictory scheduler might generate production
tasks based on a customer order, but the cell con-
trollers in the factory might expect only a single task
for each type of part produced. The adapter needs to
combine the tasks for a given part type from several
orders before it sends a message to the cell controller.
As the cell controller reportsprogress on cach task, tlie
adapter allocates completed parts to the original cus-
tomer orders. The cell controller simply makes parts,
the factory scheduler simply fulfills orders, and the
adapter bridges the gap between them.

Reference Models
As \\re gain experience working with integrators, we
abstract and merge the models they build into refer-
ence models for the various application domains, such
as discrete manufacturing, process manufacturing, and
financial services. We collect and tailor tlie reference
models to comply with accepted industry standards
such as I S 0 STEP in the manufacturing donlain and
ISA SPSS in the process industry d ~ m a i n . ~ J These
reference models allow FBE modelers to build on pre-
vious experience. Even if they cannot use the refer-
ence model in its entirety, they can use it as a guide
to save time and to check their own model for corn-
pleteness. We also collect the adapters for frequently
integrated applications into a library. Later, when \\re
reuse a reference model, we will have corresponding

adapters that can also be reused, usually after modifica-
tion. I t is important to note that anyone-Digital,
the systems integrators (Digital's partners), and, most
importantly, the customer-can build their own refer-
cnce models.

From Applications to Objects: Experience Gained

Design always involves trade-offs between competing
require~nents. Thc trade-offs in an integration project
are somewhat differcnt from those in a new develop-
ment project: an integration project must take existing
applications into account \i9Iiile trying to implement
a business model faithfi~lly.

In this section, tve discuss trade-offs due to tlie
change from a fi~nctional vie\\, to an object vietv, then
explore three familiar design topics fro111 the point of
view of an FBE integration project: top-down versus
bottom-up design, improving reliability, and i~nprov-
ing performance.

Overcoming the Legacy of Functional Decomposition
The challenge of object-oriented application integra-
tion is to rnakc application programs, which arc
designed around indi\lidual business ji/lzcrions, sup-
port the unified business obj~ccrnodel.

Figure 1 illustrates a sample mapping of business
objects to application fi~nctions. It sho\\ls the logical
objects ofcustomer, product, and shipment, \\rith their
data structurcs and methods ~iiapped to the several dif-
ferent application fi~nctions of transportatio~l, ware-
housing, and billing. As thc integration project maps
business objects to application hnctions, it milst

Establish routings of requests for individual attrib-
utes or opc ra t io~~s of an object to the applicatio~is
that contain them

Provide mechanisms to maintain consistency
when multiple applications require the same data

BUSINESS
OBJECTS

APPLICATION
FUNCTIONS

WAREHOUSING
PRODUCT * AVAILABILITY

MATERIAL

BILLING
PRICE
COST

Figure 1
Sample mapping of Busincss Objccts to Application
Functions

TRANSPORTATION
LOCATION
SHIPPER

CUSTOMER

50 D~giral Technical Journal

f

*

Vol. 7 No. 2 1995

Split Instances When we develop the business object
model, we may discover that a single logical object may
be hosted (its underlying data structures and methods
implemented) by more than one physical application.
For example, a product object's price attribute is
hosted by a billing application, and its a u ~ ~ / l a b i l i t y
attribute is hosted by a warehousing application. When
we integrate these applications according to a business
object model, we achieve a single logical object whose
data and methods are stored in different physical appli-
cations and often in different locations. This is called
a split instance.

When a client application requests the product's avail-
ability, the object request broker sends the request to
the warehousing application and for\vards a request
for the price to the billing application. The requester
neither knows nor cares where the information is held.

The notion of the split instance is a centrd principle
of FBE. I t allows us to model the business logically and
independently of the way applications may imple~~ient
business fi~nctions. The split instance is not without its
proble~i-rs: Many times the same information is stored
in more than one application. In the above example,
it is likely that both the manufacturing and the billi~lg
application maintain the product name attribute.
Many other attributes are potentially diiplicated as
well. When an attribute of a type exists in two o r more
applications, the designer is faced with two questions:

1. Wl-ren a gel cltLnh~~te operation is requested, to
which application should it be delivered?

2. When a set att7ibrlte operation is requested, is it
necessary to update only one o r more than one
application's data.)

We cannot answer these questions in a general way,
but we can highlight some points to keep in mind
when addressing them.

Get attribute. Can one application be considered
the primary source for data about an object?
Before any integration was in place, legacy systems
provided a formal or informal process that
updated secondary information soilrces from a pri-
mary source. The requirements statement is a good
reference hcrc. The designer should discuss this
with the business domain experts to understand
the way data is maintained and distributed. The
primary application is the best source for such
data. As a backup, secondary applications could
serve as sources for the information. The designer
should consider the effect of stale information o n
the operation of tlie business.

Set attribute. Whcn attributes are sel, should all
applications be ~ ~ p d a t e d simultaneo~~sly? Usually a
category ofinfrequently changed "reference data"
is accessible. -I'he reference data is more often
added to than changed. Changes to this kind of

data essentially ripple through tlie company.
So~netimes it is the slow comniunication of these
changes throughout the organization that drives
the requirements for integration (the push-pull
phenomenon).

When we must guarantee s~multaneous changes to
data on multiple heterogeneous computing platforms
or between applications that hide their data, we would
prefer a two-phase commit transaction between dis-
similar databases. Unfortunately, nothing is commer-
cially available today (June 1995) that works o n an
arbitrary combination of databases and applications.
Several products support a limited set of third-party
databases and applications. If these products cannot
address the need, and our applications rcquire multi-
ple application transactions, \vc may have to write the
two-phase commit code.

As an alternative, we may be able to use a workflow
to manage the update of several applications. An oper-
ation can be defined that is implemented as a workflow
script. The workflow script can, in turn, perform the
update (through additional method invocations) on
the data stored in a number of differcnt applications.
This is probably closer to the custonler's method and
would be easily automated. A workflow capable of
doing the update must have the capability of compen-
sating for failure to update all applications. A workflow
update is different from nvo-phasc commit, because
the data in the applications may be inconsistent for
a brief time.

T o our knowledge, Digital's ObjectBroker integra-
tion software is currently the only CORBA implemen-
tation that is able to route requests for a single object
to multiple servers.

Bypassing Legacy Applications Sometimes it is
tempting to bypass a legacy application and access its
database directly from an adapter. The application n-ray
have a particularly difficult interface, or the required
fi~nction and data may be a small part of a monolith.
For simple applications, b!lpassing may be appropriate,
but for most we must either use the application
through its intended interface or replace it entirely.

The use of a legacy system to change data or per-
form a function can produce unwanted side effects
that are not appropriate in the context of the inte-
grated system. For example, most legacy applications
maintain the referential integrity of their data through
code. Invoking the database directly to add, update, or
delete data risks violating this integrity.

Bypassing the application is also dangerous because
changes may occur when the application is revised.
Typically, application developers feel free to change
the underlying data structures as long as the function-
ality at the user interface o r formal program interface
is maintained.

Vol. 7 No. 2 1995 51 Digital Technical Journal

Top-down versus Bottom-up Design
Tension always exists between the goals of top-down
and bottom-up designs. The FBE emphasizes top-
down modeling; it starts with the analysis of use cases
and then defines business objects independently of any
esisting applications. This keeps the design focused on
the business problem and enhances the flesibility of
our integration. We find that the most common mod-
eling error is to accept an existing application's
"mvopic world view" without considering the overall
systenl's needs. Usually, existing applications are a poor
source for business object models, since man)! n o
longer represent desired business processes.

If \Lie are not conscio~~s of bottom-up demands on
our design, however, we can design a system that
requires needlessly large, complex, o r slow adapters
between the existing applications and our ideal model.
Though we have n o easy guidelines for balancing the
top-down and bottom-up demands, some issues are
encountered repeatedly.

The problem of partial implementations provides
a simple example of this balancing requirement.
Projects that use top-down modeling to derive their
object models sometimes encounter a dilemma: attrib-
utes and operations appear in the model that no appli-
cation in the network can implement. I t is reasonable,
for example, for the object model of a fjctory floor
conveyor to dcfne a stop operation, but the device
control sofnvare installed in the factory may not pro-
vide an cqui\ialent fiinction.

When implementers cannot support a model, the)[
have t\vo choices:

1. Moditjl the model to reflect the capabilities of the
en\lironn~ent.

2. Implement only the part of the model that is feasible.

The first option appears to be the easier choice, but
it limits the reusability of ~nodels and diminishes the
effectiveness of the top-down approach. A top-down
model of the conveyor should capture the business
users' expectations; implementations may o r may not
meet these expectations. A partial implementation
simply returns an error whenever a ~ ~ s e r accesses an
attribute or invokes an operation that is not supported.

The partial implen~entation of a colnvcyor can still
be substituted for a complete one, though the partial
one al\vays fails when a user sends a stop request. The
system must be prepared to receive an error response
fi-om an operation invocation at any time; other crrors
could occur during the stop operation's processing,
even if the irnplemeiltation were complete.

A partial implementation opens the uiay for subse-
quent versions of the sohvare to support the feature. I t
provides a placeholder for an attribute or an operation
and preserves the integrity of the object's specification.

Improving Reliability
Finding bugs in an integrated system is often difficult.
Even if we assume that the component applications
work perfectly, bugs can arise from mismatches
benveen the components. This commonly comes
about because of inconsistent business rules between
applications: what is allowed in one application may be
illegal in another.

An adapter in an integrated system must be a fire-
wall; that is, it must liniit the spread of errors and ~iiis-
~~nderstandings from its application. We code pre-
and post-condition cbeclcs around calls to component
applications. This is helpful if we code for the right
conditions and leave the checks in the production
code. The use case analysis and business object
descriptions sometimes suggest conditions to test,
but this process is informal. We find that \ye need
more run-time checks in adapter code than in individ-
ual applications.

We also need a way to isolate a suspect application
from the integrated system so we can see how the inte-
grated system behaves without it. FBE's Adapter
Development System can generate simple stubs from
an object's OMG IDL. The tool generates a client stub
that makes appropriate requests and a server stub that
echoes its input. The stubs are simple enough to be
checl<ed at a desktop device to ensure that they work
as expected. The stubs are also usehl as templates for
starting new adapters.

Improving Performance
Without planning and careful monitoring, a large sys-
tem of dissimilar applications can be slower than the
perforniance of the comporient applications \\,auld

suggest. We have used standard approaches to
improve and monitor performance. I t is worth noting
here how these approaches influence FBE design and
development.

Performance Requirements in Large Systems There
is often a trade-off benveen performance and flexi-
bility. Our integrated system w,ould be ideally flexible
if it made separate calls through an adapter to a com-
ponent application for every datum in every differ-
ent circumstance. We could change storage and
behavior almost \vith abandon. On the other hand,
if each adapter were an entire rewritc of its undcrly-
ing application, we could, in principle, store and
manipulate each datum in the most efficient way for
all accesses.

Athough FBE is desigtled for systems that require
flexibility at the cost of s o ~ n e performance degrada-
tion, we must be careful to deliver satisfactory perfor-
mance. In the following subsections, \\re discuss the
trade-offs in caching and object granularity.

52 Digital Technical Jout.nal

Caching Applications frequently generate large quan-
tities of ou tp~ t t in response to a command, rather than
thc fine-grained results that are appropriate to object-
oriented requests. I t is often appropriate for an adapter
to return only a small part of the data it receii~es from
an application interaction and cache the rest for future
requests. Applications that produce data in batches
typically d o not moditjl their state for long intervals, so
the cached values remain valid long enough to be use-
ful. Of course, there must be a means to invalidate the
cache. In some cases a timer will suffice; in other cases
an event, such as a new batch run, must be extended to
invalidate the cache.

Adapter caches grcatly improve performance and
can give the adapter developer the freedom to orga-
nize and present the data in a form appropriate to tlie
object model.

Object Granularity Designing objects that work well
in a distributed system is important to ensure flexibil-
ity. Parts of a distributed system frequently move from
one computer to another. We should not expect our
objects or their underlying component applications
to remain in one particular place.

In a pure object-oriented system, for example the
Smalltalk language, everything is an object. In distrib-
uted systems, operations on objects potentially involve
interaction across a network and incur network over-
head. Therefore, it is not practical for everything to be
an object. Some business objects will be i~npleniented
as COLUA objects (those that have object references)
and other business objects will be irnplernented as
user-defined types (passed by value). This defines the
,oranulari~y of the object model. The decision to
implement a business object as a CORBA object o r as
a user-defined type involves balancing flexibility with
system performance.

There are no hard and fast rules that determine tlie
most appropriate granc~larity for an objcct model.
Decisions need to be based on users' interactions with
the system and on the way applications use the objects
they share o r exchange with each other. Several mat-
ters should be taken into account when determining
t l ~ e model's granularity.

As an illustration, let us consider a client application
that needs to display '1 collection of c~ l s to~ner names in

a list box. The client sends a request for these names to
an object instance called CustomerList; the client and
object happen to be on different computers.

In Case 1, the customer is a user-defined type repre-
sented as a C structure: it is passed by value and has
no object reference. Customer attributes are stored
in a CORBA-defined structure that the client code
must access directly. I11 this case, the display of cus-
tomer names may be accomplished in a single request,
e.g., getCustomerNames(aC~~stomerList). All cus-
tomer names would be passed by value. Figure 2
depicts this scenario.

In Case 2, tlie customer is a true object: it has
an object reference and a set of attributes. The client
calls the server separately for each attribute; thus
the client is less dependent on the server's storage
structure or any changes to that structure as it is
modified in the future. In this case, a sequence of
customer object references would be passed, e.g.,
getCustomers(aC~~stomerList). The client application
then must request getName(aCust0mer) for every
customer object in the sequence. (See Figure 3.)

Clearly, the first case js more efficient in terms of
network utilization; only one request is required. The
second case requires 1 + n requests, where 13 is the
number of customers. The first case is also more effi-
cient at the server. Case 1 requires one database query
to construct tlie name list, whereas Case 2 requires
a separate database query for each customer.

At first glance, Case 1 would appear to be the easy
winner in terms of efficiency and cffcctive utilization
of the server. This outcome, ho\+~e\~er, is not al.ways
true. Let us assume that the client application allows
the user to choose from the list of custo~iiers and then
displays attributes address and accotrntStattis for tlie
selected customer. Here, we are faced with a choice
between perfornmance and flexibilitv:

1. The client could make another request that would
return all information about a customer in a struc-
turc. Then the client application could sort
through this information and display the required
data. The performalice is good: one request arid
database query provided all the data the client
could want. Unless the volume of data is very large,
sending the data in one message yields better

CUSTOMER NAMES
PASSEDBYVALUE

-
CLIENT
APPLICATION

Figure 2
Case 1: User-defined Typc

Digital Technical Journal Vol. 7 No. 2 1995 53

getCustomerNames(aCustomerList) - CustomerList
OBJECT

r - r-

Figure 3
Case 2: True Object

getName(aCustorner) *

performance than sending multiple rnessages for a
subset o f the data. On the other hand, this approach
is inflexible: i f the server changes the structure it uses
t o represent this data, all client software that reads
the structure must change as well.

CUSTOMER
OBJECT

2. T h e client could rnake separate requests for each
field. I f the server returns an opaque object refer-
ence along \vith each customer's name, then the
client can send a request aslung for the specific
fields it needs. T h e performance is Lvorse than in
Case 1, ofcourse, because o f the extra network traf-
fic and message parsing. However, this approach is
tlexible. Since the client never lool<s in the object
reference (it is opaque) , we preserve the server's
flexibility to use any data needed t o retrieve the
appropriate record. As long as the server continues
t o support the fields the client requires, the server
finds them in its own database 110 matter h o w the
storage structures have changed.

To ensure that thc system provides thc rnaxirnu~n
flexibility, the designer should consider thc following
guidelines.

Start with a fine-grained approach for modeling.

Implement the approach using fine-grained
methods.

Change to a coarser grain if performance is an issue.

Summary and Future Directions

De\~e lop ing integrated applications is no t always a
T lnte- straightforward process. T h e applications bein& .

grated are seldom an exact fit t o their assigned roles in
an integrated system. If they were, we ivould probably
be able t o purchase the integration f rom o n e o r luorc
o f the vendors w h o had engineered the fit.

Integrated systems built with F13E are clearly docu-
mented with Jacobson use case diagrams, R u m b a u g l ~

OMT object diagrams, a n d OlMG IDL. T h e existing
applications are i ~ s e d indirectly through object inter-
f x e s and adapters, s o the rest o f the system can
address them as if they were the ideal business objects
modcled in the OlMT diagrams. We call them busjness
objects t o emphasize their distinction from objects
defined o r implied by the esisting applications.

T h e adapters are constrained by the interfaces that
FRE generates automatically from the business object
representations, s o they d o n o t stmy from the models
that dociunent their behavior. Adapters are n o t a luqls
easy t o write; they can be qui te difficult, depending
o n t h e existing application's fit \vith its intended use.
By restricting this a\vl<\\)ard code t o object adapters,
\+re keep the overall integration modular. T h u s \ire give
a n organization the flexibility t o use the most cost-
cffectivc systems as business conditions change. We
build o n o u r experience by collecting reference m o d -
els that help us t o reuse thc best models and adapters.

FBE continues t o e\rolvc rapidly, with irnpro\~ements
in the reference models, the tools, and the support
for adapter writers. F o r esanlple, de\/clopers have
aslted for better integration bet\\~ccn the Jacobson
and Rumbaugh models, benveen the model ing tools
and the code generation tools, and for reliable qucu-
ing and workflo\v as bvcll as CORBA communication
between objects. I n response t o these requests, \\re
no\\[provide better integration benveen the analysis,
design, and implementation portions o f the FBE life
cycle as well as code generation for trace rnessages and
support for management and debugging o f the run-
t ime system. We u ~ o u l d like t o organize the reference
libraries into pairs o f object models and correspond-
ing ~ n o d i ~ l e s (applications and adapters) that can be
assernbled t o build integrated applications, thus creat-
ing truly reusable business components .

\;Vc \\/ill be pursuing these and o ther irnprovcnients
'1s 0111- experience grows \vith integrated, distributed
applications.

54 Digital Technic31 Journa l Vol. 7 No. 2 1995

References

1 . 7.17~ Frctniert'o~k 13ci.sc.d l i~ l r~ i~ .o~ tr~re~ l : il/lcthodF; Vcr-
sior? , i .O, Fljl:' I:'~/,:,i~rce~-i~tg (iMaynnrd, Mass.: Digital
Equipment (:orpor,lt~on, O r d c ~ . N o . I\/\-QC50A-TH,
1994) .

2 . I . Jacobson cr nl., Ot~j?ic~cl-O~.ier.ttc~cI S(!/iilmure Et~girzeer-
I I I , ~ : A ((s c ~ Ciisc I) I . ~ I , ~ I I il/~/)i.rioch. 4th rcl. (Waking-
ham, England: Addiso~i-Wcslcy I I IC. , 1992) .

3. I. Jacobson cr al., 7br Obioct Adtwr~tngc. RIIS~IILJSS
I'~-oce.~.i Rec~tr~irrc~c~rirt~q rr.ilh Object Teclouology. 1st ed.
(I~Vokinghnm, England: Adciison-Wcslcy Inc., 1995) .

4. J . Kumbaugli c t ~ l . , Ol?jc.c/-Oricntccl iModeli~ag a12d
Desigrr (Englc\\,ood Cliffs, N.J.: Prentice-Hall, Inc.,
1991).

5. OhjrctBrokc,r-: OL'L'I.I.!IC,LIJ ulrd Glossurv. Versiorz 1.0
 mayna nard, Mass.: Digital E q ~ ~ i p ~ ~ i e ~ i t Corporation,
Order No. M-Q9KJA-TI<, 1994) .

6. 7;be Corn rnon Object l<eclrre.st Broker: A rchitectur-e
arid Sptr~~icatio~?. I<~~r~isiorr 1.2 (Framingham, Mass.:
Object ~Managcmcnt Group, Order No. 93.12.43,
1993).

7. Indii,stri~il Aritornutiorl S~~.sfc.rotrs nrld In.legrnlion-
Prorli ~ c t D~ttu K ~ p r u ~ s c ~ t c t o and Ewchnrzge-Part
44: 11 t/c~q~zttcclI'e.~orircc.s.. Pr.od~ict . Y ~ I - I L C I I ~ ~ P Config-
~llzitiorr. /.SO 7U.i0.i-44, W(;3 1\1/27 (Gcncva: Inter-
narion'il Orgnnization for Srandnrdiz.ltion, 1992).

8. Bcilch Ch~tlrol I'LI,? I : :Wo~lc~/?; U I I L I Tc~r~niriology;
Dtz!/i 7 . 2 1994 (lXcsc,u.cli 'I'rinngle Park, N.C.: Instru-
ment Society for i\ilcasurcmc~lt . ~ n d C o ~ ~ t r o I , Order NO.
ISA-dS88.01, 1994).

Biographies

James R. Kirkley I11
Jim Kirklcy has bccn with 1)igital h)r 1 6 years. For the
last six years, lie has bccn involved in the dcvelopment
ofobject-oriented architectures k)r business application
integration. A soft\\m-c consulting engineer, Jim is the
technical director k)r the Applied Objects Croup, which
is currently focused o n the dcvclopmcnt o f tools and
methodologies for the integration of busiuess systems.
H e is the PI-incipal author o f the mctliodology i~sed by
Digital Consulting t o deli\,cr consulting and practice
systems integration 11sing COIUA-compliant middleware.
H c rccei\gcd a R.S. in clcctrical engineering from Colorado
State Uni\.crsin in 1971 2nd an 1M.S. in computer sciencc
from CoIor'1do U111\,crsity in 1974.

William G . Nichols
As a consultant engineer \\,it11 Digital, Wick Nichols
was part of a team that reviewed the Framework-based
Environment a i d pro\kied a report suggesting scvcral
irnpro\lements. His hmiliarity with related nct\\lorking
products, particulnrly DCE, enabled Wick to participate in
the delivery ofseveral F E E projects t o customers. During
his 15 years \\~itli Digital, Wick contributed to st\leral proj-
ects, including the development of distributed file scr\!ices.
H e also ser\~ed as projcct lcader of a group that de\,eloped
the DECnet-10 system and as project lender and supcr\lisor
for the DECnet-20 product. Hc recei\wi .In A . R . from
Harvard University in 1973.

Digital Technical Journal \'ol. 7 No. 2 1995 55

I
Owen H. Tallman

Project Gabriel:
Automated Software
Deployment in a Large
Commercial Network

Digital entered into an agreement with a major
French bank to develop an automated software
deployment facility, i.e., to provide centralized
control of software installations and upgrades
for a large network of computer systems. Inde-
pendently, Digital had developed a set of models
designed to guide the design of solutions to
this type of complex management problem.
The bank project team, which had considerable
experience building distributed system manage-
ment applications, was able to take advantage
of these models. The result was a versatile,
scalable application for distributed software
deployment, validation of the models, and a
clearer sense of the usefulness of such models
to complex application problems.

A large French bank purchased a DECnet ncn\rork
fro111 Digital and \\,as in the process of deplo\.ing the
nenvork to support all its banl<ing operations. The
nenvork topolom included approximately 3,000
OpenVMS VAX systems and about 18,000 MS-13OS
PC worltstatio~~s. As illustrated in Figure 1, thcsc s\.s-
terns \4rerc ;~rrangcd in a brmich structure that roughly
follo\\~cd tlie gcogrnphical distribution of the bank
bral~cli officcs and tlicir roles in the branch hiel-archy.
At the bank's hc~~dqu,i~-tcrs, an OpcnVlMS clustcr and
an Ethernet local nrca nctwork (LAN) linlicd tllc
mainframe data center with the rest of the banking
network. The cluster \.\:as connected to the first tier of
approsiniatcly 200 branch group servers. The second
tier consisted of approximately 1,800 branches, each
.r\.ith bet\\,ecn one ,ind fo~rr branch ser\.el-s, for a total
o f ~ b o i ~ t 3,000 L > ~ L I I I C I I ser\,crs. Each branch scr\,cr, in
turn, pro\jidcd l'>igit.~l's PA'T'HWORKS and applica-
tion services to the P<: \vorkstations.

For its nationwide backbonc nenvork, the customc~.
uras i~sing a public X.25 ncnvork, \vhich \\.as its only
available option.l.2 The cost for X.25 servicc \\/as based
on usage, so each packet of data transmitted increased
the operation cost. Tliet-cforc, the need to minimize
this X.25 espensc \ v ~ s '1 f~ndamcntal factor in s p c c i ~ -
ing rcquircments for \~irt~~.lll!l all soft\vare dcploycd in
the netv1ork.

The bank's bi~siness depended 011 the correct, rcli-
able, and efficient operation of the network. Consc-
cli~cntly, net\i!ork managctncnt \\.as crucial. From the
CLIS~OIII~I. 'S \ric\\.point, such an ~utidertalilng meant
management ofsystc~ns 311ci applications, as \\,ell as the
conimunications infl-astructurc. U!r extrapolating its
o\lerall experience \\~itli tlic liard\\~are deplo!~mcnt, and
its initial cxpcricncc \\,it11 software deployment, the
customer forcsa\v potcntially unacceptable labor costs
for software deployment using the available methods.
The customer therefore gave high priority to impro\.-
ing the sofmvare dcploynlent process.

I11 this paper, the term cicploymcnt (or deployment
operation) represents 3 process that dcplo!ls a set
of sott\\farc components to a set of systems. A deploy-
ment is described b!! a dcplo)~ment plan and rccluircs

56 I)igi1.11 ' l ' c c . l i ~ ~ ~ c . ~ l J o u r n a l VoI. 7 No. 2 1995

I ETHERNET LAN I
1-1

HEADQUARTERS I G k q @ q

-200 BRANCH GROUP
SERVERS

-3.000 BRANCH
SERVERS

X.25 PACKET LAYER
PROTOCOL NETWORK

-18.000
PC WORKSTATIONS

Figure 1
DECllct Nct\\:o~.k Topolop in 3 Banking Environment

a dcplo!lmcnt program, deployment automation soft-
\varc to csccurc the program, and an operations sn f f to
schcdulc and monitor deployment program esecution
and, when necessary, respond to run-time problems.

The Sof tware Deployment Problem

Ideally, the bank wanted nenvorknlidc consistency in
its software, with automated, nondisruptive upgrades
administered from a central point. Given the scale of
the network and the nunlber and variety of so%\lare
components in use, howc\~er, this was not a realistic
goal. The challenge of building a system ofautomated
deplovmcnt tools that is capable of maintaining con-
sistcnc)/ across 3,000 \\lidcly distributed, frequently
updated systems is significant in itself. Adding thc
problenls of maintaining consistency in detailed busi-
ness prncticcs and user training in every branch greatly
increases the difticulty. Actually, tlie business required
sofmrarc contigurations tailored to and maintained
co~lsistcntly \ \ l i t l~i~l jndi\klu;ll business units such as
branches and branch groups. Software upgrade plan-
ning and dcplo)lnicnt activities would be essentially
continuous, with numcrous planning and deployment
operations under way concurrently. The bank's busi-
ness would not tolerate network rna l f~~~ic t io~ i s causcd
by ongoing i~pgradc operations or \lersion mismatches
among systems in a busi~~ess unit, nor would it provide
fix on-site support at branches or branch groups.
To i~np lc~nrn t a fi~lly ac~tomated sofb\lare deployment
process would require rigorously managed, central-
ized planning and operational control.

The bank had already implemented a system that
automated significant parts of the deployment
process, using a variety of existing tools and ad hoc
integration. These tools included Digital Command
I.,anguagr (DCL) command procedures, the Infor-
mation Distrjbution Controller (IDC) product, which
distributes files in batch mode, and a systcm cvent
reporter. The process, however, \\!as still labor intcn-
sive. The customer concluded that the only way to
acliic\~e acceptable operational costs \\/as to i~lcreasc
substantially the degree and quality of automation in
the process.

Customer Requirements

A solution to this sofware deploy~nent problc~n
\\~ould have to support (1) sophisticated, c;1ref~1IIy
managed planning, (2) a means of determining tlie
current state of target systems for use in planning,
(3) rigorous sofn\,are certification, and (4) A highly
reliable means of automating soft\\,are distribution
and installation. The bank's planning and certification
procesxuvere already developed, staffcd, and in oper-
ation. An inllentory control database for tracking sys-
tem configurations was under development. However,
the means to distribute and insta.11 softcvare cffectivcly
was lacking and \vould have to be de\leloped and then
integrated with the other system components. The
customer emphasjzed this need for distribution and
installation automation when it first presented the
problem to Digital.

\'ol. 7 No. 2 1995 a,

All new sofhvare must be evaluated, acquired, pack-
aged in kits that can be installed automatically, tested,
and certified. Since s o b a r e interdependencies may
exist, multiple software components may need to be
processed together to ensure proper installation and
operation as a set. (In this paper, the term component
refers to any sofixare that might be distributed as a kit,
e.g., a commercial layered product, an in-house appli-
cation, or a patch.) Planners must determine which of
the certified components to instal I, the branch group
to install them in, a i d the scheduling constraints. The
result is a carefully documented, ~iniqucly named
deployment plan. Deployment execution consists of
performing all the steps necessary to distribute and
install the sofnvare on the target group and to report
the results for incorporation in the planning for the
next deployment.

The operations staff, i.e., those who monitor and
control the network on a co~ltinuous basis, keep a
repository of data that reflects the current state of sok-
ware on the systems in the nenvork. Planners use this
data to plan new states for parts of tlie nenvork; they
store these plans in the repository also. As many as 10
planners may be developing plans simultaneously. For
each plan, an application analyzes the differences
between the planned state and the current state of the
nenvork and produces a deployment program.

A deployment operation may involve multiple prod-
ucts. This set of products must include all those ncces-
sary to satisfy the prerequisites of thc other mem-
bers of the set (if they are not already satisfied by prod-
ucts on the target system). The members of the set
must be installed in the proper order. The planners
determine the proper membership for any product
set and create representations of those sets in the
repository. They also represent the product installa-
tion order in the repository in the form of installation
precedence relationships. The deployment s o b a r e
uses this precedence information to determine the
order ofinstallation for members o f a product set.

The operations or configuration staffstore the certi-
fied sofnvare kits in a library at the management cen-
ter. When the kits need to be installed on a system, the
deployment software compresses the Iuts and then
copies tlietn across tlie S.25 backbone to staging areas
on servers. From these areas, the deployment sofhvare
copies the kits to the target system or systems or, if
necessary, to servers closer to the target systems and
then to the target systems, where the kits are decom-
pressed and used. By staging kjt distribution in this
way, each lcit is copied only once over each link, which
avoids wasting bandwidth. When all the target nodes
have the required kits, the kits at the staging points
are deleted. The copy operations must proceed con-
currently whenever possible. Table 1 shows possible
states and transitions for a software component kit on
a target system.

Table 1
States and Transitions for a Software Component Kit
on a Target System

Initial State Action New State

(IVull) COPY Distributed
Distributed Delete (Null)

Installation is a multistep process designed to allow
the s)/nclironized change of operating sofhvare 011 all
related systems. Once the required kit is present on the
target system, the product can be installed, i.e., the
tiles put in place and any other necessary steps taken
s o that the product is ready to be activated. Activa-
tion, i.e., making the new product the current operat-
ing version, is the last step. A product can also be
deactivated and deinstalled. To upgrade a product
requires installing the new version, deactivating the
old version, and then activating the new version.
If the activation is successful, the previous version
can be deinstalled. Only one version of a product can
be active at any given time. Table 2 shows the states
and transitions for a software component on the target
system.

Table 2
States and Transitions for a Software Component
on a Target System

Initial State Action New State

(Null) Install Installed
Installed Activate Active
Active Deactivate Installed
Installed Deinstall (Null)

Table 3 shows the state transitions to be managed
between the new version product l i t , the new version
product, and the pre\lious version product 017 the tar-
get system. Note that tlie deployment process should
minimize the time a target system must spend in step
4, when both versions of the product are installed but
neither is active.

Table 3
State Transitions to Be Managed on a Target System

New Version Old Version New Version
Step Product K i t Product Product

1 (Null) Active (Null)
2 Distributed Active (Null)
3 Distributed Active Installed
4 Distributed Installed Installed
5 Distributed Installed Active
6 Distributed (Null) Active
7 (Null) (Null) Active

58 Digital Technical Joi~rrlal

A planner can specit$ to the deployment sofnvare
that an ~ ~ p g r a d e must be carried out as an atomic
transaction. That is, the activation transition must
either s~~cccccl or be rolled back. In a rollback, ste,ps 3,
4, and 5 in Table 3 are reversed. Most commercial
sofnvare is not packaged with installation procedures
t h ~ t support j~~stallation, activation, deactivation, and
deinstallation steps. Therefore, the bank must package
its own s o f i a r e and repackage s o h a r e from manu-
facturers so tliat upgrades behave this c\lay. The
dcploy~nent software invokes the individual steps
by executing I)CL command procedures provided
in cnch such customized kit.

Tlie activation of all products in a deployment may
be transactional, in which case all the products must
activate succcssfi~lly or all activations \.\/ill be rolled
buck. The installation steps for all the products are
completed f rst, so all the products are ready for acti-
vation at thc same time. Tlie acti\fations arc then
attc~nptccd. If ;dl succeed, the ne~vlp activated products
remain as the current operating versions. If a product
activation fails, it and all the preceding activations
arc rolled back, in reverse order of activation, and
the previous versions are likewise reactivated. When
the rollback completes, the deployment stops and tlie
mnnagclncnt center receives a status rcport. Once
the operations staff has corrected the problem that
caused the hilure of the activation phase, a new
deploynicnt prograni may be generated. It \\,ill exe-
cute only the activation steps, not any of the preceding
steps that had succeeded. That is, the ne\v deployment
program picks up where the earlier one left off.

This transactional behavior applies to all activations
across all systems in a given deplovnient and may
in\iol\~e different sets of products for different systems.
The transactional characteristic applies to the deploy-
ment operation, not to a product o r set ofproducts.
l'hus, tlic deployment can accommodate interde-
pendencies among products on different systems.
I f an activation of any product hils in a transactional
dcplo)~rnent, all current or completed activations will
be rolled back in reverse order of activation, regardless
of location. This requirement is specificallv for client-
server applications \\(hose client and server compo-
nents must bc upgraded both siniultaneously and
atomically.

Tlie deployment s o h a r e must maintain the state of
the deployment in stable storage so tliat the state can
be restored and tlie processing continued despite tran-
sient hilures of systenis or nen\/orlts. The s o h a r e
must rcport the state of processing to the nianage-
niclit center at some reasonable interval and also \%then
the deployment conlpletes. The sot'n\~are then updates
thc repository with the status of all the individual
operations in the deployment.

The deployment implementation must provide
management directives to start, suspend, resume,
stop, and abort tlie deployment, without leaving it in
an inconsistent state or disrupting business operations.
Suspension prohibits any new command procedure
executions from starting but does not interrupt ongo-
ing ones, thus allowing the deployment to quiesce.
Suspension does not affect transactions. Tlie resume
directive restarts execution of a deployment that has
been suspended. Stopping is the same as suspension
except that once stopped, the deployment cannot
be restarted. The abort directive stops ongoing coni-
mand procedure executions by terminating their
processes and thus forces the rollback of any transac-
tion that is executing at the time the directive arrives.
An aborted deployment cannot be restarted. There is
also an update directive, which forces the current
details of operation state to be rolled up to the nian-
agenlent center. A s l i o ~ ~ directive reports the overall
state of each deployment at a particular host.

The management directives allow an external entity,
e.g., a batch scheduler or an operator, to intervene in
what would otherwise be a self-contained, automated
operation. A batch scheduler can suspend all ongoing
deployments at some time before bank branches open
and resume the deployments \\/hen the branches close.
I t can force a deployment to stop at a predetermined
time, whether or not it has completed. An operator
can use the update directive to roll up the state to
determine how far a remote part o fa large deployment
has progressed. It can also jssi~e suspend and resume
directives to subsets of the nenvork affected by
a deployment to allow for emergency manual inter-
vention without suspending the entire deployment.

Digital's Response to the Requirements

Digital's decision to undertake the project of develop-
ing an automated sohvare deployment facility for the
bank nras based on nvo goals. First, Digital wanted to
meet the needs of an existing customer. Second, in
solving the custonier's problem, Digital could validate
the set of nenvork and system management ~iiodels
it had already developed. The following sections
provide an overview of the models and details of the
automated sofnvare deployment implementation.

The EMA Configuration Management Model

When Digital began discussions w ~ t h the bank about
automating software upgrades, in the Enterprise
Management Architecture (E M) group, Paul I<elscy
\\,as developing a conipreliensi\~c general model of
configuration management for information systems.
Like the influential EMA entiqr model that preceded
it, the EiMA configuration management model (CMM)

Digiral Technical Journal Vol. / 140. 2 1995 59

defines a consistent set of concepts and terms for
working in its particular problem domain.3 The entity
model broke new ground by applying what would
come to be kno\\fn as object-oriented concepts to the
problem of managing thc many types of objects f o ~ ~ ~ i d
in a nenvork. The CMM goes on to address the rela-
tionships among those objects that, in combination
with the objects themselves, constitute an information
system's configuration.

Configuration management concerns a broad range
of activities over the lifetimc of an engineered sys-
tem. The largcr or more complcs the system to be
managed, the greater thc need for a configuration
management discipline. The U.S. fbr Force defines
configuration management as "a discipline applying
technical and administrative dircctio~i and sur\~cillance
to (a) identi+ and document the h~nctional and physi-
cal chiir~cteristics of a configuration item, (b) control
changes to those characteristics, and (c) record and
report clinngc processing and implementation status.
It includes configuration identification, control, status
accounting, and audits. Configuration management is
thus tlie mcans through which tlic integrity and conti-
nuity of the design, engineering, and cost trade-off
decisions made bcnveen technical pcrformancc, pro-
ducibility, operability, and supportability are recorded,
communicated, and controlled by program and f ~ ~ n c -
tional manag~rs . "~

The CMM provides a conceptual fra~nc\vorlc for
automating information system Ilianagenlent, cover-
ing the entire scope defined in the preceding para-
graph. For example, consider a disk drive. The EMA
entity nod el pro\,jdes a conceptual fiame\\,ol-k for
describing the drive as an objcct with certain attributes
(e.g. , storage capacity) and opcrntions (e.g., ti)rniat)
such that dcvclopers can build software that allo\vs
monitoring and control of tlic objcct by means of
a management protocol. Any object in thc ncnvorlc
that presents a conforming management interface
is called n managed object.

The CMM proposes a framework for describing the
disk drive's role in a system configuration over the
drive's lifetime. The fi-ame\vork covers

1. The services that the disk drive provides and thc
clients of these services, r.g., the logical storage
VOIUIIIC that the drive supports

2. The services tliat the disk drive consumes

3. The objccts that compose the drive

4. The dnvc's current and prc\,ious attribute \ral~~cs

5. The attribute values that the drive should presently
have

6. Plans for h ~ t u r e drive conti gurations

7. The way software should interpret and act on list
items 1 through 6

The follo\ving discussion e~nphasjzes the aspects of
the CMA4 that influenced the design of the Project
Gabriel softwarc.

Persistent Configuration Model
In thc CMM, all users and management applications
deal with managed objects in a n information system,
\vhcthcr physical or abstract, in the abstract: they
manipulate their representations in a repositor)!, and
automatic mechanisms carry O L I ~ thc inlplied opera-
tions transparently. The repository maintains a per-
sistent representation, i.e., model, of the entire
infor~nation system's state; it is called the persistent
conf ig~~rat io~l model (PCIM). The PCM provides
a common level of abstraction for all users and man-
agement applications because all management actions
are takcn through it. Since the model persists, tlie
PCIM can provide this abstraction in multiple temporal
divisions.

Temporal Divisions
Managed objects indicate thcir state through attrib-
utes and through relntionsliips wit11 other objects.
Object statc is relative to the temporal division of the
PCiM t t i ro~~gl i \\,hich the stutc is vie\ved. Each tempo-
ral divjsion can provide a consistent vie\\. of all the
objects in thc network as thcy \\,ere at s o ~ n c point i n
the past, as they are no\v, or as they will be.

The historical tcmporal di\~ision records past system
states. The present is represented in the observed and
espcctcd temporal divisions, \i,l~ere the observcd di\.i-
sion pro\,ides the most recent information available o n
actual objcct state, i.e., \\,hat is no\\.. The observed
division is pop~ilated by automated census services
that collect current statc inti)rmation as directly as pos-
sible fi.0111 tlie objects. The cspected division main-
tains what is c~~r ren t ly intended for the objcct state,
i.e., what should be. This di\,ision is bascci on the
observcd division but modified as necessary to repre-
sent the state sanctioned by the systen1 or nct\\~ork
administrator.

-7 .I. lic planned and conimittcd temporal divisions rep-
resent f ~ ~ t u r e object states. States that may bc realized
at some time are planned, \\,liereas those tliat \ \ f i l l be
realized arc com~iiitted. The distinction permits simu-
lating, anal\lzing, and c\raluating f ~ t u r e states in the
planned division \vitl~out implying any commit~iicnt
to realizc them.

Realization
Difkrences bcnveen object states in the cspcctcd and
thc comnlitted divisions indicate changes that nccd to
take place to realize the new committed contiguration.
This is the task of the realization services. The job of
identifjing the required changes and generating J pro-
gram to realize these changes is called configuration

Vol. 7 No. 3 1995

generation (CGN). Other realization scr\jices execute
the program and update the repository based on the
results. A sofnvare deployment operation would be
called a realization in CMM ternis. The ~~lt irnatc vision
of the CMM is to allow the user to define the desired
state of an information system and, with a single c o n -
niand, to realize it.

Once the planned state has been realized, auto-
mated services can maintain that statc by monitoring
the difkrcnccs benveen object states in the observed
and the cxpccted di\lisions. These difkrcnces repre-
sent possible faults and trigger fault-hancili~ig actions.

Implementation

IJigital and tlie bank agreed that Digital \\~ould inlple-
melit thc critical deployn~ent automation part of the
bank's requirements and integrate it \vith the bank's
cstablishcd processes. The focus of tlie discussion in
this section is the engineering team's efforts to arrive
at an effective, implementable system design.

System Design
The CMM provided an effective conceptual fra~nc-
\4/ork for thinking and tallcing about the system
rcq~~ircmcnts and possible design choices. As one
\\~ould expect from a general model, ho\\,ever, tlie
CMM did not address importarlt design and imple-
mcntation issues. In particular, it did not prescribe in
any detail thc PCM design o r hot\/ the realization ser-
vices should \vork. The Project Gabriel engineering
tcanl, which included the CMM a ~ ~ t h o r , had to quicldy
answer the following basic questions:

Ho\v should the team implement the l'CM? Is it an
objcct-oriented dat~base , or will it require f i~nc-
tionality beyond what the tcarn can i~np lcn~en t in
such a database? What schema should the tcdm use?
Ho\v much of the PCM as described in the CMM
is really necessary for this project?

Ho\v will CGN convert the PCM statc dnta to
a dcploymeut program? Is CGN n rule-based
application or a conventional, sequential program?
What will C:GN require of the objects in the I'ClM.1
Ho\\, \ \ f i l l <:GN communicate to thc other, as-yet-
~~ndesigned realization services what needs to
be done to carry out a deplo)rment? How S I I O L I I ~
the team trade off the complexity OF CGN vcrsus
tlic complexity of the services that will execute the
programs?

What services \vill the team need to carry out the
programs CGN generates? What h r ~ n will these
serviccs take?

Ho\v CJII the te'im minimize the complexity of the
q.stem to arrive at a design that the team can actu-
ally i~nplcrnent?

The last question \vas in many \\rays the most impor-
tant. The team had to break do\vn the problenl
into manageable pieces and at thc same time devise
an integrated \\thole. The team did not have time for
a sequential proccss of analysis, design, and imple-
mentation and, thcrcforc, had to find ways to start
develop~nent before the design was complete. CGN
presented the pivotal problem; it might ultimately be
the most difficult part of the system to design, but thc
components o n which it depended had not yet been
designed. In addition, these components could not
be designed effecti\~cly w i t l i ~ ~ ~ t some reasonable idea
of ho \ \~ CGN \vould work. T o efficiently use the time
allotted, the team began to search for the Izey design
abstractio~ls \\,liile it evaluated tcclinologies and tools.

Actions and States P<:M confi guration data represent
multiple a c t ~ ~ a l or possible states of the systems jn thc
network. CGN \vould gcnernte a deplo!lment program
based on the differences benveen the expected and
planned states represented in the repository. This idea
led to the dcvelopmc~lt of a state table, \vhich prc-
scribed the state transitions that \vould have to occur
to change each product on each system from its pre-
sent state (as slio\\ln in the cxpccted temporal division)
to its planned f i ~ t i ~ r c state. CGN could associate an
action with each transition and program those actions.
When the 1'CM rccci\rcd status from t l ~ c actions talien
on the target s!lstc~ns, thc transition identifier would
be included and would be used to update tlie PCM.
This became one of t11c key design concepts of Project
Gabriel: to model the target of a deployment opera-
tion as a collection of finite state machines.

CGN needed a \yay to program the actions so
the other realization services could carry them out.
The team chose to model the actions in a consistent
rnanner for all foreseeable variations, regardless of ho\v
they are implemented or what state change they effect,
as follows:

1. All actions consist o f involting a cornmand, \v~th
some list of arguments, on some object, and \\Tithin
a discrete proccss.

2. Actions are associated \ \~ith state tra~lsitions.
Actions themselves have state (e.g., running) and
finite duration. Actions can be started, and at some
point the\/ complete. When they complete success-
fully, they change the state o fan object; when they
fail, they d o not.

3. The implcmcntation of the command sl~ould
behave such that an action's failure has n o undesir-
able side effects, e.g., disabling a system component
or causing largc amounts of disk space to be occu-
pied needlcssl!l. This behavior cannot actually be
guaranteed, ho\ve\~er, so some failures may require
human intervention to correct side efkcts.

Digital ' k chn i cn l Jou1.11nl Vol. No. 2 1995 61

In most respects, this model of conlmand proce-
dure execution is the same one used by both the
OpenVMS batch facility and the POLYCENTER
Scheduler. The principal difference is that in Project
Gabriel, a user does not simply prograni an arbitrary
sequence of actions. Rather, each action corresponds
to a specific meaningfill state transition of an object.
When the PClM receives conipletion status for an
action, the PCM update program can use the transi-
tion identifier to dcterniine \\that state an object has
attained and modifi its representation in the reposi-
tory accordingly.

By hiding the implementation internals behind
a consistent interface in this manner, the software
designed for controlling actions does not ha\le to
be concerned with those internals. This is a straight-
forward application of the principle of encapsulation,
which separates the external aspects of an object fi-0111

its internal implementation details.5 Encapsulation
allo\vs a system designer to separate the question of
how an action, such as copying a file or invoking an
installation procedure, is implemented from the ques-
tion of what interface the control system will use to
invoke the action. This is obviously a simplification of
the implementation issue, because the team had to
deal with preexisting implementations, which cannot
always be made to follow new rules. From a design
point of vie\v, however, the simplification is essential.

Control Distribution A deployment operation consists
of multiple actions, performed in various complex
sequences. The team understood intuitively that every
host system would have to run sohvare to execute
the deployment program and that the management
center \ \ t o~~ ld distribute the program to the other
host systems in the nenvork. An advanced develop-
ment team working on a more scalable design for the
POLYCENTEIZ Sofnvare Distribution product had
previously developed a model for this kind of distrib-
uted control. The Project Gabriel team adopted two
related design ideas from its work.

The first idea is recursive program decomposition
and delegation. Assume that the control system is
implemented by servers called control points, whose
task jt is t o coordinate operations. Assume also that
each target system has an agent that carries out the
action. Assign to each target agent a control point, and
assign to each control point its own control point, such
that these control relationsliips form a tree structure.

Assume that deplopment programs are composed of
nested subprograms, which, in turn, are composed of
nested subprograms, and so on. Assunie also that each
program (or subprogram) has an attribute identiF\ling
the designated control point to which the program
must be sent for processing. Such programs can be
decomposed, distributed, and executed using a recur-
sive distribution algorithm, as follo\\/s.

An operator submits a coniplete dcploynieeot pro-
gram to its designated control point. (Subniission
consists of copying the program filc to a \\dl-known
place on tlie management center host system and issu-
ing a RUN co~nrnand with tlie file name as a n argu-
ment.) The control point breaks down the program
into its component subprogra~iis and sul>mits the indi-
vidual subprograms to their own designated control
points, thereby delegating responsibility for tllc sub-
programs. The delegation ends \i.licn a s~rbprograni
has been broken do\\tn to the le\.el of incii\iiual
actions, which are delivered to tllc agent o n tlie target
system for execution. In the original model dc\~elopcd
for POLYCENTER Sofintare Distribution, prograni
structure did not influence lio\v operations \vcre
decomposed and delegated. Instcad, a target c o ~ ~ l d
be a group of targets, allowing recursive delegation of
subprogra~ns according to tlie nesting of the groups.
The Project Gabriel innovation was to use nested sub-
programs within the dep.lo)lment program rather than
nested target groups. Both approaclics arc bi~il t on
the notion of distributing control by following a tree
whose nodes are managed objects and \\~liose cdges
are control relationships. This is how they \\!ere ulti-
mately represented in the PCM.

The second idea relates to program statc. Tlie tcanl
modeled the deployment program and cash of its
colnponent subprograms as finite statc niachines.
Each subprogram goes through a definite series of
transitions fro111 ready to completed, stopped, or
aborted. The state of the program as a \\illole rcfects
the state of the processing of its component s ~ ~ b p r o -
grams, and the state of each component rcfccts the
state of the processing of its componclits, and so on.
At any time, an operator can issue a sho\v directive for
a control point and determine the local statc of' all
deployment programs. Understanding tlie collective,
distributed state of a deployment may be difficult at
times, because a given control point may have out-
dated information about a delegated subprogram. For
esample, a program may bc running \vlic11 none of its
components are running yet, \ \~ l ic~l some arc running,
and \\/hen all have completed but notice has not yet
rolled up to the root of the control trcc. Tliis latency
is natural and avoidable in such a system.

The deployment sohvare niaintains program state
on disk. When a component s~~bprogram is delegated,
the state is reflected at the sender by a placeholder s ~ ~ b -
program that stands in for the one crcatcd a t the
receiver. The state is ~ ~ p d a t c d at the sc~idcr only iificr
the receiver ackno\vledges receiving thc subprogram
and securing it in stable storage. Given this conscrva-
tive approach to recording stntc changcs, and logic
that makes redundant delegations harmless, ;I control
point server can be stopped o r restarted \vitlioi~t losing
program state.

Data Distribution The team borro\ved the notion of
a distribution map from tlie IDC product mentioned
in the section The Software Deplo!,nient l'roblen~.
The Project Gabriel concept is a distribution tree,
which is formed in the same fashion as tlie control
tree. Each host system is assigned a distribution point
from which it gets its copies of sofnvare kits t o be
installed. A spstern that hosts a distribution point has
its o \vn assigned distribution point, and so on, for as
many levels as necessary. This assignment takes the
form of relationships benveen spstern objects in
the PCkI. CGN uses tlie distribution tree to determine
the sofnvare distribution path for each target systeln.

The control and distribution trees need not be
the same, and the![should not be confiised with
one another. The control tree i ~ n i q ~ ~ e l p defines the
path by which all other services, e.g., kit distributio~i,
are managed.

SYREAL Programming Language To communicate
a dcploymcnt plan to the servers that were to execute
it, the team invented a simple textual representation
called the system realization language (SYIW,AL). This
language \Ifas easy for the developers and users to
analyze in case probJems developed and could easily
be produced by programs, by DCL com~nand pro-
cedures, or by hand. Although SYREAL is verbose
(e.g., installing a few products on a dozen systems
requires l i~~ndreds oflines oftest) , it clearly retlects the
structure of the deployment operation.

PCM Implementation The development team believed
that an object-oriented repository would provide the
 no st natural mapping of the PCM abstractions onto
a data nod el. The team used an internal tool lut called
AESM, which was layered on the CDl)/Repository
software product. The user interface is based on
DECwindous Motif sohvare, using facilities provided
by AESM.

AESIM uses membership, i.e., contain~iient, rela-
tionships to connect objects in a meaningfill way. All
relationships are derived by inheritance from this basic
type. Thus, tlie I'CM contains temporal di\lisions,
which contain groups of systems, which contain soft-
ware configurations, which contain specific sohvare
components \\/it11 certain state attributes. A soft\\~are
catalog contains configurations, sohifare compo-
nents, and materials objects that describe the kits used
to install these components. A plan in the PCM is an
object within the planned domain that contains s ~ ~ s -
t ans and configurations.

Configuration Generation Processing Thus far, the
paper has described the follo\\ling abstractions avail-
able for CGN:

The PCM, \vhicli contains systems and a catalog
of sotiware configurations, software components,
materials, and precedcnce relationsh~ps-all in
temporal divisions.

Sof'vare component state table

Actions, \vhich change the state of objects in the
network.

Managed objects (e.g., software components and
kits) as finite state niachines whose transitions result
from actions.

A control tree to partition control responsibil-
ity. This tree consists of relationships between
control points and benvc~n co~itrol points and
target agents.

A distribution tree to define thc path for distrib-
uting software to target systems. This tree consists
of relationships benveen distribution points and
target agents.

Deployment programs as finite state machines
whose nested structure is decomposed and distrib-
uted according to the control trec.

Control point servers that execute deployment pro-
grams and target servers that esecute actions.

C;iven these abstractions, the key problem of
designing CC;N \\/as to determine the optimal order
of traversing and analyzing an interrelated set of
trees connected with a plan in the PCIM. The solution
had to address

7 - l h e PCM tc~nporal divisions, t o locate expected
and cornmitted states of system configurations in
tlie plan

The software catalog, to determine materials and
precedence relationships

The precedence relationships, to determine the
processing order for the products in the plan

The control tree, to determine h o \ ~ control niust
be distributed

The distribution tree, to dccerniine h o ~ v sohvare
kits niust be distributed

For each system, CGN must determine what prod-
ucts will i~ndergo which state transitions based on the
state table. The same set of abstractions made it clear
what form SYREAL should take and the nature of tlie
processing that the control point and target servers
would perform.

Redi~cing the problem to a small number ofabstrac-
tions, many of which shared a similar structure, was a
major step in the process ofdefining an implementable
system. Although the overall problem was still com-
plex and required a nontrivial effort to solve, at least
the problen~ was bounded and could be solved using
con\rentional programming techniques.

Digital Technical Joul.nnl Vol. 7 No. 2 1995 65

Overview and Example of Deployment Processing
A user, i.e., planner, begins the deployment process by
populating the repository with objects to be managed
using an application that reads from the in\,entor)l
database. The objects in the repository represent a
sohvarc catalog, expected and planned temporal divi-
sions, computer systems, software products, sofnvare
configurations, sofrcvare materials (kits), and product
pick lists. By specifying the relationships between the
objects, i.e., by actually drawing the relationships, the
user develops a lnodel of thc net\\rork configuration.
For esample, a model may represent a system that has
a particular sohvare configuration and is co~~tnincd in
one of the temporal divisions.

In addition to allo\ving the uscr to model the
nenvork, the deployment sofn\;arc represents policy
information by means of relationships. A sofnvare
product nay Iiave precedence relationships with other
software products that prescribe the installation order.
Each system has a relationship that indicates its distrib-
ution point, i.e., the file service that provides staging
for software distribution to that system. Each system
also has a relationship that indicates its control point,
i.e., the management entity that co~ltrols deployncnt
opcrations for that system.

Using the graphical user intcrL~ce, a planner derives
new configi~ratio~is from approved configurations
in the repositor!r and assigns the nc\v con6 gurations to
systems or groups of systems. A planner can \lien, the
differences benveen the current and the proposed
configurations and see which svstcms \\/ill be affected.
If the observed changes are acceptable, the planner
can run CGN to produce a program to realize the
changes. Once the program has been generated,
tlie planner can launch it in~mediately, schedule it for

. .
execution later, or just review ~ t .

lleplopment programs normally run under the con-
trol of a batch scheduler. For large-scalc dcploynients,
nlhich can continue for days, thc scheduler automati-
cally suspends esecution \\lliile branch offices arc open
for business, resumes execution when the branches
close, and repeats the cycle until the operation has
completed. Operators oversee thc execution o f the
deployment, intervening to suspend, resume, stop, or
abort the process, or to observc the program's state.
Actions on individual systerlls that fail may suspend
themselves, thus allowing an operator to intervene and
correct thc problem and then, ifdesirablc, restart the
operation.

Certain events, such as a deplo!fmcnt action hilure,
roll up to the central control point and trigger the exe-
cution of a user-written event script. Depending on
the type of evelit, the script may notif) an operator,
make a log entry, or perform a PCM update. Normally,
the last event that occurs is thc cc.)mpletion of the
program. If the PCM completed succcssf~ill\~, it is

autornaticall!~ ~ ~ p d a t e d . Even ifa program does not rill1
to successful completion, the operator can trigger a
PCiM update so that \vIiate\~cr changes were realized
\\rill be reflected in the PCM. A new program, gcncr-
ated 114th the same planned configuration, will include
only the changes that \\)ere not completed in the previ-
ous attempt.

The remainder of this section describes the role of
each major Project Gabriel componerlt in the deploy-
ment process. The example presented was intention-
ally ltept simple. Its assumptions are as follows:

The repository has been populated with nct\vorlc
information, the product catalog, etc.

The goal is to i lpg r~de the software configurations
ofa set of f o ~ ~ r branch servers, B1 through B4.

Central control points csist at headquarters, HQ,
dnd o n nvo gro~ip scrwrs, G1 and G2 (sec Tablc 4).

Branch servers 131 and R 2 have their control point
on G1; B3 2nd B4 have theirs on G2. HQ hosts the
co~ltrol points for itself and for G 1 and G2.

The branch server systcms have distribi~tion points
(file servers), which in this exaniplc are on tlie samc
host systems as their respective control points.
(This overlap is not rccluired.)

In the PCM's expected temporal division, the four
systems E l , K 2 , I33, arid R 4 are go\.erned by the
sanle sohvarc configuration. Tlie only lajlercd sott-
urare product is Product X version 1 . l , \vhicli is in
the acrivc statc.

The planncrs \\!ant to have Product Y version 2.0
installed 011 the four systems and in thc 3ctij.c
state. They create a plan in which a new config-
uration, \with Product Y added, governs the sys-
tems (see Tablc 5). They commit the plan, \\lhich
invokes CGN.

Configuration Generation CGN transforms the
desircd future statc represented in the PCIM to n pro-
gram that can be L I S C ~ to realize that state. CGN deter-
mines the diffcrcncc benveen the configurations in the

Table 4
Designated Management Control and Distribution
Points

Control Distribution
System Point Point

H Q HQ H Q
G 1 HQ HQ

G 2 H Q HQ

B 1 G 1 G 1

B2 G 1 G 1

B 3 G 2 G 2

B4 G 2 G 2

4 Digital Technical Journal Vol 7 No. 2 1995

Table 5
Expected and Committed Configurations

Temporal Configuration
Division Name Product Version State

Expected Goodconfig Product X 1.1 Active
Committed Betterconfig Product X

Product Y
Active
Active

expected and committed temporal di\,isions, \\,liicli
in tlie esaniplc is the addition of Product Y version 2.0
in tlie active state. Since the configurations differ by
only one product, the cluestion of installation order
docs not arise. If multiple products were involved,
CGN would a~ialyzc their dependencies and arrange
them in the correct instalhtion order.

CGN uses a statc table to determine tlie sequence of
transitions tliat nlust occur to bring the soh\lare to the
desired state. In the esample, Product Y version 2.0 is
not present o n nny of the target systems, so the ltit
must be copied to the appropriatc distribution point
and then copied to tlie target systcms, after which it
must be installed and activated. uses the distrib-
ution tree to find the appropriate distribution points
and then uses the control tree to dctel-mine which
control point to LISC h r each set of systems, for each
staging copy, and for each transition. Finally, CGN
generates the corresponding test in SYREAL. The
program that <:GN \\!rites optimizes througliput by
performing co~~cur rcn t proccssi~~g \\,liene\~er possible.

SYREAL Program A SYREAL. program has hvo parts:
(I) object dcclaration and (2) thc csccutable. The f rst
p x t declares the objects to be acted upon. The control
point that executes the program has no knowledge of
the sofn\,arc products, files, kits, copy commands, etc.
It Ic~io\\ls only that objects exist that lla\rc identifiers
and that i~ndcrgo named state transitions as a con-
sequence of executing commands. SYREAL provides
a means o f declaring objects, tlicir identifiers, the
associated transitions, and the commands that effect
the transitions. Figure 2 is an csample of an object

declaration. The program declares the realization
object tliat represents Product Y \,ersion 2.0. Thc
object namc is PY. Note tliat PY is an ad Iioc, pill-cly
local naming sclie~ne. Since tlicrc can be only one
instance of any product version o n a system, the nnmc
is implicitly distinguished by its locality, in thc scnsc
that it is the unicluc instance of product 1'Y on s!istcm
X. PY inherits the default object characteristics (not
sho\\/n) and adds its o\vn kit identifier, prodi~ct namc,
and a definition of tlie ACTIVATF, transition. l'liis
transition hns c o r n ~ i ~ a ~ i d (;MI), \vliicli is a DCL com-
mand string.

The second part of a SYREAL progmm is the esc-
cutable. (Figure 3 slio\\ls thc cscci~table part for tlic
deplo)lment process example.) This part co~lsists of at
least one executable block (i . ~ . , subprogram), \vIiich
may contain any number o f additional esecutnblc
blocks. A block may be defined as concurrent or serial.
Blocks nested \\litbin a serial block are execi~teci in
order of appearance. Blocks ncstcd \\tithin a concur-
rent block arc csrcutcd concurrently.

Any bloclc may have an associated bu l t action
expressed 3s one of the following co~nniands: ON
ERROR SUSPENlI, ON ElU<Oli CONTINUF.,
or O N ElUtOR ROLLBACK. A block is exccuted
by "USING" a designated control point to control it.
For example, the first e sec~~tab lc line in Figi~rc 3, i.c.,
SERIAL KLOCIC USING "HQ";, dcclal-es tlic csccu-
tion of the outerlnost block to be assigned to HQ.
Nested USING blocks n1ay be assigned to otlicr con-
trol points, to tlie point at which the i~ltimatc action is
called for. Tlic SYREAL program cspresses this assign-
ment by an AT block, in tlie sense that the action

O B J E C T P Y C H A R A C T E R I S T I C S L I K E D E F A U L T ;
K I T - I D " P Y 0 2 0 " ;
P R O D U C T - N A M E " P Y , 2 . 0 " ;
T R A N S I T I O N F E T C H

C M D " $ @ R L Z $ S C R I P T S : R L Z $ F E T C H " ;
T R A N S I T I O N A C T I V A T E

C M D " $ @ R L Z $ S C R I P T S : R L Z $ A C T I V A T E " ;
E N D C H A R A C T E R I S T I C S P Y ;

Figure 2
SYKEAL Program-Ol3ject Dcclar.~rio~l

Digirdl Tcchnicnl Journal \'ol. 7 No. 2 1995 6-

S E R I A L B L O C K U S I N G " H Q " ;
O N E R R O R S U S P E N D ;
S E R I A L B L O C K A T " H Q " ;

P E R F O R M F E T C H
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " H Q " ;
C O N C U R R E N T B L O C K U S I N G " H Q " ;

S E R I A L B L O C K U S I N G " H Q " ;
S E R I A L B L O C K A T " G I " ;

P E R F O R M C O P Y
O B J E C T P Y
S E R V E R " H Q " ;

E N D S E R I A L B L O C K A T " G I " ;
C O N C U R R E N T B L O C K U S I N G " G I " ;

S E R I A L B L O C K A T " B I " ;
P E R F O R M C O P Y

O B J E C T P Y
S E R V E R " G I " ;

P E R F O R M I N S T A L L
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " B I " ;
S E R I A L B L O C K A T " 8 2 " ;

P E R F O R M C O P Y
O B J E C T P Y
S E R V E R " G I " ;

P E R F O R M I N S T A L L
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " B Z " ;
E N D C O N C U R R E N T B L O C K U S I N G " G I " ;

E N D S E R I A L B L O C K U S I N G " H Q " ;
S E R I A L B L O C K U S I N G " H Q " ;

S E R I A L B L O C K A T " 6 2 " ;
P E R F O R M C O P Y

O B J E C T P Y
S E R V E R " H Q " ;

E N D S E R I A L B L O C K A T " G Z " ;
C O N C U R R E N T B L O C K U S I N G " G Z " ;

S E R I A L B L O C K A T "03";
P E R F O R M C O P Y

O B J E C T P Y
S E R V E R " G Z " ;

P E R F O R M I N S T A L L
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " B 3 " ;
S E R I A L B L O C K A T " 8 4 " ;

P E R F O R M C O P Y
O B J E C T P Y
S E R V E R " G Z " ;

P E R F O R M I N S T A L L
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " 6 4 " ;
E N D C O N C U R R E N T B L O C K U S I N G " G Z " ;

E N D S E R I A L B L O C K U S I N G " H Q " ;
E N D C O N C U R R E N T B L O C K U S I N G " H Q " ;
C O N C U R R E N T T R A N S A C T I O N U S I N G " H Q " :

C O N C U R R E N T B L O C K U S I N G " G I ";
S E R I A L B L O C K A T " B I " ;

P E R F O R M A C T I V A T E
O B J E C T P Y ;

E N D S E R I A L B L O C K A T "61";
S E R I A L B L O C K A T " B Z " ;

P E R F O R M A C T I V A T E
O B J E C T PY;

E N D S E R I A L B L O C K A T " 8 2 " ;
E N D C O N C U R R E N T B L O C K U S I N G " G I " ;
C O N C U R R E N T B L O C K U S I N G " G Z " ;

S E R I A L B L O C K A T " 8 3 " ;
P E R F O R M A C T I V A T E

O B J E C T P Y ;
E N D S E R I A L B L O C K A T " 6 3 " ;
S E R I A L B L O C K A T " 0 4 " ;

P E R F O R M A C T I V A T E
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " B 4 " ;
E N D C O N C U R R E N T B L O C K U S I N G " G Z " ;

E N D C O N C U R R E N T T R A N S A C T I O N U S I N G " H Q " ;
E N D S E R I A L B L O C K U S I N G " H Q " ;

Figure 3
SYREAL Program-The Executable

66 Digital Tcchnicd Journal Vol. 7 No. 2 1995

is airncd at an individual system. An AT block
may contain one or more PEliFORiM statements,
\vhich perfor111 the action called for. The second exe-
cutable line in Figure 3, i.e., SEEUAL RLOCIC ,4T
"HQ";, calls fbr the fetch transition on the object PY.
Tliis action results in execution of the com~nand
@RLZ$S<;RIPTS:lU%$FE'TCH on HQ to fetch the
distribution kit tiles from the sohvarc library.

A transaction is simply a block that enforces the fault
action O N ERROR ROLLBACIC. Nested operations
milst complete successfi~lly or all \\,ill roll back.
A transaction map be serial o r concurrent and may
contain nested blocks that are serial or co~lcurrcnt.
It may not contain a nested transaction.

Deployment Processing Control point and target
servers are implcmcnted on each OpenVMS system in
the network by a single server daemon called the real-
ization server (RLZ). O n receipt of tlic SYlW,AL pro-
gram, t l ~ c f rst daemon, ~ i ~ l ~ i c h is o n HQ, converts the
program to a binary representation o n disk. This data
file mirrors the nesting structure of the tcxt file but
allows for storage of additional state information.

The dacmon then executes tlie program by sending
the binary version of each block that is currently eligi-
ble for csecution to the block's designated control
point. End1 control point that receives a binary block
repeats this process, until an Al' block arrives at its des-
ignated control point. The control point then sends
to the target system's daemon a request to perform
the action. The target daemon creates a process to ese-
cute the PERFORM command, captures completion
stati~s \vhcn thc process exits, and returns the status
to the control point. If thc perform action is success-
ful, the control point sends the next perform request.
If the perform action fails, the control point decides
whether to send the nest perform recluest, to suspend
processing until an operator can intcrvcnc, or to initi-
ate a rollback. This decision depends on the E i ~ ~ l t
action in effect.

The KLZ dae~non maintains processing statc on
disk to allo\\~ recovery from s)~stc~ii ~ ~ ~ I L I I - C S , loss of net-
work connectivity, and other transient calamities. As
block processing completes, block status is rolled up to
its containing block, whether local or on a remote
control point. The state of the block changes to reflect
the block's interpretation of tlie statcs of its nested
blocks. At each level, the control point decides if, as
a result of status reports, one or more additional
bloclzs should be executed. Ultimately, the central
control point at H Q \vill have rccei\wi thc status of
all operations. If all the perform actions completed
succcssf~lly, as determined by the fault actions spe-
cified, the deployment completes successfi~lly. Otlier-
\vise, the deployment fails. C:ompIetion triggers
execution ofa PCkl update script.

PCM Update The o\~erall status of a Project Gabriel
realization is an interpretation of the results of many
individual operations, some governed by fault actions
different from those of the others. Because CGN
dynamically generates the block structure of a realiza-
tion program, the structure has no direct counterpart
in the PCM. Therefore, only the results of individual
perform actions are of interest for updating the PCM.
The update program esamines the completion status
of each perform action completed on each object on
each target system. The program updates the corrc-
sponding objects in the PCM based on the results of
the last action completed on each object.

Note that since object and transition definitions arc
specific to a particular SYIIE,AI, program, realization
servers are not limited to tlie object classes that Project
Gabriel's CGN and PCM update handle. Applications
can be \vritten to perform other kinds of operations
with new object cl,lsses, transitions, etc.

Realization Block Diagram Figure 4 illustrates the
complete processing that the RLZ servers carry out
in response to the example SYKEAL program in the
case where no faults occur. Events flow from left t o
right. The outermost block contains all the events of
interest except PCM update, \vhich is implicit in every
SYREAL program and carried out autoniatically by the
1UZ server at the root of a deplo)lment operation.

The first action to be executed within the outermost
block is fetching PY from tlie library to staging storage
on H Q , under the control of HQ. Subsequently, H Q
controls concurrent operations to copy PY from H Q
to both G1 and G2. When the copy action is com-
pleted on either G1 o r G2, H Q transfers the next
block to the respective control point to perform the
copy and install actions on its nil0 targets. For
instance, the concurrent block using G1 executes the
copy action to B 1 and then the install action on R 1,
while the same sequence executes o n B2. Processing
of these concurrent sequences synchronizes on C;1
\\,hen both complete. At t l ~ a t time, the status of thc
entire concurrent block using G 1 rolls up to HQ,
where processing \\!ill again synchronize with the con-
current block using G2.

HQ also execiltes the concurrent transaction. This
execution tlows similarly to the preceding col~current
block execution except that since no action needs to
be taken on G 1 or G2 before proceeding to act on R1,
B2, B3, and B4, the serial bloclts at G1 and G2 are
unnecessary.

Fault Handling In the deployment example, the fault
action represented by the command O N ERROR
SUSPEND governs the steps prior to tlie transaction.
Tliis means that, ifan action fails, n o dependent action

131gitaI 'Tccl i l i i~~I Journal

SERIAL BLOCK USING "HQ" I

SERIAL
BLOCK
AT " H Q

COPY PY INSTALL
FROM G I

ACTIVATE

ACTIVATE

SERIAL BLOCK USING "HQ"

CONCURRENT BLOCK USING "G2" CONCURRENT BLOCK USING "G2"

SERIAL BLOCK AT "83" / \ SERIAL BLOCK AT "83" I

BLOCK I 1 AT "G2. t-1
COPY PY

COPY PY INSTALL
FROM G2

SERIAL BLOCK AT "84"

rn m I COPY PY p/ ?;TALL / FROM G2

ACTIVATE

ACTIVATE

(SYNCH) P
Figure 4
Realization Block 13ingram

\\!ill be performed. Instead, an event niessage will be
sent up the control tree to HQ. An operator can detect
this condition (either as a result of the event message
or during a periodic status check), intervene to correct
the problem, and restart the action that failed. For
example, if the copy action of PY to B1 from G1 fails,
the first serial block at B1 will be suspended and the
action to install 1'Y on B1 will not be performed. (Tlie
install action follows the copy action in a serial block
because it is dependent upon succcssfi~l completion of
the copy action.) The blocks in the first part of the
deployment, i.e., tlie serial block at B2 and the concur-
rent block using G2, continue to execute, however.
N o processing will g o beyond thc first HQ synchro-
nization point until the fault is corrccted and the serial
block at B1 completes. If the problem cannot be cor-
rected, the deplo!lnient can be stopped and replanlied,
perhaps excluding the node that failed.

If one of the actions in the concilrrcnt transaction
fails, no additional actions within the transaction will
be started and any that completed, including the failcd
one, will be rolled back. Each transition may have an
associated ROLLBACK command. The rollback of
an action consists of executing its ROLLBACK corn-
niand. (This command is not slio\\.n in the SYlEAL
sample.) In this case, tlie ROLL,13ACI< command deac-
tivates 1'Y. If the transaction has more activations, any
that start before tlle failure is detcctcd are rolled back
in the reverse order of execution. The RLZ server
effectively runs thc transaction in reverse, from the
point at which thc failure was detected, executing
the ROLLBACK command for each action that had
completed. T o accomplish this, c;~cli control point
that detects a failure within a transaction o r receivcs
a rollback request from one of its subordinate control
points initiates a rollback in all tlie parts of the trans-
action under its control. At the sanic time, the control
point sends a rollbaclc request to its control point. This
process continues until the rollback request reaches
tlic control point that controls the outermost block of
the transaction.

A Note about Testing
Consider the challenge of testing a deplo!lment sys-
tem designed to operate over hundreds or thousands
of systems. The 1'Cbl mid CGN components are
centralized, so load testing and boundary testing
are relativcly straigl~tforward. Executing dep1o)lment
operations is an inherently distributed process,
Iiowever, with one RLZ server per host. The team
designed the RLZ scrver to isolate all its data, e.g., net-
\vork object name, log files, deplo!/ment program state
data, and command procedures, based on the name
given the servcr process. This design enabled the team
to run as many copies of the server o n a single s)ate~v

as the system's resources allowed-one VAXstation
4000 system was able to run more than 250 siniulta-
neous servers-and to execute dummy command pro-
cedures. Such a design allowed the team to test
elaborate sinlulated deployments and forced it to
design the server to deal with J number of i~nusual
resource shortages.

Project Gabriel's performance data indicated that
the overhead of the RLZ server was relatively insignifi-
cant \vIien compared with that of the actions pcr-
formed by means of command procedures. This data
supported the team's belief that the system c\rould be
scalable: A target system that has the resources to sup-
port relatively resource-intensive actions like software
installations can support one IU,% server to automate
the installations.

Conclusions

This paper does not cover topics such as the com-
plex rules regarding the suspe~ision/resumption and
restart ofoperations, lost server time-outs, and i~itcrini
status updates. Also, the P<:M data is considerably
more comples than the discussion indicates, as is the
asynchronous processing i~nplc~nented in tlie R1,Z
server and tlie logic of CGN.

A great deal of detail has been omitted in ordcr
to focus on the usefi~lness of a particular collection
of abstractions in solving a difficult problem. The
entity model and the configuration manageliiellt
model helped to define, partition, and conlmunicate
about the problem. The distribution model from
the POLYCENTER Sofnvare Distribution adv;lnced
development work provided essential ideas that the
other models did not. These intcllcctual assets \i/cre
instrumental in fulfilling the customer's reqi~irements.
In "What Good are Models, and \I\rliat Models arc
Good?" Fred B. Schneider asserts: "Distributed svs-
tenis are hard to design because we lack inti~ition for
t h e m n 6 By formulating and analyzing an abstract
model, we can develop such intuition, but it is a slocv
process. I t is easy to underestimate both its difficulty
and its \lalue.

The model ofdistributed process control developed
for Project Gabriel has proven usefill and versatile. It
could be profitably applied to tlie design of a process
control service for distributed object technology, such
as the Object Management Group's Common Object
Request Broker Architecture (CORRA).' In such a
design, instead of executing a command procedure to
perform an action, a process control daemon would
invoke a CORBA request on an object. Progra~iis
become nested collections of requests with associatccl
state. Improving distributed object and object-
oriented database technology should make possible

Digital Tcchnicnl Journal Val. 7 No. 2 1995 69

filller realization o f thc PCM and a more po\vcrfill
CGN. Thc \\fork accomplished in Project Gabricl just
scratched the surface.

Summary

By applying rclati\/ely well-de\leloped conceptual
models for nen\rork and system managcliicnt, Project
Gabriel successfi~lly implemented autoliiatcd s o f h ~ r c
deployment in a large conimercial network. T h e result
is a scalable, distributed system management applica-
tion that can be used t o solve a variety o f complex
distributed system management p rob len~s .

Acknowledgments

T h e following individuals contributcd directly t o tlie
design and implementation o f the Project Gabriel soft-
ware: Cecile Beyh, H u g o Diaz, Gill Haik, Paul I(else):
Michel Lazarescu, J o h n Lundgren, Pat Madden,
Mary Maling, Keith Noddle, Laura Spink, Son Voba,
David Wihl, and Michael Young.

References

1. I~~orrnatiorz Technology-Data C ~ I I I I I I / I I ~ ~ ~ ~ L I / ~ O I I . ~ -
X . 2 5 Packer Layer Protocol Jot. Dal61 T L J I . I I I ~ I I L ~ /
L L ~ L ~ L ~ I I ~ ~ P Z ~ . ISO/IEC 8208: 1990 (Gcnc\rn: In te rn3
tional Organization for Standardization/I1ir~r1i~i1-io1i~1l
Electrotechnical Co~nmission, 1990).

Cornnzul-zicatlorl Nefroo,s(?s: 5er1~ictl.s 6ari.rl tkicili/it1s,
Irzterfwces, Recommendation X.25-89 (Geneva:
International Telecommunications Union, ComitC
Consultatif Internationale de I'CICgrapIiiquc ct '1'212-
yhonique [CCITT], 1989).

3. M. Sylor, "Managing DECnct Phase V: The Entity
Model," IEEENcllu*ork.s(March 1988): 30-36.

4. Cbnfig~lratiort ~Wunuget~ien~ Prncfictajb~. .S~aterr~s,
Eq~liprnent, iM~tniliotrs, nncl Cornpllto- P~.ogrurrls.
MIL-STD-48A (Fvi~shington, D.C.: Department ofthc
United States Air Forcc, June 4, 1985).

5. J. Rumbaugh, et al., Ob jec t -O r i e~~ / t~dM~~~ / t~ l i r ~g arlcl
Design (Englewood Cliffs, N.J . : Prrnticc-Hall Inter-
national, 199 1): 457.

6 . F. Schneider, "What Good are 1Models and What
 models are Good?" Distribntecl S):vlon.s. 2d cd.,
S . Mullendcr, cd. (Nc\vYork: ACbI Press, 1993): 17-26.

7 . Cbrn/riolz Ohjc#ct Ueq~cest Br.uX?o. / I t ~ c h i l ~ ~ c l ~ ~ ~ ' c
Speclficatiotz, drafi 29, revision 1 .2 (Fra~iiingl.ia~i~,
iMass.: Object Ma~ingcment Group, Document No.
93-12-43, Deccmbcr 1993).

Biography

Owen H. Tallman
Currently cnlploycd by NctLinks Tcchnologl, Inc.,
oFNashua, New Hampshire, &ven Tallm;in worked
at Distal Equipnicr~t Corporation from 1983 through
1994. As a principal sotiware enginccr i l l the Ncovorked
Systems Manage~iicnt Engineering grcwp, lie Icd Project
Gabriel. He was a management infi)rrn~rdon a~.cliitect
in the Enterprise Management Archittctr~rc group and
helped de\,elop the POLYCENTERSO~~\\ .A~~: Distribution
product (fornierly known as the Remotc Systcm Manager
[RSM] prociuct). Ouren holds a R.A. i l l computer science
from Regents <:ollcgc in Alban!: Nc\\. York, and is coauthor
of n\,o pending patents on RSIM tcclinolopy. He is a mem-
ber ofA(:~\/l.

70 Digiral Technical Journal Vol. 7 No. 2 I995

Referees, March 1994
to January 1995

T h e editors ackno\\fledge and thank the ret'erccs
w h o have participated in a peer review of the papers
subniitted for p~~bl ica t ion irr t h e Di'qital Tc~chnical
.Joirrrzal. T h e referees' detailed reports have helped
ensure that papers published in the Jozrmal offer
relevant and informative discussions of c o n ~ p u t c r
technologies and products. T h e refcrees are computer
science and engineering professionals fro111 academia
and industry, including Digital's consulting engineers.

Alarl Abrahams, l)igi/al
Brian Allison, I)i<yiiul
Marco Annaratonc, Dicqilal
Nadcr Kaghcrzadch, /h?il;ersi(v c$CirliJi)rrzicr, Iri~irre
Kcnnctli Rates, DI&itul
Edward Kcnsou, L)ijiitul
Thoni;~s Rcnson, Ulgitul
Dilccp Khandarkar, l) i g i / ~ I
David I,.])lack, O41erc SuJiri~~~re F O L L ~ I ~ L I / ~ O I . I
I<cnnctli M . Rro\vn, Dgitul
Waylie (;ardoza, Digitcrl
Danicl Cobb, 1)~cital
Seth Cohcn, Digitul
William V. Coi~rtright 11, Carnegir&Iellon Urliuetsi!~
Ncil Uavics, Digilal
Scott H. Davis, Digilal
Wolfgang L)citcrs, FrallnhoJer Insl i t~~le
Hans dc Jong, &gitul
Alexis I)clis, Q/.rc.clzshrrd l/r~i~'crsi(l~ (~ ~ i ~ c k r z o k ~ , q) ~
Jercmv Dion, Digit~rl
1.conard Fchskcns, Digrtcrl
John Forecast, Digital
Trygbn~c Fossu~n, Digilczl
Derek Frankforth, Fork Sojiu~are
L,cs Gasser, L/tzirwsi(y rfSouihern C~iliJirrri~r
Jim Gray
Robert Grics, Digital
James Grochmal, Digital
Williarn Grundmann, Digitcrl
Robcrt Halstead, Digital
Charles Hamrnond, Digital
Mark Hcinrich, Stctnfiorzl Ilrriversity
Daniel Hirscli berg, U n i ~ ~ r s i ! ~ ~ of Culijbrrziu, Iroirze
Paul Huntwork, Digital
~Michacl Kantro\vitz, Di,qitci/
Brian I<eane, l)i;<i/rrl
Lawrence Kcnah, Digital

Jeffrey S. Kuskin, .kur!li)r~l 1 ltzir)ersity
William Laing, I)i,qi/ul
Edward Lee, D(qiIa1
Michael Leis, 13igi/crl
Debra Lelewer, Ccrlili~rnicr S'~cr/e I-'u(ytc)chnic Uni.uersiLy
Danicl E . Lcnoski, Silic~orr Glzlph~cs CbrnpillerSyslons
Thomas Lcvcrgood, opt.)^ Marker. Inc.
Saul Levy, RrrI~qtvs Il~riuer~sil),
Woody L.ichtenstein, Silico~r Gruphics, Inc.
Peter Lucas, MAYA De.sigr~ Gro~q), Irrc.
Christopher Marshall, Iligitul
Barry A. Maskas, D i ~ i ~ u l
John McDcrmort, D(qitu1
William Mic halson, Wrcc.s/ei- Pof)~tcchriic Institute
J . Eliot R. Moss, (Irriirc~rsit,~ of ;lln.ssach~.rseits
IGslii!lur S. Nikhil, fligl~al
1M. Tamer Ozsu, lirlii rvsi!.)!oJ'Alkrta
David Patterson, llrril.'e~:si{yof Cul f imiu , Berkeb
Aidrc\v Pa!~~ic, Opor7 .bi[~rket. Itre.
hllasy Papic, Ili:,i/ul
Stephen Root, l)(qital
Robert Rowlands, Digirul
Howard Rubin, Hlrrzter Cbllege
Paul Rubinfeld, Digitul
Kenneth Salem, (lrriix~sify (!/' Waterloo
Will Sherwood, Digilul
Allen Sirnons, Digitul
Arun Son~ani, llnivcr:si~~ (4' Wc~~hingtolz
Thomas Speer, Digital
Ll\vrence C. Ste\\tast, 0pt,r1 IVlc~rke/. lrzc.
Jan re Kiefre, Digitrrl
David Thiel, Digrit~rl
Peng Tu, l!nir:~'tsi~)~ oJ'1llinoi.i
David Weckcr, fl&i/ul
Lih Weng, Digitctl
Robert Willard, fligiiul
Richard Witek, Digitul
Larry D. Wi ttic, Sta/c) Ilr~ii~cvsi~), oj'1Veu1 York,

Start-y Brook
Bruce L. Worrhington, l/rzioersity oj'Michiga~b

Vol. 7 No. 1 1995 Digital Technic11 Journal

Further Readings

The D&it~zl 7kchr?icnl./oli1,/zal is a refereed, quarterly
publication of papers that explore the foundations of
Digital's p r o d ~ ~ c t s and technologies../ol/t-ual content
is selected by the Journal Ad\risory Board, and papers
,ire nvritten by I'ligit~l's ellgineel-s and cnpinccring
partners. Engineers \\.]lo \\lould like to contribute
a paper to tl~e./or~~-~rt~lsIio~~Id contact the Managing
Editor, Jane Blake, at 1WVAX::BLAKE or
blakc&dvas.e~iet.dcc.com.

Topics co\lered in ~ I - c \ , ~ ~ L I S ~ S S L I ~ S of the lJi<yi/~/l
Tcch~~icnl~/ot/r~?~/l~re as fol Io\vs:

Database Integration, Alpha Servers & Workstations/
Alpha 21 164 CPU
Val. 7, No. 1, 1995, EY-T135E-TJ

RAID Array Controllers/Workflow Models/PC LAN
and System Management Tools
Vol. 6, No. 4, Fall 1994, EY-TI 18E-TJ

Alphaserver Multiprocessing Systems/DEC OSF/l
Symmetric Multiprocessing/Scientific Conlpliting
Optimization for Alpha
Val. 6, No. 3, Sul~imcr 1994, El'-S799E-TJ

Alpha AXP Partners-Cray, Raytheon,
Kubota/DECchip 21071/21072 PC1 Chip Sets/
DLT2000 Tape Drive
VoI. 6, No. 2, Spr~ng 1094, F.Y-F947E-TJ

High-performance Networking/OpenVMS AXP
System Software/ Alpha AXP PC Hardware
Vol. 6, No. 1, Willtcr 1994, EY-QOllE-l'J

Software Process and Quality
Val. 5, No. 4, Fall 1993, EY-P920E-DP

Product Intenlationalization
Vol. 5, No. 3, Summcr 1993, EY-P986l--l)P

Multimedia/Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-L)I'

DECnet Open Networlung
Vol. 5, No. 1, Winrcr 1993, EY-1U770E-111'

Alpha AXP Architecture and Systems
Val. 4, No. 4, Spccial Issuc 1992, EY-J886E-l)P

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summcr 1992, EY-J884E-111'

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, F,Y-L521E-LIP

PATHWORKS: PC Ilitegration Software
Vol. 4, No. I , Wintcr 1992, EY-j825E-1)P

Image Processing, Video Terminals, and Printer
Technologies
Vol. 3, No. 4, Fill1 1991, EY-H889E-1)P

Availability ill VAXcluster Systems/Net\vork
Performance and Adapters
Vol. 3, No. 3, Sunlmcr 199 1, EY-H8901i 111'

Fiber Distributed Data Interface
Vol. 3, No . 2,Spring 1991, EY-H876t,-111'

Transaction Processing, Databases, and Fault-tolerant
Systenls
Vol. 3, No. I, Winrcr 1991, EY-F58SF.-l)l'

VAX 9000 Series
Vol. 2, No . 4, F.111 1990, EY-E7621;-111'

DECwindows Program
Vol. 2, No. 3, Summcr 1990, EY-E756E-1)I'

VAX 6000 Model 400 System
V(,l. 2, No. 2,Spring 1990, EY-(;197F.-1)1'

Colilpound Document Architecture
Val. 2, No. I , Winter 1990, EY-C196E-l)l'

Distributed Systems
Vol. 1, No. 9, June 1989, EY-CI79E-1)P

Storage Technology
Vol. 1, No. 8, Fcbl.~lar!l 1989, EY-<;166E-I>I'

CVAX- based Systems
Vol. I, No. 7, August 1988, EY-6742E-1)P

Software Productivity Tools
\ b l . 1, N o . 6 , Fcbl.~l,lr!, 1988, EY-8259E-I)I'

VAXcluster Systems
Vol. 1, No. 5, Scptcmbcr 1987, EY-82581i- 1)P

VAX 8800 Farnily
\7ol 1, No. 4, E'chr~1.1ry 1987, EY-671 1E-I)]'

Nehvorking Products
\bl. 1, No. 3, Scptcmbcr 1986, EY-671 SE-Dl'

MicroVAX I1 System
Vol. 1 , No. 2, hlnrch 1986, EY-3474E-DP

VAX 8600 Processor
Vol. I , No. 1, August 1985, EY-3435E-Dl'

Subscriptions and Back Issues

Subscriptions to tlic D(gitu1 Tcchr~i~~il~jo~ir~?~~Ia~-c avail-
able on a prepaid b,lsis. The subscription rate is $40.00
(lion-U.S. $60.00) k)r four issues and $75.00 (non-U.S.
$1 15.00) for eight issucs. Orders should be sent to Cathy
Phillips, Digital Equipment Corporation, 3 0 Porter Road
L.J02/ D10, Littlcton, ~Uassachusetts 01460, U.S.A.,
Telephone: (508) 486-2538, Fax: (508) 486-2444.
Incli~iries can be scnt clcctronically to dtj@digital.com.
Subscriptions ~ l i ~ ~ s t paid in U.S. dollars, and checks
should be made payable to Digital Equipnicnt Corporation.

Single copies and past isst~cs of the 13igitcrl Techtiic~zl
./0111./7c~lare a\,.lilnblc for $16.00 cach by calling DECdircct
at 1-800-DICll'AL (1-800-344-4825). Recent back
issucs of the./ou~-nolare available o n the Internet at
htrp://\\~~\~u~,digit.il.con~/info/l~TJ/I~onic~lit~i~l.

Digital Research Laboratory Reports

l<eports publislicd by Digital's rcscarch bboratories
can bc acccsscd o n tlie Internet through tlie World
Wide Web o r FTI'. For access information on the
clccrronic or liarti-copy \versions of the reports, see
http://\\~vw.rcsc~~rch.digital.com/hon~c.litml.

Technical Papers by Digital Authors

N. Arora, R . Ilios, and C. Huang, "Modcling the Polysilicon
I>eplerion Effect and Its Impact o n Submicron CMOS
Circuit Pcrforrnancc," IELE T~zrn.suction.s on Electrori
/levices (May 1995).

1). Bh;~vs.lr and I<. F ~ o n i ~ n , "Tcsrability Features and
Testability Acccss of thc Alpha 2 1 164 Microprocessor,"
Proceedirzgs c!/'t/?c IEEE 1 9 5 C~t.\'lonz Inleg~mted
Ci'rcnits Ci)y/i~rc)rlcc (May 1995) .

W. Bowhill cr al., "A 300MHz 6 4 b Quad-Issue Ch4OS
N S C 1Microproccssor," 199~5 IEEE 11 rtc,~-r?alional Solicl-
Slale Cir-c-11it.s Cir r t / i~ rz~~~ce(Fcbr~~ar !~ 1995) .

1. Clien, "Clocking PLL Solutio~is for High Speed
Computers," 7995 I~zterrzatio~zal Sytnposi~in? on VLYI
Technology. Sv.slern.s, anc l Appliccitiorrs (Julie 1995) .

T. Dalton, "Plasma Diagnostics: Monitoring and Control
of Plasma Tools," A 17le1ican Lhc~i L I I H Socie!), Nezu
E~r~ 'b~ i id Ch~ptci- 1 9 9 5 A n 1 ~ 1 i ~ i l S ~ r r r p o ~ i 1 1 1 ~ (J u ~ i e 1995) .

IM. Dayidson illid N . Sulli\.an, "Monte Carlo Simulation
For CD SEIM Algorithm De\reloprncnt," Proceedings of
the Societ,, o f l'hoto-Optical J~wtt-~~~r?entnlion Bigirlc~c~~:~
(SPIEI-l~ltqr~rled Circuit ~Vlctrolo~)~. Inspection, and
Proces.~ Cor~l~.ol/.X (February 1995).

IM. Elbcrt .ind R. Ho\ \~c , "Srrcss Tcsri~ig l'rofilcs-Which
Should I Use," 'lbir?),-third Arr~llial Spring IEEE Reluliu-
it)! Spn7pos.ir1111 (April 1995).

T. Hongsnlarip and R. Twornbl)~, "1~)~n.irnic Mcc l~~~n ica l
Analysis of Silvcr/C;lass Die Attach Matcrial," For!~~-Jij(y
Electronic Co~?i~o~renls and TEchuolog)~ Conference
(May 1995) .

C. Huang, N . Arora, N. Khalil, B. Zettcrlund, and L. Bair,
"Effects of Sourcc/Drain Implants on Short-Channcl
MOSFET 1-17 and C-V Charactcrisrics," IEEE Tm17,sactions
01.1 Electroll 11c.r~ice.s (July 1995) .

J. Kitchin, "Statistical Electro~nigrarion Budgeting for
Reliable Design and Verificarion in 3 300-MHz Micropro-
cessor," ,1995 S v ~ ~ l p o s i ~ ~ ~ n or1 C'WI C'irwlrils Dige.st qr
Technical Pnpcvs (June 1995) .

B. Mirnian, "Translarion ofStrcss States into Reliability
Ternis for Single Chip Ceramic Packages," Transac-
tioizs of 7he Ame~ica~z Socie(y oj'l/lcchutzical Engi-
Heen (ASII4E'lY/oiirrzu/ oj'EIectro~ric Packaging
(Dccembcr 1994).

A. Pliilipossian ; ~ n d H. Soleirnani, "Determining the
Wafer Temperature in Atmospheric Thermal Silicon
Osidation ll.ictors,"./oz~t,rzal ($/he Electrochenzical
Society may 1995).

P. R~~binfe ld , J . Edmondson, R . l'rcston, and V. hjagopnlan
"Superscalcr Jns t r~~ct ion Execution in t1.w 21164 Alpha
Microprocessor," IEEE11.ficro (April 1995).

N. Sullivan and S . Arsennult, "SEM Re\licw ofUnpattcrncd
Particle Monitor Wafers," Proceedings oj'the Society
of Photo-0p 1 ical Itzstrzimentutio~~~ Engineers (SPIE)-
Integiated Circ~r it 11,IetroIo~q J: Inspc~ctio~, and P roce.s.s
Cot7tt-ol I,Y(Fcbruary 1995) .

IM. Tsuk 2nd R. Evans, modcl cling and Measureme~it
o f a High-Per formance Computer Power Distribution
Systen~," l/:%:'/i 7jz1nsnctiorzs on C'ornponcnts. Pc~ck~i~qirrg,
crnd~Warr~!/uct~iririg TechrloIog~~(Novcmber 1994) .

E. Valcarcc and G. Hogland, "The ESSENSE of Intrl~sion
Dctccrion: A l(no\\~lcdge-Based Approach to Security Moni-
toring and Control," Seuenth Interriutional Conjkrence
on I~zd~fitrial ancl E~zgineerirqr! ,4pplications oJ'Al-i~/i:ciul
Intellige~zcc crricl I::xl,e~l Sy.stotrs (/I>UA/E) (June 1994)

A. Villani and W. Clark, "Ceramic Strength and Weibull
Sratistics Variation as a Function ofSamplc Size," Ptv-
ceedir1,qs oJ'thc ltrtertralior?nl Intersociety Electronic
Pac&qi~r,q Cbrqi~~u~rrce (I:rte~pak 9 5) (March 1995) .

R. Walsh and C. Ozvcren, "The Gigaswitch Control
Proccssor," 1l;l:L: iVetwot-k(Januar)r 1995) .

A. Westerheirn, A. Labun, 1. Dubash, J . Arnold, H . Swain,
and V. Yu-Wang, "Substrate Bias Effects in Higli-Aspect-
Ratio S i 0 2 C o n n c t Etching Using an ICP Reactor,"
.Jo~~rnal oJ' Vac~r~rm Science and khno log l ;
A-Vacliutn, S~rrjitces, and Filrn.s(June 1995).

Digital Press

Digital Press, thc authorized pul>lislicr fur Digital
Equipment Corporation, is an imprint of Butter\vorth-
Hcinemann, a major international publisher ofprofes-
siond books and a member of tlie Reed Elsevier group.
The follo\\ling arc descriptions of con~put ing titles avail-
able from Digital Press.

Digital Technical Journal

T H E S Q L S E R V E R HANDBOOK-A Guide t o
Microsoft Database C o m p u t i n g
Ken England and Nigel Stanley, October 1995, paperback,
450 pages, ISBN 1-55558-152-8 ($34.95), EY-T818E-LIP.

Microsoli SQL Server for Windows NT is fast becoming
tlie database server o f choice for the Windo\vs NT operat-
ing syste~ii. The latest release of blicrosoft SQL Server,
Version 6.0, is a sophisticated tiarabase server with a wcaltli
of new capabilities including powerful graphical adminis-
tration ofdistribtrted servers, data replication across the
ncnvork, and many ne\v perforni'ince tuning, adniinistra-
tion, and data integrity options. SQL Server 6.0 will have
a significant impact o n the d a t ~ b a s e industry.

T/7c SQL Set-oer' I-I~lndbook-il C11i61e to ~ldio-osc!/i
Dalabuse Cornptiling is essential k)r anyone involved
in tlie procurement, training, design, administration,
implementation, and tuning ofSQL Server 6 . 0 databases.
Drawing on the authors' significant practical esperiencc
with rclarional database management systems, this book
covcrs all the major topics necessary to gain a good under-
standing o f the SQL Server, including the ne\v fcaturca
in SQL Scrvcr 6.0. The book also provides information
on many other products in the Microsoft database family,
such as the microso oft Acccss Upsizing Tool, ~Microsofi
ODBC, and the Jet database engine.

Database designers, administrators, programmers, and
ncwcorners to Microsoft SQL Scrvcr \ \ r i l l find this book
an indispensable reference for understanding and utilizing
the product. Databasc professionals studping for microso oft
Certified l'rofcssional qualifications will also find this book
essential reading.

Ken England is Chief Esccutive of Database Technologics
Limited, a company specializing in database consulting,
product evaluation, and training. Nigcl Stanley, formerly
at ~Microsofi as European Product Manager, responsible fbr
thc Microsoti client server products, is now technical direc-
tor for ICS Solutions I,rd., a Microsoti solution provider.

ADVANCED E T H E R N E T / 8 0 2 . 3 M A N A G E M E N T
AND P E R F O R M A N C E , Second Edi t ion
bill Hancock, October 1995, paperback, 4 0 0 pages,
ISBN 1-55558-144-7 ($34.95), EY-T14OE-UP.

Aduclncc~cl Etho*net/802..3 Dl~~nc~k~'rt7cizt and PerJi~r-
m a n c g .Sc,cor~d Edition was dcsigned for users of the
Ethernet/802.3 LAN-environmcnt hardware and soti-
ware to ans\\.cr the myriad q ~ ~ e s r i o ~ i s that come up aftcr
a nenvork is ~nstalled. The book 'iddresses questions 5 ~ 1 ~ 1 1

as, when d o you use bridges and routers to isolate traffic?
what are switching bridges and why are they necessary?
what are the rules for unshieldcd twisted-pair nenvorks?
how d o you know when the performance of the network
is suffering, and how d o you collect data to prove it? what
is "heartbeat," 2nd ho\v is it set? The book also contains
information on many other topics essential to the da!f-to-
day management and control o f the LAN. This second
edition includes information on the new Fast Ethernet
(100RASE-T) standard, the new 802.3 fiber standards, the
use of switching bridgcs t o improve performance through
traffic isolation, and how t o clearly idenrifv proper settings
of "heartbeat."

Dr. Bill Hancock is a \\tell-known computer and ncnvork
consultant, designer, and englnccr. Hc has dcsigncd and
reengineered networks for many of the Fortune 1000
as well as many international companies and governments.

A L P H A AXP A R C H I T E C T U R E R E F E R E N C E
M A N U A L , Second Edi t ion
Richard Sites and Richard Witck, September 1995,
paperback, 8 6 4 p'lges, lSBN 1-55558-145-5 ($49.95) ,
EY-T132E-1)P.

Written by the co-designers of the Alpha arcliircct~~rc, the
A@a MI' A rchitcchr)r I<L~~, I w ~ c e ibf~ln ~lul. Second
Editiolz is a major re\,ision of the tirst edition. This book
includes the original material pl11s significant new informa-
tion ;lnd changes nccessitatcd 0) ~ the evolution of tlic Alpha
architecturc since the writing of the tirst edition. T h e
second edition discusses the Windows NT PALcode archi-
tecture, 128-bit IEEE floating-point support, ~iiid hi-endian
support, and contains revised PC:<: illformation and co~lsole
interface section. The significant technical changes include
the clarificnrion o f M s s FPCT o ~ x r a n d and trap disable Hags
and ofsyste~ii architecture 2nd programming i~tiplicarions,
and the addition of CVTST, WMB, and EXCB instructions.

I N F O R M A T I O N T E C H N O L O G Y STANDARDS:
The Q u e s t f o r the C o m m o n Byte
 martin Libicki, August 1995, hardcover, 432 pages (cst.),
ISBN 1-55558- 131 -5 ($59.95), EY-S422E-I>P.

This book csamines informatioll technology standards
and discusses what they arc, what they do, how thcy origi-
nate, and how they evolvc. Standards are important in
improving system interopcmbility and thcreby increasing
economic productivity, but thcy are unlikely to achicvc
their fill1 potential due t o a \!aricty of factors. Chief among
these bctors is tlie politics of the standard process itself.
Libicki points o u t that the gover11lncnr is probably not
the best source for designing and promoting standards.
H e brc.lks down nlany complex technical issues and prc-
scnts thcm in a fashion that technical peoplc can cnjo)~
and policy makers can understand.

Martin 1,ibicki is n Senior Research Fellow at tlic National
Defensc U~livcrsity in Wiishington, D.C.

SOFTWARE I M P L E M E N T A T I O N T E C H N I Q U E S :
OpenVMS, UNIX, OS/2 and Windows N T
Don Merusi, September 1995, ISRN 1-5555s- 134-8,
paperback, 6 0 8 pages (549.95), EY-T13 1 E-DP.

SoJirr'~~t.c In~p lc~?~ .en ta t io t 1 'l?chrricj~ies: Opetz \,?I./.\; l M Y ,
OS/2 and LVirrdows IVT is a comparison of four opcrxlng
systcln platforms. T h e book provides s o h r a r c designers
with an introduction on how to migrate comparable pro-
gram fi~nctionality benvcen the different platforms. The
book is designed to facilitate determining what is rcquircd
t o implement a specific operating s!lstem function. The
topics covered include process and thread scheduling, syn-
chroniz.~tion and concurrency primitives, file managcmcnt,
memory management, performance, networking hcilities,
and user interfaces.

D o n Merusi has been a senior computer systems support
specialist for 22 years. Currently, lhc is responsible for
ad~iiinistcring large-scale PC: LANs [[sing PATH\VORKS,

74 Digital Technical Journal Val. 7 No. 1 1995

Windo\vs for Workgroups, and Winiio\vs NT. Mr. i\/lcrus~
1s also an associ;ltc acljunct professor at the Hartford
Gradi~atc Ccntcr and teaches courses o n operating systems.

W R I T I N G D E V I C E DEUVERS:
Tutor ia l and Reference
Tim Burke, Mark A. Parenti, and Al Wojras, April 1995,
p lx rback , 1,140 piigcs, ISBN 1-55558- 141-2 ($69.95) ,
EY-S796E-111'.

Writirzg fkuice Ilt-icm: Tr,itori~ll a~xcl I<q&rer~ce d iscusscs
how to \\,rite dcvicc drivers for computcr systems running
thc Digital U N I S operating system (formerly called the
DEC OSF/ 1 operating s!lstem). By tbllowing the task-
oriented sppronch, the reader \\..ill acquire the skills ncccs-
s;iry to \vritc OSF-l>;isc~i devicc drivers. The book prov~dcs
ink~rn~at ion o n designing drivers, OSF-based data structures,
and OSF-based kcrncl interfaces, ; ~ n d contains source code
listings for the driver c ~ ~ ~ ~ i i p l e s a n d a gloss~l.y. Mastci.!l of
the concepts a~icl csamplcs presented in the book provides
a f~ndamcntal background for writing a variety ofdevicc
tiri\,ers, including disk and tape controllers ~ n d niorc spc-
cializcd drivers such as array processors.

Tim Burke is n principal software cnginccr, (Mark A. Parcnti
is ,I consulting softw.lrc engineer, and Al Wojtas is a prin-
cipal sohvarc technical writer, all at Digital Equipment
Corporation.

&PHA I M P L E M E N T A T I O N AND
A R C H I T E C T U R E
Djleep Bhandarkar, October 1995, paperback, 4 0 0 pagcs,
ISBS 1-55558-1 30-7 ($39.95), EY-'l"141 E-LIP.

Alpha ImpIc~~rrc~r/~/iorr and Arc.hitct.lrrr-e provides a c o n -
prehensivc description of all niajor ;~spccts ofAlpha systenis.
Tlie book i n c l ~ ~ d c s an ovcr\~ic\v oftlie liistor!~ of LUSC
dcvelopmcnr in the cornputcr industry and a t Digital,
the Alpha architccturc, a11 thc major processor chips, and
S ~ S ~ C I T I inipIc~i~c~ir. l t io~ls. Tlie book covers KlSC concept
and design st)rlcs, anti providcs an ovcrvicw o f other RISC
architecti~rcs and descriptions o f the new SPARC, MIPS,
PowerPC, and PA-KISC microproccssors introduced in
1995. Tlic hook .llso tiiscusses operating ~ystcrn porting
issues, compiler techniques, and binary translation. Prac-
ticing conlputcr engineers and graduate students in com-
putcrar '~hitccturc will find t l~ is rcfcrcncc book in\~al~rablc
because it describes the trade-offs and dcsign philosophy
that [cad to the dcvclopment of the Alpha architecti~rc
and its implcmcntntion.

Uilccp Bliandarkar was a senior consulting cnb' rlnecr a t
Iligital Equipnicnt Corporation. H e led the technical
direction and product strategy ofAlplia Pcrsonal Systems,
Alpha and VAX Servers, and High Pcrtbrmance Comput-
ing. H c was the architccturc manager for MicroVAX, chief
architect for VAX vector processing, and co-architect of the
I'lUSkI RISC arcliirccr~~rc on which Alpha is based. H c cur-
rently \\,arks for Intel Corporation.

O P E N V M S SYSTEM M A N A G E M E N T G U I D E
La\vrencc Baltiwin, October 1995, papcrback, 4 1 6 pagcs
(includcs diskette), ISBN 1-55558- 143-9 ($44.95),
EY-T119E-Ill'.

This book provides a comprehensivc description of
OpenVMS system management tasks and is geared toward
showing systems managers how to manage smarter by
a u t o ~ n ~ t i n g \\!herever possiblc and being proactive rather
than reactive. Basic managenlent procedures are not only
documented but also prioritized as to what should be donc
and why. Spccitic proced~rres are provided to automate or
sinlplifv systenl management tasks.

Lawrence Raldwin, an independent consultant, is the
President o f System Managcmcnc Tcchnologics.

D E S I G N I N G A N D D E V E L O P I N G E L E C T R O N I C
P E R F O R M A N C E S U P P O R T SYSTEMS
L.cslcy A. Brown, October 1995, p~perback, 250 pagcs,
ISBN 1-55558 139-0 ($29.95), EY-T126E-DP.

Designirig and Deuelopzng Electronic PerJ'ormnncc
S~lppofl Sys/c;n~.s describes the EPSS concept and provides
a s!lstcmatic process for creating these systems. An EPSS
is a software context that integrates the support needed
to perform a job task-information, sohvare, and cspcrt
advice-with the actual job task o r rasks. EPSSs provide this
support at the appropriate time and in the most appropri-
ate format. As corporations cut their training budgets and
realize the relevance of on-the-job support, there is grow-
ing acceptance o f the EPSS as an alternative to classroom-
based trainiilg.

ED4 (El% Define, Design, Develop, and Deliver), a sys-
tematic approach to creating EI'SS, is based o n instructional
systenis m e t h o d o l ~ b ~ , and was used , ~ t Digital Equipnicnt
Corporation to create an EPSS "workbench" for training
consultants. This book describes ED4 and the process that
the instructional designers and s o h a r e engineers used to
create rhc Lxarning Services Workbench. Intcrvie\\js with
Digital's EPSS designers and dcvclopers showed that EPSSs
created using a systematic approach resulted in a creative,
robust, and job-relevant s o h a r c product.

Lcsley Brown is an instructional design contractor for
the Information Design and Consulting group at Digital
Equip~nent Corporation.

A D V A N C E D W O R D P E R F E C T U S I N G M A C R O
P O W E R , A G u i d e fo r V M S a n d D O S Users
Sharilyn D L I ~ , Scpte~nber 1995, papcrback, 400
pages (includes a D O S version 6.0 diskette), ISBN
1-55558147-1 ($36.95), EY-T817E-DP.

Aductrlnccd WordPr~ject UsirLg /Macro Powe~concentrares
on the use of inacros for users of any version o f kVordPerfect
in the OpenVMS and DOS environn~ents. T h e book helps
the WordPerfcct user save time and become more pro-
ductive through the use o f macros. I t covers a series of
advanced topics and then provides macro examples to auto-
mate the task. Explanations, screen captures, and keystroke
captures give the reader an easy-to-follow, step-by-step
procedure. After providing an example macro for a task,
the author offers other possibilities for reader-created
macros. The book covers a diverse range of applications
and includes a thorough treatment o f how to create, edit,
and debug macros.

Digital Technical Journal Vol. 7 No. 1 1995 75

Recent Digital
U.S. Patents

T h e following patents were rccenrly issued t o Digital
Equipment C o r p o r a t i o ~ ~ . Titles and names supplied
t o us by the U.S. Patent and Trademark Office are
reproduced exactly as they Appear o n the original
published patent.

R. Faranda
G. Schneidcr

M. J. Falloier, R. Hanson, K. Korcllis,
and C. Dancniayc~.
H. Grapentliin nnd H . Haug
R . Groclini.~l
H. Bitncr
C. Wiccck

D. Lomet, P. Bcrnstein, J. Johnson,
and I<. Wilncr
K. h n , G. Salibn, and R. Nute

M. Steinberg and G. Saliba

1M. Gasser, A. Goldstein, and
C. Kaufn~an
H. Teng, K. Chcn, M. Wilson,
M. Verde\,cn, and G. Abbruzzese
L. Weng
M. Gasser, A. Goldstein, C. Kaufman,
and B. Lampson
E. Fisher and P. Gilbert
D. Sanders, M. Callandcr, and L. Chao

K. Ishibashi, H . Sato, and LM. Mallary

5,227,778 G. Visser slid J. Vacon

P. Lozo\\~ick and S. Ben-Michacl

D. Waller, L. Colclla, and R. Pachcco

5,230,044 X. Cao,A. 1Mohnmmad, N. Quaynor,
and F. Colon-Osol-io

5,231,552 G. Schneider and K. Paular
5,233,616 IM. C~llandcr
5,235,2 11 W. Hamburgen

Printer E~lclosure
Combined Mcdia Cartridge L,oadcr and Associated
~Vlagazi~ic
Computer Enclosure

D<:-l)<: Boost Converter for Spindle Motor Control
Lo\\ (:osr ISDN S\\.itcli
Adjustable Threshold for Buffer Management
~Mctliocfs a n d Apparatus for Transforming 1MncIiinc
Lmguagc I'rogram Control into High-level Language
Constructs by Manipulating Graphical Program
llepresc~i rations
System and [Method for Consistent Tirnestaniping in
Distributed C o ~ l ~ p u t e r Datab.~scs
 magnetic Contact Recording Head for Operation \\.it11
Tapes ofVat.)~ing Thickncsscs
Method h r Optimized Tape Tension Adjustment k)r
a Tape Drive
Method for Performing Group Esclusion in Hierarchical
Group Structures
Rule I~~\,oc.ltion ~Mechanisni for Ind~~cri\.e Learning Enginc

 multi-lc\lcl E,rror Correction System
Method for Delegating Authorization from One Entity
to Another through the Use of Scssion Encryption Keys
Character Encoding
Apparatus for Suppressing an Error Report from an
Address ti)r Which an Error Has Already Bcen Reported
Apparat~~s for Pro\.iding Uniasial Anisrroph!! in a Magnctic
Rccordi~lg Disk (This casc \I~.IS conibincd with 90-08 12.
Japan claims partial priority. MMary added.)
Scrvicc Namc to Ncn\rork Addrcss Translation in
Commun~cations Network
Cryptogrnphic Processing in ;I Comni~~nication Ncnvork,
Using a Single Cryptographic Enginc
Thermodc Structure Hating an Elongated, Tlicrnlally
Stable Blade
Arbitr~tion Apparatus for Shared Bus

~Magazi~lc and l<eceiver for Mcdia Cartridge L.o;ldcr
Writc-back <:aclic \\/ith ECC Protection
Se~ii~co~iductor Package Having Wraparound iMc~,lllization

76 Digital Tcchnicnl Joumel

A. Gupta, J . Tardo, C Ihufnian,
B . L ~ r n p ~) n , W H.I\cc, 1M. I<cmpf,
M. Gasser, 'ind B. J. Herbison
I<. Grccn, S. Jcnncss, T . Carruther\

1). A. Orbits, K. D. Abranison, and
H. R . n l l t t s
S. Sado\vski

S. Cao, IM. Abidi, N. Quaynor, R. Lary,
and F. Colo~i-Osorio
I<. Frcy and M. ~Mallary

R. Smart

R. Pel-lman and G . Harvey

C . Pan
N. Lee, Q . Lam, and P. Van Rockcns

F. Rciff
I<. Callon
PV. FFesc

R. C'lllon, E. I<c)sell, R. Perlnlan,
and J. Harper
N. Warcliol, 1). Smclscr, and G. L.itiingron

H. Pal-tovi ilnd 1M. Case
T. P. Fisscttc, I<. Chinnas\\~aniy,
H . A. Collins, A4. B. Evuis, M. A. Gagliardo,
J. J. I ,~~nc l i , and J. E. Tessari
W. Hcdbcrg, M . Halvorson, 13. Ells\\~orrli,
R. Lewis, I! Brooks, and G. 1Mendelsoh1i
N. P. Juoppi and R. A . Eustacc

VV. Rar'rdbash, S. A. Itirk, bV, S , Yer'lzun~s,
and I<. A. C;~lbcrt
R . Kamanujan, J. DeRosa, J. H. Zura\vski

J. A. Portcr, D. E. i\/lntthc\\rs, and
D. E. Haugh

I,. bVcng
B. K. Sarccn

W. Barabasll, S. A. Kirk, and W. S. Ycrazunis

J. I t i rk anti J . Barrctt
K. A. HOLISC, J. ffirk, and L. Narhi
D. Sanders and 1\4. Callander

C;. I<. Hcidcr

l'robabilistic Cryptographic Processing 1CIetliod (This case
was combined \\,it11 I'D90-0295.)

System and Mcthod \\~itli a Procedure Oriented
Input /Outpi~t Mechanism
Memory Management Method for Coupled Mcrnor)~
Multiprocessor Systc~iis
Method and Apparati~s for Converting Analog Signals
into Digital Sig113ls
Method and App'iratus for Interpreting anti Organizing
Timing Specification Informiition
Shared Bus Arbitration Apparatus Having a Deaf Node

~Met l~od of Making a Thin Film Head with Minimized
Secondar)r Pulses
blanagemenr Issuc Recognition and Resolution
Kno\\rledge Processor
 method .mti Apparatus h r Distance Vector Routing
on Datagram Point-to-Po~nt Links
Flour-regulating H!tdrodynamic Bearing
Increasing Storage llcnsity of Optical Data Mcdi,~ by
Dctccting a Sclcctcd Portion of a Light Spot Image
Corresponding to a Single Domain
Fault Tolerant Bus
Method for Generating a Checksum
Disk Storage \\rirli Dc\,ice for Fixing the Disk Pack on Its
H u b Such That It Can Bc Rcnioved
M ~ ~ l t i p l e Protocol Routing

Method and A p p a r i t ~ ~ s b r Eschangi~ig Blocks of
Information bcn\fccn a Cache Memory and a Main Memory
Subarray Architccrurc with Partial Address Translation
Mode Switching for a klemory System \vith a Diagnostic
Scan

Crossbar Intcrfncc for Data Communication Ncnvork

Data Processing Systcni , ~ n d Method \\lit11 Small Fully
Associntivc Cache and Prcfetch Buffers
Computer Systcm and ~Metliod for Esccuting Command
Scripts Using multiple Synchroliizcd Threads
N-Channel Clamp ti)r LSD Protection in Self-aligned
Silicided CIMOS Process
~Mcthod for Fast Rule Esccurion ofEspcr t Systcnis

~Metliod and Apparatus for Sharing Data bcr\\~een
Processors in a Computer Systcni
Augmented 1)oubly Linked List Search and Managcment
Method for a Sysrcm Having Data Stored in a List of Data
Elements in Memory
Data Storage System including Redundant Storage l>cvices
Single Lond, Multiple Issuc Qucuc with Erl-or Ilcco\~ery
Capability
Fast Determination ofsubtype Relationship in a Single
Inhcritancc Type Hierarchy
Wide Banduk-irh Pcalc Follower Circuitry
SCSI Interface Employing Bus Extender and Auxiliary Bus
~Mcthod , ~ n d Apparatus for Controlling a Processor Rus
Used by Multiple l'roccssor Components during Writeback
Cache Transactions
Computer System Console

13igital Technical 1ou1-n.il Val. 7 No. 1 1995 77

N. T. Poole Method and Apparatus for Pointer Coniprcssion in
Structured Databases
Dynamic Computcr Systcni I'crfornia~icc modc cling
Interface
Post Fabrication Processing o f Scrniconducror C:liiys
High Density Electrical Intcrcon~.lectlon l>cv~cc .l11cl
Method Therefor
Reduced Brondcast Algorithm for Address Resolution
Protocol
Methods and Apparntus fol- Implcrncnring 1)ata Rases
t o Provide Object-oriented In\~ocnrion of A~)j>Ii~ii t io~is
Tcsring a Cornmunicarioris Ncnvork ti)r l) ~ ~ p l ~ c , ~ r c Statio~i
Addresses
Methods and Appnrntl~s for Optimizing Prcl.rch chirig rig
by lle\,crse Ordering of Logical Blocks
Intcgrated Circuit <:hip Having Primary and Sccondary
Random Acccss Mcnlorics f i ~ r a Hierarchical Cnclic
Hybrid Cooling Sysrc~ii for klcctron~c (;omponc~its
Bipolar Transistor ~Mcnlory Cell and ~Mctliod
C o ~ l ~ p u t e r Apparatus and Mctliod h r Finite klcnicnt
Identification in Intcractivc Mocicling
Avoidance of Falsc Kc-il~itializario~i of a Compurcr Ncn\~ork
Method for Tcsti~ig, L>cbugging, 2nd Comparing
Computer Programs Using Concurrent Si~~iula t ion
of Program Paths
Mcmory Sclcction/L)csclcction Circuirr!~ Ha\.ilig
a Wordline Discharge Circuit
Frequency Independent Encoding Tccl~niquc and
Apparatus for D ig l t~ l C o ~ l i n l ~ ~ l l i c a t ~ o ~ i s
Coupled Memory Multiprocessor <:ornputcr System
including Cache Cohcrcncy Managenicnr Protocols
Apparatus for an Air Impingc~ncnt Hcnt Sink Using
Sccondary Flow Gcncrators
Adaptivc Track Seeking for Disk 1)rivcs

K. S. Fricdrich and A. R. Bousquet

J. B. Dion
S. M. Wcsrbrook and G. Howell

R. L. Travis, A. P. IVilson, N. F. Jacobson,
M. 1. Renz~~l lo , and A. N. Eurald
H. Yang, G. P. Koning, W. R. Ha\vc,
and J. D. Hutchison
PV. Tl~ors ted , R. I ,~ ry , I<. Gibson,
and J. Jackson
R. C. Hctherington, F.)I. ~McKeen,
J. 1). Marci, T. Fossuni, and J. S. Emer
P. C. Wadc and L. Fox
R. Rcinsch~nidt
J. W. Rot11

J. D. Hutchison and H. S. Yang
E. G. Ulrich, K. P. Lcntic,, and M . M. Gustin

S. C . S~~l l ivan and R . M. Reinschmidt

D. A. Orbits, K. D. Abramson, and
H. B. Butts
S. F,. L indq~~i s t and D. A. 13ailcy

M . Gio\ranetti, K. Vcscskis, B. Rub,
and F. Zayas
F. Dolan and J. A. Harper
H. S. Yang, W. R. Hauic, and R . S. Spinney

Message S\\.iching Network Monitoring
Srarion-to-Station Full Duplcs Conimunicarion in a Toke11
Ring Local iirca Ncn\,ork
Data Processing Systc~n and I'roccss for (:ontrolling the
Lattcr As Well As a <2"U Ronrd
Method for Multi-1)omain arid Multi-l>imcnsiori'll
Concurrent Simulation Using a Digital <:oniputcr
System and ~Vctliod for l'rcscr\ring Instruction Granulnrir!~
When Translating Progr'im Code koni a Computer
Having a First Architecture to a Computer Having
a Second Rcduccd Archi tcc t~~rc during rlic Occurrcncc
o f Interrupts Due to Asy~ichro~ious Events
High Bandwidth Multiple Co~npurc r]<us Apparatus

T. Schlagc

E. Ulrich and K. h n t z

S. G. Robinson and R. I,. Sites

R. P. Colwcll, J. O'Donncll, D. B. Parworth,
and P. K. Rodm'ln
R. J. I'crlman and G. P. Koning
D. Giokas and A. Lcskowitz

Bridge-like I~l ternct Protocol l<outc~-
System and Method for <:omniunication bcnvcc~i
Windoxving En\~ironmcrlts
Method and Apparatus for Pcrfi)rming 1)ia~nosis Scanning
o f a Mcniory Unit Rcg;irdlcss of the Srntc of the Sysrcm
Clock and ~vi thout Afl'ccting tlic Storc l)nr:i
Magnetic for Fabricating Magnetic Film I l co rd ing Head
for Usc with a ~Mngnctic Recording Mcdin
C o m p o i ~ ~ i d Principals in Acccss <:ontrol I,ist\

K. Chinnaswarny, H. A. Collins,
M . R. Evans, M. A. Gagliardo, J. J. Lynch,
J. E. Tcssnri, 2nd T. 1'. Fisscttc
H. 13. Shukovsky, S. Ratra, and M. L. Mallary

M. Ahadi,A. C. Goldstein, and
B. W. Lampson
N, Jouppi
B. A. Roznio\~its

Data Processing System and Mctliod ui th PI-cfctch I<ul'lkrq
Data Format for Packets oFInli)r~rlat~on

78 Digital Tcch~iical Journal \'01.7 No. 1 1995

Call for Authors
from Digital Press

Digital Press is an imprint of Rutterjvorth-Heinema~i~i, a major international pub-
lisher of professional boolts and a men~ber of the Reed Elsevier group. Digital
Press is the authorized publisher for Digital Equipment Corporation: The two
companies are worlting in partnership to idcntih and publish nenr books under the
Digital Press imprint and create opportunities for authors to publish their \vorlt.

Digital Press is conlrnitted to publishing high-quality books on a wide variety
of subjects. We would like to hear ti-om you if you are writing or thinlung about
writing a book.

Contact: Mike Cash, Digital Press Manager, or
Liz McCarthy, Assistant Editor

DIGITAL PRESS
31 3 Washington Street
Newton, MA 02 158-1 626
U.S.A.
Tel: (617) 928-2649, Fax: (617) 928-2640
E-mail: Milte.Cash@BHein.rel.co.uk or
LizMc@world.std.com

	Front cover
	Contents
	Editor's Introduction
	Foreword
	DEC FUSE: Building a Graphical Software Development Environment from UNIX Tools
	Adding a Data Visualization Tool to DEC FUSE
	Multivendor lntegration Architecture: Standards, Compliance Testing, and Applications
	Integrating Applications with Digital's Framework-based Environment
	Project Gabriel: Automated Software Deployment in a Large Commercial Network
	Referees, March 1994 to January 1995
	Further Readings
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

