
I '
UI*

I 1 Qi . H
0 * & , h i 1 , 7 : I

. - -1 ALPHASERVER 4100 SYSTEM - Digital ' .& . &&
c: " ' ~ e c h n ica l
3 Journal i

. -
, . i ;'

)-? ".,' & I-,
F ,. ! , 1 4

1 *,<

,
, ' , , I " ' , . ,

.-

csa y - p ~
'*a, iic ,...,-

- . ORACLE AND SYBASE DATABASE PRODUCTS - 1 FORVLM *- I

663***01 INSTRUCTION EXECUTION ON ALPHA PROCESSORS

ri. i

Editorial
Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Helen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production
Christa W. Jessico, Production Editor
Anne S. Katzeff, Typographer
Peter R. Woodbury, Illustrator

Advisory Board
Samuel H. Fuller, Chairman
Richard W. Beane
Donald Z. Harbert
Richard J. Hollingsworth
William A. Laing
Richard F. Lary
Alan G. Nemeth
Robert M. Supnik

Cover Design
The performance advantage of very large
memory technology for commercial applic
tions is a major theme in this issue of the
Journal. The cover is a collage of images
from the development of the AlphaServer
4100 four-processor symmetric multipro-
cessing system, which offers 8 gigabytes
of memory and indusuy leadership per-
formance. This four-processor symmetric

The Digital Technical Journalis a refereed
journal published quarterly by Digital
Equipment Corporation, 50 Nagog Park,
AK02-3/B3, Acton, MA 01720-9843.

Hard-copy subscriptions can be ordered by
sending a check in U.S. h d s (made payable
to Digital Equipment Corporation) to the
published-by address. General subscription
rates are $40.00 (non-U.S. $60) for four
issues and $75.00 (non-U.S. $115) for
eight issues. University and college profes-
sors and Ph.D. students in the electrical
engineering and computer science fields
receive complimentary subscriptions upon
request. DIGITAL'S customers may qualify
for gift subscriptions and are encouraged
to contact their account representatives.

Electronic subscriptions are available at
no charge by accessing URL
http://www.digital.corn/info/subseription.
This service will send an electronic mail
notification when a new issue is available
on the Internet.

Single copies and back issues are available
for $16.00 (non-U.S. $18) each and can
be ordered by sending the requested issue's
volume and number and a check to the
published-by address. See the Further
Readings section in the back of this issue
for a complete listing. Recent issues are
also available on the Internet at
http://www.digital.u)rn/iio/dtj.

DIGITAL employees may order subscrip-
tions through Readers Choice at URL
http://webrc.das.dec.com or by entering
VTX PROFILE at the OpenVMS system
prompt.

Inquiries, address changes, and compli-
mentary subscription orders can be sent
to the Digital Technical Journalat the
published-by address or the electronic
mail address, dtj@digital.com. Inquiries
can also be made by calling the Journal
office at 508-264-7549.

Comments on the content of any paper and
requests to contact authors are welcomed
and may be sent to the managing editor at
the published-by or electronic mail address.

Copyright O 1997 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation's author-
ship is permitted.

The information in the Journalis subject
to change without notice and should not

:a- be construed as a commitment by Digital
Equipment Corporation or by the compa-
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the Journal.

ISSN 0898-901X

Documentation Number EC-N7629-18
multiprocessing system is not o d y charac- Book production was done by Quantic
terized by very large memory but by low Communications, Inc.
latency, high bandwidth, and 400-megahertz
microprocessors.

The following are trademarks of Digital
Equipment Corporation: AlphaServer,
Alphastation, DEC, DECnet, DIGITAL,
the DIGITAL logo, VAX, VMS, and
ULTRIX.

AIM is a trademark ofAIM Technology, Inc.
CCT is a registered trademark of Cooper
and Chyan Technologies, Inc. CHALLENGE
and Silicon Graphics are registered trademarks
and POWER CHALLENGE is a trademark
of Silicon Graphics, Inc. Compaq is a regis-
tered trademark and ProLiant is a trademark
of Compaq Computer Corporation. HP is
a registered trademark of Hewlett-Packard
Company. HSPICE is a registered trade-
mark of Metasoftware Corporation. IBM,
PowerPC, PowerPC 504, and PowerPC
604 are registered trademarks and RS/6000
is a trademark of International Business
Machines Corporation. Insignia is a trade-
mark of Insignia Solutions, Inc. Intel and
Pentiurn are trademarks of Intel Corporation.
IPX/SPX is a trademark of Novell, Inc.
ispLSI and Lamce Semiconductor are regis-
tered trademarks of Lattice Semiconductor
Corporation. KAP is a trademark of Kuck &
Associates, Inc. MEMORY CHANNEL is a
trademark of Encore Computer Corporation.
Mental Ray is a trademark of Mental Images.
Metral is a trademark of Berg Technology, Inc.
Microsoft, MS-DOS, and vsual C++ are
registered trademarks and Windows and
Windows NT are trademarks of Microsoft
Corporation. MIPS and R4400 are trade-
marks of MIPS Technologies, Inc., a wholly
owned subsidiary of Silicon Graphics, Inc.
Motorola is a registered trademark of
Motorola, Inc. Oracle is a registered trade-
mark and Orade7, Orade 64 Bit Option,
and Oracle Parallel Server are trademarks
of Oracle Corporation. Postscript is a
registered trademark of Adobe Systems
Incorporated. Powerview is a registered
trademark of Viewlogic Corporation.
SPARCstation is a registered trademark
and SPARCluster, SPARCserver, and
UltraSPARC are trademarks of SPARC
International, Inc.,used under license by
Sun Microsystems, Inc. SPEC is a registered
trademark of the Standard Performance
Evaluation Corporation. SPICE is a trade-
mark of the University of California at
Berkeley. SQL Server and System 11 are
trademarks and Sybase is a registered trade-
mark of Sybase, Inc. Sun is a registered
trademark and Ultra is a trademark of Sun
Microsystems, Inc. Synopsys is a regis-
tered trademark of Synopsys, Inc. Texas
Instruments is a registered trademark of
Texas Instruments Incorporated. Timing
Designer is a registered trademark of
Chronology Corporation. TPC-C is a
registered trademark of the Transaction
Processing Performance Council. UNIX
is a registered trademark in the United
States and in other countries, licensed
exclusively through X/Open Company
Ltd. Xilinx is a registered trademark of
Xilinx, Inc.

The cover design is by Lucinda O'Neill of
DIGITAL'S Corporate Design Group.

Contents

ALPHASERVER 4100 SYSTEM

AlphaServer 4100 Performance Characterization

The AlphaServer 4100 Cached Processor Module
Architecture and Design

Z,lrka C\ctano\iic and llarrel 13. Do~ialclson

Maurice B. Stcinm.ln, George 1. Harris,
Andrcj Kocrv, Virginia C. Larncrc, and
Rogcr D. l'annell

The AlphaServer 4100 Low-cost Clock Distribution System Roger A. l'>i~nie

Design and Implementation of the AlphaServer 4100 CPU Glcnn A. Herdeg
and Memory Architecture

High Performance I10 Design in the AlphaServer 4100
Symmetric Multiprocessing System

Samuel H , Duncan, Craig 1). Keefer, and
Thomas A. ~McL~ugh l in

ORACLE AND SYBASE DATABASE PRODUCTS FOR VLM

Design of the 64-bit Option for the Oracle7 Relational
Database Management System

VLM Capabilities of the Sybase System 11 SQL Server

INSTRUCTION EXECUTION O N ALPHA PROCESSORS

Measured Effects of Adding Byte and Word Instructions 1)avid I? Huntcr and Eric B. llctrs
to the Alpha Architecture

Vol. 8 No. 4 1996

Editor's
Introduction

Just 4 0 years ago, a machine called the
TX-0-.I successor to Wlurlwind-
was built at MIT's Lincoln Laboratory
t o find out, among other things, ifa
core memory as large as 6 4 Icwords
could be built. Over tlie years mem-
ory sizes have grown so large that,
in the '90s, the industry has felt the
need to characterize memory in big
macliincs as iiet-y large. At five orders
of magnitude greater in size than the
TX-0 memory, the AlphaServer 4100
8-gigabyte memory is indeed very
large, even by today's standards. Wl~ole
databases can be designed t o reside in
memory. Very large memory technol-
ogy, or VLM, is a key to tlie system
and application performance discussed
in this issue of the.Journa1, which fea-
tures the AlphaServer 4100 system,
database enhancements from Oracle
Corporation and f?om Sybase, Inc., and
extensions to the Alpha architecture.

The AlphaServer 4100 is a mid-
range, symnietric multiprocessing
system designed for industrp-leading
performance at a low cost. The sys-
tem accommodates up t o four &bit
Alpha 21 164 microprocessors operat-
ing at 400 megahertz, four 64-bit PC1
bus bridges, and 8 gigabytes of main
memory. Opening the section about
die 4100 system, Zark'i Cvetanovic
and Darrel Donaldson describe the
project team's performance characteri-
zarion ofdifferent AlphaServer 4100
models under teclinical and conimer-
cia1 workloads. Both the process and
the findings are ofinterest. As one
example sct ofdata demonstrates,
the model 5/300 is not only Faster
than its DIGITAL predecessors but
3 0 to 6 0 percent faster than a coni-
parativc industry platform when run-
ning memor)l-jntensive cvorkloads
from the SPECfp95 benchmark.

The four papers chat follow exam-
ine areas of the system that challenged
designers to keep costs low and at the
same time deliver high performance.

The ApliaScl.vcr 4 100 cachcd pro-
cessor 111od~llc design is prcscnted by
M o Steinman, George Harris, Andrej
Kocev, Ginny Lamere, and Roger
Pannell. Built .lround the Alpha 21 164
64-bit 1USC microprocessor, t l ~ c
module is the first kern DIGITAL
t o employ a higli-performance, cost-
effective s y ~ i c h r o n o ~ ~ s cache rather
than a traditional asynchronous cache.
Next, Roger Dame reviclvs the clock
distribution system, the use of off-
the-shelf phasc-locI<ecl loop circuits
as the basic building block to keep
costs low, and the signal integrity
techniques developed t o optiniize
performance of tlic clock distribution
system for a worst-case clock skew of
2.2 nanoseconds, a goal which the
team far exceeded. A unique memory
architect~~re for the model 5/300E is
the subject of Glenn Herdeg's paper.
This memory design incorporates a
processor module that has n o external
cache and instead takes advantage
of the multiple-issue feature of thc
Alpha 2 1 164 microprocessor. Closing
the section on tlie 4100 design is the
1 / 0 subsbatem's contribution to the
system goals of low latency and high
nlemory and I/O bandwidth. Sam
Duncan, Craig Kecfer, and Tom
McLa~ghlin present sc\fcral innova-
tive techniclues developed for tlic sys-
tem bus-to-PC1 bus bridge design,
including partial cache lint \\.rites,
pcer-to-pecr transactions dcross 1'CI
bridges, and support for large bursts
o f data.

All efforts to make tlie hard\vare
run faster are for the bcnef t of the
applications that run on those sys-
tems. A papcr from Oracle Corpora-
tion and another from Sybnse, Inc.,
examine ways in which tlicir rcspec-
rive databasc systems take advantage
of VLIM. Vipin Cokhale describes
the 6 4 Bit Option i~nplemcntation
for the Oracle7 relational database
system. A primar!! project goal \\!as t o

de~nonstratc a clear perforninncc ben-
cfit for decision support s)jstems 2nd
online transaction processing. The
author summarizes data that show
a clear benef t for a datnbasc wit11 the
6 4 Bit Option enitbled running on

the AlphaServer 8400 with 8 gigabytes
of memory; in some cases, the perfor-
mance increase was 200 rimcs t h a ~
of rhe standard configuration. S y b ~
engineers T . K Rengarajan, M a s
Berenson, Ganesan Gopal, Rrucc
McCread!!, Sapan Panigrahi, Sriknnt
Su bramaniam, and Marc Sugiyama
examine the technology of rhc
System 1 1 S Q L Server that uJas spc-
citically designed for VLM systems.
In addition t o achieving record results
144th the S Q L Server running o n the
AlphaServer 8400, the engineers Iiavc
laid tlie ground\vork for future main
memory database systcms.

Recently, byte and word instruc-
tions were added t o DIGITAL'S
64-bit Alpha architecture. l>a\rc
Hunter and Eric Betts describc the
process ofanalyzing how thesc addi-
tions affect the performance of a
com~nercial database. For t e s t i ~ ~ g ,
the team used prototype hardwarc,
rebuilt lMicrosoti Corporation's S Q L
Server to use rhc new instructions,
and ran the TPC-R benchmark.

The editors thank Darrel llo~laldson
of the AlphaServer 4 100 team and
K L I ~ Chung of the Database Applicn-
tion Partners group for their ct'lbrrs
t o acquire the papers prcscnted in this
issue. O u r upcoming issue will feature
CMOS-6 process technologies.

Jane C. Blake
rLfannging Edit01

2 Digital 1ci.hnical J o u r ~ l a l Vol. 8 No. 4 1996

I
Zarka Cvetanovic
Darrel D. Donaldson

AlphaServer 41 00
Performance
Characterization

The AlphaServer 4100 is the newest four-
processor symmetric multiprocessing addition
to DIGITAL'S line of midrange Alpha servers.
The DIGITAL AlphaServer 4100 family, which
consists of models 51300E. 51300. and 51400.
has major platform performance advantages
as compared to previous-generation Alpha plat-
forms and leading industry midrange systems.
The primary performance strengths are low
memory latency, high bandwidth, low-latency
110, and very large memory (VLM) technology.
Evaluating the characteristics of both technical
and commercial workloads against each family
member yielded recommendations for the best
application match for each model. The perfor-
mance of the model with no module-level cache
and the advantages of using 2- and 4-megabyte
module-level caches are quantified. The profiles
based on the built-in performance monitors are
used to evaluate cycles per instruction, stall time,
multiple-issuing benefits, instruction frequen-
cies, and the effect of cache misses, branch
mispredictions, and replay traps. The authors
propose a time allocation-based model for
evaluating the performance effects of various
stall components and for predicting future per-
formance trends.

The AlphaServer 4100 is DIGITAL'S latest four-
processor syninietric multiprocessing (SIMP) ~ii idra~lge
Alpha server. TIiis paper characterizes the perfor~nance
of the Alphaserver 4100 family, which consists of
three models:'"

1. Alphaserver 4100 model 5/300E, which has up to
four 300-megaher t~ (MHz) Alpha 21 164 ~iiicro-
processors, each without a module-level, third-
level, write-back cache (B-cache) (a design referred
to as urzcachecl in this paper)

2 . AlphaServer 4100 model 5/300, which has up to
fo~lr 300-MHz Alpha 2 11 6 4 nlicroprocessors, each
with a 2-megabyte (MB) B-cache

3. AlphaServer 4100 model 5/400, which has up to
four 400-MHz Alpha 2 1 164 microprocessors, each
with A 4-MB B-cache

Thc performance analysis undertaken examined
a number of workloads with different character-
istics, including the SPEC95 benchmark suites
(floating-point and integer), the LINPACIC bench
mark, A I M Suite VII (UNIX multiuser benchmark),
the TPC-C transaction processing benchmark, image
rendering, and memory latency and bandwidth
tests."-li Note that both com~nercial (AIM and TPC-C)
and technical/scientific (SPEC, LINPACIC, and image
rendering) classes of \\rorkloads were included in
this analysis.

The results of the analysis indicate that the major
AlphaServer 4100 performance advantages result
from the following server features:

Significantly liighcr ba~idwidth (up to 2 .6 times)
and lower latency compared to the previous-
generation midrange Alphaserver platforms and
leading i~idustry midrange systems. These improve-
ments benefit the large, multistreani applica-
tions that d o not fit in the B-cache. For example,
the Alphaserver 4100 5/300 is 30 to 6 0 percent
faster than the HP 9000 K420 server in the
memory-intensive workloads from the SPECfp95
benchmark suite. (Note that all competitive per-
formance data presented in this paper is valid as

Vol. 8 No. 4 1996

of the submission of this paper in July 1996. T l ~ c
references cited refer the reader to the literature
and the appropriate Web sites for the latest perfix-
mance information.)

An expanded very large memory (VLIM). The mas-
imum memory size increased from 2 gigabytes
(GB) to 8 GB without sacrificing CPU slots. This
increase in memory size benefits primarily the com-
mercial, n~ultistream applications. For csample, the
AlphaScrvcr 4100 5/300 server achiei~es approsi-
mately nvicc the throughput of the Co~llpac]
ProLiant 4500 server and 1.4 times the throughput
of the AIphaServer 2100 on the AIM Suite VJI
bench~nark tests.

A 4-1MB B-cache and a clock speed o f 4 0 0 MHz
in the AlphaScr\fer 4100 5/400 system. The largcr
B-cache size and 3 3 percent faster clock resulted in
a 30 to 4 0 perccnt performance impro\,cment over
the AlphaScr\rer 4100 5/300 system.

The performance impro\.ement from the largcr
B-cachc increases with tlie number of CPUs. For
example, the Alphaserver 4100 5/300 system \\.ith
its 2-MB R-cache design performs 5 to 20 percent
faster \\/ith one C P U and 30 to 50 percent faster
\\lit11 four CPUs than the uncached 5/300E system.
The majority of workloads included in this analysis
benefit from the B-cache; howevcr, the uncachcd sys-
tem outperforms the cached implementation by 10 to
20 pcrccnt for large applications that d o not fit in
the 2-MI3 13-cache.

Thc performance counter profiles, based on the
built-in hardware nlonitors, indicate that the major-
i t y of issuing timc is spent 011 single and dual issuing
and that a small number of floating-point \vorkloads
take ndv'intagc of triple and quad issuing. The
load/store instructions make up 30 to 4 0 percent of
all instructions issued. The stall timc associated with
\\,siting for dnta that niissed in the \rarious le\rels of
cache hierarchy accounts for the most significant por-
tion of the time the server spends processing com-
mercial \\rorltloads.

Memory Latency

Memory latcncv and bandwidth have been rccog-
nized as important perfor~nance factors in tlie early
Alpha- based implen~cntatlons.'" " Sillce CPU speed is
increasing at a much higher rate than memory speed,
thc "memor)~ \vall" limitation is expected to become
cvcn Inore important in the fiturc. Thcreforc, reduc-
ing nlemory latency and increasing band\\.idth have
been major design goals for the AlphaScrver 4100
platfor~n.' The Alpl~aSer\~er 4100 achieved the lo\trcst
memory latency of all DIGITAL products based on

the Alpha 2 1 164 rnicroproccssor and a11 multiproccs-
sor products by leading i ~ l d ~ ~ s t r y \renders. The ~iinjor
bcncfits come fi-om the simpler interface, the use of
S ~ I I C ~ ~ I - O I I ~ L I S dynamic random-access memory
(13liAi\/l) chips (i.e., synchronous nicn~or!r), and tlic
lo\\jcr f i l l time.' ' Figure 1 shon,s the measured mcm-
ory load latency using the Imbench benchmark with
a 5 12-hytc stride.'" In this benchmarl<, each load
depends o n the r e s ~ ~ l r from the previous loact, and
therefore latency is not a good mcasurc of pcrfi)r-
mancc k)r systems that can have multiple o~~ t s t and ing
loads. (AlphaSer\rcr 4100 systems can have up to
two o i l t s t a n ~ i i ~ ~ g requests pel- <:PU o n the bus.)
The lmbcncli benchmark data i11dic:ltcs that tlic
AlphaScrvcr 4100 has the lo\vest memory latency of
all indt~stry-leading reduced-instructio~~ set comput-
in3 (RISC) vc~ldors' servers.

As sho\\~n in Figure 2, using a sliglitl!~ clilfi.rcnt
\\.orltlond \vhcrc there is n o depcndcnc\r bcn\.ccn
consecutive loads, the AlphaServer 4100 achicvcs c\.cn
lo\\,cr per-load latency, since the latcnc! for tlic nvo
consccuti\,c loxis can be overlapped. The plntc.~us
in Figure 2 she\\ thc load latency at each of tlic folio\\,-

ing Ic\,cls of cachc/memory hierarchy: 8-kilobyte
(ICB) on-chip data cachc (D-cache), 96-K13 on-chip
secondary instructio~l/data cache (S-cache), 2- and
4-MB off-chip K-caches (except for model 5/300E),
and mcmory. The uncachcd AlpliaScr\lcr 4100
5/300E achicvcs an 8 5 percent lo\\ler memory load
latcncy than the pre~rious-generatio11 AlplinScr\,cl-
2 100. The AlpliaScr\~er 4100 5/300, \\~itIi its 2-/\/I13
K-cache, increases mernorv latency 30 pcrccnt ti)r
load opuations and 6 perccnt for storc opcl-ntions
compared to the i111cached 5/300E system bcca~isc of
thc timc spcnt checking for data in thc 13-cachc. .l'llc
s!lnclironous menlory sho\\s one c!,clc lo\\.cr I.ltc~ic!~
tlla~l tllc ~isy~lchro~lous cstended data out (E l X))
I)RAIM (i.c., asynclirono~~s memory), \vhicIi r c s ~ ~ l t s in
9 percult faster load operations and 5 pcrccnt hstcr
storc operations. Note that the caclicd AlpliaScr\,cr
4100 and NphaScr\rcr 8200 systems, \\diich have
the snliic clocli spcccis of 300 MHz, ac.liic\~c <om-
parable K-cache latency, \vhile tlic mcmory latcnc!.

all AlphaScrver 4100 systems is significantly
lo\\tcr tlia~l o n hot11 tlic AlphaScrver 8200 anti tlic
AlphaScrvcr 2100 systems. The latency to the R-cache
in this tcst is lower o n the AlphaScr\,cr 2100 than
o n the other AlpliaScrver systems clue to 32-byte
bloclcs (compared to 64-byte blocks in t l ~ c 4100 ;unJ
8200 systems). Although not sho\\ln in this tcst, man!,
applications can benefit from the lalpcl- caclic block
size. The 400-MHz AlphaServer 4100 systcm uses
n 33 pcrccnt bstcr <:PU and acl~ic\.cs 11 percent
rcductio~i i l l 13-cache and memory latency comparcd
to the 300-MHz AlpllaScrver 4100 systcru.

Vol. S No. 4 1996

LMBENCH: DEPENDENT LOAD MEMORY LATENCY
(STRIDE = 512 BYTES)

ALPHASERVER 4100
51400 (400 MHz)

ALPHASERVER 4100
"00 (300 MH" p!

ALPHASERVER 4100
51300E (300 MHz)

INTEL PENTIUM PRO
(200 MHz) b

SUN ULTRASPARC
(167 MHz)

SGI POWER CHALLENGE
R10000 (200 MHz)

IBM RSl6000 43P
POWERPC (133 MHz)

0 200 400 600 800 1,000 1,200

MEMORY LATENCY
(NANOSECONDS)

Figure 1
Irnbench BenchmarkTest Results Showing Memory Latency for Dependent Loads

Memory Bandwidth

The AlphaServer 4100 system bus achieves a peak
bandwidth of 1.06 gigabytes per second (GB/s). The
STREAM LMcCalpin benchmark measures sustainable
memory bandwidth in megabytes per second (MB/s)
across four vector kernels: Copy, Scale, Sum, and
SAXPY." Figure 3 sho\.\a nieasured memory band-
width using the Copy ltcrnel from thc STREAM
benchmark. Note that the STREAM bandwidth is
33 percent lower than the actual bandwidth observed
on the AlphaServer 4100 bus because thc bus data
cycles are allocated for three transactions: read
source, read destination, and write destination. The
AlphaServer 4100 s l i o ~ s the best memory bandwidth
of all multiprocessor platforms designed to support up
to four CPUs. The platforms designed to support
more than four CPUs (i.e., the AlphaServer 8400, the
Silicon Graphics POWER CHALLENGE R10000, and
the Sun Ultra Enterprise 6000 systems) show a higher
bandwidth for four CPUs than the AlphaServer 4100.
The STREAM bandwidth on the AlphaServer 4100
5/300 is 2.2 times higher than on the previous-
generation Alphaserver 2100 5/250 (2.6 times higher

with the AlphaServer 4100 5/400). The uncached
AlphaServer 4100 niodel shows 22 percent higher
memory bandwidth than the cached model 5/300.

The Alphaserver 4100 memory bandwidth
improvement from synchronous memory compared
to E D 0 ranges fro111 8 to 12 percent. The synchro-
nous memory benefit increases with the number of
CPUs, as shown in Table 1.

Lo\\[memory latency and high bandwidth have
a significant effect on the performance of \\~orkloads
that d o not fit in 2- to 4-MB B-caches. For esample,
the majority of the SPEC@95 benchmarks do not fit
in the 2-1MB cache. (Figure 20, which appears later in
this paper, sho\\ls the cache misses.) The SPECfp95
performance comparison presented in Figure 4 sho\xls
that the uncached AlphaServer 4100 5/300E system
outperforms the 2-MB B-cache model 5/300 in tlie
benchmarlts with tlie highest number of B-cache
misses (tomcan: s\.vi111, applu, and hydro2d). The per-
formance of the uncached model 5/300E is compar-
able to that ofthe 4-MB B-cache model 5/400 for the
swim benchmark. However, the benchmarks that fit
better in the 4-MB cache (apsi and \vave5) run signifi-
cantly slower on the 5/300E than on the 5/400.

Digital Technical Journal Vol. 8 No. 4 1996 5

INDEPENDENT LOAD LATENCY
(STRIDE = 64 BYTES)

DATA SET SIZE
KEY:

ALPHASERVER 4100 51300E - ALPHASERVER 4100 51300 - ALPHASERVER 4100 51400 - ALPHASERVER 8200 51300 - ALPHASERVER 2100 51300

Figure 2
Cache/Memory Latency for Independent L o ~ d s

KEY:

ALPHASERVER 8400 51300
ALPHASERVER 8400 51350
IBM RSl6000-990
SGI POWER CHALLENGE R10000
ALPHASERVER 41 00 51300E
ALPHASERVER 4100 51300
ALPHASERVER 4100 51400

HP 9000 J210
ALPHASERVER 2100 51250
SUN SPARCSERVER 2000E
INTELALDER PENTIUM PRO
SUN ULTRA ENTERPRISE 6000

0 1 2 3 4 5 6
NUMBER OF CPUs

Figure 3
STllEAM McCalpin Memory Copy Bandwidth Comparison

6 Digitdl Tcch~iical Journal \Jol. 8 No. 4 1996

Table 1
Bandwidth Improvement from Synchronous Memory
to Asvnchronous Memorv

Number of CPUs

1 2 3 4

Bandwidth
improvement 8% 8% 9% 12%

F ~ g ~ l r c 4 shows that the AlphaScr\lcr 4100 5/300
systcm has a significant (up to two times) pcrforma~~ce
advantage over the previous-generation Alphaserver
2100 systcm in the SPEC$95 benchmark tests with
the highest number o f B-cache misses. The SPECFp95
tests ~nd~cate that the 300 MHz Alpli~ser\,er 4100 i s
more th,ln 50 pcrccnt faster than thc HP 9000 K420
scr\w, a n d thc 400-MHz iUphaSer\ier 4100 1s bv lce as
fast CIS the HP 9000 I(420 In the SI'kCfp95 bcnch-
marks that stress the memory subsystem.

SPEC95 Benchmarks

The SPkC95 benchniarl<s provide a meas~lrc o f pro-
cessor, mclnory hierarchy, and co~npilcr perform'~ncc.
Thcsc bc~lchnlarks do not stress gr,~phics, ncnvork,
or 1 / 0 performance. The integer SPE<;95 suite

(CINT95) contains eight compute-intensive integer
benchmarlts \\rritten ill C and includes thc benchmarlts
slio'i'i~n i n Table 2.",'!

The floating-point SPEC95 suite (CFP95) contains
10 compute-intensi\~e floating-point benchmarks \vrit-
ten in FORTRAN and includes the benchmarks shown
in Table 3."'"

The SPEC Homogeneous Capacity Method
(SPEC95 rate) measures how bst an SMP system ca l l
perform multiple CINT95 or CFP95 copies (taslts).
The SPEC95 rate metric measures the throughput o f
the system running a ni~mber o f tasks and is used for
evaluating multiprocessor system perfor~llance.

Table 2
CINT95 Benchmarks (SPECint95)

Benchmark Description

Artificial intelligence, plays the
game of Go
A Motorola 88100 microprocessor
simulator
A GNU C compiler that generates
SPARC assembly code
A pro ram that compresses large
text ffes (about 16 MB)
A LISP interpreter
A program that compressesl
decompresses an image
A Perl interpreter that performs
text and numeric manipulations
A database program that builds and
manipulates three interrelatiorlal
data bases

Table 3
CFP95 Benchmarks (SPECfp95)

101 .TOMCATV -
0 5 10 15 20 25 30 35

KEY.

HP 9000 K420
ALPHASERVER 2100 51300
ALPHASERVER 4100 51400

B ALPHASERVER 4100 51300
B ALPHASERVER 4100 51300E

Benchmark

101 .tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

1lO.applu

125.turb3d

141 .apsi

Description

A fluid dynamics mesh generation
program
A weather prediction shallow water
model

A quantum physics particle mass
computation (Monte Carlo)
An astrophysics hydrodynamical
Navier-Stokes equation
A multigrid solver in a 3-D potential
field (electromagnetism)
Parabolidelliptic partial differential
equations (fluid dynamics)
A program that simulates
turbulence in a cube
A program that simulates tempera-
ture, wind, velocity, and pollutants
(weather prediction)
A quantum chemistry program that
performs multielectron derivatives
A solver of Maxwell's equations on
a Cartesian mesh (electromagnetics) Figure 4

SPECfp95 Benchmarks Pcrbsrnance Comparison

Figure 5 compares the SPEC95 performance of
the AlphaServer 4100 systems to that of the other
industr!l-leading vendors using published rcsults as
of July 1996. Figure 6 sho\vs the same comparison in
the multistream SPEC95 rates.'? Note that all the
SPEC95 con~parisons in this paper are based o n the
peak results that include extensive compiler optimiza-
t i o n ~ . ' ~ Figure 5 indicates that even the uncached
AlphaServer 4100 5/300E performs better than the
HP 9000 K420 system, and the AlphaServer 4100
5/400 shows approximately a t ~ ~ o tinies performance
advantage over the H P system. The Alphaserver 4100
5/300 SPECint95 performance exceeds that of the
Intel Pentiurn Pro system, and the AlphaSer\fer 4100
5/300 SPEC@95 performance is double that of
the Pentium Pro. The Alphaserver 4100 5/400 is
1.5 times (SPECint95) and 2.5 tinies (SPECFp95)
faster than the Pentium Pro system. The multiple-
processor SPECfp95 on the Alphaserver 4100 is
obtained by decomposing benchmarks using the KAP
preprocessor from Kuck i3 Associates. Note that the
cnchcd four-C1'U AlphaServer 4100 5/300 outper-
forms the Sun Ultra Enterprise 3000 with sis CPUs in
thc SPEC+95 parallel test. Thc pcrfor~nancc benefit
of the cached versus the i~~lcached AlphaScrvcr 4100
is greater in multiprocessor configirratio~ls than in uni-
processor configurations.

SPEC95 Multistream Petformance Scaling

Figures 7 and 8 show SPEC95 multistrea~n perfor-
mance as the number of CPUs increases. The SIMP
scaling 011 the AlphaServer 4100 is comparable to that

SPEC95 RATES

SPECINT-RATE95 SPECFP-RATE95

KEY:

ALPHASERVER 4100 51300E (4 CPUs)
ALPHASERVER 4100 51300 (4 CPUs)
ALPHASERVER 4100 51400 (4 CPUs)
HP 9000 K420 PA-RISC 7200 120 MHz (4 CPUs)
SUN ULTRA ENTERPRISE 3000 ULTRASPARC 167 MHZ (4 CPUs)
INTEL C ALDER PENTIUM PRO 200 MHz (1 CPU)
IBM RSl6000 J40 POWERPC 604 112 MHZ (6 CPUs)

Figure 6
SPEC95 Throughput Results (SPEC95 Rates)

KEY-

SPEClNT95 1 CPU SPECFP95 1 CPU SPECFP95 4 CPUs
(SUN SYSTEM: 6 CPUs)

ALPHASERVER 4100 51300E
ALPHASERVER 4100 51300
ALPHASERVER 41 00 51400
HP 9000 K420 PA-RISC 7200 (120 MHz)
SUN ULTRA ENTERPRISE 3000
ULTRASPARC (167 MHz)
SGI POWER CHALLENGE R10000 (195 MHz)
INTEL C ALDER PENTIUM PRO (200 MHz)
IBM RSl6000 43P POWERPC 604E (166 MHz)

Figure 5
SPEC95 Speed Results

8 I)ig~t~l Technical Journal

1 2 3 4
NUMBER OF CPUs

KEY:

+ ALPHASERVER 4100 51300E - ALPHASERVER 4100 51300 - ALPHASERVER 4100 51400 - ALPHASERVER 2100 51300 - HP 9000 K420
- ,, SUN ULTRA ENTERPRISE 3000

IBM RSl6000 J40

Figure 7
SPECint-rate95 Performance Scaling

KEY:

2 3 4
NUMBER OF CPUs

ALPHASERVER 4100 51300E
ALPHASERVER 4100 51300
ALPHASERVER 4100 51400
ALPHASERVER 21 00 51300
HP 9000 K420
SUN ULTRA ENTERPRISE 3000
IBM RSl6000 J40

Figure 8
SPECfp-rare95 Performance Scaling

on the AlphaServer 2100 for integer \vorlzloads
(that fit in the 5/300 2-1YlB B-cache). Note that
SPECint-rate95 scales proportionally to the number
of CPUs in the iiiajority of systems, since these work-
loads do not stress the memory subsystem. 'Thc SMP
scaling in SPECfp-rate95 is lower, since the majority
of these workloads d o not fit in 1- to 4-MB caches.

In the majority of applications, the AlphaServer
4100 5/300 and 5/400 systems improve SMP scaling
compared to the uncached AlphaServer 4100 5/300E
by reducing the bus traffic (from fewer B-cache
misses) and by taking advantage of the duplicate tag
store (DTAG) to reduce the number of S-cache
probes. The cached 5/300 scaling, ho\-\lever, is
lower than the uncached 5/300E scaling in memor!l
bandwidth-intensive applications (e.g., tomcat\/ and
swim). The analysis of traces collected by the logic
analyzer that monitors system bus traffic indicates that
the lower scaling is caused by (1) SetDirty overhead,
where SetDirty is a cache coherency operation used to
mark data as modified in the initiating CPU's cache;
(2) stall cycles on the memory bus; and (3) memory
bank conflicts.2-"

Symmetric Multiprocessing Performance Scaling
for Parallel Workloads

Parallel worldoads have higher data sharing and lower
meniory bandwidth requirements than multistream
worldoads. As shown in F ig~~res 9 and 10, the
AlpliaServer 4100 models with module-lc\~el caches
improve the SMP scaling co~iipared to the uncached
Alphaserver 4100 model in the LINPACIC 1000 X

1000 (million floating-point operations per second
[MFLOPS]) and the parallel SPECk95 benchmarl<s
that benefit from 2- and 4-MB B-caches. F i g ~ ~ r e 9
indicates that tlie AlphaServcr 4100 5/400 outper-
forms the SGI Origin 2000 system in the LINPA<;I<
1000 X 1000 benchmark by 40 percent. Figure 10
indicates that the four-CPU Alphaserver 4100 5/400
shows better scaling than any other system in its class
and outperforms the six-CPU Sun Ultra Enterprise
3000 system by more than 70 percent.

Very Large Memory Advantage:
Commercial Performance

As shown in Figures 11 and 12, the AlphaServer 4100
performs well in the commercial benchmarks TPC-C
and AIM Suite VII.I3." In addition to tlie lo\v memory
and 1/0 latency, the AlphaServer 4100 takes advan-
tage of the VLM design in these I/O-intensive work-
loads: with four CPUs, the platform can support up to
8 GB of memory cornpared to 1 GB of meniory on the
AlphaServer 2100 system with four CPUs and 2 GB
with three CPUs.

PARALLEL SPECFP95

1 2 3 4
NUMBER OF CPUs

KEY:

ALPHASERVER 4100 51300E - ALPHASERVER 41 00 51300 - ALPHASERVER 4100 51400
I ALPHASERVER 2100 51300
+ SGI ORIGIN 2000 RlOOOO (195 MHz)

IBM ESl9000 VF
-. HP EXEMPLAR S-CLASS PA 8000 (180 MHz)

0 1
1 2 3 4 5 6

NUMBER OF CPUs

ALPHASERVER 4100 51300E - ALPHASERVER 4100 51300 - ALPHASERVER 4100 51400 - ALPHASERVER 2100 51300 - HP 9000 K420 -- SUN ULTRA ENTERPRISE 3000

Figure 9 Figure 10
LINPACIC 1000 X 1000 I'arallcl Pc~for~i iancc ScCll~ng I'.II-.~llcl SI'E<:fp95 l'crform'lnce Scaling

TPC-C THROUGHPUT (TPMC)

IBM RSl6000 J30
(8 CPUs)

COMPAQ PROLIANT
45OOl166

SUN SPARCSERVER
2000E

ALPHASERVER
41 00 51400

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

THROUGHPUT (TRANSACTIONS PER MINUTE)

Figure 11
Transaction Processillg Pcrformancc (TI'<;-(1 Using ;In Ornclc 1)arnb;lsc)

10 Digital Technical Journal Vol. 8 No. 4 1996

AIM SUITE VII THROUGHPUT

COMPAQ PROLIANT 4500
PENTIUM (166 MHz) n

COMPAQ PROLIANT 5000 61200
PENTIUM PRO (200 MHz)

ALPHASERVER 4100 51300Eh -
0 500 1,000 1,500 2,000 2,500 3,000 3,500

THROUGHPUT (JOBS PER MINUTE)

'These ~nternally generaled results have not been AIM cert~f~ed.

Figure 12
AIM Suite VII iClulciuser/Shnred UNIX iMis l'erformancc

Figures 11 and 12 show the AlpliaServer 4100 sys-
tem's TP<:-(: performance (us i~ig an Oracle database)
and AIM Suite VII throughput performance as com-
pared to other industr\~-leading vendors. Note that the
performance of the uncaclied AlpliaServer 4100
5/300E is coniparable to that of tlie 300-1MHz
Alphaserver 2100. (The AlpliaSer\~er 2100 system
used in this test had three CPUs and 2 GB of ~nemor):
whereas the AlphaServer 4100 system had four CPUs
and 2 GB of 111ernor)l.)

With its 2-MB B-cache, the AlphaServer 4100
5/300 irnproves tliroughpi~t by 40 percent in tlie
AIlM Suite VII benchmark tests as compared to
the uncachcd AlphaScrvcr 4100 5/300E. The
AlphaServer 4100 5/400, with its 4-IMB B-cache,
benefits from its 33 percent hster clocl< and nvo times
larger B-cache and provides 40 percent improvement
over the Alphaserver 4100 5/300. Note that the
AlphaServer 4100 5/300 and 5/300E results were
obtained through internal testing and have not been
AIiM certified. The AlphaServer 5/400 results have
AIM certification.

Compared to the best published ind~lstl-y AIM Suite
VII performance, the AlpliaSer\rer 4100 5/300
throughput is almost nvice that of the Compaq
ProLiant 4500 server, and the Alphaserver 4100
5/400 throughput is more than 50 percent higher
than that of the Cornpacl ProLiant 5000 server.14 At

the October 1996 UNIX Expo, the AlphaScr\rcr 4100
fa~ii~ly won three AIIM H o t Iron Awards: for the best
pcrforniancc on thc W ~ n d o u s NT operating system
(for systems pr~ccd at more than $50,000) and for
thc best price/performance In two UNIX liilxes-
multiuser sliarcd and filc system (for systems pr~ced at
more than $150,000).'"

Cache Improvement on the
AlphaServer 41 00 System

Figures 13 and 14 sho\\~ the percentage performance
improvement provided by tlie 2-MB B-cache in
the AlphaServer 4100 5/300 as compared to the
uncached AlphaServer 4100 5/300E. Figure 13
shows the improvement across a variety of workloads;
Figure 14 shorvs the improvement in individual
SPEC95 benchniarlts for one and four CPUs.

As shown in F i g ~ ~ r e 13, tlie 2-i\/IB R-cache in tlie
AlpliaServer 4100 5/300 impro\~es tlie performance by
5 to 20 percent for one CPU and 25 to 40 percent for
four CPUs as compared to the uncached Alphaserver
4100 5/300E s!lstem. The benefits derived fi-om having
larger caches are significantly greater for four CPUs
compared to one CPU, since large caches help alleviate
bus traffic in ~n~~ltiprocessor systems.

The \vorldoads that d o not fit in tlie 2- to 4-MB
B-cache (i.e., torncanl, s\vlni, applu) in Figure 14

1)igir.il '1'cclinic.il Jou~.n.ll Vol. 8 No. 4 1996 11

PERFORMANCE IMPROVEMENT FROM 2-MB CACHE
I

AIM SUITE VII MAX USERS
4 CPUs

AIM SUITE VII JOBSIMIN
4 CPUs

LINPACK-1K 4 CPUs

LINPACK-1K 1 CPU

SPECFP92 4 CPUs I
SPECINT92 4 CPUs 7

SPECFP92 1 CPU

SPEClNT92 1 CPU

SPECFP95 4 CPUs

SPECINT95 4 CPUs

SPECFP95 1 CPU P
SPECINT95 1 CPU

0 5 10 15 20 25 30 35 40 45

PERCENT IMPROVEMENT

Figure 13
Pcrforninnce Improvcmcnt across V~rious \.Vorkloads from a 2-Mi3 R-C.lchc

run faster on the uncaclicd AlphaScr\,cr 4100 than
on the cached AlphaSer\lcr 4100 (u p to 10 percent
Lister o n one CPU and 20 pcrccnt faster on four
CPUs) due to the o\lerhcad for probing the 8-cache
and thc increase in Set13irt)l band\\/idth. The niajorit)l
of the other worldoads benefit from larger caches.

The AlphaServcr 4100 5/400 Further improves
the pcrfbrmance by increasing the size of the B-cache
fi-om 2 LMR to 4 1MR. In addition, the CPU clock
impro\7cnient o f 3 3 percent, B-cache irnpro\~en~ent of
7 pcrccnt in latency and 11 pcrccnt in band\vidth, and
the nlcmory bus speed improvcrncnt of 11 percent
together yield an overall 30 to 4 0 pcrcent inlpro\fc-
mcnt in the AlphaScr\~cr 4100 model 5/400 perfor-
nlallcc as compared to that of the Alphaserver 4100
model 5/300.

Large Scientific Applications: Sparse LINPACK

'The Sparse LTNPACIC benchmark solves a large, sparse
sy~n~nctr ic system of linear ccl~rations using the con-
jug~ltr grndient (CG) itcrati\fc method. The bench-
n1;lrk has threc cases, each \\lit11 3 different type of
prcconditio~ner. Cases 1 and 2 L I S ~ the incomplete

Cholcsky (I(:) fi~ctorization as the preconditioner,
\\,hereas Case 3 uses tlic diagon;ll pl-cconditioner.

lyl~is \vorldoad is rcprcscntnti\ic of large scientific
applications that do not fit in mcgnbytc-size cachcs.
The \vorltload is important in I;lrgc applications,
c.g., models of electrical ncnvorks, economic systems,
difhsion, radiation, and elasticity. It \%.as decomposed
to run o n multiprocessor systems using the IUI'
preprocessor.

Figure 15 sho\\rs that thc uncachcd AlphaScrver
4100 5/300E outperforms thc AlphaScr\,er 8400 by
4 1 p ~ r c c ~ l t for one CI'U and by 9 pcrccnt for nvo Cl'Us
hcc3~1sc of Iiigher ticlivcrctl s!,stcm ~ L I S band\vidtli.
Ho\vc\~cr, tlie AlphaSer\,er 4100 5/300E f~l ls behind
\\lit11 three and four CPUs, as it docs in thc ~McCalpin
manory bandwidth tests shown in Figure 3. Note that
with one CPU, the 300-MHz uncaclied dphaservcr
4100 pcrfi)rnis at the same level as the 400-MHz
cachcd AlpliaSer*er 4100 and perhrms 18 percent
bcttcr than the 300-MHz cachcd AlpliaScr\~cr 4100.
This is a n csamplc of thc t!lpc of application for
\\~hicli the cache diminishes the performance. Thc
Alpll~Scr\~cr 4100 5/300F, is a bcttcr match for this
class ofapplicatio~ls than the cached systcn~s.

PERFORMANCE IMPROVEMENT FROM 2-MB CACHE IN SPEC95

Figure 14
SPEC95 I'erformance Iniprovement from a 2 - M B B-Cache

107.MGRID

Image Rendering

104.HYDR02D

103.SUZCOR

102.SWIM

101 .TOMCATV

Tlie Alphaserver 4100 shows significant performance
advantage in image rendering applications compared to
the other industry-leading vendors. Figure 16 shows
that tlie AlphaServer 4100 5/400 system is approxi-
mately 4 times faster than the SLIII SPARC system that
was used in the movie To)! Stwyy, as measured in
Renderhlarks." The NphaServer 4100 js 2.6 times
faster than the Silicon Graphics POWER CHALLENGE
system and 2.4 times faster than the HP/Conves
Exemplar SPP-1200 system on the Mental Ray image
rendering application fi-om Mental Iniages. These
image rendering applications take advantage o f larger
caches, and the performance impro\ws as the cache size
increases, partic~~larly with f o ~ ~ r (:PUS.

kl
0

3,
KEY:

1 CPU
4CPUs

Performance Counter Profiles

- 20 0 20 40 60 80 100 120
PERCENT IMPROVEMENT

The figures in this section, Figures 1 7 through 22,
sho\v the p ~ r f o r m ~ ~ u c e statistics collcctcd using
the built-in A l p h ~ 21 164 pcrformancc counters on the
AlphaServer 4100 5/400 system. These hardware
~no~i i to r s collect various events, including the number
and type of instructions issued, multiple issues, single

issues, branch mispredictions, stall components, and
cache mis~es.". '~. '~ These statistics are usetill for analyz-
ing the system behavior i~ndcr various workloads.
The results of this analysis can bc irscd by computer
architects to drive hardware design trade-oft;; in h tu re
system designs.

The SPEC95 cyclcs per instruction (CPI) data
presented in Figure 1 7 shows lower (:PI v a l ~ ~ e s for
thc intcgcr benchmarks (CPI values of 0.9 to 1.5)
than for tlie floating-point benchmarks (CPI valucs
of 0.9 to 2.2). The CPI in co~nmercial worldoads
(e.g., TPC-C) is higher than in the SPEC bcnch-
marks, primarily bccausc commercial \vorldoads have
a higher stall time, as sJ1o\\r11 in Figure 18. Note
that the perfor~na~ice counter statistics were collected
with four Cl'Us running TPC-C (with a Sybase data-
base), \vhile SPEC95 statistics \ifere collecteci o n a
single CTU.

The Alpha 21 164 has nilo integer and niro floating-
point pipelines and is capable of issuing up to four
instructions simultaneously. Thc integer pipeli~ic 0
esccutcs arithmetic, logical, load/storc, and shift
operations. The integer pipeline 1 esecutes arithmetic,
logical, load, and branch/jump operations. The
floating-point pipeline 0 esecutes add, subtract,

l>igit.ll I'cchnic.~l Jot~r~lal \'uI. 8 No. 4 1996 13

1 2 3 4
NUMBER OF CPUs

SPARSE LINPACK

KEY:

ALPHASERVER 4100 51300E
ALPHASERVER 41 00 51300
ALPHASERVER 4100 51400
ALPHASERVER 8400

Figure 15
Spnrsc LINI'ACK I'cl.Fo1.11i3ncc

IBM RSl6000 390 P
PlXAR RENDERMARKS

SGI CHALLENGE R4400
(200 MHz)

SUN SPARCSTATION 20
(1 00 MHz)

ALPHASERVER 51400 4100 11'
ALPHASERVER 4100

51300

ALPHASERVER 4100
5MOOE

I
0 500 1,000 1,500 2,000 2,500

RENDERMARKS

KEY:

1 CPU
4 CPUs

Figure 16
Image Rendering I'crforniancc

compare, and floating-point branch instructions. T h c and dual issuing. TI-iplc ancl q ~ l a d issuing is noticcable
floating-point pipclinc 1 cscc~l tcs multiply instruc- i l l sc\rcral floating-point benchmarl<s, but, on a\,crapc.,
tions. T h e timc distribution illustrated in Fig~11.e 18 o111y 3 p c ~ c c l i t o f the rimc is spcnt o n triple and q ~ ~ n c l
indicates that most o f t h c issuing time is s p u i t in single issuing in the SPEC4795 bcnclima~.lts.

14 Digital Tcchnillal J o u l - ~ i ; ~ l \/ol. X No. 4 1996

CPI
I

TPC-C 11
SPECINT95

VORTEX

M88KSIM

IJPEG

GO

GCC

COMPRESS L
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

CYCLES PER INSTRUCTION

SPECFP95

WAVE5

TURB3D

TOMCATV

SWlM

SUPCOR

MGRlD

HYDROPD

FPPPP

APSl

APPLU

Figure 17
SPEC95 Cycles-per-instruction Comparison

,
'
I

I

I

TlME DISTRIBUTION

TPC-C 1
SPECINTO5

VORTEX

PERL . = -
M88KSIM . = -

LI .
IJPEG -

GO . I
GCC

COMPRESS

APPLU 1-1 . FROZEN STALL

SPECFP95
WAVE5

TURB3D

TOMCATV

0% 20°h 40% 60% 80% 100%

TlME

5 -
3

Figure 18
Issuing and Stall Time

SWIM W KEY:

SUPCOR

MGRlD
- SINGLE ISSUE

HYDRO2D - - DUALISSUE

FPPPP - - TRIPLE ISSUE

W QUAD ISSUE
APSl . DRY STALL

The stall time (dry plus frozen stalls in Figure 18)
is higher in the floating-point benchmarks than in
the integer benchmarks and higher in the TPC-C
benchmarks than in the SPEC95 benchmarks. Dry
stalls include instruction stream (I-stream) stalls
caused by the branch mispredictions, progralii counter
(PC) mispredictions, replay traps, I-stream cache
misses, and exception drain. Frozen stalls include data
stream (D-stream) stalls caused by D-stream cache
misses as well as register conflicts and unit busy. Dry
stalls are higher in SPECint95 and TPC-C (mainly
because of I-stream cache misses and replay traps),
\vliereas frozen stalls are higher in SPEC$95 and
TPC-C (mainly because of D-stream cache misses).

The Alpha 21 164 microprocessor reduces the per-
formance penalty due to cache misses by implement-
ing a large, 96-KB on-chip S-~ache.~. ' This cache is
three-\\ray set associative and contains both instruc-
tions and data. The four-entry prefetch buffer allo\vs
prefetcliing of the nest four consecutive cache blocks
on an instruction cache (I-cache) miss. This reduces
tlie penalty for I-stream stalls. The six-entry miss
address file (IMAF) merges loads in the same 32-bytc
block and allo\\s servicing n~ultiple load misses \\it11
one data f i l l . A sis-entry \\)rite buffer is used to reduce
the storc bus traffic and to aggregate stores into
32-bytc blocks."'

F i g ~ ~ r e 19 shows the instruction lnis in SPEC95.
The Alplla instructions are grouped into the follo\\,ing

categories: load (both floating-point and integer),
store (both floating-point and integer), integer (all
integer instructions, excluding ones ~vitli only R3 1 or
literal as operands), branch (all branch instructions
including unconditional), and floating-point (escept
floating-point load and store instructions). F i g ~ ~ r e 19
shows tlie percentage of instructions in each category
relative to the total number of instructions executed.
Note that load/store instructions account for 30 to
40 percent of all instructions issued. Integer instruc-
tions are present in both integer and floating-point
benchmarks, but no floating-point instructions exist in
the SPECint95 and commercial TPC-C \vorkloads.
The integer and commercial workloads execute liiore
branches, while tlie branch instructions make up only
a fen1 percent of all instructions issued in the floating-
point workloads.

The cache misses shown in F i g ~ ~ r e 20 are higher
in the floating-point benchmarks t h a ~ l in the inte-
ger benchmarks. The I-cache misses arc lo\\^ in the
floating-point benchmarks (except for +ppp) and
higher in tlie SPECint95 benchmarks and tlie T I T - C
benchmark. The D-cache misses are high in the major-
ity of'tlie benchmarlzs, which indicates that a larger D-
caclic \\10~1ld reduce D-stream misses. The TPC-C
bcnchniark \\IOU Id benefit from a larger S-caclic and
faster 13-cache, since the number of S-cachc misses is
high. The R-cache misses are negligible in the
SI'kCint9S benchmarks and higher in the majority of

INSTRUCTION STATISTICS

TPC-C

SPECINT95 9
VORTEX -

PERL

M88KSIM - = I
LI . L

IJPEG -
GO -

GCC 1
COMPRESS -

SPECFP95 -
WAVE5 - -

TURBBD - I
TOMCATV I

SWIM I I
SUPCOR 0 KEY:

MGRlD
STORES

HYDROPD LOADS
FPPPP

.PSI -> INTEGER OPERATIONS
FLOATING-POINT OPERATIONS

APPLU BRANCHES

0% 20°A 40% 60% 80°h 100%
INSTRUCTIONS

Figure 19
SPEC95 Insrr~~ction Profiles

CACHE MISSES

TPC-C C

SPECINT95

VORTEX

IJPEG

GO

GCC
COMPRESS

Figure 20
Caclie Misses

SPECFP95

WAVE5

TURBBD I

TOMCATV -
SWIM L

SU2COR

MGRlD - KEY:

HYDR02D

the SPECFp95 TPC-C benchrnarlzs. This data indicates
that complex commcrcial worldoads, such as TPC-C,
are more profoundly affected by the cache design than
simpler workloads, such as SPEC95.

The replay traps are generally caused by (1) full
write-buffer (WB) traps (a full write buffer when a
store instruction is executed) and full miss address file
(MAE') traps (a ful l RIM when a load instruction is
executed); and (2) load traps (speculative esecution of
an instruction that depends on a load instruction, and
the load misses in the D-cache) and load-after-store
traps (a load following a store that hits in the D-cache,
and both access the same l ~ c a t i o n) . ~ The replay traps
and branch/PC mispredictions shown in Figure 21
are not the major reason for the high stall time in the
commercial worldoads (TPC-C), since traps and mis-
predictions are higher in some of the SPECint95
benchmarks than in TPC-C. Instead, a high number of
cache misses (see Figure 20) correlates well with the
high stall time and CPI (see Figure 17) in TPC-C.

Figure 22 shows the estimated stall components 111
SPEC95 and TPC-C. A time-allocation model is used to
analyze the performance effect of different stall compo-
nents. The total esecution time is divided into two com-
ponents: the compute component (where the CPU is
issuing instructions) and the stall component (where

FPPPP

APSl

APPLU

the CPU is not issuing instructions). The stall co~npo-
nent is further divided into the dry and fi-ozen stalls:

I-CACHE MISSES
D-CACHE MISSES
S-CACHE MISSES
B-CACHE MISSES

time = compute + stall
conlpute = single + dual + triple + quad issuing
stall = dry + frozen

0 50 100 150 200
CACHE MISSES PER 1,000 INSTRUCTIONS

dry = branch mispredictions + PC mispredictions
+ replay traps + I-stream cache misses
+ exception drain stalls

frozen = D-stream cache misses
+ register conflicts and unit busy

The branch and PC mispredictions affect the per-
formance of SPECint95 wvorkloads (6 percent of the
time is spent in branch and PC mispredictions in
SPECint95) and have little effect on the performance
of SPECFp95 \vorldoads (less than 1 percent of the
time) and the TPC-C benchmark (1.4 percent of
the time). The SPECint95 worlcloads are affected pri-
~narily by the load traps, whereas the SPEC@95
benchmarks are affected by both load and i'VB/MAF
traps. Note that the time spent on a load replay trap
is overlapped with the load-miss time.

The S-cache and B-cache stalls are high in the
SPECfp95 and TPC-C benchmarks, where the stall
time is dominated by the B-cache and memory laten-
cies. Note the high stall time resulting from waiting for

Digital Tcchnical Journal

. , .- -
Vol. 8 No. 4 1996

REPLAY TRAPS AND BRANCH MlSPREDlCTlONS
I

TPC-C I

SPECFP95 -
WAVE5 rn

TURB3D rn
TOMCATV rn

SWIM rn
SUPCOR rn

MGRlD -
HYDROPD - -

FPPPP =
APSl 0

APPLU . -
0 10 20 30 40 50 ,, 70 80

REPLAY TRAPS AND BRANCHIPC MlSPREDlCTlONS
PER 1.000 INSTRUCTIONS

SPECINT95

VORTEX

PERL

M88KSIM

KEY.

LDU REPLAY TRAPS
WBIMAF REPLAY TRAPS

W BRANCH MlSPREDlCTlONS
PC MlSPREDlCTlONS

LI

IJPEG

GO

Figure 21
Rcplay Traps and BI.~IICII/PC Mispredictio~~s

-

SPEC95 STALLTIME COMPONENTS

GCC -
COMPRESS -

TPC-C c
SPEClNT95

VORTEX

M88KSIM

LI

IJPEG PERL GCC GO E
COMPRESS r

SPECFP95 -
WAVE5 -

TURBBD -
TOMCATV - I

SWIM - U
SU2COR - -

I

0 10 20 30 40 50 60 70 80 90 100
PERCENT OF TOTAL TIME

KEY:

1 BRANCH AND PC
MlSPREDlCTlONS

W LDU REPLAY TRAPS
WBIMAF REPLAY TRAPS

I I-CACHE MlSS TO S-CACHE
D-CACHE MlSS TO S-CACHE
S-CACHE MlSS TO 0-CACHE
B-CACHE MlSS TO MEMORY
REGISTER CONFLICT AND
UNIT BUSY

Figure 22
Esrirnatcd Stall Tinie Distribution

18 Dipi l~l Tcclin~cal Journal

data from memory (close to 40 percent) in se\ieral of
the SPECfp95 benchniarlts that d o not fit in a 4-MU
cache. Although it contributes to the high SPEC@95
stall time, the memory component has a negligible
effect on SPECint95 performance, since these bench-
marks generate only a small number of B-cache ~nisses
(see Figure 20). Figure 2 2 indicates that stalls caused
by cache misses are the largest component of the total
stall time; therefore, reducing cache misses and
improving cache and memory latencies \vould yield
the largest performance benefit.

Once calibrated and validated with measurements,
this model is an effective tool for evaluating the perfor-
mance impact of various components on the overall
system design. System architects can vary parameters,
like the cache or Ii1emory access times or cache size,
and adjust the appropriate stall component to predict
performance of alternative designs without carrying
out detailed and often time-consuming architectural
simulations.

Conclusion

Using several performance rnetrics and a variety of
workloads, we have demonstrated that the DIGITAL
AlphaServer 4100 family of midrange servers provides
significant p e r f o r ~ ~ ~ a n c e improvements over the
pre\/ious-generatio11 AlphaServer platform and pro-
vides performance leadership compared to the leading
jndustry vendors' platforms. The ~najor Alphaserver
4100 performance strengths are the lo\v memory and
1/0 latency and high memorp bandwidth, the large-
memory support (VL,M), and the fist Alpha 21164
microprocessor. The work described in this paper has
led to design changes that are expected to be imple-
mented in future versions of the Alphaserver 4100
platform. The anticipated performance benefits will
come from a faster CPU, faster and larger caches, faster
memory, and improved memory bandwidth.

Acknowledgments

The authors would like to aclcnowledge the contribu-
tions of John Shaltshober, Dave Stanley, Greg Tarsa,
Dave Wilson, Paula Smith, John Henning, Michael
Delaney, and Huy Phan for providing many of the
benchmark measurements. In addition, special thanks
g o to Maurice Steinman, Glenn Herdeg, and Ted
Gent for dedicating system resources and to Masood
Heydari for supporting this work.

References

1. G. Herdeg, "Design and Implementation of the
AIphaServer 4100 CPU and Memory Architecture,"
Digital Technical Jot~rnal, vol. 8, no. 4 (1996, chis
issue): 48-60.

2. IM. Steinman, G. Harris, A. I<oce\l, V. Lamerc, and
R. I'annell, "The AlphaSer\ter 4100 Cached Processor
Module Architecture and Design," Digit611 Technical
,/oz/rncrl, vol. 8 , no. 4 (1996, this issue): 21-37.

3. Alpha 21 164 Micr-oprocessor Hal-du:nre Reference
&l~lnual (Maynard, mass.: Digital Equipment Corpo-
ration, Order No. EC-QAEQA-TE, 1994).

4. J . Edmondson, P. Rubinfeld, and V. Rajagopalan,
"Superscalar Instruction Execution in the 2 1 164
Alpha Microprocessor," IEEE micro, vol. 15, no. 2
(April 1995).

5. R. Sites, cd., Abha Arcbitectr,rre Refererlce il4cliz/ual
(Burlington, Mass.: Digital Press, ISBN 1 -55558-098-X,
1992).

6. SPEC95 Benclimarlts (A4anassas, Va.: Standard Pcrfor-
mance Evaluation Corporation, 1995).

7. 1. Dongarra, "Perfornlallce of Various Computers
Using Standard Linear Equation Sofn\fareW (Oak
Ridge, Te~in.: Oak Ridge National Laboratory, 1996).

8. UNIX System Price Pe~forma?zce G~llde (Menlo Park,
Calif.: AIM Technology, Summer 1996).

9. J. Gray, ed., fie Handbook ,for Dalahase and
Transaction Processing S~stenzs (San Mateo, Calif.:
Morgan Kauffiiian, 199 1).

10. Information a b o ~ ~ t the l~iibcnch suite of benchmarks
is available a t littp://realit)r.sgi.co~n/c~nployees/
Im~e~igr/lnibcncIi/~~~Ii~tis_lmbciicl~.l~t~~il.

11. The STILEAM benchmark program is described
on-line by the University of Virginia, Department
of Computer Science (Charlottesville, Va.) at
l~ttp://w~%\~.cs.\~irginia.ed~~/stream.

12. The Standard Performance Evaluation Corporation
(SPEC) makes available submitted results, benchmark
descriptions, background information, and tools at
http://un\%\~.specbench.org.

13. Information about the Transaction Processing
Performance Council (TPC) is a\lailable at http://
\w\\', rpc.org.

14. Information about system performa~ice benchmarking
products from AIM Technology, Inc. (1Menlo Park,
Calif.) is avajlable at http://\\%vw.airn.crom.

15. Infornlation about Pixar Animation Studio's
l<enderMark benchmark is available at http://
www.europe.digital.com/info/alphaserver/~~e~~~s/
pixar.html.

16. Z. Cvetanovic and D. Bhandarkar, "Characterization
of Alpha A)(P Perfonnance Using TP and SPEC Work-
loads," f ie 21st Annzral Intcr~zational Symposiun?
on Cot?zputerArchitectr~?.e (April 1994): 60-70.

17. Z. Cvetanovic and D. Bhandarltar, "Performance
Characterization of the Alpha 21 164 Microprocessor
Using TP and SPEC \Vorkloads," n3e Secorzd
International S~mposium on High-Performance
Computer Architecture (February 1996): 270-280.

Digtal Technical journal Vol. 8 No. 4 1996

Biographies

Zarka Cvetanovic
A consulting c ~ ~ g i n c s r in DIGITAL1s Server l'roduct
Dc\clopmcnt Group, Zarka C\ttanovic \vas responsible
for the pcrformancc characterizario~i and analysis o f t h e
NphaScl.\cr 4100, AphaSe~vcr 8400/8200, AlphaSener
2 100, DEC: 7000, \'AS 7000, and VLY 6000 systems, and
for thc pcrlbrmancc n ~ o d e l i ~ i g and definition o f h t u r e
AphaSer\.er platforms. Since joining IXGITAL in 1986,
slic h3s bcco ir~\rol\,ed in the de\.clopment of Fast database
applications and cflicicn~ pal-allcl .~pplications for niulri-
psocc\hol. s\.stems. Znrkn recci\.ed ,I 1'11.1). in elcctric~l a i d
coniputcr engineering fi.0111 tlic University of I\.lnss~cliusctts,
Amhcl-st. Slic has p~~blisllcd o\-cr a doze11 tcclinical papcrs
at coniputcr architec~urc confcrrnccs and in leading indus-
tr!. journals.

Darrel D. Donaldson
Darrel Donaldson is a senior c o ~ i s u l t i n ~ engineer and
the technical leader and enginccri~ig nl.inciger for the
AlphaSer\,cr 4100 project. H e joined DIGITAL in 1983
and servcd as the lead tcchnolog~si for the VAX 6000,
VAX 7000, AlpliaSer\~cr 7000, and Alphaserver 4100
projects. Dnrrel \ i s a Lmchelor's degree in mathematics/
physics born Miami University and a master's degree
i l l elcctricnl engineering from Cincinnati University,
Cincinnati, Ohio. H e holds 12 patents and has 10 patcnts
pending, all related to protocols, signal integrity, and chip
transcci\.rr design for niultiproccssor systems and 11011-

volatile memory chip design. 1)clrrel maintains meniber-
ship in rhc IEEE Electron Devices Society and the
Solid-State Circuits Society.

20 Digital Technical Journal \'oI. 8 No. 4 1996

I
Maurice B. Steilunan
George J. Harris

The AlphaServer 4100 ~ndrej Icocev
Virginia C. Lanere

Cached Processor Module Roger D. Pan~le l l

Architecture and Design

'The DIGITAL AlphaServer 4100 processor module
uses the Alpha 21 164 microprocessor series com-
bined with a large, module-level backup cache
(6-cache). The cache uses synchronous cache
memory chips and includes a duplicate tag store
that allows CPU modules to monitor the state
of each other's cache memories with minimal
disturbance to the microprocessor. The synchro-
nous 6-cache, which can be easily synchronized
with the system bus, permits short B-cache
access times for the DIGITAL AlphaServer 4100
system. It also provides a smooth transition
from accessing the 6-cache to transferring data
to or from main memory, without the need for
re-synchronization or data buffering.

The DIGI-rA1,AlphaScrvcr 4100 series ofser\lers reprc-
scnts thc third gcncration of Alpha ~nicroprocessor-
based, mid-range computer s!lstcms. Anlong the
technical goals achic\,cd in the systcln design \\.ere thc
use offour Cl'U modules, 8 gigabytes (GR) of memory,
ancl partial block \\,rites to improve I/O performance.

Unlil<e tlic prc\,ious generation of mid-range scrvc~-s,
the AlpliaSer\~cr 4100 series can accommodate four
processor modules, while retaining the maximum
memory capacity. Using multiple CPUs to share the
workload is kno\vn '1s symmetric ~nultiproccssing
(SbIP). As more (:PUS arc added, the perfor~nancc
of an SMP system incrcascs. This ability to increase
performance by adding CPUs is known as scalability.
To achieve perfect scalability, the pcrfonnance of k)ur
CPUs ~vould lia\,c to be exactly four timcs that ofa sin-
gle CPU system. One o f tlic goals of tlic dcsjg~i .i\,as to
keep scalability as high as possible yet consistent \\lit11
low cost. For example, the AlphaServer 4100 system
achievcs a scalability tiactor of 3.33 on the Linpack
1000 x 1000, a Inrgc, parallcl scientific bcncl~mark.
The salnc benchmarl< achieved 3.05 scalability o n tlic
previous-gcncmtio~i platform.'

The 8-GB memory in the AlphaScr\~er 4100 system
represents a factor of f i) ~ ~ r i~npro\rcment compared with
the previous generation of mid-range scr\rers.' Thc new
memory is also bster in tcrnis of tlic data voJu~iic f l o \ \ r -
i ~ i g o\'cr the bus (band\vidth) and data access time
(latency). Again, compared \\fit11 the previous gcnera-
tion, available Incmor!l bandwidth is impro\,ed by a fac-
tor of 2.7 and latency is rcduccd by a hctor of 0.6.

In systems ofthis class, memory is usually addrcsscd
in large bloclts of 32 to 64 bytcs. This can be incffi-
cient when one o r nvo bytes need to be modified
because the entire block might haw to be read out
from nicmory, ~iiodificd, and then \witten back into
nlemory to achic\lc this minor modification. The abil-
ity to modit$ a small 6-action of the blocl< \\/itliout ha\,-
ing to extract the entire block fiom memory results in
partial block writes. This capability also represents an
advancc over tlic pre\~ious gcncration of servers.

To take f i l l 1 advantage oftlic Alplia 21164 series of'
rnicroproccssors, a ncn aystc~ii ~ L I S \\!as needed. The bua
used in tlic prc\,ioi~s gcner .~~io~i of ser\!crs was not bst

enough, and the cost and size of the bus used in high-
end servers was not adaptable to mid-range scrvcrs.

Three separate teams worlced on the project. One
team defined thc system architecture and tlie system
bus, and designed thc bus co~itrol logic and the mem-
ory ~nodules .~ The second team designed the periph-
eral interface (I/O), which consists of the Peripheral
Component Interconnect (PCI) and the Extended
Industry Standard Architecture (EISA) buses, and its
interface to the system bus (V O bridge).' The third
team designed the CPU module. The remainder of
this paper describes the CI'U module design iu detail.
Bcfore delving into the discussion of the CPU module,
however, it is necessary to briefly describe how the sys-
tem bus hnctions.

The system bus consists of 128 data bits, 1 6 check
bits with the capability of correcting single-bit errors,
36 address bits, and somc 30 control signals. As many
as 4 CPU n~odules, 8 memory modules, and 1 1 / 0
module plug into the bus. The bus IS 10 inches long
and, with all nlodules in place, occupies a spacc of
1 1 by 1 3 by 9 inches. Wid1 power supplies and the
console, the entire system fits into an enclosure that is
26 by 12 by 17.5 inches in dimension.

CPU Module

Tlie CPU module is built around the Alpha 21 164
microprocessor. The module's 1iia1n k~nction is to
provide an extended cache memory for the rnicro-
processor and to allow it to access the system bus.

The microprocessor has its ow7n internal cache
memory consisting of a separate primary data cache
(D-cache), a primary instruction cache (I-cache), and
a second level data and instruction cache (S-cache).
These jnternal caches are relativel~r small, ranging in
size from S k~lobytes (ICB) for the primary caches to
9 6 I(R for the secondary cache. Although the internal
caclie operates at microprocessor speeds in the 400-
megahertz (MHz) range, its small size would limit
performance in most applications. To remedy this, the
microprocessor has the controls for an optional cxter-
nal cache as large as 6 4 megabytes (MR) in size. As
implemented 011 tlie CPU module, the external cache,
also known as the baclcup cache or B-cachc, ranges
from 2 MB to 4 MD in size, depending on the size
of the memory clips used. In this paper, all references
to the cache assume the 4-MB implementation.

The cache is organized as a physical, direct-mapped,
write-back cache with a 144-bit-wide data bus consist-
ing of 128 data bits and 1 6 check bits, which matches
the system bus. The chcck bits protect data integrity
by providing a means for single-bit-error correction
and double-b~t-error detection. Aphysical cache is one
in which the address used to address the caclie mem-
ory is translated by a table inside the microprocessor
that converts sofhvare addresses to physical memory

locations. Direct-mapped refers to the way the cache
memory is addrcsscd, in which a subsct of the physical
address bits is uscd to uniquely place a main memory
location at a particular location in the cache. When the
~nicroprocessor modifies data in a write-back cache, it
only updates its local cache. Main memory is updated
later, when the cache block needs to be uscd for a dif-
ferent menlory address. When the microprocessor
needs to access data not stored in the cache, it perfor~ns
a system bus transaction (fill) that brings a 64-byte
block of data from main memory into thc cache. Thus
the cache is said to havc a 64-byte block size.

Two types of cache chips are in common use in
modern computers: synchro~ious and asynchronous.
The synchronous memory chips accept and deliver
data at discrete times linked to an external clock. The
asynchronous memory elements respond to input
signals as they arc received, without regard to a clock.
Cloclted cache memory is easier to interface to tlie
clock-based system bus. As a result, all transactio~is
hvolving data flowing from the bus to the cache (fill
transactions) and from the cache to the bus (write
microprocessor-based system transactions) are easier
to implement and faster to execute.

Across the industry, personal computer and server
vendors havc moved from the traditional asynchro-
nous caclie designs to the higher-performing synchro-
nous solutions. Small synchronous caches provide
a cost-effective performance boost to personal com-
puter designs. Server vendors push synchronous-
memory technology to its limit to achieve data rates
as high as 200 MHz; that is, the cache provides new
data to the microprocessor every 5 ~ianoseconds."~
The AlpliaServer 4100 server js 1)lGITAL's first prod-
uct to employ a sy~ichronous module-level cache.

At power-up, tlie cache contains no uschl data,
so the first Iiiemory access the microprocessor
makes results in a miss. In the block diagram shown
in Figure 1, the microprocessor sends tlie address out
on nvo sets of lines: the index lines connected to thc
cache and the address lines connected to tlie system
bus address transceivers. One ofthe cache chips, called
the TAG, is not used for data but instead contains
a table ofvalid cache-block addresses, each ofwhich is
associated with a valid bit. Whrll tlie microprocessor
addresses thc cache, a subset of the high-order bits
addresses tlie tag table. A miss occurs when either of
the following conditions has been met.

1. Tlie addressed valid bit is clear, i.e., there is n o valid
data at that cache location.

2. The addressed valid bit is set, but the block address
storcd at that location does not match the address
requested by the microprocessor.

Upon detection of a miss, the microprocessor
asserts the READ MISS command on a set of four
command lines. This starts a sequence of events

22 Digital Technical Journal Vol. 8 No. 4 1996

I
I

I

I BUS ARBITER I

TAG RAM

DATA RAMS

I
I
I INDEX I PROGRAMMABLE I / I
14 LOGIC / WRITE ENABLE. I - 1

OUTPUT ENABLE ~ ~ ~ ~ ~ ~ $ E s S O R
4

I
I I
I I ASIC (VCTY)
I I
I ------ ------ J

t
SYSTEM
ADDRESS
AND

144-BIT COMMAND
DATA BUS SNOOP

ADDRESS

DATA TRANSCEIVER ADDRESS TRANSCEIVER

t
A C C \

SYSTEM BUS

Figure 1
CPU 1Modulc

that results in tlie address being sent to the system bus.
The mcrnory rcccivcs this addrcss and after a delay
(~ n c ~ n o r y latency), it sends the data o n the system bus.
L3'1ta transcci\icrs on the C1'U ~nodu lc rccci\lc the
data and start a cache f i l l transaction that results in
64 bytes (a cache block) being written into the cache
as bur conseci~tive 128-bit words with their associated
check bits.

In an SMP system, two or more (:PUS may have the
same data in their cache memories. Such data is known
as shared, and the shared bit is set in the TAG tbr that
address. The cache protocol used in tlie AlphaScrvcr
4100 scrics ofservers allows each <:PU to modi$ entries
in its o\vn cachc. Such modificd data is known as dirty,
and the dirty bit is set in the TAG. Ifthc data about to be
modified is shared, liowc\~cr, the microprocessor rcsets
the sharcd bit, and other CPUs invalidate tliat data in
their own caches. The need is thus apparent for a \vay
to Ict all Cl'Us keep track of data in other caches. This
is acco~liplislicd b y the process known as snooping,
aided by several dedicated bus signals.

To bcilitatc snooping, a separate copy of thc TAG is
niaintainccl in a dedicated cache chip, callcd duplicate
tag o r DTAG. DTAG is controlled by an application-
specific integrated circuit (ASIC) cal led VCTY. VCTY
and 1)TAG arc locatcd nest to each other and in close
proximity to the address transcci\icrs. 'Their timing is
ticd to the system bus so that the addrcss associated
\\11tIi a bus transaction can eas~ly be applied to thc
DTAG, which is a synchronous memory device, and
the state of the cachc at that address can be read out.
If that cachc location is valid and the address that is
stored in the DTAG matches that of the system bus

commalld (a hit in DTAG), tlie signal MC-SHARED
may be asserted on the system bus by VCTY. If that
location has been modified by the microprocessor,
then MC-DIltTY is asserted. Thus each CPU is aware
of the state of all the cachcs o n the system. Other
actions also take place on the module as part of this
proccss, which is explained in greater detail in the sec-
tion dealing specifically with the VCTY.

Because of the write-back cache organization, a spe-
cial type of miss transaction occurs when new data
needs to be stored in a cachc location that is occupied
by dirty data. The old data 11eeds to bc put back into
the main memory; otherwise, the changes tliat the
microprocessor madc will be lost. The process of
returning that data to memory is called a victim writc-
back transaction, and the cache location is said to be
victimized. This process imrolves moving data ou t of
the cache, through the system bus, and into the main
memory, follo~ved by new data mo\ing fro~ii the niain
memory into the cachc as in an ordinary f i l l transac-
tion. Completing this f i l l quickly reduces the tirnc that
the microprocessor is waiting for the data. To speed up
this process, a hardware data buffer on the module is
used for storing the old data while the new data is
being loaded into the cachc. This buffer is physically
a part oftlic data transceiver since each bit of the trans-
ceiver is a shift register four bits long. One hundred
twenty-eight shift registers can hold the entire cachc
Iblock (512 bits) of victim data while the new data is
being read in through the bus receiver portion of tlie
data transceiver cliip. In this manner, the microproces-
sor does not have to wait until the victim data is trans-
ferred along the system bus and into the main memory

Digital Technical lournal

before the fill portion of the transaction can take place.
When tlie f i l l is complctcd, tlie \victim data is shifted
O L I ~ of the ~ic t i ln buffer 2nd into tlie main nicniory.
This is 1<1io\~1i 3s 311 c~c l i a~ igc , since the victim \\trite-
buck and f i l l tra~isactio~is execute o n the system bus iu
reverse of the order that was initiated by the micro-
processor. The transcci\ler has a signal called BYPASS;
when asserted, it cairscs three of tlie four bits of the
victim shift register to be bypassed. Consequently, ti,r
ordinary block \\'rite transactions, the transcei\vr opcr-
atcs \\~ithout in\~olving tllc \,icti~n buffer.

B-Cache Design

As previously mentioned, the 13-cache uses syncliro-
nous random-access memory (RAM) devices. Each
device requires a clock that loads signal inputs into
a register. The RAM operates in the registered input,
f low-tl iro~~gh o ~ ~ t p ~ ~ t mocic. Tliis means that an input
flip-flop captures addrcsscs, write enables, and \\trite
data, 17~1t the interlial RAM 3rr3y clri\res read o ~ ~ t p u t
data directly as soon as it becomes available, \vitIiout
regard to tlie clock. The output enable signal acti*atcs
RAM output drivers as!~ncIirooo~~sl!; independently of
the clock.

O ~ i e of the hndarncntal properties of clocked logic
is tlic requirement fix the data to be prcscnt for s o ~ i ~ c
defined time (setup ti~iic) lxforc tlic clock cdgc, and to
remain unchanged for another interval follo\\~i~ig the
cloclc edge (l~old time). Ob\!iousl)~, to meet tlic setup
tinic, tlie clock must arrive at the RAM some tinic ahcr
the data or otlicr signals lwxicd by the RAM. To help
tlic module designer meet this rccluirement, the micro-
processor may dclay tbc RAM clock by one internal
microprocessor cyclc time (;ipproxi~nately 2.5 nanoscc-
onds). A programmnblc register in the microprocessor
controls \\~lietlier or not tliis cielay is invoked. 'l'his
dclay is ~ ~ s c d in the AlplinScr\~cr 4 100 series Cl'U mod-
ules, iind it eliminates the nccd ti)r external delay lines.

For increased data bandwidth, the cache chips used
on CPU modules are dcsigncd to o\,erlap portions of
succc.ssi\.e data accesses. The first data block becorncs
available at the microproccssor input after a delay
cclnal to tlie BC-READ-SPEED parameter, which is
preset at p ~ \ \ ~ e r - i ~ p . Tlic follo\\~ing data bloclts arc
latclicd after a shol.tcr delay, RC:-1IEAD-SPEED-
WAVE. Thc HC-l<E,4D-SI'EF.l) is set at 10 micro-
processor cycles and the WAVI: value is set to 4, so that
B(:-IWAl>-SI'EED-WAVL is 6. Tlius, after t l ~ c first
dclay o f 10 microprocessor cycles, successive data
blocks are de l i \~ red every 6 microprocessor cycles.
Figure 2 illustrates thcsc concepts.

In F i g ~ ~ r e 2, tlie RAM clock at the ~nicroprocessor is
dclnycd by one microproccssor cycle. The 1 W cloclt
at the RAM dc\rice is f~ r t l i c r delayed by clock buffer
and nct\\.ork delays on the modulc. The address at tlic
microprocessor is drivcn whcrc the clock would have

occurred liad it not been delayed by one microproces-
sor cyclc, and the address at thc lWiM is fi~rtlier delayed
by indcs buffer and nenvork ticlays. Index setup at the
1<AM satisfies the ~iiinim~um setup time rccluired by the
chip, and so does address Iiold. Data is shown as
appearing after data access time (a chip property), and
data setup at the microprocessor is also illustrated.

VCTY

As cicscribed earlier, a duplic.ltc cop!(of the micro-
processor's primary TAG is maintained in the 1)TAC;
RAM. If L3TAG \irerc not present, each OLIS address
\vould have to be applied by the microprocessor to the
TAG to decide if the data at tliis address is present in
the R-cache. This activity would impose a very large
load on the ~nicroprocessor, tli~rs r c d ~ ~ c i n g the amount
of usefill work it could pcrfonn. Tlie main purpose of
tlie 1)TAG and its supporting logic contained in the
V(:TY is to relie\,e the microproccssor fiom having to

csamine each address prcscntcd by tlie system bus.
The microprocessor is only interrupted \\,hcn its pri-
mary TAG ~i ius t be ~ ~ p d a t c d or \\.lien data must be
pl-ovidcd to satisfi the bus recluest.

VCTY Operation
Tlic VCTY contains a system bus interface consisti~ig of
the system bus co~iimand anci adcircss signals, as well as
somc system bus control signals rcq~~ired for the VCTY
to monitor each system bus tr.uisaction. There is also
an intcrhce to the microproccssor so that the VCTY
can send commands to the microproccssor (system-to-
< Y U commands) and monitor tlic co~iimands and
addrcsscs issued by the microproccssor. Last but not
least, a bidirectional interface bcnvecn thc VCTY and
the DTAG allo\vs only tliosc system bus addresses that
rccluirc action to reach the microproccssor.

Wliilc monitoring the system bus for commands
from otlicr nodes, the V<TY cliccks for matches
bct\-\~ccri the recei\,cd system bus addrcss and the data
from the DTAG lookup. A 1WAG lookup is initiated
an!~time a valid system bus addrcss is received by the
 nodule. Tlie 1)TAG location for the lookup is sclcctcd
by using s)lsteni bus Addrcssc2 1 :6> as the indcs into
the DTAG. If thc DTAG locatio~i liad pre\~iously bccu
marlted \lalid, ancl there is a ~iintcli bet\vccn the
~.ccci\~cd system bus Addrcss<38:22> and the data
from the IYTAG lookup, then the block is present in
the microprocessor's cachc. Tliis sccllario is called a
cache hit.

In parallel \vith tliis, the V<:TY decodes the rcceiveo
system bus command to dctcrminc thc appropriate
~ ~ p d a t e to the DTAG and dctcrminc tlic correct system
b i ~ s rcsporise and CI'U command nccdcd to mdintain
s!!stcm-wide cachc coherency. A fe\\~ cases are illus-
trated here, without any attempt at 3 co~nprehensi\~e
discussion of all possible transactions.

10 i 6 1 6 6 + MICROPROCESSOR j = +-;-!
CYCLES

HOLD AT MICROPROCESSOR i
. . . F O R D A T A ; ; ; ; ; ; ; ; i i i

.
DATA AT DATA 0 DATA 1 DATA 2 DATA 3
MICROPROCESSOR : : : : : : : : : : : : : : : : :

Figure 2
(:3chc I<cad .Cra~~saction Sho\ving Timing

Assume that the DTAG sharcd bit is fi)und to be set
at this ;~ddrcss, the dirty bit is not set, and the bus
command indicates a write transaction. The DTAG
valid bit is then reset by the VCTY, and tlie ~iiicro-
processor is intcl-rupted to d o the same in thc TAG.

If thc dirty bit is found to be set, and the command
is a read, the M<:-DIRTY-EN signal is asserted o n thc
system bus to tell the c.)thcr C P U that tlic locntion it is
trying to ncccss is in cache and has bccn modified by
this C1'U. At tlie s,ume time, a signal is sent to the
1i1icrop~)ccssor rcc1~1esting it to S I I ~ ~ I ! , the modified
data to tlic bus so tlic other <:1'U can gct nn LIP-to-date
\~crsion of the clata.

If the address being csalnincd by tlic V<:TY \\,as
not sharcci in the DTAG and the trans?.t. c ~ o n was a
write, the valid bit is reset in t11c l>TAG, and 110 bus
signals arc generated. The ~iiicroproccssor is rcqucstcd
to reset the valid bit in the TAG. Ho\\lc\fcr, if the trans-
action \&Ins not a write, then shared is set ill the DTAG,
M(:-SHARED is asserted o n tlic bus, and a signal is
sent to the microprocessor to set sharcd in the TAG.

From these examples, it becomes ob\ious that only
transactioos that change the scate of the valid, shared, or
dirty TAG bits rcquire any action o n thc part of the

microprocessor. Since these transactions are relatively
infrequent, the DTAG saves a great deal of microproccs-
sor time and improves ovcrall system performance.

If the VCTY detects tliiit the command originatccl
from the microprocessor co-rcsidcnt on tlic ~nodulc,
then tlie block is not cliccltcd for a hit, but the com-
mand is decoded so that t l ~ c DTAG block is i~pclatccl
(if already valid) or allocated (i.c., marked valid, if not
already valid). I n the latter casc, a f i l l transaction f b -
lo\\ls ancl tlic V(:TY writes tlic valid bit into the TAG ;it
that time. The f i l l transaction is the onl), one for \\,hich
the VCTY \\,rites directly illto t l ~ c TAG.

All cycles of n system bus transilction are ~~i~nlL>ercd,
with cycle 1 being thc cycle in \\lIiich the system bus
address and command are valid o n the bus. The con-
trollers internal to VCTY rely on tile cycle numbering
scheme to rcmiiin synchronized with thc system bus.
By remaining synchronized with thc system bus, all
accesses to the DTAG and accesses from the VCTY to
the microprocessor occilr i l l fixed cycles relativc to the
system bus transaction in progress.

The index uscd for lookups to the DTAG is prc-
sented to the DTAG in cycle 1 of the system bus trans-
action. In the event of a hit requiring an update of the

Digid Technical journal Vol. 8 No. 4 1996

DTAG and primary TAG, the microprocessor interface
signal, EV-ABUS-RF.Q, is asserted in c2lcles 5 and 6 o f
that system bus transaction, u~i t l i the appropriate
system-to-CPU command being driven in cycle 6. The
actual update t o the DTAG occurs in cycle 7, as does
the allocation o f bloclts in tlie 1DTAG.

Figure 3 shows the timing relationship o f a system
bus command t o thc update o f the DTAG, including
tlie sending o f a system-to-CPU command t o tlic
microprocessor. T h e numbers along the top o f the
diagram indicate the cycle numbering. In c!lcle 1 ,
when the signal M<:-(:A-L goes lo\\/, the system bus
address is valid and is presented t o the DTAG as the
DTAG-INDEX bits. By the end o f cycle 2, the DTAG
data is valid and is cloclted into tlie VCTY \</here it is
checltcd for good parity 'ind a match u~itli the upper
received system bus address bits. In the event o f a hit, as
is the case in this example, the microprocessor interbcc
signal EV-ARUSpKEQ is asserted in c)icle 5 t o jndicdtc
that tlie VCTY will be driving the microprocessor com-
mand and address bus in the nest cycle. I n c)/cle 6 , the
address that was recei\rcd from the system bus is driven
t o the microprocessor along \\lit11 the SETSHARED
command. T h e microprocessor uses this command
and address to update the primary tag control bits for
that block. In cycle 7, the control signals 1lTAG-OE-I,
and DTAG-\El-L arc asserted low t o update tlie con-
trol bits in the DTAG, thus indicating that the block is
now shared by another module.

SYSTEM BUS
CYCLE NUMBER

DTAG Initialization
Aliotlier important fedt~~t-c built into the VC:R design
is cursory self-test and initialization of ' thc DTAG.
Atier s)~stcni reset, the VCTY \\)rites all locations o f the
DTAG wit11 a urlicluc data pattern, and then reads the
entire llTAG, comparing the ddta read versus \\/hat
was written and checking the parity. A second write-
read-compare pass is made using the inverted data pat-
tern. This inversion ensures that all 1ITAG data bits are
written and checked as both a 1 2nd a 0. 111 addition,
tlic second pass o f the initialization lca\,cs each block
o f the DTAG marked as invalid (n o t present in the
B-cache) and with g o o d parity. T11c entire initializa-
tion sequence takes approximately 1 millisecond per
megabyte o f cache and finishes bcfi)rc the micro-
processor co~nple tes its ~ c l ~ t c s t , avoiding special han-
dling by fir~~lcvare.

Logic Synthesis
T h e VCTY ASIC \\/as designed using thc Vcrilog
Hard\vare Description Language (H D L) . T h e use o f
H i I L enabled the design team t o begin bcha\rioral
simulations quickly t o start tlic d e b u g process.

In parallel ~ v i t h this, the Vcrilog code \vas loaded
into the Synopsjls Design Compiler, \vhich synthe-
sized the behavioral equations into a gate-level clesigl~.
T h e irsc o f H D L and the Design Compilcr enabled the
designers t o maintain a single set o f bclia\~ioral models
for the ASIC:, without the need to ma nu all!^ enter

AAAA AAAA AAAA

DTAG_INDEX<15:0> MC-ADDR<21:6>-A1 AAAA

MC-ADDR<38 22> MC-ADDR<38 22>

DTAG_DATA<18 2, VALID,
SHARED,
NOT DIRTY

DTAG V S D VALID

DTAG-OE-L

DTAG-WE1 -L

DTAG-WEO-L

-
EV-ABUS-REQ /

MC-ADDR

EV_ADDR<39 4> DRIVEN BY MICROPROCESSOR H
SETSHARED

H > DRIVEN BY

EV_CMD<3 0>
MICRO-

DRIVEN BY MICROPROCESSOR PROCESSOR

Figure 3
LITAG Operation

schen~atics to represent the gate-Jevel design. The syn-
thesis process is shown in a flowchart form in Figure 4.
Logic verification is an integral part of this process,
and the flowchart depicts both the synthesis and verifi-
cation, and their interaction.

Only the synthesis is explained at this time. The ver-
ification process depicted on the right side of the flow-
chart is covered in a later section of this paper.

As shown on the left side of the flowchart, the logic
synthesis process consists of multiple phases, in which
the Design Compiler is invoked repeatedly on each
subblock of the design, feeding back the results from
the previous phase. The Synopsys Dcsign Compiler
was supplied with timing, loading, and area constraints
to s)fnthesjze the VCTY into a physical design that met
technology and cycle-time req~~irenients. Since the
ASIC is a small design compared to technology capa-
bilities, the Design Compiler was run without an area
constraint to facilitate timing optimization.

The process requires the desigrler to supply timing
constraints only to the periphery of the ASIC (i.e., the

1 / 0 pins). The initial phase of the synthesis process cal-
culates the timing constraints for internal nenvorks that
connect between subblocks by invoking the Design
Compiler with a gross target cycle time of 100 nanosec-
onds (actual cycle time of the ASIC is 15 nanoseconds).
At the completion of this phase, the process analyzes
all paths that traverse multiple hierarchical subblocks
within the design to deternine the percentage of time
spent in each block. The process then scales this data
using the actual cycle time of 15 nanoseconds and
assigns the timing constraints for internal networks at
subblock boundaries. Multiple iterations may be
required to ensure that each subblock is mapped to
logic gates with the best timing optimization.

Once the Design Compiler completes the subblock
optimization phase, an industr)f-standard electronic
design interchange format (EDIF) file is output. The
EDIF file is postprocessed by the SPIDER tool to gen-
crate files that are read into a timing analyzer, Topaz. A
variety of industry-standard file formats can be input
into SPIDERto process the data. Output files can then

Figure 4
ASIC Design Synthcsis and Verification F l o w

VERILOG SOURCE FILES

Digital 'kchnical Journal

4

Vol. S No. 4 1996 27

I
100-NS CYCLE-TIME
GROSS SYNTHESIS

V2BDS

+ - 15-NS CYCLE-TIME
SUBBLOCK
OPTIMIZATION

FC PARSE

FIX MINIMUM-DELAY
HOLD-TIME
VIOLATIONS

DECSIM: COMPILE
AND LINK

DESIGN COMPILER DECSIM SIMULATION
OUTPUTS EDlF FILE RANDOM EXERCISER * FOCUSED TESTS

SYSTEM SIMULATION
FC ANALYZE

WRITE NEW
TESTS

SPIDER PROCESSES +
EDlF FILE t- FC REPORT b

DECSIM
FIX TIMING VIOLATIONS

ANALYZER SIMULATION AND/OR LOGIC BUGS *
(NO FC)

FIX TIMING VIOLATIONS w

Bus Monitor TIic bus monitor is a collection of
DE(:SIh/I sim~~lation \vatchcs tliat monitor t l ~ c system
bus and the CI'U internal bus. The \vatches also rcport
\\rhcn various bus signals arc being asserted and
dcasscrtcd and have tlic ability to halt simulation if
they cncountcr cache incoherency or a \riotation.

Cache incohcrcnc!~ is a data inconsistency, for exam-
ple, a piccc of nondirty data residing in tlie B-cache
ancl differing horn data residing in niain memory.
A data inconsistency can occur among tlie CPU mod-
ules: for example, n4,o CPU nlodulcs may have difkr-
cnt data in their caclics at the same memory address.
Data inconsistcncics are detected by the CPU. Each
one maintains an exclusive (nonsharcd) copy of its
data that it i~scs to compare with tlie data it reads horn
the tcst adcircsscs. If the two copies differ, the <:PU
signals to the bus monitor to stop the sim~~lation a n d
report an error.

The bus non nit or also detects other \,iolations:

1. N o activity on the system bus for 1,000 consccuti\,c
cycles

2 . Stalled s!,stcln ~ L I S for 100 cycles

3. Illcg.ll comm.inds o n the s!!stem bus and <:PU
intcr~ial bus

4. Catfistrophic systcln error (machine check)

Tlic combination of random <:PU and 1/0 activity
flooded the systcni bus \\it11 lica\~p traffic. With the
help oftlic bus monitor, this techniclue esposcd bugs
quicltlv.

As ~ncntioncd, a few directed tests were also wl-itten.
I>ircctcd tcsts \ifcrc used to re-create a situatio~i that
occurrcd in random tcsts. Ifa bug \\,as i~ncovercd using
a random tcst tliat ran tlircc d q s , a directed tcst \\!as
\\'rittc11 to re-create tlic same failing scenario. Tlicn,
aticr tlic bug \\!as tiscd, a quick run of the dircctcti tcst
confirmed t11.lt thc problem \\,as indeed corrected.

Functional Checker
During tlic initial design stages, the verification team
dc\.clopcd tlic Fu~lctioual Checker (FC) for the fol-
Io\\!ing purpoxs:

1-0 f i~nction~~lly vcri% the HDL niodcls of all ASICs
in the AlphaScrvcr 4100 system

To asscss the tcst covcmgc

'Tlic I-'(: tool consists of three applications: the
parser, the .~nalyzcr, and the report generator. -The
right-hand side of Figure 4 illustrates lio\v tlic F(: \\!as
i~scd to aid in tlic f~~nctional \w-ification process.

Parser Sj~lcc 1)lX:SI M \\!as the cl~~oscn logic simula-
tor, the first step \\!as to translate all HDL code to
I31X, a DF.<:SIIM bclia\~ior 1,lnguage. This task \\,as

performed using a tool called V2BDS. The parser's
task \\!as to postproccss a BDS file: extract information
and g c ~ i u - ~ t c an~odified version of it. Tlic inform,ltion
extracted \\,as 2 list of co~iti-01 signals and logic statc-
mcnts (such as logical espressions, if-then-else state-
~ n c ~ l t s , case statements, and loop constructs). This
information \\.as later s~ipplied to the analyzer. The
~nodificd RDS \\,as fi~nctionallp equivalent to the origi-
nal code, but it contained sonic embedded calls to
r o ~ ~ t i n e s \\lliose task \\[as to monitor the activity of the
coiitrol signnls in t l ~ c contest of the logic statements.

Analyzer Written in C, the analyzer is a collection of
nlonitoring routines. Along with the modified B1)S
code, tlic analyzcr is compiled and linked to h r m the
simulation model. During simulation, the analyzer
is in\~oltcd and the routines begin to monitor the acti\f-
ity of the control signals. It keeps a record of all con-
trol signals that form a logic statement. For example,
assLlmc the following statement \.\,as recognized by the
parser 3 one to be monitored.

(A XOR B) AND C

Tlic analyzcr created a table of all possible combina-
tions of logic values for A, B, and C; it then recorded
\vhich ones \\ere achieved. At the start of simulation,
there nfas zero coverage achieved.

Acliicvcd
No
N o
N o
N o
No
N o
N 0

No

Achieved coverage = 0 pcrccnt

Further assunlc tliat during one of the sirnulatio~i
tcsts generated by the R ~ n d o m Esercisrr, A assumed
both 0 ,lnd 1 logic states, \\,Iiile R and C remained con-
stantly at 0. At the end of simulation, the statc oftlic
tnblc \vould be the follo\ving:

ARC
000
0 0 1
010
01 1
100
101
110
111

Acliicvcd
k s
N o
N o
N o
Yes
No
No
No

Acliie\~ed coverage = 25 percent

Val. 8 No. 4 1996 29

Report Generator The report generator application
gathered all tables created by the analyzer and gcncr-
ated a report file indicating \vhich conibinations were
not achieved. The report file was then reviewed by the
verification team and by the logic design team.

The report pointed out deficiencies in the verifica-
tion tests. The verification teani created more tests
that would increase the "yes" count in the "Achieved"
colunln. For the example shown above, new tests
might be created that would make signals B and C
assume both 0 and 1 logic states.

The report also pointed out bults in the design,
such as redundant logic. In the example shown, the
logic that produces signal B might be the same as the
logic that produces signal C, a case of redundant logic.

The FC tool proved to be an invaluable aid to the
\rerification process. I t was a trmsparent addition to the
simulation environment. With FC, the incurred dcgra-
dation in compilation and simulation time was negligi-
ble. I t performed n1.o types of coverage analysis:
esliaustive combinatorial analysis (as \\/as described
above) 2nd bit-toggle analysis, which was usecl for \cc-
tored signals such as data and address buses. Perliaps
the most valuable feature of the tool was the fact that it
replaced the time-consuming and compute-intensive
process o f fault grading the physical design to verifj, test
coverage. F C established a new measure of test covcr-
Age, the percentage of achieved coverage. In the above
example, the calculated co\Ierage w o ~ ~ l d be nvo out of
eight possible achievable combinations, or 25 pcrccnt.

For the verification of the cached CPU modulc, tlie
FC: tool achieved a final test co\!crage of 95.3 percent.

Module Design Process

As the first step in the niodule design process, we used
the Powcrvieur schematic editor, part of the Vie\vlogic
CAD tool suite, for schematic capture. An internally
developed tool, V2LD, converted tlie schematic to a
form that could be simulated by DECSIM. This proccss
was repeated ~ ~ n t i l DECSIIM ran \+ithout errors.

During this time, the printed circuit (PC) layout of
the module \\!as proceeding independently, i~sing tlie
ALLEGRO CAD tools. The layout process was partly
manual and partly automated with the C C T router,
which was efkctivc in following the layout engineer's
design rules contained in the DO files.

Each \~crsion of the completed layout was translated
to a format suitable for signal integrity modeling,
using the internally developed tools ADSconvert and
IMOI)ULEX. The MODULEX tool was used to estract
a module's electrical parameters from its physical
description. Signal integrity modeling was performed
with the HSPICE analog simulator. We selected
HSPICE because of its universal acceptance by the

Vol. 8 N o . 4 I996

industry. Virti~ally all component vendors will, on
request, supply HSPICE niodels of their products.
Problelns detected by HSPICE were corrected either
by layout modifications o r by schematic changes. The
module design process flow is depicted in Figure 5.

Software Tools and Models
Three internally developed tools were of great value.
One was MSPG, cvhich was used to display the
HSPICE plots; another was MODULEX, which auto-
matically generated HSPICE subcircuits from PC
layout files and performed cross-talk calculations.
Cross-talk amplitude violations were reportcd by
MODULEX, and the offending PC traces were moved
to reduce coupling. Finally, SALT, a visual PC display
tool, was used to v e r i ~ that signal routing and branch-
ing conformed to tlie design requirements.

One of the important successes was in data line
modcling, where tlie signal lengths from tlie RAMS
to the microprocessor and the transcei\/ers \\,ere very
critical. By using tlie HSPICE .ALTER statement and
M(.>l'>ULEX subcircuit generator command, wc coulci
configure a single HSPICE deck to simulate as many as
36 data lines. As a result, the entire data line group
cc.)~~ld be simulated in only four HSPICE runs. In an
csccllcnt esaniplc of synergy benvecn tools, the script
capability of tlie MSPG plotting tool was used to
cstract, annotate, and create I'ostScript files of wave-
form plots directly from the simulation results, \vith-
out having to manually display each \\/a\ieform o n the
screen. A mass printing co111niand was thcn c~scd to
print all stored Postscript files.

Another useful HSPJCE statement was .MEASU ICE,
which measured signal delays at the specified thrcshold
Ic\rcls and sent the rcsults to a file. From this, a separate
program extracted clean delay values and calculated the
~i~axinium and ~ninirnum delays, tabulating the results
i l l a scparatc file. Reflections crossing the threshold
levcls caused incorrect results to be reportcd by
the .MEASURE statement, \\rhich \\/ere easily sccn in
the tabulation. We then simply looked at the \\laveform
printout to see where the reflections \vel-e occurring.
The layout engineer was then asked to niodi@ those
signals by changing the PC trace lengths to cithcr the
microprocessor or the transceiver. The modified signals
were then resimulated to verif)- the changes.

Timing Verification
Ovcral l cache timing was verified with the Timing
Designer timing analyzer from Chronology Corpor-
ation. liele\rant timing diagrams \\/ere drawn using
tlie ~vavefornl plotting facility, and delay values and
controlling parameters such as the microprocessor
cycle interval, read speed, wave, and other constants
\\,ere entered into the associated spreadsheet. All

DECSIM
DIGITAL LOGIC VL2D (CONVERTS

SIMULATOR TO DECSIM)

POWERVIEW
SCHEMATIC EDITOR

ALLEGRO
LAYOUT TOOL ri

"DO" FILES
RESTRICTIONS AND
CONSTRAINTS

ALLEGRO.BRD CCT ROUTER

ADSCONVERT

L m FOR MANUFACTURING

Figure 5
Design Process Flow

TIMING DESIGNER
TIMING ANALYZER

VLS.ADS
FOR MODULEX
COMPATIBILITY

delays were expressed in terms of HSI'ICE-simulated
values and those constants, as appropriate. This
method siniplificd changing parameters to try various
"what if" strategies. The timing analyzer w o ~ ~ l d
instantly recalculate the delays and the resulting mar-
gins and report all constrailit violations. This tool was
also used to check timing elsewhere on the module,
outside of the cache area, and it provided a reasonable
level of confidence that the design did not contain any
timing violations.

Signal Integrity
In high-speed designs, where signal propagation timcs
are a significant portion of the clock-to-clock interval,
reflections duc to impedance mismatches can degrade
the signal quality to such an extent that the system will
fail. For this reason, signal integrity (SI) analysis is an
important part of the design process. Electrical con-
nections on a module can be rnade following a direct

MODULEX
TOOL *

point-to-point path, but in high-speed designs, many
signals must be routed in more complicated patterns.
The most cornn~on pattern involves bringing a signal
to a point where it branches out in several directions,
and each branch is connected to one or more
receivers. This method is referred to as treeing.

The SI design of this nodule was based on the
principle that coniponent placement and proper sig-
nal treeing are the two most important elements of
a good SI design. However, ideal component place-
nient is not always achievable due to overriding factors
other than SI. This section describes how successful
design was achieved in spite of less than ideal compo-
nent placemcnt.

Data Line Length Optimization
Most of the SI work was directed to optimizing the
B-cache, which presented a dimcult challenge because
of long data paths. The placement of major module

HSPICE
ANALOG SIMULATOR

Vol. 8 No. 4 1996 31

-

data bus components (microprocessor and data trans-
cei\lers) \bras dictated by the enclosure r e q ~ ~ i r c m c n t s
and tlie need t o tit four CI'Us and eight memory mod-
i~ les illto tlic system box. Rather than allo\\,ing the
microprocessor hc;it-sink height t o dictate module
spacing, the system designers opted for fitting srnallcr
menior)r rnod~rles nest t o tlie C:PUs, filling the space
that \vo~rld have been left empty if ~ i iodule spacing
were i~n i form. As a consequence, the microprocessor
and data transcci\rcrs had t o be placed o n oppositc
elids o f the 11iod~11c) which made the data bus exceed
11 inches in length. Figure 6 shows the placement o f
the major components.

Each cache data line is connected t o four c o ~ n p o -
ncnts: the microprocessor chip, n v o RAMS, and tlie
bus transcci\fcr. 4 s shown in Table 1, any o n e o f these
components can ‘let as tlie driver, depending o n the
transaction in progress.

INDEX BUFFERS
(THREE MORE ON
THE OTHER SIDE)

\

- 7

I lie goal o f data linc design \\,as t o obtain clean sig-
nals a t the recei\~ers. A s s u ~ n i n g that the micropl-occs-
sol-, 1L%R/ls, and tllc transceiver are '111 located in-line
\vitliout branching, with the distance between the n\'o
RAMS near zero, and since the positions o f the micro-
processor and tlie transceivers are fixed, the only vari-
able is tlie location o f the n\lo RAh/Is o n the dat'l linc.
As shown in the \\la\reform plots o f Figures 7 ;lnd 8,
tlic cl~lality o f the I-ecei~red signals is strongly affected
by this variable. In Figure 7, the reflectiolls arc so I ~ r g c
tliat they exceed threshold levels. Uy contrast, the
reflections in Figure 8 are very small, and tlicir \ \) J \~C-

fi)rnis slio\\i signs o f cancellation. From this it can
1-1c inferred tliat op t imum 1'C trace lengths caLlsc tlic
reflections t o cancel. A range o f acceptable 1 U M posi-
tions \\)as found tlirough HSPICE simulation. T h e
r c s ~ ~ l t s o f these simulations arc summarized in Tahle 2.

DATA RAMS
(EIGHT MORE ON

/ T H E OTHER SIDE)

. .

CIRCUITRY

PROGRAMMABLE
LOGIC

DATA TRANSCEIVERS

- -

PROGRAMMABLE
\

ADDRESS AND COMMAND SYSTEM BUS
LOGIC TRANSCEIVERS CONNECTOR

Figure 6
Placcmcnt of ibl~lol. Components

Table 1
Data Line Components

Transaction Driver Receiver

Private cache read RAM Microprocessor

Private cache write

Cache fill
Cache miss w i th victim

Write block

Microprocessor

Transceiver

RAM

Microprocessor

RAM

RAM and microprocessor

Transceiver

RAM and transceiver

Vol. 8 No. 4 1996

-2.0 1
40 45 50 55 60 65 70 75 80

NANOSECONDS

Figure 7
l'rivate Cache Rcad Showing hrgc Reflections Due to
Unfavorable Trace Length Ratios

In the series of simulations given in Table 2, the
threshold levels were set at 1.1 and 1.8 volts. This was
justified by the use of perfect transmission lines. The
lines were lossless, had no vias, and were at the lowest
impedance level theoretically possible 011 the module
(5 5 ohms). The entries labeled SR in Table 2 indicate
unacceptably large delays caused by signal reflections
recrossing the threshold levels. Discarding these
entries leaves only those with niicroprocessor-to-
RAM distance of 3 or more inches and the I W -
to-transceiver distance of at least 6 inches, with the total
microprocessor-totranscei\rer distance not exceeding
11 inches. The layout was done within this range, and
all data lines were then simulated using the network
subcircuits generated by MODULEX with threshold
levels set at 0.8 and 2 .0 volts. These subcircuits
included the effect of vias and 1'C traces run on several
signal planes. That simulation showed that all but
12 of the 144 data- and check-bit lines had good sig-
nal integrity and did not recross ally threshold levels.
The failing lines were recrossing the 0.8-volt thresh-
old at the transceiver. I~icreasing the length of the
RAM-to-transceiver segment by 0.5 inches corrected
this problem and kept signal delays within accept-
able limits.

Approaches other than placing the components
in-line were investigated but discarded. Extra signal
lengths require additional signal layers and increase
the cost of the module and its tliickness.

-2.0 1
40 45 50 55 60 65 70 75 80 RAM Clock Design

NANOSECONDS We selected Texas Instruments' CDC2351 clock drivers
to handle the RAM clock distribution network. The

Figure 8
Private Cache Read Showing Reduced l<eflections \\-it11
Optimized Trace Lengths

Table 2
Acceptable RAM Positions Found with HSPICE Simulations

C D C 2 3 5 1 device has a well-controlled input-to-output
delay (3.8 to 4.8 nanoseconds) and 10 drivers in each
package that are controlled from one input. The fairly

PC Trace Length Write Delay Read Delay
(Inches) (Nanoseconds) (Nanoseconds)

Microprocessor RAM to Microprocessor RAM to RAM to
to RAM Transceiver to RAM Microprocessor Transceiver

Rise Fall
0.7 2.3
0.7 2.7
0.6 3.1
0.9 2.1
0.9 2.4
0.9 2.9
1.1 1.8
1.3 2.2
1.2 2.6

1.5 1.7
1.4 2.1
1.6 2.4

Rise Fall
0.9 S R
S R S R
S R SR
1.2 1.1
1 .o 1.1
1 .O 1.3
1.2 1.4
1.4 1.4
1.3 1.4
1.5 1.7
1.8 1.7
1.7 1.4

Rise Fall
1.1 1.4
1.5 1.4
1.7 1.5

0.9 1 .O
1.4 1.3
1.5 1.3
0.9 SR
0.9 1 .O
1.2 1.2
S R SR
S R S R
0.9 1.2

Note: Signal reflections recrossing the threshold levels caused unacceptable delays; these entries were discarded.

1)igitnl 'lcchnic.~l Jout.nal

U3A133SNWUl
SWHO 0 1

SWHO 0 L

.aiu!~ dnlss e sa.~!nba~ 33!~3p ~~FJJ~ILI! snq aLlJ .S

:SILISLI~~~UJO~ ,(I!IDP 4~1p\o110~ 3~1~11 seq (~ro!~sasue~~
ru!12!,\) I(.IOLUJLU u!eru 01 sqses-g arll ru0.q qsueJl e
'aldruusa .IOA .sas!,\sp I/VV~ n~~xx~io~ro.~q~~r~~se SU!SI~
~3131(3 l!eM BLI!J!II~~J]noql!~\ SLI~!I~L?SLI~.I~ d~ouram
aSeue~u 01 nStrnlleqs e snluosaq I! 'asea.13ap saw!] qsLs
u131sl(s sv ;aq3es-~ SJ! se se (sal!~~ pue sll!j) I(JO

-uew u!ew uroy pue 01 s.l?jsue.u .~oj pasn s! snq elep SI!

n!ql LIJIIS S! .~ossn"o.~do.~s!ur $91 12 eqd~ aql jo a.Irusa1
-!L~NL? nq,L 'suosesJ amem~oj~ad -1q4 lI(lpewpd uasoq3
sem aq3e3 sno~~o.~ilsu~(s srp 'ps~ro!~rraur 1C~sno!~\a~d sv

ub!saa ayj lo spadsw le3!sAqd

.a.lols t)y(i-~ s~cs!ldnp aLl3
40 ~12sjjn 3~11 PLIC ~12!sap SI~~OLLI n~3 3~11 jo s13adse
~n!s.(~ld sql uroy ps,\!~sp ~un~si(s 001% .~"~\.ra~qdlv
sq~ jo ~LI~LLI.T~?J.IX~ nq] snssnmp uo!nas S!LIL

.sw.~c?~n~\c,\\ 11nsyj!p ~JOUI aqljo auosjo Suqp
-ueq ~ql saleJlsnll! 11 n~nY!3 ~ssps!~a~se~e~lr, pue
ssJnIe?J ~e.~n~sn~!y~e S~X)SS~~O.I~~.I~!LU aq~ ,iq pasnes
suop!sue.u elcp sno!~nds jo s3uass~d 3~11 U! ual\a
sle~~S!s n?pad iil.lcnu :nBny sen\ jjohd nq~ pue 'ysel
ssnlu!ed c a1iipo~i1 ayl LIO s.~ols!ss.~ 8s~ %LI!IU~OUI apt?tLI
saYeyned llcrus rr! sJols!saJjo ki!l!qu[!~,\c prre sau!q>eLu
~usu~s~eld ~~~nuocl~uos s!jeuIolnv '01 x111By [I! LIMO^^
se 's~r!~ c~ep srlses risen LI! s.rols!sn.r Bu!durep-sapas

-. -

SWHOZZ (

SWHO OE 'F3-q
rD , --JwAMah SWHOOS XI013

SWHO OE

SWHO OE

papn13Ll! S.I~LI~!SSI) 'su8!sap ~no!~\a~d u! s~x~jja J!aql
L153S 811!1\eq PLIC 'ELI~LLIO~I~L\~ 3S3111 ~LI!IB~!S!IUV

.s.ro~.~a e1el-7 8u!sne:, snql 'Atlap a,\!13?jjnq1
aseanu! 1~1e s13,\q pIolIsa.Iq1 3111 SSO.ISS.I LIU~ srlo~s3~a.1
arlJ ~sleuS!s p!leAjo sa8pa sq~ uo pasod~u!.radns suop
-sap ald!ll~iw a1ea.13 01 pua~ asaqL 'SLiO!l!SlIeJl elep
p!lw apasa~d uayo saslnd n\oueu '~a,\a~oq 'ppo~ 1133.1

aql UI '~LU!I ploq pue dnl?sjo lCluald Sup1011e 'p.~aalu!
yJOl3-l?d 33Uo ~([LIo lIJl!MS S[EU~!S ll"p1.10~ Imp! ayl UI

bu!dwea au!7 ejea

'~I/VMJ at11 1e lCl!.~Sa~u!
1e21S!s poo8 8u!~a!q~u 104 1e3!~!.13 SIX saqx~uq 341
yo LII~LI~ arl1 Z.'~[3e3 saqsn! olclu ueq] Jai\iyjo saqsue-lq
lenba 1.1oqs ,iq sprul a.~n,\j srro!]sauuos peo1 aql
,ptol "11 puc su!l Lro!ss!msue.ll nql ni\!Jp ~(la~mil>ape 01

pqaxr a.15,\\ s.I~I\!.I~ ald!~lnu~ leq~ pa~\\or~s L~O!JBII~W!S

33IdSH 'I! s.\!.Ip 01 lL1?!3LJjllS StA\ LlO!l33S 1 SEZ'JU3
3110 put 'peol srro ,CILIO seq dno~8 qluaias aqL .Sn!~eqs
pea[poo8 a.\a!qJe 01 Jnnpp ipcn ~J!A\ sa!.las LI! uols!sa.i
48110.1q1 ~alle-led II! pa133~~1o3 SLIO!IJ~S .IJ,\!.I~ 7301s OI\U

'(q ua,\!jp se.n sdno~S x!s 1s.1~ aql jo ilseg 'wa 318
-u!s e put 'oi\ujo sdno.18 o,\u 'a3.1~11jo sdno.13 moj a-le
s.1sy1 '6 a~ns!~ u! ul\zoqs sv ~iu!~u!xo~d les!sA~ld .l!aq1
no paseq sdno.18 un.\ns olu! 173p!,\!p 3.1a~ SW~ a41
'sm ,g at11 01 sp~%!s ysop .~aii!lnp 01 pn~!nba-l aJam
'p~coq 3~ 341jo sap!s rpoq uo y3ecl 01 y3eq palunow
'S.I~AI\!.IP q3o1q SIZDCI:) o~t~ .S~LLI!I dli~as a~enbape
al\a!qsc 01 pspasu s! jicls13 y201"~ XIII~!~ u! u1noqs se
'asriesaq le!Jysusq sc,~].led nq~ ~14no.1~11 ICelap 3uol

DATA LINE SCALE:
1 .OO VOLTIDIVISION,
OFFSET 2.000 VOLTS,
INPUT DC 50 OHMS

TIME BASE SCALE:
10.0 NANOSECONDS/
DIVISION

Figure 11
Handling of Difficult Wavcfor~ns

to access the RiUvl without using multiple cycles per
read operation, and since the f i l l transfer involving
memory comprises four of these operations, the
penalty mounts considerably. Due to pipelining, the
synchronous cache enables this hlpe of read operation
to occur at a rate of one per system cycle, which is
1 5 nanoseconds in the AlphaServer 4100 system,
greatly increasing the bandwidth for data transfers to
and from memory. Since tlie synchronous RAh4 is
a pipeline stage, rather than a delay element, the win-
dow of valid data available t o be captured at the bus
interface is large. By driving the W l s with a delayed
copy of the system clock, delay components 1 and 2
are hidden, allowing faster cycling of the B-cache.

When an asynchronous cache communicates with
the system bus, all data read out fiom the cache must
be synchronized with the bus clock, which call add
as many as two clock cycles to the transaction. The
synchronous B-cache avoids this performance penalty
by cycling at the same rate as the system bus.2

In addition, the choice of synchronous RAMS pro-
vides a strategic benefit; other ~nicroprocessor vendors
are moving toward synchronous caches. For example,
numerous Intel Pentium microprocessor-based sys-
tems employ pipeline-burst, nodule-level caches using
synchronous RAM devices. The popularity of thcse
systems has a large bearing on the RAM i n d ~ s t r y . ~ I t is
in DIGITAL'S best interest to follow the syncllronous
RAM trend of the industry, even for Alpha-based
systems, since the vendor base will be larger. These
vendors will also be likely to put their efforts into
improving the speeds and densities of the best-selling
synchronous KAM products, wliich will facilitate
improving the cache performance in h t u r e variants of
the processor modules.

Effect of Duplicate Tag Store (DTAG)
As mentioned previously, the DTAG provides a mech-
anism to filter irrelcvant bus transactions from the

Alpha 21164 microprocessor. In addition, it provides
an opportunity to speed up memory writes by the 1 /0
bridge when they modifj an amount of data that is
smaller than the cache block size of 6 4 bytes (partial
block writes).

The AlphaServer 4100 1 / 0 subsystem consists of
a PC1 mother board and a bridge. The PC1 mother
board accepts 1/0 adapters such as network interfaces,
disk controllers, or video controllers. The bridge pro-
vides the interface between PC1 devices and between
the CPUs and system memory. The 1 /0 bridge reads
and writes memory in much the same way as the CPUs,
but special extensions are built into the system bus pro-
tocol to handle the requirements of the 1 / 0 bridge.

Typically, writes by the 1 / 0 bridge that are smaller
than the cache bloclc size require a read-modifj-write
sequence 011 the system bus to merge the ne\v data
with data from main memory or a processor's cache.
The AlphaServer 4100 memory system typically trans-
fers data in 64-byte blocks; however, it has the ability
to accept writes to aligned 16-byte locations when the
1 / 0 bridge is sourcing tlie data. Wlien such a partial
block write occurs, the processor module checks the
DTAG to determine if thc address hits in thc Alpha
21164 cache hierarchy. I f i t misses, the partial write is
permitted to complete unhindered. If there is a hit,
and the processor module contains the most recently
modified copy of the data, the I/O bridge is alerted
to replay the partial write as a read-modify-write
sequence. This feature enhances DMA write perfor-
mance for transfers smaller than 6 4 bytes since most of
these references d o not hit in the processor cache."

Conclusions

The synchronous B-cache allows the CPU modules
to provide high performance with a simple architec-
ture, achieving the price and performance goals of
the AlpliaServer 4100 system. The AlphaServer 4100

Digital Technical Journal Vol. 8 No. 4 1996 35

CPU design team pioneered the use of s)lnchronous 9. J. Handy, "Synchronous S W Iloundup," D~it~iqlies/
RAMS in an Alpha ~nicroprocessor-based s)rsteni (Scptcmbcr 11, 1995).
design, and the knowledge gained in bringing a design
from conception to volume shipment will benefit General Reference
f i ~ t i ~ r e upgrades in the AlphaServer 4100 scrvcr Fa~nily,
as well as products in other platforms. l i . Sites, cd., Alpbci Archilccl~irc? Rq/hl-w?ce A//c.~rz/.lal

(Burlington, Mass.: Digital Press, 1992).

Acknowledgments

The development of this processor module would not Biographies
have been possible without the support of numerous
individuals. h c k Hcthcrin9-ton ~ e r f o r m e d enrlv "
conceptual design and built the project tcam. Pete
Bannon ~mplernented the synchronous RAM support
features In tlic CPU design. Ed Rozman championed
the use of random tcsting techniques. Nor111 Plante's
skill and patience in implementing the oftcn tedious
PC layout requirements contributed in n o small niea-
sure to the project's success. Many others contributed
to firni\vare design, sjatem testing, and performance
analys~s, and thcir contnbut~ons are gratef~~lly
ackno~i~lcdgcd. Special thanits must go to Darrel
Donaldson for supporting this project throitghout thc
entire development c)lcle.

References

1. DIGITAL AlphaServer Fa~iiil!~ DIGITAL UNIX Perfor-
mance Flash (Maynard, Mass.: Digital Equipment
Corporation, 1996), http://\v\\,\\,.c~~rope.digital.c.om/
i11fo/performance/sp/unis-s~r-flash-9.abs.l1t1nl.

Maurice B. Steinnian
~Mauricc Steinman is a hard\vare principal engineer in the
Servcr Product l>e\,elopnie~lt Group and was the leader of
the CPU design team for the 1)IGITAI.AlphaServer 4100
system. In pre\,ious projects, he was one of the designers
of tlie AlpIiaScl.vcr 5400 C1'U ~iiodulc and a designcr of
rlie cachc control subsystem for the VAX 9000 computer
system. Maurice recci\~ed a R.S. in compurcr and systems
engineering fi.0111 IknsseJaer Polytechnic Instir~~tc in 1986.
He was awarded nvo patents rclated to cache control and
coherence and has nvo patents pending 2. Z. Cvctanovic and D. Donaldson, "Alphaserver 4100

Performance Characterization," IXgilal Techr2ical
lo~irnal. vol. 8. no. 4 (1996. this issue): 3-20.

3. G. Hcrdeg, "lksign and Implcmentntion of tlie
AlphaServcr 4100 Cl'U and Memory Architect~~re,"
DiCqirnl T ~ c h v c l o i r ~ z i l , vol. 8, no. 4 (1996, this
issue): 48-60.

4. S. Duncan, C. Keefer, and T. McLaughlin, "High
Performance 1/0 Design in the AlphaScrv& 4100 Sym-
metric iMultiprocessing System," Digitcil Technical
.Jotlrnal. vol. 8, no. 4 (1996, this issue): 61-75.

5. "Microproccssor Report," il/licroDesign Rcso~il'ce.~.
vol. 8, no. 15 (1994).

6. IBlW Penorzal Conzputer Pori!et- Series SO0 PerJir-
r?zance(Arnionk, N.Y.: Intcrnational Busi~lcss Machines
Corporation, 1995), http://ikc.engr.washington.edu/
nen~s/whitep/ps-perf. htnil.

7. L. Saundcrs and Y. Trivcdi, "Testbench Tutorial," Il7tc.-

g r ~ i t c . d ~] ~ s / e ~ Ue.~ign, v01. 7 (April and May 1995).

8 . I)/C;f ' I i iL Sonicondmclor 2 7 164 (.SGG i M / - l z '%rouUqh
43.3 JVIHZI Alpha Microprocessor lI~~~-c.f~i!c.zt*e
Rejkrence Pla~zual (Hudson, Mass.: Digital Equipn~ent
Corporation, 1996).

George J. Harris
Gcorgc Harris was responsible for thc signal intcgrinl and
cache design ofthc CPU module in the AlphaServer 4100
series. He joined 1)IGITAL in 1981 and is a hardware prin-
cipal cnginccr in the Scrver Product Developmcnt Group.
Before joining DIGITAL, he designcd digital circuits at
the conlputer di\isions of Honcy\\~ell, RCA, and Fcrranti.
Hc also designed co~nputcr-assisted medical monitoring
systems using 1'1)P-11 computers for tlic hi~cricnn Optical
Divisio~i of Warner Larnbert. He received a master's degree
in electronic comm~~nications from ~McCill U~uvcrsity,
Montreal, Quebec, and \\.as awarded ten patents relating
to computer-assisted medical ~nonitoring and one patent
rclated to \vork at DIGITAL in the area of circuit design.

Vol. 8 N o . 4 1996

Andrej Kocev
Andrcj Koscv joined 1)IGITAL in 1994 after rccci\,ing
a I1.S. in computer science fi.oln l lnssc l .~cr Polytccllnic
Institute. Hc is n scllior hard\ \ ,~rc engineer in tllc Scr\,cr
I'roduct I)c\,cloplilcnt Group 2nd '1 mcml>c~.of tllc (:1'1'
\,crificntion team. He designed the logic \ crilicatio~l sofi-
\\arc tic~cribcti in this paper.

Virginia C. Larilere
Virginia 1;nmcrc is a hard\varc principal c~lgillccr in the
Sc~.ver Product 1)cvclopment G r o ~ ~ p and tvas rcspo~~siblc
for CI'U module design in the DIGITAI. AlphaScr\.cr 4100
series. Ginnv was 3 member o f the \.crific.~tio~l teams for
rhc AlpliaScrvcr 8400 and AlphaScrver 2000 <:PU nlod-
ulcs. I'rior t o those projec~s, she contributed to the design
of tllc floating-point processor o n rllc \/AX 8600 ;~nd tllc
c~ccu t ion unit o n the VLY 9000 computer sysrcnl. Sllc
rccci\~cd a R.S. ill clccrricnl cnginccring .111d con1pLItcr
scicllcc ti.on.1 I'rillccro~l Uni\iersity in 198 1 . Gi111iy \vas
nwardcd t\\'o txltcnts in the area of the caccurion unit
dcsign and is a co-a~ltlior o f tlic paper ''Floating Point
1'1-occssor k)r the VAS 8600" published in this,/o~~t-rral.

Roger D. Pannell
Kogcr l'anncll \\,as the Icadcr o f the VC1.Y ASIC: dcsign
rcnm k)r the AlpllaSer\,cr 4100 system. H c is a hnrd\\,nrc
prilici1):ll c11giriccr in the S ~ r \ ~ c l - Protiuct l)c\clopmcnr
Group. Kogcr Iias \\,orked on sc\rcrnl projects sillcc join-
ing I)igit,ll ill 1977. Most rcccntl\,, he lins beell 3 nlotiulc/
ASIC iic\isncr o n rllc AlpJiaScl-\.cr 8400 and VAS 7000
1 / 0 port n ~ o d ~ ~ l c s n ~ ~ d a bus-to-bus 1/0 brldgc. Itogcr
rccci\.cd n l3.S. in clccrronic cl~giliecring tcch~lology fro111
the Uni\,c~-sity of Lo\\~cll.

1101. 8 No. 4 1996

I
Roger A. Danie

The AlphaServer 4100
Low-cost Clock
Distribution System

High-performance server systems generally
require expensive custom clock distribution
systems to meet tight timing constraints.
These clock systems typically have expensive,
application-specific integrated circuits for
the bus interface and require controlled etch
impedance for the clock distribution on each
module in the server system. The DIGITAL
AlphaServer 4100 system utilizes phase-locked
loop circuits, clock treeing, and termination
techniques to provide a cost-effective, low-
skew clock distribution system. This system
provides multiple copies of the clock, which
allows off-the-shelf components to be used
for the bus interface, which in turn results in
lower costs and a quicker system power-up.
Component placement and network com-
pensation eliminated the need for controlled-
impedance circuit boards. The clock system
design makes it possible to upgrade servers
with faster processor options and bus speeds
without changing components.

E\rcry digital computcr systcrn licecis a clock distribu-
tion systcm to synchronize clcctronic co~nmunication.
The primary metric used to cli~anti+ tlic performance
of a clock distribution system is clock skc\\: Synch-
ro1ioi1s SystcIns require multiple copics (outputs) of
the same clock, and clock ske\v is the un\vanted delay
ben\,ccn any njZo of the copies. In general, tlie Ionrel-
the sltc\\; the better the clocl< systcni. Clock skew is one
of several parnnlctcrs that affcct bus spccd. Bus length,
bus loading, ciri\lcr and rcccivcr technology, and bus
signal voltage s\ving also affect bus spccd. IF problems
arise that jeopardize meeting timing ~ o a l s , though,
these additional parameters arc difticult to change
because of physical and architccturnl constr~ints.

The l>IGITAL AlphaServcr 4100 clock distribution
systcm is ;I co~lipact, Io\\'-cost S ~ I U T I O I I for a lligli-
perforniancc midrange server. The clock systcrn pro-
vides more copics of the clock than machincs in the
same class typically need. The distribt~tio~i spstcni
allo\\a expansion on those m o d ~ ~ l c dcsigns \+/here
more copics of the clock are ncccicd \\.it11 niinimal
skew The system is based o n a lo\\.-cost, off-the-shelf
phase-locked loop (PLL) as the basic bi~ilding block.
The simple application of the PLL, alone \\roi~ld not
provide lo\\' clock site\\; t h o ~ ~ g l i . Signal integrity tech-
niques and trade-offs were nccdcd to m~nag-c skc\\z
throughout tlic systcm. The technical cliallcngcs were
t o dcsign a lo\%.-cost system that would (1) recluire
only a small area o n tile printed wiri~lg boarcis (I'WBs),
(2) be adaptable to \,'irious spccd gracics (options) of
<:I'Us, and (3) lia\,c good pcrformancc, i.c., lo\\. skew
This paper cliscusscs the techniques used to optimize
the pcrform3ncc of an off-tl~e-shelf PL1,-based clock
distribution s\Istcm.

Design Goals

Based on its cspcricncc \\rich prc\,ious plattbrm designs,
the design tc3m considered a clock sl<c\\ undcr 10 per-
cent of the bus cyclc time a rcasonublc target for a
~iiidra~lgc scrjrcr system. The cyclc time design target of
tlie AlpliaScr\~cr 4100 systcln \\!as 15 nanoseconds (ns);
consecl~~cntly, the ske.i\l goal was 1.5 ns or Icss. This
goal ulould allow a total of 13.5 ns ti)r clock to out-
put of the transmitting nodule (Tco) (tlic time the

transmitting module needs to drive data to a stable
state from a clock edge); setup ~ n d hold timc require
Inelits for the receiving module (the minimum time
that data needs to be stable at the recei\,er [tlop] before
and atier the local clock edge); and bus settling timc.
The folloc\~i~ig is ,I breakdo\vn of tlie timing based on
the selection ofcomponents for the ~ L I S intcrhcc:

Rus cyclc
Trans~nitting modulc (Tco)
Setup and hold time for the

rcceiving module
Clock skc\v
Timc allocated for bus settling

1.5 JlS

1.5 JlS

6.9 ns

benefits oftlie off-the-shelfsolution, it was paramount
that we make the off-the-shclfsolutio~i ~vork.

Bus Trade-offs

The selection ofcomponents was based on availabil-
in , speed, cost, and size. The goal \\$as to eliminate thc
need for costly application-specific integrated c i rc~~i ts
(ASI(:s) and still meet tlic critical timing pcrti)r~nancc.

The Alphaserver 4100 bus is a simple distributed
bus, 305 millimeters (m m) long, wit11 10 loads (mod-
ules) and parallel termination at both cnds. The first-
order csti~natc of bus settling time assumed one full
retlection o r twice the loaded velocity of propagation
delay end to end. The estimatc took into account bus
timing optimization, which is discussed later in this
paper. It was also estimated tliat 25 copies of the clock
\vould be rcquircd for tlie processor ~iiodulcs, and
46 copies of the clock \\rould be rcquircd for certain
memory modules (synchrono~~s dynamic rnntio~ii-
access memory [Sl)lW~M]-based clcsigns). Only tlie
rising edge of the clock could be ~ ~ s e d for critical tim-
ing. If the filling edge were used fix latches, then
clock skew would drarnaticalljl increase because of tlie
duty cyclc distortion associated \vith PL1,s. Tlic m e n -
ory modulc dcsign allowed very little spacc for clock
circuitry and needed more copies of the clock than any
other modulc design in the system. Further, the phpsi-
cal sizc of the memory modulc detcrmincd the actual
sizc of the server bos. Trade-ofti had to be ~iiadc in
the dcsign 2nd timing to makc the off-the-sliclfsolu-
tion \vork. :l:hc Itey goal \\!as to optimize the solution
to get tlic \\lorst-case skew as close as possible to the
1.5 ns estimatccl goal and to find system traclc-offs to
allow. higher ~nodulc-to-module skew for a 15 11s bus.

A survey of custom clock circuits available within 7.5 -
DIGITAL and off-the-shelf, coninicrciallp available ? , 7.0 -
PLLs suggested that a custom circuit was recluired.
Unfortunately, the circuits that would bc available
within our project schedule were costly, cousunicd far
too I I I L I C ~ circuit board area, rcquircd emitter-coupled
logic (E(;l..) or positive cniittcr-couplccl logic (I'ECL)
inputs, and dissipated substantial power. The best off- 4.0 ,

5.08 12 70 25.40
the-shelf solution \\>as cost-effective, rccl~~ircd less DISPERSION ETCH LENGTH

s p x e tllan c ~ ~ s t o n i cil-cuits, ~ n d provided aclccl~~ate (MILLIMETERS)

fan-out. The skew performance, lio\vcvcr, ranged
from 2 11s to 4 ns, \vhich exceeded the dcsign goal. Figure

Givcn the project time constraints and tlic design Bus Settling Timc As a Function of Dispersion Etch
Length

The design philosophy of using stock components for
tlie bus interface allo\\~cd sonic latitude in tlie bus
design. Typical bus intcrfaccs use large ASICs, each
handling up to 5 0 percent of the data bits. Such a
design results in a relatively long dispersion etch from
the connector to the ASIC. These devices can range
in size from 200 to 400 pins and can require up to
38 mni ofetch from the ASIC to the connector. SPICE
simulations demonstrated that tlie length of each
module's dispersion etch or bus "stubl3i1ig" had a pro-
found effect on bus settling time.' Figure 1 sho\ia bus
settling time (worst-case drj\,er-receiver combination)
as a hinction of m o d ~ ~ l e dispersion etch. The bus t r ~ ~ n l t
length \vas tised at 305 mm.

The designers used an 18-bit-wide transceiver in
a low-protile surhcc mount package with a pin pitch
of 0.5 mm. The location of the I/O pins for the bus
connections on the intcrfkx transceiver (located on
the same side of the package, which allows tlie device
to be placcd very close to the bus connector) and tlie
connector pitch thcilitatcd short dispersion etch (less
than 1 3 nim). Tliis dcsig~i decreased by 1 ns the set-
tling timc typically ~ L I I I ~ o n ASIC-based interfi~ccs
\\,it11 comparable trunk lengths and loading.

Bus termination is another parameter tliat designers
can maliipi~latc to fi~rtlier improve settling time. Wc
used parallel terminators at both cnds of the bus on tlic
Alphaserver 4100 system. The bus protocol has two
features tliat allo\v aggressive termination, approaching
the i~nloaded impcdancc of the trunk. We placed an
anticontention cycle bct\\~ccn the module tliat relin-
quishes the bus and the module that begins to drive the
bus. Tliis arrangement reduces the possibility for driver
conte~ltion (stress) as well as tllc possibility of generat-
ing ringing o n the bus caused by large changes in cur-
relit afier contcnrio~i. Tlic bus "parking" f ea t~~rc hrccs
the last drivi~ig modi~lc to continue driving the bus t o

Digital Tcchnial Journal Vol. 8 No. 4 1996 39

a logic state during long icllc times ~ ~ n t i l another motiulc
wants to use tlic bus. IVithout this feature, the bus
\vould settle at the terminator The\rcnin voltagc if n o
modules \\!ere dri \~i~ig the bus. Both protocols allow for
Thcvcnin \wltagc to bc close to tlic tlircsliolcis of the
receivers. Normally this is avoided if the bus is lcti idle,
because the receivers can go metastable, i.e., arrive at
the unstable condition \\,here its input \,oltagr is
bcn\,ccn its spccilicd logic 0 and logic 1 \,olt.lgc Ic\~cls,
~ ~ c s i ~ l t i ~ i g i l l i~~ico~itrollcci oscillatio~i. Ccntcri~ig the
Thevenin voltage in the normal full voltagc swing Iiad
nvo advantages: (1) it balanced the settling time for
both transitio~~s, and (2) it reduced the driver currcnt.
Tlic reduced drivcr current allo\\tccl for .I lo\vcr
The\~enin rcsistancc, \vllich brought the tcrmin.1tors -
closer to the ~ ~ n l o ~ c l c d (n o modules) impedance of the
bus, thus ensuring that tlie bus \\.ould settle \\,ithin 6 ns.

The Basic Building Block

Texas I n s t r ~ ~ ~ ~ i c n t s ' <:1)<:586 clock distribution circuit
\\pas chosen as the bxic building block for the system
because of its lo\\i c o s ~ and fi~nctionality. The dc\licc has
a hn-out of12 outp~rts \vith a single compensation loop
and a frequency mngc of 25 megahertz (1MHz) to 100
(MHz, and is n 3.3-\wit (V) bipolar complcmcnrary
metal-oxide semiconductor (KiC:MOS) part. l'roccss
sltc\v is 1 ns benvccn any n\.o parts \\lit11 tlic S,IIIIC rcf-
crcncc input clock, and root mean square (RMS) jitter
is 25 picoseconds (ps).' The (:L>C586 has a built-in
loop filter, which r c d ~ ~ c c s tlie ~ iumber of support coni-
poncnts. Unlike custom clock circuits \\lit11 ~nultiplc,
independent co~npens:ition loops, the simple, single
loop design recl~~irccl critical attention to the l:~!'out of
cuch modulc dcsign to ensure the best possible skc\\r
pa-formancc. Tlic circuit board layout dcsig~icr had
to determi~lc the maximum etcli length from the l'I.L,
to the receiver. All copies of the clock had to be prc-
ciselp matched in length to the maximum length
found, and routcci on the same etch layer with
0.5 1 Inm (20 mil) spacing to othcr ctcl~cs and mini-
1iii1111 etch crossovers from other etch layers o n dual
strip-line In?-LIPS. Typical strip-line etch in multila)~cr
PWRs is a signal layer that has reference planes, usually
assigned to po\ttcr o r ground, in the Iaycr above and
the layer belonf. This dcsign allows better impcda~icc
control and eliminates cross talk from othcr signal
layers. PWB thickncss and cost constraints o t i c~ i rcsult
in ~noditied forms o n tlic inner layers, ho\vcvcr. l>ual
strip-line etch is ohcn used in thcse cases. This design
consists of t\vo signal laycrs sandwiched bctwccn rcfcr-
encc planes iu the layers abovc and belo\\.. Generally
the diclcctric thickncss bcnvecn the nvo signal I;i)crs is
greater than the diclcctric thick~~css benvccn cithcr
signal la!ler and its related (nearest) rcfcrcncc planc to
minimize cross talk bcn\lccn the t\vo signal In)rcrs.
Figure 2 illustrates n typical application.

Vol. S No. 4 1996

Figure 2
?'!.pical I'hasc-lockcd Loop Co~lncction

Etch Layout
+ \ She I'WI3 lay-ups used on \rarious modi~lcs in the
AlphaScr\lcr 4100 system contain microstrip etch
(surhcc ctcli) and dual strip-linc ctcli. Ideally, si~iglc
strip-linc ctcli would be optimium fbr clock etch; hotv-
ever, it rcqi~ircs Inore laycrs at higher cost for PWR
material. One dm\vback to dual strip-line lay-ups js
etch crosso\.cr. A crosso\,er is a point along an etch
trace \\:liere ;~notlicr etch, one on a different la!,cr not
separated by a reference planc, crosses. The crossover
forms small capacitance patches, \vhich can load tlie
clock etch and affect its impedance and velocity of
propagation. The rcsult is additional skc\v from clock
etch to clock ctch. Designers avoided crosso\.ers on all
clock ctcli, anti the dcsign docs not permit parallel
etch o n tlic otlicr layer \\,ithin tlic dual strip-line,
\\,hich c o ~ ~ l d induce cross t~ l l< .

F i g ~ ~ r c 2 slio\vs ~natched etcli lengths I.,, Lz, and Ld.
On some module designs, this ctch can be tairl!l long.
The layoi~t dcsigncrs \vould generally "scrpcntine"
o r "trombone" these long ctch runs to comply with
the ~lforc~nc~it ioncd layout rulcs. Spacing bch\lceli
the loops o n the same ctch ruli in the scrpcntinc or
trombonc is critical. I f the spacing is too close, then
coupling \\ , i l l occur, t l i~is changing thc \'clocitv of
propagation as \\,ell as signal q~rality. lksigners used
simulation to determine a m i ~ ~ i n i ~ ~ ~ i i etch-to-ctcI1
spacing fix c;ich 1'WB lay-up. Thc masimum allo\\lablc
cross-talk noise Ic\~el for any minimum spacing \\!as
400 miIli\rolts (mV). This lc\lcl is \vitl~in the maximum
transistor-transistol- logic (Tri..) low-state level of
8 0 0 mV. L ~ r g e r spacings \\(ere used \\,liere n o other
layout rulcs \\,auld be affected.

The Use of External Series Terminating Resistors
External scrics tcrmindting resistors (~ I s o culled termi-
nators), dcnotcd by R, arc ~ ~ s c d at the source (see
Figure 2). Althoi~gh Texas Instruments offers another
version of the I'LL, namely ClX:2586, which has

built-in series terminators, the AlphaServcr 4100 dcsign-
ers did not use this variation for thc following reasons:

Some forms ofclock treeing (a method of connect-
ing multiple receivers to the same clock output)
require niultiple source tern~inators.

The nominal value for the internal series tcnninator
\\[as not optimum for the target j~npedance of the
PWBs.

The tolerance of the internal series ter~ninators
over the process range of the part could be as high
as 20 pcrcent compared to 1 percent for external
resistors.

Local Power Decoupling
I't,Ls are analog components and are susceptible to
power supply noise. One major point source for noise
is the PLL itself Most applications require all 12 out-
puts to drive s~~bstantial loads, which generates local
noise. Asubstantial number of local decoupling capac-
itors (one for every four o u t p ~ ~ t pins) and short, \vide
dispersion etch on the power and ground pins of
the PLL were required to help counter the noise.
Designers also used tangential vias to minimize para-
sitic inductancc, which can severely rcdirce the effec-
tiveness of the dccoupling capacitors. Typical surhce
mount components have dispersion etch, which con-
nects the surface pad to a via. Tangential vias attach
directly to the pad and eliminate any surface etch that
can act liltc ind~1cta11ce at high frccli~ency. The 1'LLs
were also located away from other potential noise
sources such as the Alpha microprocessor chip.

Analog Power Supply Filter
The most important external circuit to the PLL is the
low-pass filter on tlic analog power pins. Typically, PLL
designs have separate analog and digital po\ver and
ground pins. This allo\\s thc use of a low-pass filter to
prevent local s\vitching noise fi-om entering the analog
core of the PLL (primarily the voltage-controlled oscil-
lator [VCO]). Ifa fi ltcr is not used, then large edge-to-
edge jitter \ \ r i l l develop and \\!ill greatly increase clock
skew. Most PI,L vendors suggest filter designs and
PWB layout patterns to help reduce the noise entering
the analog corc. The CDCS86 PLL was introduced at
the beginning of tlie Alphaserver 4100 design, and the
vendor had not yet specified a filter for the analog
~xnver inpi~t . It is inlporta~it to note tlii~t if any neur
PLI, is considered and preli~ninary vendor specifica-
tions d o 110t include details about the analog po\ver,
thc dcsigner s l io~~ ld contact the vendor for details.

T\vo forms of Ion-pass filters \\,ere co~lsidered: L-C
and R-C. The L-C filter consists of a series inductor L
from the power source to tlie analog power pins of
the PLL and a capacitor C fro111 the same power pins
to ground. Tlie R-C filter consists of a series resistor
R from the power source to the analog power pins of

the PLl, and a capacitor C from the same pocver pins
to ground.

Tlie L-C filter can be implemented in nvo \ways:
(1) by using a surface mount inductor and (2) by using
a length ofetcli for the inductor. In either case, the Q
of the circuit has to be kept low to prevent oscillation.
Q is a dimensionless number referred to as the quality
factor and is computed from the inductance L and
resistance R (in this case the inductor's resjstance) of
a resonant circuit using the formula Q = oL/N. \vherc
w equals 27r/,' and J is the frequency. A low-value resis-
tor in series ~ l i t l i the inductor can help. Es t r c~ne care
should be taken ifthe length-of-etch (used to generate
inductance) implementation is considered. Tlie etch
must be strip-line-etch isolated from any other adja-
cent etch o r etch on other lavers not separated by
power or ground planes. A nvo-dimensional (2-D)
modeling tool sl~ould be used t o calculate the length
of etch needed to gct the proper inductance \lalue for
the filter. Simple rules of t h u n ~ b for inductance \ \ r i l l

not work with reference planes (i.c., power and
ground planes).

The R-C filter is limited to PLLs with moderately
lo\\! current draw on the analog po\ver pins. The cur-
rent generates an IR drop (the voltage drop caused by
the current through the resistor) across the resistor R.
Typical PLL analog power inputs requirc less than
1 ~nil l ia~np (rnA), \\lhicl? u~oilld allow a reasonable
\ialue resistor R. Two capacitors should be used in the
R-C type filter: a bulk capacitor For basic filtcr response
and a radio frequency (RF) capacitor to filter higher
frequencies. Bulk capacitors are any clcctrolytic-style
capacitor 1 microfarad (FF) o r greater. These capaci-
tors have intrinsic parasitics that keep them fio111
responding to high-frequency noise. The benefit of
tlie L-C filter is that, although a single capacitor can be
used (~ V O are still suggested \\lit11 this style filter), the
reactance of the inductor increases with freqi~ency and
helps bloclc noise. Both filter styles \\lerc used in tlic
AIphaScrvcr 4100 systeln.

System Distribution Description

The AlphaServer n~otlierboard has four CPU slots,
eight memory slots, and an 1 / 0 bridge 11iodule slot.
Each module in the system, including the mother-
board, has at least one PLL. The starting point of the
system is the CPU that plugs into CPU slot 0. Each
CPU module has an oscillator and a buffer to drive the
111ain system distribution, but tlie Cl'U that plugs into
slot 0 actually drives the system distribution. A PLL on
the motl~erboard receives the clock source generated
by the CPU in slot 0 and distributes low sl<e\v copies of
tlie clock to each module slot in tlie system. Each
module in the system has one and in some cases two
PLLs to supply the required copies of the clock locally.
Figure 3 shows the basic system flow of clocks.

1)ipit.ll Tcc.ch~iic.~l Journ, l l Val, 8 No. 4 1996 4

MOTHERBOARD

DISTRIBUTION

'fq BRIDGE

Figure 3
System Clock Flo\\, 1)1~gra1n

The Alpha microprocessor used on all <:PU options
for the AlphaSer\ler 4100 system has its ow11 local
clock circuitry. The microprocessor uses a built-in
digital PLL that allows it t o lock to an external rcfer-
ence clock at a multiple of its i l~ter~lal clock.' In the
context of the AlphaSer\!cr 4100 system, tlie reference
clock is generated by the local clock distribution sys-
tem. The Alph'~Scr\gcr 4100 is hlly s)rnchrono~~s.

Each CPU 111 the s)~stcni has two clock S O I I ~ C C S :

one for the bus clistribution (system cycle timc) and
one for the rnicroproccssor. 'This design niay appear to
be a costly one, but this approach is extremely cost-
effective when field upgrades are considered. When
new, faster \:crsions of the Alpha rnicroproccssor
become available, nc\v <;PU options \\;ill bc intro-
duced. To remain s!~~icIironous, the Alpha niicro-
processor internal clocks need to run at a multiple of
tlie system cycle time. Although the system cycle time
goal is 15 JIS, the cyclc timc needs to be adjc~stcd to tllc
speed of tlic <:PU option used. Placing the ~ L I S oscilla-
tor, c\~hicli drives the primary lSLL for the clock system
(cycle time), on the <:I'U module and designing the
clock distribution systcm to hnction over a wide he-
quency range makes ti eld upgrades as simple as replac-
ing the CPU modules. The motherboard does not
nccd to be changed.

\/ol. 8 No. 4 1996

Skew Management Techniques

The AlphaScr\lcr 4100 system had fi)ur design teams.
Each team was assigned a portion of the system. Signal
integrity tcchniqucs had to be cic\/clopcd to keep tlie
ske\v across tlic system as lo\v as possible. These tecli-
n i q ~ ~ e s were structured into a set of design rules that
each team had to apply to their portion of the design.
To develop these rules, designers explored several
areas, including impedance rangc, termination, tree-
ing, PLL placement, and compensqr' ‘ Jon.

lmpedance Range
Co~ltrollcd impedance (+/-lo percent from .I target
impedance) raises the PWR cost by 10 percent to
20 percent, depending on board sizc. Each raw PWB
has to be tested and documentcti by tlic PWB sup-
pliers, \\!hicli r c s~~ l t s in a fixed cliargc for each PWB,
regardless of sizc. Therefore, smaller PWBs have the
highest cost burden. The Alphaserver 4100 uses rela-
tively small daughter cards. Since low system cost was
a primary goal, noncontrolled impednnce 1'WBs had
to be considered. Unfortunately, allowing the PWB
impedancc rangc (o\ler process) to spread to greater
than +/-I0 percent makes the task of keeping clock
skc\v low more difficult. Specification of mechanical
ciimensio~is \\,it11 tolerances \vas tlic only to
pro\lide s o ~ n e control of the inipcdance range \\rith
no additional costs.

Table 1 contains the results of simulations per-
formed using SIMPEST, a 2-D modeling tool devel-
oped by DIGITAL, for a six-layer PWB ilsed o ~ i one of
the AlphaSer\.er 4 100 modulcs. The PWR dimensions
and toJcmnces specified to the \rcndors \\.ere used in
the sjrnulations. The dielectric constant, tlic only para-
meter not specified to thc vendor, ranged from 3.8 to
5.2, \\tliicli overlnps the typjcal industry-published
mnge o f 4.0 to 5.0 for FR4-type niatcrial (epoqr-glass
PWR).' Since our PWR material acceptance with the
vendor is based on meeting dimension tolerances, we
used thc 6 0 impedance rangc on all SPICE simula-
tions, thus ensuring that all acccptablc PWB ~iiaterial
\ v o ~ ~ l d \\lark electrically.

Tablc 2 slio\vs the impedancc rangc for a controlled
impedance I'WB for tlie target inipcdancc reported in

Table 1
Vendor lmpedance Ranges Specifying
Dimensions Only

4u Yield 6n Yield
-

Mean target 71 ohms 71 ohms
impedance
Impedance 62 ohms t o 57 ohms t o
range 83 ohms 89 ohms

Table 2
Vendor lmpedance Range for an lmpedance
Tolerance of +I- 10 Percent

+I- 10 Specification Range

Mean target 71 ohms
lmpedance
Impedance range 64 ohms to 78 ohms

Table 1. The difference in impedance range hetween
speci+ing dimensions and impedance is -7 ohms to
11 ohnms. The simulations suggested that tlic range
differences have a minor impact o n signal behavior.

Tlic target impedance was bascci on ~lonminal
dimensions and dielectric constant. The target of
71 ol i~ns \\'as chosen to optiriiizc routing density and
to Itccp the lnycr count d o ~ \ , n For most designs.
Another advantage \vas that keeping the ~ninimum
inipciiancc above 50 ohms w o ~ ~ l d minimize loaciing.
The impcdancc range covers the frll mechanical
dimensions and dielectric constant ranges. Properly
implemented, the PLLs would cffecti\lcly elimi~late
local ctch delay module to module over the till1
~wocess rangc of the PWUs. The main challenge was
to acicc1uatcly terminate \\~ithoirt sacrificing ske\v
pcrformancc at tlic extreme process range (6 tr) of
the 1'WIl material.

Termination
The dcsigr~ers uscd series termination o n all cloclts in
the system. Pilrnllel terminators \ \~oulJ ha\lc exceeded
the drive capability of the CDC586. Diode claniping
was not practical when so many copies of the clock
were rccluircd because of PWR surbcc area con-
straints. Nornmallv, the optimal termination value is
one that pro\lides critical damping for the case where
the driver's impedance is thc lo\\lcst and tlic ctch
impedance is the highest. Designers can then make
ncijustmcnts at the other extreme corncr (high driver
impcdancc anci Ions etch jmpcdnncc) to avoid nonmo-
notonic bcha\~ior such as platcai~s. This gcncrall!l
introduces slope delay uncertainty at the sloiv corncr
(high driver irnpcdancc and low etch impedance),
which can be substantial. To mininiizc this cfkct,
dcsigncrs selected terminator \~alucs thnt allow over-
slioot and solnc bounce-away from the tlircshold
rcgioll at the extreme proccss corncr. O\~crslioot can
reach the rnasi~mii~ni spccifcd alternating current (AC)
input of tlic receivers O\~CI- tlic orst- st-case proccss
rmgc. Some rccci\lcrs have built-in ciiodc clamping to
tlicir po\vcr supply rails as a r c s ~ ~ l t of ESl> circuits in
tlicir input structures (ESD circuits arc uscd for static
discharge protection). In these c.lscs, the clock signal is
clamped, \vliicli in turn dampens bounce. The jnjec-
tion currents caused by clamping \\.oulJ be tested in
SPICE siniulations to be sure tli.~t tlic parts were not

stressed. If the tests i~ldicatcd stressed parts, designers
would adjust thc terminator \raluc accordingl\~.

Treeing
Treeing is a method o f distributing clocks from a
single source driver to many rccei\,crs. This practice,
\vhicli is \\tell I<no\\l11 to nicrnory designers, \vas used
on the AlplmaServcr 4 100 memory modules, bus inter-
face logic, and primary distribution clocl<s on the
mothcrboard. The designers used two basic forms of
treeing: the balanccd H tree and the shared output
tree. The balanced H tree is best suited for fised loads
(receivers) of the same type (i.e., memories, trans-
cei\lers, etc.). A single, series-terminated clock output
feeds a trunk line to a via and then branches to each
load. F,:ich branch is cqunl in Icngth. The total corn-
pensated path includes the pre-terminator stub, the
main t r ~ ~ n k , and tlic branch extending to the load.
F i ~ u r c 4 illustrates the clock treeing topoloby. The
shared ou tp~r t trce w,is i~sed \\lhcrc \~arioirs module
configurations could alter clock loading. Specifically,
the distribiitio~l o n the motherboard is restricted to
one PLL to keep the clock skew lo\v. Conseq~~e~i t ly ,
some outpi~ts needed to drive more than one slot.
A single output drivcr drove nvo terminators-one
for each load. The low driver impedance isolated
retlections from perturbing a module when a module
slot */as Icfi open.

PLL Placement
Placement of the 1'1.1.. o n cnch modulc is critical. Figirrc
5 is a simplif cd \~ic\v of the prirnary distribution up to
and including tlic PLL o n J module. The AlpliaScr\lcr

RECEIVER

PHASE-
LOCKED

SHARED
OUTPUT

KEY:

FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP
R SERIES TERMINATING RESISTOR

Figure 4
Clock Trccing

Digital Tcch~iical Jour11;ll \~ol. 8 No. 4 I996 43

4100 system has nvo types o f module connectors:
a iMctral conncctor (Futurebus+-style con~lcc tor) is
~ i sed o n thc (:PU modules anci the 1 / 0 bridge module,
and an Estcndeci Inciustl-\I Standard Architecture
(EISA) conncctor is used o n rlic memor!8 modules.
Intrinsic dclay o n these connectors could diffcr sub-
stantially depending o n pinning and the signal-to-
return ratio in the application. '1'11~ ~Mctral conncctor is
a I-ight-angle, nvo-piece conncctor with four ro\J8s o f
pins: ro\ \s A, B, C, and 1). l'hc ro\v A pins arc the
shortest, ~ n d the ro\v D pins arc the longest. T h e EISA
connector is an edge connector \\,it11 n1.o ro1s.s o f pins
\vith minor Icngtli diffcrcnccs pin t o pin o n e i t l~cr sick
o f t h e conncctor. Designers had t o balance the pinning
of thcsc connectors for the clock circuits in such a way
that the r n o d ~ ~ l c - t o - m o d ~ ~ l c sltcw urould not bc
affected. T h e iMctral connector \vas pinned t o replicate
the loop i n d u c t ~ n c e o f tlic EISA conncctor.

Dispel-sion etcli is required o n each m o d ~ ~ l e t o con-
nect the 17L,L, t o tlie conncctor. This etch can ha\,c ciif-
fcrent jnipcdance and \lelocity o f propdgat io~l fi.0111

modulc t o m o d ~ ~ l c as a r c s ~ ~ l t o f P\VB process range,
\\~liicli translates into additional moclu lc - to -moi i~~lc
clock skc\\,. Designers C ~ I I dc,iI \kith this problem in
h\!o \\'ays.

First, aticiing the same dispel-sion length 1.:: (scc
F i g ~ ~ r c 5) t o tlie cornpensation loop L2 I I L I I I S this cr~.or.
This becomes ob \~ ious if ~ O L I loolt at the PLL's basic
function. T h e insertion delay fi-om the clock-in pin
o f the PLL, t o tlie input pin o f the receijler is approxi-
mately 0 ns if L, = L z , o r

MOTHERBOARD
PRIMARY
DISTRIBUTION

CLOCK IN
FROM CPU 0

PHASE-
LOCKED

7' ..
I (7 j I + T L ;) - 7;>.

For - T , (cq~131 c t c l ~ lengths), 'l;cI - 7;;.

Adding Ti,; t o the co~i ipcnsa t io~i path !,icltis

?;<I = u;, + T, ;) - (y;, + T .) .
POI- TI = 7 ; , (etch c q ~ ~ , i l lengths), 7yc, = 0 ns,

T I - tlic insertion dcl,l\/ from the conncctor
pin t o the rcccivcr input

7,', = tlic etch dclay horn the PLI. ou tpu t
t o tlie rccci\.cr input

'11', = the etch clcl,i!~ o f the I'LL
co~~ipcnsa t ion loop

7 the dispersion etch ciclay conncctor
t o the cloclt-in o f tlic I'LL.

O n e drS1\\~baclc t o this method is tliat the etch Ic~igtlis
coulci get Elirly large, \\,hicIi \ \ ,o~ l ld result in ccigc rate
dcgraciation. AlpliaScr\~e~- 4 100 ticsigners dici not use
this placcmcnt method o n tlic currcnt set o f m o d ~ ~ l c s ;
ho\\,cvcr, the), \ \ , i l l consider using it o n nc\il dcsigns tliat
rcquirc a diffcl-cnt location ti)^. rlic 1'I.L.

T h e second ofdeal ing \\'it11 the dispcrsio~i etch
from tlic module conncctor t o the clock-in pin of t l i c
PLL, is t o make the dispel-sion etch \.cr!, short allti t o
takr <I sltc\\ penalty over tllc I'W13 process. Placcmcnt
studies o n tlic \.arious motiulc designs suggest that
a 25 -mm dispersion etch \ v o ~ ~ l c i allo\v rcason,ible
placement o f PLLs. T h e addition,il sltc\\ is just under
5 0 ps, b,iscci o n a velocit!, o f propagation n i i g c o f
5 . 5 9 ps/mni t o 7.36 ps/mm.

TYPICAL MODULE
LOCAL DISTRIBUTION

COMPENSATION
LOOPS L2 1

DISPERSION
ETCH L,

CONNECTOR

KEY

FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP
R SERIES TERMINATING RESISTOR
L,, L,, ETCH LENGTHS

PHASE-
LOCKED
LOOP

Figure 5
I7rirnnr\. l>isrril>urion

TO
RECEIVERS

R

R

\lol. S No. 4 I906

compensation
Some modules have a wide variety of circuits recciving
clocks tliat, becai~se of input loading, d o not balance
well with the various treeing methods. Designers
used du1111iiy capacitor loading to help balance the
treeing. This approach \\!as particularly usehl on
memory modules, which could be depop~~la ted to
provide different options using the same etch. Surface-
mount pads were added to the etch such that if the
depopi~lated \~crsion were built, a capacitor could be
added to replicate tlie missing load on the tree, thus
keeping it in balance. The CPU modules have a wide
variety of clock needs, which results in nvo forms
of skew: (1) load-to-load skew at the module and
(2) colitrol logic-to-Cl'U skew, for control logic
located on thc niotherboard. The local load-to-
load skew is acceptable because only one PLL is
used and tlic output-to-output skew is only 500 ps.
R/Iotherboard-to-Cl'U control logic skesv, though, is
critical because of timing constraints.

Duniniy capacitor loading at each lightly loaded
receijcr would have reduced the skew, but to compcn-
sate for just one heavily loaded receiver would have
recli~ired niany capacitors. PWR surface area and the
requirement of simplicity dictated the need for an
alternative. The solution was to keep tlie clock edges
as hs t as possible (by adjusting the series terminators)
and to add a compe~~sation capacitor at the input (the
feedback [F B I) of the I'LL'S compensation loop. This
effectively reduced the skew froni the slowest load 011

the CPU to tlie control logic on the motherboard.
Figlire 6 shows the disparity between light and heavy
loading from Tl to q. Without feedback compensa-
tion, the PLL sclf-adjusts to the lightly loaded receiver.
This adjustnlent results in skcw TI to $ from the
heavy load to the control logic 011 the niothcrboard.
A capacitor on tlic FB input of the PLL split the dif-
ference benveen to & and & to 7; and minimized
the puceivcd sltcw.

Skew Target

Dcsigncrs generated the worst-case module-to-module
clock skew specification for the AlphaServer 4100
from vendor specifications, SPICE simulations, and
bench tcsts using thc techniques discussed in this
paper. Tlic worst-case skcw goal is 2.2 ns and is sum
marizcd in Table 3.

The reader will note that eight times tlie endor or's
specification may appear to be a rather conservative
spccitication. TIic LISC of tills \laluc \\/as bascd on two
concerns: (1) the I'LL. was new at the time, and expesi-
cncc suggcstccl that the vendor's specification was
aggressive; and (2) some le\rel of padding was required
if tlie exception to the r ~ ~ l e s was needed. A c t ~ ~ a l system
testing bore out these concerns. The vendor had

LIGHTLY LOADED
RECEIVER

HEAVILY LOADED
RECEIVER

COMPENSATION LOOP
FB INPUT (PLL) WlTH
NO CAPACITOR

COMPENSATION LOOP
FB INPUT (PLL) WlTH
CAPACITOR

KEY:

T, LIGHTLY LOADED RECEIVER CLOCK EDGE TlME
(REFERENCE)

T2 HEAVILY LOADED RECEIVER CLOCK EDGE TlME

T3 COMPENSATION LOOP FB INPUT EDGE TlME WlTH
CAPACITOR

FB FEEDBACK LOOP INPUT FOR THE PHASE-LOCKED LOOP

Figure 6
Feedback Loop Con~pellsation

to relax the jitter specification from 25 ps to 7 0 ps
RMS, and there were some difficultics gctting good
load bdance. The specification did not change, how-
ever. Reassessing the allocated bus settling time yields
thc follo\ving:

Bus cycle
Transmitting module (Tco)
Setup and hold time for the

receiving module
Clock skew
Time allocated for bus settling

SPICE simulations for a f ~ l l y loaded bus with the
worst possible driver receiver position yielded a bus
settling time of 5.7 ns. The relaxed skew of 2.2 ns
maxinluni \vas acceptable for the design.

Comparative Analysis

A comparison of clock distribution systems benveen
nvo other platforms best summarizes tlie AlphaServer
4100 system. The AlphaServer 4100 has a price and
performance target benveen those of the AlphaServer
2100 and the Alphaserver 8400 systems. Table 4 com-
pares the basic differences among these systems relat-
ing to clock distribution for a CPU modulc froni each
platform.

Both the AlphaServer 2100 and the AlphaServer
8400 systc~iis have large custom ASICs for their niod-
ule's bus interface. The AlpliaSer\~er 4100 and the
Alphaserver 8400 systenis have bus terniination; the
Alphaserver 2100 system does not. Allowing a bus to

Digital Tecl~nical Jour~lal Vol. 8 No. 4 1996 45

Table 3
Worst-case Clock Skew

Stage Source Skew Component

Motherboard Out-to-out skew 500 ps (vendor spe~ification)~
Inputs to modules Load mismatch 100 ps (simulation/bench test)
Module t o module PLL process 1,000 ps (vendor specificati~n)~
Inputs to receivers Load mismatch 200 ps (simulation/bench test)
lnputs to receivers PLL jitter 400 ps (eight times the vendor specification)'

Total clock skew 2,200 ps = 2.2 ns

Table 4
Clock Distribution Comparison of Three Platforms

AlphaServer 2100 System AlphaServer 4100 System AlphaServer 8400 System

Bus width 128 + ECC
Bus speed 24 ns
Clock skew 1.5 ns
Inputs requiring clocks 10
Clock drivers used 12
Number of clock phases 4

settle naturally (with no termination), as in the case of
the AlphaServer 2100 system, recli~ires a tighter skew
budget from the clock systcm. The trade-off is higher
cost, po\\~cr, andPWPWB area for lower bus speccl.
Higher performance systems, sucl1 as the AlphaServcr
8400 and AlpIiaServer 4100 s)~stcms, generally r c q ~ ~ i r c
hstcr bus speeds with terminators. The AlphaScrvcr
4100 has shorter bus stubbing nodule transceiver to
connector dispersio~l etch) sod slower bus speed than
the Alphaserver 8400, \\/l~ich allows larger ske\\l (as
a percentage of the bus spccd).

Table 5 is a comparison of board area needed and
cost for the clock system. Dcsig~~ers analyzed an entry-
level system consisting ofone CPU n~odule, one mem-
ory module, and one 1/0 bridgc or interface module.
The board area sho\.vs the spacc rcquired by the active
components only (the digital phase-locked loops,
PLLs, drivers, etc.).

Both Tables 4 and 5 sho\v that the clock system
design for the AlphaScrvcr 4100 system recluires onlv
one-third the space of either the AIphaServer 2100
systcm or the AlphaServcr 8400 system at a fraction of
tlie cost and distributes more copies of the clock.

128 + ECC 256 + ECC
15 ns 10 ns
2.2 ns (max.) 1.1 ns (max.)

25 14
13 11

1 1

Conclusions

An cffccti~re, low-cost, higll-performance clock distri-
bution systeni can be Jcsigncd sing sn off-the-shclf
componcnt as tlie basic building block. l>IGITAL,
AlpliaSert~er 4100 system designers acco~nplislied this
by optimizing the bus and de\,cloping sinlple tech-
niques structilred in the h r m of design rules. Tlicse
rules arc

Use positive edgcs for critical clocking.

Match delay throi~gli different connectors using
appropriate pinning.

Use a fixed dispersion etch lcngth from the connec-
tor to the PLI,.
Route and balance all clock nets o n the same PWR
la!.cr.

~Minirnize adjaccnt-layer crossovers and maximize
spacings.

Usc minimum \ ~ ~ I L I c tcrl~linators.

Usc tree and loop compcns'~tio~l \\/here ncedcd

Use conservative local clccoupling and a low-pass
filter on the I'LL (analog power).

Table 5
Board Utilization and Cost Comparison

AlphaServer 2100 System AlphaServer 4100 System AlphaServer 8400 System

Board area used* 352.8 square centimeters 11 1.4 square centimeters 371.3 square centimeters
Normalized cost 1 .OO 0.46 4.40

*Note that these measurements do not include decoupling capacitors and terminators

T h e \\ ,orst-c<~se lab nleasurcmcnt o f clock ske\v
benvccn m y n \~o ~ n o d u l c s in a fi~lly cont ig~lrcd system
\\.AS 1 . 1 I ~ S , \vhicIi is \\.ell \\,ithin thc 2.2 ns calculated
I ~ I ~ S ~ I I I L I I I I site*.

Acknowledgments

Terry Skrypck , ~ n d Rrucc Alford assisted with the
prototyping and measurelnents. Cheryl l'rcston,
Andy Iconing, Steve Coe , Gcorgc Harris, dnd
Larry l k r e n n e worked with tlic designers t o
cnsul-r compliance \vith tlic sign'll integrity rules.
1)3rrcl l)onaldson, Do11 Smelscr, Glenn Hcrdeg , and
D a n Wisscll provided invaluable technical guidance.

Note and References

1 . SI'I<:E is a gcncrdl-purpose c i rc~~i r sim~~l.ltor progrdnl
dc\rclopcd b!! Ln\vrence Nagcl dnd Ellis <:olic~l of t l ~ c
l)cp~r t~ncnt of Electrical Engineering dnd Computer
Scicncca, University of Califomid at Bcrkclcy.

2 . <:l)<:-C'lock Ilistt-iblltiort C'ilzuils, 1)'ltn Book
(1)311'1s, Tcs.: Tcxns Instruments Incorporated, 1994).

3 . Alph~i 2 / 164 iLlio.opr-ocmor lY~~rz / t i~~o-o Kcji.rz.rtcc
Mctrzccc./l (M,~yn~rd , MASS.: Digitdl Equipment Corpora-
tion, Scprc~nbcr 1994).

4. <:. Guiles, lit,et:>'thit?g f i 1 1 / E~~et* lLt/~t/etl to Ktlor~l
Ahol/l Lcr~?lirr~/tc~.s. . . But \Ccrc AJi-~tid lo Ask. 4th cd.
(h4ditld1ld, Ha.: h l o n , Inc., J J ~ L I ~ I - y 1989).

Biography

Roger A. Dame
A princip,ll signal integrity cnginccr in tlic ~\ilidr,lngc
Scrvcrs group, Koger llarnc is currently worki~lg o n the
Alph~iSer\~er 4100 projcct. During tlic I0 year> he has bccn
\\lit11 tliia group, lie has also contributed to the VAX 6000,
VAX 5800, VAX 7000, 13EC 7000, dnd 13E<: 10000 proj-
ccts. In earlier \\,ark .lt DIGITAL, in the Indl~strial I'roducts
group, he dcvclopcd ,inalog-to-digitd process conr~,ol sys-
tem interhccs. Roger joined l)IG1'1',41~ in 1971. He holds
an A.S.E.E.T. degree fi.om Springfclcl Tci-linical Cornmu-
n in <:ollcgc and a R.S.E.E.T. (surn~na cum Inudc) from
<:cntr.~l Nc\\ England Collegc. Kogcr is coin\.cntor of the
Idscr bus used in thc DEC 7000 and LIEC 10000 aystcms.

1'01. 8 No. 4 1996 47

I
Glenn A. Herdeg

Design and Implementation
of the AlphaServer 4100 CPU
and Memory Architecture

The DIGITAL AlphaServer 4100 system is Digital
Equipment Corporation's newest four-processor
midrange server product. The server design is
based on the Alpha 21164 CPU, DIGITAL'S latest
64-bit microprocessor, operating at speeds of
up to 400 megahertz and beyond. The memory
architecture was designed to interconnect up
to four Alpha 21164 CPU chips and up to four
64-bit PC1 bus bridges (the AlphaServer 4100
supports up to two buses) to as much as 8 giga-
bytes of main memory. The performance goal
for the AlphaServer 4100 memory interconnect
was to deliver a four-multiprocessor server with
the lowest memory latency and highest mem-
ory bandwidth in the industry by the end of
June 1996. These goals were met by the time the
AlphaServer 4100 system was introduced in May
1996. The memory interconnect design enables
the server system to achieve a minimum mem-
ory latency of 120 nanoseconds and a maximum
memory bandwidth of 1 gigabyte per second by
using off-the-shelf data path and address com-
ponents and programmable logic between the
CPU and the main memory, which is based on
the new synchronous dynamic random-access
memory technology.

?'he DIGITAJ- AlphaScr\,er 4100 sy1stem is a synmet-
ric multiprocessing (SMP) ~nidrangc server that sup-
Ix)rts LIP to four All~lla 21164 ~nicroprocessors.
A single Alpha 21 164 CPU chip may sim~~ltaneously
issuc ~nultiple external accesses to main memory. The
AlphaScr\lcr 4100 ~ncrnol-11 interconnect was designed
to m;lsimizc this multiple-iss~~c feature of the Alpha
2 1164 (:PU chip 2nd to talw ati\.nntagc oftlie pcrfor-
mancc benefits of the nc\\, fanlily of memory chips
c.lllcd synchronous dynamic random-ncccss memorics
(S~~RAIMS). To meet the best-in-industry latency and
band\vidtIi performance goals, 1)IGIT'AL de\.elopcd
a sinlple memory interconnect ;~rchitecru~-e that com-
bines the existing Alpha 2 1 164 (:l'U memory intcr-
k c wit11 tllc illdust~)!-sta~iilaI-cl SI)IUIM interface.

T l i r o ~ ~ g l i o ~ ~ t this paper the term latcnc!! refers to the
timc rcqi~ired to return data kom the 11icrnor!l chips to
the <:PU chips-the lo~\rcr the Iiltcncy, the better the
puhrrnancc. The AlphaSer\.cr 4100 system achic\,cs
a minimum latency of 120 nanoseconds (ns) fi-0111 the
timc the address appears at the pins of the Alpha 2 1 164
(1 I'U to the time the CPU intcninl ly rccci\,cs tllc corrc-
sponding data from any ackircss in main memory. T l ~ c
tcrln band\\~idtli rcfcrs to tlic amount ofdata, i.e., tlic
number of bytes, transferred bcn\lccn the memory
chips and the CI'U chips per unit oftimc-the higlicr
the bandwidth, the bcttcr the ~~crti)rmance. The
AlphaScr\ler 4100 deli\,crs a m;isirnum memory band-
\\kith of 1 gigabyte per second (GR/s).

Rcforc introducing the I)lC;lTALAlpliaSe~-ver4100
product in Ma!' 1996, thc tic\~cIopmclit tcam con-
ciuctcd nn cstcnsi\rc pcrforma~lcc comparison o f
the top scr\>crs in thc industr!~. 'l'lic bcnch117ark
tests showed that the AlpliaScr\,cr 4100 dcli\,ered the
lowest memory latency and the highest McCalpi~i
memory bandwidth of all tlic f i~~o- to Fo~lr-processor
systems in the industry. A companion papcr in
this issuc of the .[orrrilal. "Alpli;~Scrvc~- 4100 l'cr-
formfincc Char'~cterization," contains the comparati\,c
informfition.'

?'his I J ~ P " f o c ~ ~ s e s o ~ i tlic nrchitcct~~rc and design of
tlic tlircc core ITIOJUICS tlii~t \\'ere dc\;cloped concur-
rently to optimize the pcrfi)rmancc of the critire

Vol. 8 No. 4 1996

mcmory architccturc. These tlircc modules-the
mother-board, the synchronous mclnory modulc, and
tlic 110-cstcr~inl-cnclle proccssor modulc-circ slio\\m
in E'ig~~rc 1 .

Motherboard

Tlie ~notlicrboard contains connectors for LIP to four
processor modules, up to tbur mcmory modulc pairs,
LIP to two I / O interface modulcs (fi)i~r pcriplicral
c o m ~ x > ~ i c n t interco~lnect [PC11 bus bridge chips
total), mcmor!~ address multiplcscrs/drivcrs, and
logic for mcmory control and arbitration.' All con-
trol logic on the motherboard is iniplcmcntcd using
simple 5-ns 28-pin programmable array logic (PAL)
dc\,iccs and morc comples 90-mcgalicrtz (MHz)
44-pin programm:~ble logic de\liccs (I'LI>s) clockcd at
66 1\4Hz. Sc\lcral motherboards lia\~c bccn p r o d ~ ~ c c d
to support \ ~ a r i o ~ ~ s numbers of proccssor modules,
mcmory modules, and I / O interhx modulcs. The
AlpliaScr\~cr 4100 supports one to four proccssor
modulcs, o n c to four lncniory modulc pairs (8-GB
~ n a ~ i ~ i i ~ ~ ~ n ~ncmory), and one I/(> intcrhcc mociulc
(up to t\vo I'CI ~ L I S C S) . ~

Synchronous Memory Module

The s!~nchronous memory modules arc custoni-
dcsigncd, 72-bit-\vide plug-in carcls installed in
pairs to cover the fill1 width of the 144-bit niemory
d3r.1 bus. Synchronous menlory modules that provide
32 mc~ahytcs (M E) to 256 IMR per pair were designed
 sing 16-megabit (1Mb) SDRAlM chips. These
mcmory modules contain nine, ciglitccn, thirtysix,
or scvcnql-two 100-MHz S1)IIAM chips clocltcd at
66 MHz, fi)ur 18-bit cloclcd data transceivers, address
bn-out l>i~ffCrs, control pro\lidcd by 5-ns 28-pin
1'Als. To increase tlie maximuni amount of melnor!i
in rlic system, a thmily of plug-in compatible memory
modulcs \\,as designed, providing LIP to 2 GR per pair
 sing 64-Mb extended data out dynamic r.lncion-
access Incmory (E D 0 DRAM) chips. Tlicsc modules
contain 72 or 144 E D 0 131WM chips controlled by
t\iro custom 3pplicatio11-specific integrated circuits
(ASI(:s) pro\riding data multiplcsing and control, four
18-bit clocltcd data transcei\!crs, and address hn -ou t
bufkrs. Consccli~cntly, the AlpliaScr\~cr 4100 memory
architecture provides main mcmory capacities of
32 M11 to 8 GR uritli a mininiuni latency of 120 ns to
any address. This paper concentrates on tlic imple-
mentation of the synclironous memory modulcs,
ultlio~~gli the E1)0 memory modules arc fi~nctionally
compatible. Tlie reconfigi~rability description later in
this p q x r provides morc details of the implementation
of the E D 0 mcmory ~iiodi~lcs.

No-External-Cache Processor Module

The no-external-cache proccssor module is a plug-in
card \\zit11 a 144-bit Incmory interfice that contains
one Alplia 21 164 <:PU chip, eight 1 S-bit clocked data
transceivers, four 12-bit bidirectional address latches,
and control provided hy 5-ns 2s-pin P A L and
90-MHz 44-pin 1'Ll)s clockcd at 66 MHz. The Alpha
21164 CPU chip is programmed to operate at a syn-
clironous memory interface cycle time of 66 MHz
(15 ns) to match the speed of the SDRAM chips on the
n1ernor)I niodulcs. Althougli there are n o external
cache rando~n-access mcmory (RAM) chips on the
module, the Alpha 2 1 164 itself co~ltains nvo levels of
on-chip caclies: a priniary 8-kilobyte (ICB) data caclic
and a primary 8-I<B instructio~l cache, and a second-
le\rcl 96-I<B tlircc-\\ray set-associative data and instruc-
tion cache. The no-cstcrnal-caclic processor module
was designed to taltc advantage of the mi~ltiple-issue
feature of the Alpli;~ 21164 CPU. Ry keeping the
latency to main mcniory low and by issuing nii~ltiplc
rcfcrcnccs from the Alpha 2 1 164 CPU to main mem-
ory at the same timc to increase memory band\vidtli,
the performancc of many applications acti~all!r exceeds
tlie performance of a proccssor nodule with a tliird-
level external caclic.' N u m c r o ~ ~ s applications perform
better, however, with n large on-board cache. For this
reason, the AlphaScr\~cr 4100 offers se\reral variants of
plug-in compatible proccssor modules containing a
2-MB, 4-MB, or greater module-level cache. The paper
"The AlpliaScrvcr 4100 Cached Processor Module
Architecture and Design," \vliicli appears in this issue
oftlie Jou~-rzul, contains morc related information.-'

The three components of the core ~nodulc set wcrc
designed concurrcntly to address five issues:

1. Simple design

2. Quick design timc

3. Lo\\) memory I'itcnc!l

4. High mcmory b,lncl\\,idth

5. Reconfig~~rability

Simple Design

The Alpha 21 164 (:PU chip is based on a reduced
instruction set c o ~ n p i ~ t i n g (ll.lSC) architecture, \vIiich
has a small, simple set of instructions operating as fast
as possible. AlphaScrvcr 4100 designers set the same
goal of simplicity for the rest of the server system.

Tlie AlpliaScrvcr 4100 interconnect between the
CPU and main mcmorp \atas optimized for the Alpha
2 1 164 cliip and tlic S1)lIAM cliip. To ltecp the design
simple, only off-the-sliclf data path and address com-
ponents and rcprogralnmable control logic devices
\\!ere placed bct\\rccn the Alpha 21 164 and S D M M

chips. The designers remo\,ed cscess logic and hard-
ware features, minimized the "glue" logic between the
CPU chip and main memory, reduced memory laten-
cies as much as possible, and used custom ASICs only
when necessary.

Data Path between the CPU and Memory
The external interface of the Alpha 21164 chip pro-
vides 128 bits of data plus 16 bits of error-correcting
code (ECC), thus enabling single-bit error correction
and multiple-bit error detection over the full width of
the data path, which is shown in Figure 2. These 144
signals are connected to cight 1s-bit bidirectional
transceivers on the processor module. As illustrated
in Figure 1, the motherboard connects up to four
processor rnodules and up to four memory mod-
ule pairs. Each memory module contains 72 bits of
information; therefore, a pair of memory modules
is required to provide the necessary 1 4 4 data sig-
nals. Each pair of mcmory modules contains eight
additional 18-bit bidirectional transceivers that are
connected directly to a number of SDRAM chips.
The data transceiver used on tlie processor module
and on tlie memory nodule is the 56-pin Philips
ALVC162601 in a 14-millimeter (rnm)-long pacltagc
with 0.5-111m pitch pins. Error detection and correc-
tion using the 1 6 ECC bits is performed inside the
Alpha 21164 chip on all read transactions. Data path
errors are checked by the PC1 bridgc chips on all trans-
actions, including read and write transactions between
each CPU and rncrnor): and any errors are reported
to the operating system.

The data path is clocltcd at each stage by a copy of
a single-phase cloclt. The clock is provided by a lo\\!-
sltew clock distribution system built from the 52-pin
CDC586 phase-locked loop cloclt dri\rer.TThe clock
cycle is controlled by an oscillator on the processor
module and runs as fast as 66 MHz (15-ns minilnu111
cycle time) while delivering less than a 2-11s worst-case
skew (i.e., the difference in the rising edge of the clock)
between any two components, including tlie Alpha
21164, SDRAMs, and any transceiver on any module.

Read transaction data is returned from the pins
of the SDRAMs to the pins of the Alpha 21164 in
two clock cycles (30 ns), as shown in Table 1. The no-
external-cache processor has n o module-level data
cache, so data is clocked directly into the Alpha 2 1 164
from the transceiver. In Table 1, read data that corre-
sponds to transactions Rd l and Rd2 is returned k o m
the same set of SDRAM chips in consecutive cycles.
Read data that corresponds to transaction Rd3 is
returned from a different set of SDRAh4 chips with a
one-cycle gap to allow the data path drivers from trans-
action Rd2 to be turned off before the data path drivers
for transaction Rc13 call be turned on. This process pre-
vents tri-state overlap. As a result, consecuti\le read
transactions have address bus commands either four or
five cycles apart. Note that the Alpha 21 164 data, com-
mand, and address signals are shoci~n for only one
processor (CPUl) , which issues transaction Kdl . The
other tra~isactio~is are issued by other processors.

Write transaction data is also transferred from the
pins of tlie Alpha 21164 CI'U to the pins of the
SDRAMs in two clock cycles (see Table 2) . Write data

MOTHERBOARD

r - I r - ILI

I NO-EXTERNAL-CACHE PROCESSOR I I SYNCHRONOUS MEMORY I

I MODULE (1 TO 4) (1 TO 4 PAIRS)

DATA AND ECC
FLOP

I
I I
I I
I I I

Figure 2
Data Path bemeen the CPU and Memory

Table 1
CPU Read Memory Data Timinq

Digital Rchnical Journ.~l \b l . 8 No. 4 1996 5

Table 2
CPU Write Memory Data Timing

al\\lays incurs a one-cycle gap between transactions.
As a result, all but the tirst t\vo consecutive \\trite trans-
actions have addrcss bus commands ti\^ cycles apart.

Since the AlpliaScr\ler 4100 interconnect between
the CPU and maill memory was optimized fix the
SDRAIM memory chip, the transaction timing, as
sho\vn in Tables 1 and 2, was designed to provide data
in the corrcct cycles for the SDRAiils \\;ithout the nccci
for custom ASICs to buffer the data bet\\~ccn rlic
motherboard and SDIWM chips. This dcsign tvorks
wcll for an infinite stream of all reads or all writes
because of tlie SDRAM pipclined interface; howcver,
when a write tra~~saction immediately follows a rcad
transaction, a gap or "bubble" must be inserted in the
data stream to account for the fact that rcad dat.1 is
rcturned later in the transaction than write data. As a
result, e\,er!l \\trite transaction that immediately fi)llo\vs
a read transaction produces a five-cycle gap in tlie
command pipeline. Table 3 sho\vs tile rcad/\vritc
transdction timing.

Address Path between the CPU and Memory
The Alpha 21 164 providcs 3 6 address signals (byte
address <39:4>, i.c., bits 4 through 39), 5 command
bits, and 1 bit o fp~r i ty protection. Thcsc 42 signals are
connected directly to f o ~ ~ r 12-bit bidirectional 1;itchcd
transceivers on the processor ~ilodulc, as i[l~~stratcd ill

Figure 3. The motherboard latches tlic fbll address
alid dri\~cs first the roll1 and then the column portion
of thc addrcss to the memory modules. Each synch-
ronous memory module buffers tllc ro \v /colu~~i~i
address and fans out a copy to each of the S D W
chips using four 24-bit buffers. Sin~ilar to traditional
dynamic mndom-acccss memory (I>IWiM) cliips,
SL'>lUhlI chips use the ro\\. address o n their pins to
access the pagc in their memor!, arrays and rhc colunin
adciress that appears later o n the sa~iic pills to I-cad o r
\vritc the desired location \\,ithi11 tlic pagc. Conse-
clucntly, thcrc is n o nccd to provide the entire 36-bit-
wide addrcss to the memory modules. All address
c o r n p ~ ~ ~ c n t s t u s c d for transccivcrs, I;ltchcs, ~ i ~ u l t i -
plesers, anci dri\,crs o n the no-external-cnch proces-
sor niodulc, tlic ~nothcrboard, and the synchronous
nicmory m o d ~ ~ l c consist of the 56-pin At.V(;16260 or
the ALVCI162260, wliich is the same part \\.ith internal
output resistors. Address parity is clicckcd by t l ~ e PCJ
bridge chips on all transactions, 2nd nny errors arc
reported to the operating s!lstcni.

The addrcss path uses flow-througli latches for the
first halfofthe addrcss transfer (j.c., tlic ro\v address)
f r o n ~ the Alpha 21164 to the Sl>lL41Ms. When the
addrcss 'Ippcars at the pins of the Alpha 21164,
the latched transcci\,cr on the processor module, the
~iiultiplcscd row address driver o n tlic motlicrboarcl,

Table 3
CPU Readwrite Memory Data Timing

MOTHERBOARD

r------------------------- r -
I NO-EXTERNAL-CACHE PROCESSOR I I SYNCHRONOUS MEMORY
I MODULE (1 TO 4) I (1 TO 4 PAIRS)

1 m* '"*a LATCH - ADDRESS , ; * ~ " ~ ~ s ~ ~ SETS PER I
I PAIR) I
I COL BUFFER I

I
I

I
:--------------------------I

I I
L - J

- -

Figure 3
Address Path benvccn t l ~ c <:1'U and Memory

52 Digir.11 Tcchnic;ll Journal

and the fan-out bufkrs o n the memory n ~ o d u l e s are all
open and t i ~ r n c d on , enabling the address information
to propagate directly horn the Alpha 2 1 1 6 4 pins t o
the S D l a M pins in two cycles. T h e motherboard then
switches the multiplcscr and drives the column
address t o tlie memory modules t o c o n ~ p l e t e the
transaction (see Table 4) . Back-to-back rnelnory trans-
actions are pipelined t o deliver a new address t o the
SDKAM chips every four cycles. T h e fill1 menlory
addrcss is driven t o the motherboard in n v o cycles
(c!lclcs 0-1, 4-5, 8-9), ~\ /hcrcas additional informa-
tion about the corresponding transaction (\vhich is
used only by the processor and the 1 /0 modules)
follo\\is in a third cycle (cycles 2, 6, 10) . To avoid tri-
statc overlap, the fourth cycle is allocated as a dead
cycle, \vhich allows the addrcss drivers o f t h e current
transaction t o be t ~ ~ r n e d off before the address drivers
for the nest transaction can be turned o n (c!icles 3 , 7,
1 1) . These four cycles constitute the addrcss transfer
that is repeated every four o r ti \re cycles for consecuti\~e
transactions. N o t e that the one-cycle gap inserted
bc t \ \~ec~i transactions R d 3 and R d 4 for reasons indi-
catcd earlier in the read data timing description causes
the row addrcss for transaction lXd4 t o appear a t the
pins o f the SDLWIMS for three cycles instead o f two.

Control Path between the CPU and Memory
T h e Alpha 21 1 6 4 provides five command bits (four
Alpha 2 1 1 6 4 CIMD signals plus the Alpha 2 1 1 6 4
Victin-Pending signal) that indicate tlie operation
being req~lestcd by tlie Alpha 2 1 164 external inter-
f'~ce." Thesc f v e colnmancl bits are included in the 4 2
command/,~ddress (<:A) signals indicated in Figure 3

and are driven directly and i~nrnodified through the
latched address transceivers o n the processor module
t o become the nlothcrboard command/addrcss. Since
the AlphaSer\~er 4 1 0 0 interconnect benveen the <:PU
and main memory was optimized for the Alplia 2 1 1 6 4
CPU chip, the Alpha 2 1 1 6 4 estcrllal CM1) signals map
directly into the 6-bi t encoding o f the memory inter-
connect c o m n ~ a n d used o n tlie motherboard, thus
avoiding t h e need for custom ASICs t o manipulate the
commands bet\\.een the Cl'U and motherboard.

Prudently chosen encodings o f the Alpha 2 1 1 6 4
external C M D signals resulted in only t w o command
bits (t o determine a read o r a write transaction) and
o n e address bit (t o determine the memory bank)
bcing uscd by a 5 -ns I'AL, o n the processor nodule t o
directly assert a Request signal t o the motherboard t o
use the memory interconnect. Figure 4 shows the
control path between the C P U and memory. If the
central arbiter is ready t o all on^ a nc\v transaction by
the processor ~ n o d u l c asserting a Request signal (i . ~ . , if
the memory intercon~lect is n o t in use), then a 5-11s
l'Al, o n the noth her board asserts the control signal
Row-CS t o each o f the nienlory modules in the fol-
Io\vi~ig cycle. At the samc tinle, another 5-ns PAI, 011

the motherboard decodes 7 bits o f the address and
drives the Scl<l:O> signal t o all memory modules t o
indicate \\/hich o f the four memory module pairs is
bcing selected by thc transaction. Each synchronous
memory module uses another 5-ns I'AI., t o ininicdi-
ately send the corresponding chip select (<:S) signal t o
the rccluested SDRAM chips o n o n e o f the CS<3:0>
signals \vlien the Ko\v-CS control signal is asscrtcd if
selected by the value encodcd o n Sel<l:O>, as sho\vn
in Figure 4 .

Table 4
CPU Read Memory Address Timing

MOTHERBOARD

Cycle (1 5 ns)

Address Bus Command

SDRAM Address

Motherboard Address

Alpha 21 164 Address

r - 7 ADDRESS r-----------------------

I NO-EXTERNAL-CACHE PROCESSOR I
(1 TO 4 PAIRS)

I PAIR)
I
I PAL
I

I
I - A L - _ -

Figure 4
Control l'~t11 bct\vccn thc CPU 2nd Memory

0

Mern Addr l

Addrl

1)igit.d Tccllnlcal Joul.nal Vol. 8 No. 4 1996 53

1

Rdl

Info1

Addr2

Row Addrl

2

Mem Addr2 llnfo2

Addr3

Col Addr l

3

Mem ~ d d r 3 l l n f o 3

Addr4

Row Addr2

4

... Mem Addr4

Col Addr2

Info4

5

Rd2

Addr5

Row Addr3

6

Col Addr3

7

... Row Addr4

8

Col Addr4

9

Rd3

10 11 12 13 14

Rd4

15 16

Tablc 5 sho\vs the control signals bct\vccn the
proce~sor modules, the mcmor!, modules, and the
ccntral arbiter on thc ~~lothcrboarci for rn~dtiple
processor modules issuing single rcad transactions.
The central arbiter receives one or lllorc Kequest<rz>
signals fi-on1 tlie processor modulcs and asserts a
unicluc Grant<,?> signal to the proccssor module tliat
currently o\irns the bus. The arbitcr then drives a copy
of the CA signal to every proccssor module along with
thc identical Rosv-CS signal to every memory r i~oc l~~ lc
to marl< cycle 1 of a new transaction. Note that tlic
cycle counter begins at cycle 1 \vitli each ne\v
C:A/llo_<:S assertion and may stall for one o r more
cyclcs \\:hen gaps appear on the ii>cmor!r interconncct.
T\\co transactions may be pipclincd nt tile sumc time.
For simplicity of implementation in programrnnble
logic dc\.ices, tlie cycle counter of each transaction is
al\\.ays exactly four cycles fi-om the other.

Tablc 6 shows a single proccssol- modulc issuing
t\vo consecutive read transactions (dual-issue) t i i -
lowed hy a third rcad transaction at a later time.
Normally, the node issuing the transaction o n the bus
dcasscrts the l i c q ~ ~ e s t signal in cycle 2 . If a nodc con-
tinues to asscrt the Request signal, the ccntral arhitcr
continues to asscrt the Grant signal to that node to
allow guaranteed back-to-back transactions to occur.
Note that the first CA cycle occurs thrcc cyclcs aficr
the asscrtion of the R e q ~ ~ e s t signal bccausc ot'tlic dcla!~
~\,itliin the ccntral arbiter to s\vitch the Grant signal

bcn\,ccn processors. The third CA cycle occurs only
one c!rcle akcr tlic nodc asserts the Request signal,
ho\\re\,cr, bccausc o f bus parking. Bus parking is nn
arbitration feature that causes tlie central arbitcr to
assert the Grant signal to the last node to use thc bus
wfhen the bus is idle (follo\ving cycle 7 of transaction
Rd2). Consequcntlv, if the same processor wishes to
usc the bus again, the assertion of CA and Ro\v-(:S
signals occurs n4fo cyclcs earlier than it would without
tlie bus parking feature.

Data Transfers between Two CPU Chips
(Dirty Read Data)
The Alpha 21 164 (:I'U chips contain internal \\.rite-
back caches. Wllcn a (:1'U \\,rites to a block ofdatn, tlic
modifcd data is l~clti locull\, in the \\lrite-back cachc
until it is \\,rittcn hack to main memory at a later time.
The modified (dirty) copy of the block of data ~i ius t
be returned in place of the unmodified (stale) copy
From main mcmory \vlicn anotlier CPU issues a read
t~u~ i sac t io~ l 011 the mcIi1ory interconnect. The rncm-
ory modulcs rctllrn the stale data at the normal time
on the memory intcl-conncct, and the dirty data is
returned by the processor modulc containing the
modified copy in the cyclcs tliat folio\\. The proccssor
module issuing the rcacl transaction ignores the stale
data from memory.

Therefore, to ma in ta i~~ c~c l i c colierenc!~ bcn\.ccn
the \\,rite-back caches contained in multiple Alpha

Table 5
Multiple CPU Read Memory Control Timing

Table 6
Single CPU Read Memory Control Timing

Request<n>

Grant<n>

CA. Row-CS (New transaction)

Address/Cornmand Bus

SDRAM CMD (RAS.CAS.WE)

VoI. X No. 4 1996

6 7
2 3

2 (3) 3 4 5
6 (7) 7 - 1

12341234124 24 24 24 (3 3 3 3 (4 4 4 4 4 (

6 7 - 1
1 2 3 4 5

Cycle Counter
(1 5-ns cvcle)

1 2 3

3 3 4 4 4 4 4

4 5

X

... AddrlRd4

X

AddrlRd3

...

Info4

1 1 1 1 2 2 2 2 3 3

X

AddrtRdl

X

AddrIRd2 Info3 Info1

ACT 1 Read 4 ACT 3

Info2

ACT 2

4

Read 1 ... Read 3 I ACT4 Read 2

2 1 164 (:PU chips, each read transaction that appears
on the memory interconnect causes a cache probe
(snoop) to occur at all other CPU chips to determine if
a modified (dirty) copy of the requested data is found
in one of the internal caches of another Alpha 2 1 164
CPU chip. If it is, then the appropriate processor mod-
ule asserts thc signal L) i ryEnable<u> for a ~ninimum
of five cyclcs to allo\\~ the memor)l ~ilodule to finish
driving the old data. The processor module deasserts
the signal \\hen the dirty data Iias been fetched f ro~ i l
one of tlie internal caches and is ready to be driven
onto the motherboard data bus. Table 7 shocvs read
data corresponding to transaction R d l being retur~led
f r o ~ ~ i CPU2 to Cl'Ul fi\7e cycles later than the data
from memory, which is ignored by CPU1. Note the
one-cycle gap in cjlcles 10 and 15 to avoid tri-state
overlap between the memory module and processor
modulc data path drivers.

As discussed earlier in this section, the Alphaserver
4100 system implements memory address decoding
and memory co~ltrol without using custom ASICs
on the motherboard, svnchronous memory, or no-
external-cache processor modules. Using PALS allo\vs
the address dccode h n c t i ~ n and the fan-out buffering
to thc large nunibcr of SDIiAMs to be performed at
the same tinie, thus reducing the component count
and the access time to main memory. All the necessary
glue logic between the Alpha 21164 CPU and the
SDRAMs, including the central arbiter on the mothcr-
board, was implemented i~sing 5-11s 28-pin program-
mable PALS o r 90-MHz 44-pin ispLS1 1016 in-circuit
reprogrammable PLDs produced by Lattice Semicon-
ductor. These dcviccs can be reprogrammed directly
o n the module using the parallel port of a laptop per-
sonal computer. Each no-external-cache processor
module uses five PAL and four PLDs; the mother-

board (arbiter and memory control) uses eight PALS
and three PLDs; and each synchronous memory mod-
ule uses three PALS.

As shown in Table 1, the minimum memory read
latency (read data access time) is eight cycles (120 11s)
fro111 the time a new co1111nand and address arrive at
the pins o f the Alpha 2 1 164 chip to the time thc first
data arrives back at tlie pins. The S D W s are pro-
grarnmed for a burst of four data cycles, so data is
returned in four consecutive 15-11s cycles. Two trans-
actions at a time are interleaved on the luemorv inter-
connect (one to each of the two memory banks),
which allows data to be continuously driven in every
bus cycle. This results in the maximum memory read
bandwidth of 1 GB/s.

Trade-offs Made to Reduce Complexity
The Alpha 21164 external interface contains many
commands required exclusively to support an external
cache. By not including a module-level cache on thc
no-external-cache processor modulc, only Read,
Write, and Fetch com~nands arc generated by the
Alpha 21164 external interface; tlie Lock, MH,
SetDirty, WriteBloclcLock, UCacheVictin~, and
ReadMissModSTC coniniands are not used.k7 This
design allows the logic on the processor module that is
asserting the Request signal to the central arbiter to be
implemented simply in a small 28-pin PAL because
only nvo of tlie Alpha 21164 CMD signals are
required to encode a Read o r a Write command.
Similarly, allowing a maximum of two memory banks
in the system, independent of the nuniber of memory
nlodules installed, enables the Request logic to the
central arbiter to be implemented in the 28-pin PAL,
since only one address bit (byte address <6>) is
required to determine the memory bank.

Table 7
Dirty Read Data Timing

Digital Technical Jot~rnal Vol. 8 No. 4 1996 55

To decode memory addrcsscs in 28-pin PALS, the
AlpliaScr\~cr 4100 systcm uscs the concept of memory
llolcs. Tlic mcmory intcrconncct arcliitcct~~rc and con-
sole codc support sc\,cn different sizes of ~ilcmory
modules 2nd up to ~ L I I - pairs of nlemory nlodules per
system for a total systcm memory capacity of 32 1MB to
8 GB. Any 117is of111crnory ~i iodi~lc pairs is s~~ppor tcd as
long as the largest mcmory pair is pl;lced in the lo\\icst-
numbcrcd memory slot. Tlic pliysicul memory address
mnge for each of the h)ur nicmorp slots is assigned as
if all h i ~ r memory modr~lc pairs are the same size.
Conscq~~e~ltl!~, if n\ ,o additional mcmor!, pairs tliat arc
smaller than the pair in the lo\vcst-ui~mbered slot
arc installed in the llppcr memory slots, there will be a
gLlp or "hole" jn the physical mcmory space between
the h ~ / o smaller n~elnory pairs (see Table 8) . Rather
than rccl~~ire each Incmory ~llodulc to compare the full
JilcJliory address to a base acldrcss and sizc register to
cicterminc ifit should respond to the mcmory transac-
tion, the 28-pin 1)Al. driving Scl<l :O> on the motlicr-
board (scc Figure 4) uses the se\.cn address bits
Adclr<32:26> and the sizc of the memory module in
the lo\\,cst-numbered slot to encode the niernory slot
n ~ ~ r n b c r of the sclcctcd ~ncmory modulc pair. Console
cocic tictccts any mcmory Iiolcs at power-up and tells
tlic operating systems that these are unusable physical
mcmor)l addresses.

Anotlicl- si~nplification that die AlphaScrver 4100
systcm uses is to removc 1 / 0 space registers f ro~n the
clata path of the proccssor and memory modulcs.
Kccausc there are no custom ASI(:s on thcsc modulcs,
reading and \\,riting co~ltrol registers n.ould have
rccluircd additional c i~ta pi~tli components. Sincc ,111
tlic error checking is pcrformcci by either the 2 1164
CPU chip or the PC1 bridge chips and since there arc
n o address decoding control rcgistcrs required on tlic
mcmory modulcs, thcrc \vas n o nccd for more than
a Vc\v bits of co~ltrol information to be acccsscci by
sotiwarc on the processor or mcmory rnod~~lcs . The
I?<: bus (slo\\~ serial bus) alrcndy prcsc~it in the 1 / 0
st~bs!~ste~n was l~seil fix transfcrl-ing this small amount
o f i ~ l f o r n ~ ~ t i o n .

Furthermore, in the process of removing the 1 / 0
s p ~ d a t a path from the motherboard and proccssor
modules, the firm\vare (i.c., the console code, Alpha

21 164 1'AL codc, and diagnostic sofi\va~-e), which is
often placed in read-only ~iicmorics (ROlMs) on the
1?rocessor rnodule or ~ilothcrboard, \\,as mo\~cd to the
1 / 0 subsystem. Only a small 8-K1', single-bit scrial
KOM (SROM) \+,as placed o n each processor niodulc
that woiild initialize the Alpha 2 1 164 d i p on pourer-
up anci instruct the Alplia 21 164 to ncccss the rest of
the fi rnnvarc codc from the 1 / 0 subsystem.

Quick Design Time

To pro\,idc stable (:PU and mcmor!, Iiarcl~vare for I/(>
su bsystcm liard\\,arc debug and operating systcm soh-
ware d c b ~ l g and t l i ~ ~ s allo\\l the 1)ItiITAL AlpliaServer
4100 to be introduced o n schcdulc in May 1996, the
corc modulc set \\,as dcsig~icd and po\\,crcd on in less
than six mol~tlis. This primary goal oftlic AlphaScrvcr
4 100 project was achieved by kccping the dcsign tcxn
small, by using only progmm~nnblc logic and existing
data p t ' h colnponents, and by kccping the al-nount o f
documentation ofdesign intcrthccs to 3 mini~num.

The design tcaln for the motherboard, no-ester~lal-
cache processor modulc, and s~~nc l i rono i~s Inemory
modi~lc consisted of one dcsign engineer, one
schcmatic/layo~~t assistant, one signal integrity engi-
nccr, and t \ v ~ s i ~ i i ~ ~ l a t i o ~ i engineers. Thc team also
enlisted the help of mcmbcrs of the other AlpIlaScrver
41 0 0 design teams.

? - I Ilc architccturc and actunl ti nal logic dcsig~l of tlic
core module set \\,ere dc\,clopcd at the same tiole. Ry
using progra~n~nablc logic and off-the-shelf addrcss
and dam path compo~icnts, tlic logic \vas urritten in
ARL, cocic (a langi~agc uscd to describe tlic logic f i~nc-
tions of programnzablc dc\iccs) and compiled i ~ n m e -
diiltcly into the PALS and 1'Ll)s \\rhilc the architecture
\vns being specified. If the desired f ~nctionality did not
fit into the programmable dc\~iccs, the architecture
\\?:IS n~oditicd i~ntil the logic did fit. All three ~nodulcs
ulcrc dcsig~led by thc sanlc c n g i ~ ~ c c r at the same time,
so thcrc \\'as 110 need for intcrf~cc spccificatio~ls to be
\\,rittcn for each modulc. F ~ ~ r t l ~ c r m o r c , modifications
2nd cnhanccments c o ~ ~ l d 17c 1ii;1c1e i l l p.irallcl to each
dcsign to optimize performance and reduce co~iiplcx-
ity across a11 three modules.

Table 8
Memory Hole Example

I 1

VoI. 8 No. 4 1996

000000000-07FFFFFFF Memory Slot 1

Memory Slot 3

Memory Slot 4

2-GB Module Pair

080000000-OFFFFFFFF Memory Slot 2
I

1-GB Module Pair 1 100000000- 13FFFFFFF
:, M$*ij H-&', ::. 1

1-GB Module Pair 1 180000000 - 1 BFFFFFFF
Unused Memory

I

2-GB Module Pair

Rccai~se the dcsign did not incorporate any custom
ASICs, the core s)rstcni \\(as po\vcrcd on as soon as the
modulcs were built. Any last-n~inutc logic changes
required to fix problems identified by simulation
could be made directly to the reprogrammable logic
devices installed o n the modulcs in the laboratory. In
particular, the reset and po\ver sequencing logic o n the
 noth her board was not even sj~niilated before power-on

a1 ware. and was dc\~clopeci directly on actual I1 .d
Since the 1 / 0 subsystcrn \\.as not available \vhen the

core module set was first powered on, the soh\iarc that
ran on the core llard\\/arc \\/as loaded from the serial
port of a laptop personal coniputer and through the
Alpha 21 164 serial port, and then ivrittcn directly into
main memory. 13jagnostic programs that had been
de\reloped for simulation were loaded into the mcmory
of act~lal hard\vare and run to tcst a four- processor, fi~lly
loaded memory configi~ration. This testing cnabled
signal integrity fixes to be made on the Ilard\vare at h~ll
speed before thc I / O subsystcn~ was available. When
the I/O subsystcln was powered on, the core module
set was operating bug free at full speed, allo\ving the
AlphaScr\,er 4100 to ship in volume six ~ i ~ o n t h s later.

As mentioned in the section Sinlplc Design, the
central arbiter logic 011 the motherboard was irnple-
mcnted in progranlmable logic. Consequentl!~, by
q~~icltly changing to the rep-ogramn~ablc logic on the
motlicrboard instead of performing a I&ngthy redesign
of a C I I S ~ O I ~ ASIC, designers were able to avoid several
logic desjgn bugs that \\(ere found later in the custom
ASICs ofother AlphaScrvcr 4100 processor and m e n -
ory modules.

Low Memory Latency

Minimizing the access time of data being rcturncd to
the C1'U o n a rcad transaction was a major design goal
for the core module set. The core module set dcsign \\!as
optimized to deliver the Addr and CS signals to the
SDRAMs in nvo cycles (30 ns) from the pins of
the Alpha 2 1 164 CPU and to return the data fro111 the
S~)KAIMS to the Alpha 21 164 pins in another two cycles
(30 ns). VVith the SDRAlMs operating at a two-cycle
internal ro\v acccss and a nvo-cycle internal column
access to tlie frst data (60 ns total internal SDRAM
acccss time), the ~iiain mcmory latency is 120 ns.

The lo\v latency \\,as acco~iiplished in four \\laps:

1. By rcmo\~ing custo~ii ASICs and error checl<ing
from the data path benveen the pins of tlie Alplia
2 1164 CPU chip and main Incmory

2. By combining thc SDRAM row/column address
niultiplexcr \vith address fan-out buffering on the
motherboard

3. Ry sinipli%ing the memory address decode and
memory interconnect rcclilcst logic

Many multiprocessor servers share a common
command/address bus by issuing a request to use the
bus in one cycle, by either \\laiting for a grant to bc
returned kom a central arbiter or performing local arbi-
tration in the next cycle, and by driving the command/
address on the bus in the cycle that follows. This
sequence occurs for all transactions, eve11 when the
memory bus is not being used by other nodes. The
Alphaserver 4100 nic1nor)I interconnect implements
bus parlung, ~ ~ l i i c l i allo\vs a modu1.e to turn on its
acidress dri\lers even though it is not currently using
the bus. If the Alpha 21 164 on that ~nodclle initiates a
new transaction, the command/addrcss tlo\vs directly
to memory in two less cycles than it \vould taltc to pcr-
form a costly arbitration sequence. Transaction Rd3 in
Table 6 sho\\rs an example of the cffects of bus parking.

High Memory Bandwidth

One of the most important features of the SL>IUM
chip is that a single chip can provide or consumc data
jn every cyclc for long burst lengths. The AlpIiaServer
4100 operates the SDRAMs with a burst length offour
cycles for both reads and writes. Each S1)RAM chip
contains nvo banks dctermined by Addr<6>, \vhich
selects consecuti\le memory blocks. If accesses are
made to alternating banks, then a single SDRAM can
continuously drive rcad data in every cjlclc. Tlic arbi-
tration of the AlphaServer 4100 Incnior!! intcrconncct
supports only n4~1 mcnlory banlcs, so tlic smallest
1ne1nory niodule, Ivhich consists of one set of
SDRAlMs, can provide the salnc 1-GR/s masimun~
rcad bandwidth as a fi~lly populated mcmory configu-
ration, i.c., a system configured with the minimum
amount of memory can perform as well as a fully con-
figured system.

To incrcasc the single-processor memory bandwidth,
the arbitration allows two simultaneoi~s rcad trans-
actions to he i s s~~ed fiom a single processor module. As
long as the arbitration nlemory bank restrictions and
arbitration himess restrictions are obeyed, it is possible
to issue back-to-back read transactions to ~ ~ i c m o q l from
a single CPU with read data being returned to the Alpha
2 1 164 CPU in eight consecutive cycles instead of the
usual h u r (see Tables 1 and 6). This dual-issue feati~re
and the other lo~l memory latency and high memory
bandwidth features of the AlphaSer\ie~- 4100 architec-
ture enabled the AIpliaScr\~cr 4100 system to mect the
best-in-i~ldust~-y performance goals ror McCalp~n Inem-
ory bandc\~ith. '

As discussed In the section Simple Devgn and ~llus-
tratcd in Figure 3, to avo~d tri-stntc o\lerl'~p, lieneve ever
read data is returned by a different set of SDRAMs
(on the same rnen1ory module or on J different mem-
ory module), a dead cycle is placed benVeen bursts
of four data cycles to allo\v one driver to turn off

4. By using bus parking

Vol. 8 No. 4 1996 57

before the nest driver turns o n . Ry keeping the lo\\~er-
order address bits connected to nll S ~ ~ R A I I S , i.e., by
not interlea\~ing additional banks of memory chips o n
low-order address bits, consccuti\ze accesses to alter-
nating memory banks such as large direct memory
access (1)MA) sequences can potentially achieve tlie
full 1-GB/s read bandwidth o f the data bus. With tlie
dead cycle inserted, tlic rcad bandwidth of the mem-
ory interconnect is reduced by 20 percent.

The data bus connecting the processor, memory,
and 1 / 0 modules was iniplcniented as a traditional
shared 3.3-volt tri-state bus \\,it11 a single-phiisc syn-
chronous clock at all modulcs. As a result, the bus
Rcconles saturated as morc processors are added a ~ l d
bus tsaftic increases. To Icep tlie design time as short
us possible, the Alpl~aSer\~c~- 4100 dcsigncrs chosc not
to esplore tlie concept o f a switched bus, on \vhicli
morc than one private ti-ansfcl- map occur at a t i~iie
bcnvcen multiple pairs of nodes. Clearly, tlic
AlpliaServer 4100 system has reached the practical
upper limit of bus bandwidth using the traditional trj-
state bus approach.

Reconfigurability

The Alphaserver 4100 hard\varc niodules \\/ere
designed to alloc\~ enhancements to be ~ i ~ a d e in the
f ~ ~ t u r c without having to redesign every element in
the system.

Motherboard Options
The Alphaserver 4100 motherboard contains four
clcciicated processor slots, eight dedicated memory
slots (~ O L I ~ memory pairs), and one slot fix- an
I/O module witli nvo PC1 bus bridges. Designed at
tlic same time but not produced until after the
AlphaScriler 4100 motherboard \vas available,
the AJpliaServer 4000 niothcrboi~rd contains only nvo
processor slots, Four memory slots (t\\io menlory
pairs), and slots for nvo I / O modules allo\ving four
1'(:1 bus bridges. Since module liarci\\rarc verifcation
in the laboratory is n lengthy process, tlie AlphaSesver
4000 niothcrboard \\,as designcd to use tlie same logic
as thc Alphaserver 4100 except fbr the programmable
arbitration logic, \\~hicli had a clifferent algorithm
because of the estra 1 / 0 module. Whcn the signals on
the Alphaserver 4000 motherboard were routed, all
nets were kept shorter than the corresponding nets on
the Alphaserver 4100 motherboard so that every sig-
nal clid not need to be rccsaniincd. Only those signals
that \\lcrc uniquely differ-cnt \\,crc s ~ ~ b j e c t to the f~ll
signal integrity verification proccss.

Memory Options - . I'Jic synchronous memory modules a\railable for the
AlphaScrvcr 4100 arc all based on the 16-Mb SDRAM.

Using this size chip allon~ccl designers to build syncliro-
110~1s Jiie1nor!, modules tliat contain 9, 18, 36, anci
72 S131W1Ms and provide, rcspccti\icl\,, 32 MR, 64 MB,
128 IUR, and 256 MB of main memory per pair. '1-l~c
mcmory architecture supports synchronous nielnory
riiodules tliat contain up to I GB o f main memory per
pair (LIP to 4 GB per system) by using the 64-Mb
S1)RAMs; ho\ve\lcr, whcn the Alphaserver 4100 sys-
tem was introduced, the pricing and a\railability of the
64-Mb S D M M did not allo\\. these larger capacic syn-
chronous memory modules to be built.

At tlie same tinic the s!rnchro~io~~s mcmory modulcs
\\.ere being designed, a fihnily of plug-in cornpatiblc
mcmory modules built witli El30 13RA1us was
dcsig~lcd and built. The Iiien~ory arcliitccture supports
F,130 mcrnory modules containing up to 2 GB of main
mcmory pcr pair (L I ~ to 8 GI3 per system) by L I S ~ I ~ ~ thc
64-Mb E D 0 DRAM. Whcn the AlpliaScr\~er 4100 sys-
tem \\.as introduced, the 64-1Mb E D 0 DRAM nras
a\railable and E D 0 memory modulcs containing 72 or
144 E D 0 DRAMS wcrc built providing 1 GR and 2 GB
o f main nicniory per pair. To round out the range of
memory capacities and to pro\.idc an alternative to the
synchronous memory moclulcs in case t l~ere was a cost
or design problem \vith the nc\xr 16-Mb SDRAM chips,
a hmily of E D 0 nxmory motiulcs \\/as also built ~ ~ s i ~ i g
16-lMb and 4 -Mb E l 3 0 OlUl\/ls, pro\iding 6 4 MB,
256 MR, and 512 AIIR of main memory per pair.

Although E D 0 DIWh/ls can provide data at a liighcr
b'lnd\vidth than standard l>lW~Ms, n single E D 0
1)MlM cannot return data in ti)ur consccuti\.c 15-11s
c!~clcs likc the single SDlWlM ~15cci o n tlie synchronous
mcmory niodules. Therefore, a custoni ASIC was ~ ~ s e d
o n the E D 0 memory modulc to access 288 bits of
data every 30 11s from the E D 0 1)RAMs and multiples
the data onto the 144-bit mcmory interconnect cvcry
15 ns. To imitate the nvo-bank feature of a single
SI)RAI\/I, a second bank of El30 l)IMl\lls is reql~ired.
Conscili~cntly, the minimum number of menior!I
chips pcr El30 memory moclulc is 72 bur-bit-\vide
El30 DRAM chips, \\,liereas the mini~iiuni number
o f liiemor!l chips per synclirono~~s memory ~ O C I L I I C
is o~i ly 18 four-bit-\\ride SI3KAM cliips 01- as few as
9 eight-bit-\vide SDRAJM chips.

When the Alphaserver 4100 system \vas introduced,
the fastest E D 0 DRAM a\,ailablc tliat met thc prici~lg
rccluircnicnts was the 60-11s version. When this chip
is used on the E D 0 mcmory modulc, data cannot
be returned to the mothcrbonrcl as fast as data can be
returned from the synchronoi~s mc~nory modules. To
support tlle 60-11s EI)O l>lUh4s, n one-cycle (15 ns)
incscnsc in the access time to main Iiicmor!r js required.
Support h r this extra c\,clc of latcnc!, \\as designed iuto
tlic mcmory interconnect by pl~cing J. one-cycle gap
bct\\,ccn cycles 2 and 3 (scc 'T'nblc 1) of any rcad trans-
action accessing a 60-11s E D 0 mclnor!l module. Con-
secl~~e~itly, the read memory latency is one c!lcle longer

Vol. 8 No. 4 1996

and the niaximu~n read bandwidth is 20 percent less
\vJien using E D 0 memory modules built witli 60-ns
E D 0 DRAMS. Note that it is possible to have a misture
of E D 0 memory modules and synchronous memory
modules in the same system. In such a case, only tlie
memory read transactions to tlie 60-ns E D 0 memory
module would result in a loss of performance.

New versions of the El30 Iiicmory modules that
contain 50-ns E D 0 DRAMS providing up to 8 GB of
total system memory arc scheduled to be introduced
within a year aher the introduction o f the AlphaServer
4100. These modules will not recluire the additional
cycle of latency, and as n result they will have identical
performance to the synchronous memory modules.

Processor Options
The no-external-cache processor niodule was designed
to support either a 300-MHz Alpha 21 164 CPU chip
with a 60-MHz (16.6-ns) synchronous memory inter-
connect or n 400-MHz Alp.lia 21164 Cl'U chip with
a 6 6 MHz (1 5-17s) synchronous memory interconnect.
As previously mentioned, the Alpha 21164 itself
contains a primary 8-1U$ data cachc, a primary 8-IU3
instructioli cache, and a second-level 96-IU3 three-
way set-associative data and instruction cachc. The
no-external-cache processor module contains no third-
level cache, but by leeping the latency to main mem-
ory low and by issuing multiple references from the
same Alpha 21 164 to main memory at tlie same time
to increase memory bandwidth, the performance of
many applications is better than that of a processor
module containing a third-level external cache.'

Applications that are small enough to fit in a largc
third-level cache perform better with an esternal
cache, however, so tlie AlpliaServer 4100 offers several
variants of plug-in compatible processor modules con-
taining a 2-ME, 4-MB, or greater module-level cache.
In addition, cdched processor modules are being
designed to support Alpha 21 164 CPU chips that run
f ~ s t e r than 400 MHz while still maintaining the masi-
niuni 66-MHz s y ~ i c h r o n o ~ ~ s memory interconnect.
The architecture of the cached processor module
was dcvcloped in parallel with the core module set,
and several cnhance~nents were niadc to the CPU and
memory architecture to support the mod~~le-le\iel
cache. See tlie companion paper AlpliaServer
4100 Cached Processor module Arcliitect~~re and
Design" for more inforniatio~i.~

Versions of the Alpha 21164 chip that operate
at 400 MHz and faster require 2-volt power, while
slower versions of the Alpha 21164 require only
3.3 volts. 'l..lie AlpliaServer 4100 motherboard does
not provide 2 \rolts of po\vcr to the processor modulc
connectors; consequently, :a 3.3-to-2-volt converter
card is used on the higher-speed processor modules
to provide this unique voltage. Each new version of

processor ~iiodule is plug-in compatible, and systcms
can be upgraded without clia~iging tlie motherboard.
This is true even if the frequency of the synchronous
memory interconnect changes, although all processor
modules in the system must be configured to operate
at the same speed. The oscillators for both the high-
speed internal CPU clock and tlie memory intcrcon-
nect bus clocl< are located on the processor niodulcs
to allow processor upgrades to be made without mod-
ifjing the motherboard.

Summary

Tlie high-performance DIGITAL AlphaSer\!cr 4100
SMP server, which supports i ~ p to four Alpha 21164
CI'Us, was designed simply and cluicldy using off-thc-
shelfcomponents and programmable logic. \ i n e n tlie
AlphaScrver 4100 system was introduced in May
1996, the memory interconnect design enabled the
server to achieve a minimu111 menlory latency of
120 nanoseconds and a maximum memory band-
\vidth of 1 gigabyte per sccond. This industr\!-leading
performance \\[as achieved by using off-the-shelf data
path and address components and progranimable
logic behvecn tlie <:PU and the SDIUIM-based main
memory. The motherboard, the s!~~iclironous memory
module, and tlie no-esternal-cache processor module
were developed concurrently to optimize the perfor-
mance of the memory architecture. Thcse core ~ n o d -
ules were operating successfi~lly within six months of
the start of the design. Tlie AlpliaServer 4100 liard-
ware nodules were designed to allow fi~ture enhance-
ments \vithout redesigning the system.

Acknowledgments

Bruce Alford fro111 Revenue Systenis Eng~neering
ass~sted with the schematic entry, module layout,
manuhcturing Issues, and po\ver-up log~c des~gn, and
succeeded in smootlily transitioning the core module
set to lin long-term engineering support organization.
Roger Dame handled s~gnal integrity and timing
analysis, \vIiile Dale I<eck and Arina Finltelstein
u~orked 011 s i n i ~ ~ l a t ~ o n Don Smelscr and Darrcl
Donaldson prov~ded techn~cal gilldance and moral
support.

References and Notes

1. Z. C\letano\jic and 1). I)onaldson, "AlphaServer 4100
Pcrfor~~>ance <:hnractcrizatio~~," 13igit~il Techrticctl
,/ot,lr17nl, vol. 8, no. 4 (1996, this issue): 3-20.

2 . S. Duncan, C. Kecfer, and T. ~McLaughlin, "High
Perforniance 1/0 Design in the AlphnSer\~er 4100 Sym-
metric Multiprocessing System," Digital Techrzical
.Jo~~rnnl, vol. 8, no. 4 (1996, this issue): 61-75.

3. The .4lpli:iScrver 4000 s!,stcm contllins the same CPU-
to-mcniory intcrt:lcc ns the AlplinSc~.vc~ 4100 s!.stclii
but s ~ ~ p p o r t s half the nu~i ibcr ofproccs\ors and mc~nory
~ ~ l o c i ~ ~ l c s a~lcl t\\,icc the n ~ ~ n i b c r of I><:[bridges. Thc
AlphaScr\~cr 4000 motherboard \\,.IS iienigrtcd a t thc
same time 2s thc AlplinServcr 4100 ~niothcrl~oard but
\\ .IS ~ i o t p r o d ~ c c d ~ ~ n t i l nftcr the Alph;iScn.cr 4100
n l o t l ~ c ~ ~ b o ; ~ r d was a\failnble.

4 . iM. Stcinman c t al., "Tlic AlpliaScr\,cr 4100 Cachrd
I'roccssor Modu lc Architccturc ;111ti I)csign," Di,qi&c/l
7i~cbiricol,Jo~/ri1~11, vol. 8, n o . 4 (1996, this issue):
2 1-37.

5. R . I);lmc, "'l'hc AlphaScr\,cr 4100 Lo\\.-cost <:lock Dis-
tr ibutio~i System," Digilol ' l~chi / ic~r / l . /o /11~11~11. \,ol. 8,
n o . 4 (1996, this issue): 38-47.

6 . A@ha 2 1 164 .Ilici~op~ncc~.s.sot. Hoizlrr.rli.c, NcjL,i-oir~-c~
, l l r~ i~ / / a l (M.~ynard , Mass.: L>igit;ll 1-quipmcnt Corpora-
tion, Order No. KC-QAEQA-.I-(:, Scptcmbcr 1994).

7 . Tlic Fctcli command is not implcmcntcd on thc
AlpliaScrver 4100 system, but t l~c rc is no mcchnnism to

kccp it from appearing o n the ClM1) pins o f thc Alpha
21 164 (:PI chip. The Fctch command is simply tcl-mi-
natcd \vitliout any additional action.

Biography

Glenn A. Herdeg
Glenn Hcrdcg has been \vorkuig on the design ofcorn-
putcr n i o d ~ ~ l c s since joining Digital in 1983. A principnl
hard\v;~rc rngiliecr in the AIphaServer Platfor111 1)cvclol)-
mcnt p r o ~ ~ p , lie \\..is thc project leader, architect, logic
dcsig~icr, and module dcsigner for t l ~ c Alphaserver 4 100
motherboard, no cstcrnal-cachc processor modules, and
sy~rchnnious nicmory niodulcs. Hc also led thc design
of rlic Alph;lScn.cr 4000 nlotlicrboard. 111 carlicr \ \~ork,
C;lc~>ri scrvcd as the principal ASIC .uld moduk dcsigncr
for scvcral 1)EC 7000, VAX 7000, a11d VAS 6000 p~.ojccts.
H c I~olds :I U.A. ill pliysjcs from Colby <:c~llrge anti nl i M.S.
irl c471rlp1rtcr systems from Rcnssrlacr I'olytccl~~~ic I ~ l s t i t ~ ~ t c
a11d 11~q two p~tc11ts. Glenn is currently i~~\rol\,cd ill f 11.t1lc1.

Vol. 8 No. 4 1996

High Performance I10
Design in the AlphaServer
41 00 Symmetric
Multiprocessing System

The DIGITAL AlphaServer 4100 symmetric multi-
processing system is based on the Alpha 64-bit
RlSC microprocessor and is designed for fast
CPU performance, low memory latency, and
high memory and I10 bandwidth. The server's
I10 subsystem contributes to the achievement
of these goals by implementing several innova-
tive design techniques, primarily in the system
bus-to-PC1 bus bridge. A partial cache line write
technique for small transactions reduces traffic
on the system bus and improves memory latency.
A design for deadlock-free peer-to-peer transac-
tions across multiple 64-bit PC1 bus bridges reduces
system bus, PC1 bus, and CPU utilization by as
much as 70 percent when measured in DIGITAL
AlphaServer 4100 MEMORY CHANNEL clusters.
Prefetch logic and buffering supports very large
bursts of data without stalls, yielding a system
that can amortize overhead and deliver perfor-
mance limited only by the PC1 devices used in
the system.

I
Samuel H. Duncan
Craig D. Keefer
Thomas A. McLaughlin

The Alphaserver 4100 is a s)r~iimetric ~nultiprocess-
ing system based on the Alpha 21 164 64-bit N S C - 7 microprocessor. .I his midrange system supports one
to four CPUs, one to four 64-bit-wide peer bridges to
the peripheral component interconnect (PCI), and
one to four logical memory slots. The goals for the
AlphaServer 4100 system were fast (:PU performance,
low menlory latency, and high memory and I/O
bandu~idth. One measure ofsuccess in acliicving these
goals is the AIM benchmark niultiprocessor perfor-
mance results. Thc AlpliaSer\ier 4100 system was
audited at 3,337 peak jobs per minute, with a SLIS-
tained nu~iiber of 3,018 user loads, and won thc AIlM
Hot Iron price/performance award in October 1996.'

The subject of this paper is the contribution of the
T/O subs)atem to these high-performance goals. In an
in-house test, 1/O performance of an AlphaSer\rer
4100 system based on a 300-megahertz (MHz)
processor shows a 10 to 19 percent improvement in
1 / 0 when compared with a previous-generation~eratio~~
midrange Alpha system based o n a 350-1MHz proces-
sor. Reduction in CPU utilization is particularly bene-
ficial for applications that use small transfers, e.g.,
transaction processing.

I10 Subsystem Goals

The goal tor the AlphaServer 4 100 I/O su bsystcni was
to increase overall system performance by

Reducing CPU and system bus utilizdtion for all
applications

Deliirering fill1 1/0 bandwidth, specifically, a band-
\vidtll limited only by the PC1 standard protocol,
which is 266 nicgabytes per second (MB/s) on
64-bit option cards and 133 MB/s on 32-bit
option cards
Minimizing latency for all direct memory access
(DMA) and progra~n~ncd 1 / 0 (1'10) transactions

Our discussion focuses on scveral innovative
tecliniclues used in the design of the 1/0 subs)~ste~n
64-bit-\\ride peer host bus bridges that dran~atically
reduce CPU and bus utilization and deliver f i l l1 PC1
bandwidth:

Vol. 8 No. 4 1996 61

A partial cache linc \\.rite technique for coherent
DMA writes. This technique permits an 1 / 0 device
to insert data that is smnllcr than a cache line, or
block, into the cache-colicrent domain without first
obtaining owncrsliip of the cache block and pcr-
forming a read-niodilj-write operation. Partial
cache line writes reduce traffic on the system bus
and improve latency, particularly for messages
passed in a MEMORY CHANNEL cluster.'

Support for device-initiated transactions that target
other devices (peers) across niultiple (peer) PC1
buses. Peer-to-pccr transactions reduce system
bus utilization, P<:I bus utilization, and CPU uti-
lization by as niucli as 7 0 percent when measured in
MEMORY CHANNEI., clusters. In testing, we ran
a MEMOI<Y <;HANNEL ;~pplication without pecr-
to-peer D I W , ancl observed 85 percent Cl'U
~~tilization; running the same application .i.ilitli peer-
to-peer DiMA enabled, we observed 15 percent
CPU utilization. 'l'lie pccr-to-peer technique is
succcssf~~lly jmplelne~lted o n the Luphascrvcr 4100
system \vithout causing deadlocks.

Large bursts of PCI-cie\rice-initiated 13MA data to
or from system memory. 1 / 0 subsyste~n support
For large bursts of DMA data enables efficient I'CI
bus utilization because fixccl bus Idtency call be
amortized over these large transactiorls.

Prcfetclied read data anci posted write data buffcr-
ing designed to keep up \\lit11 the highest perfor-
mance PC1 devices. When used in combination
\vith the PC1 delayed-I-caci protocol, the buffering
and prefetching approach allonrs tlie system to
avoid PC1 bus stalls introduced by the bridge dur-
ing P<:I-device-initiated tra~isactions.

The following overview of the system colicerltrates
on the areas in which these tcchniclues are used to
enhance performance, that is, efficiency in the s)fstcni
bus and in the PC1 bus bridge. In subsequent sections,
we describe in greater detail the pcrforniance issues,
other possible approaches to resolving the issues, and
tlie techniques developed. We conclude the paper
\\lit11 pel-forniance results.

Alphaserver 4100 System Overview

The AlpliaServer 4100 systcm shown in F i g ~ ~ r c 1
includes four CPUs conncctcd to the system bus,
\\!liicli comprises the data and error correction code
(ECC;) and the comln'lnd .lnd address lincs. Also
conncctcd to the system bus ,Ire main rncrnor!] u i ~ i
a single module with h\'o independent peer 1'CI bus
briclges. T l ~ e singlc n i o d ~ ~ l c , tllc I'CI bridge niodulc,
pro\~ides tlie physical and the logical bridge bet\vccn
the s!lstem bus and the I'CI b ~ ~ s c s . Each independent
peer P(:I bus bridge is constructed of a set of three

application-specific intcgratcd circuit (ASIC) chips,
one control chip, and n\,o sliced data path chips.

The nvo independent PC1 bus bridges arc the intcr-
t3ccs between tlie system bus nnd their respective P<;I
buses. A PC1 bus is 6 4 or 32 bits \vide, transferring
data at a peak o f 2 6 6 MB/s or 133 MR/s, respectively.
In tlie Alphaserver 4100 systcm, the PC1 buses arc
6 4 bits wide.

Thc PC1 buses connect to a PC1 backplane module
with a number of expansion slots and a bridge to the
Extended Industry Standard Arcliitccture (EISA) bus.
In Figure I , each PC1 bus is slio\\.n to support up to
t i ~ u r devices in option slots.

The AlpliaServer 4000 series also supports a config-
~lration in which nvo of the CI'U cards are replaced
with nvo additional indcpcndcnt peer PC1 bus
bridges. In the quad PC1 bus configuration, there arc
16 option slots available for P(:I dc\riccs, at the cost
of bounding the systeni to n masim~im of nvo CPUs
and nvo logical memor!! slots, l~ l i i s q ~ ~ a d 1'C[bus con-
figuration is shown in F i g ~ ~ r c 2.

 most of tlie techniques described in this paper arc
implcmcntcd in the I T 1 bus bridge. The partid cachc
linc \\?rite technique, presented nest, is also designeil
into tlic protocol 01-1 the systcni bus ancl into the C P U
cards.

Improvements in CPU and System Bus Utilization
through Use of Partial Cache Line Writes

Iuet'ficicnt use of system rcsourccs can limit perfor-
mance on heavily loaded systems. System designers
must be attentive to potential pcrh)rmance bottle-
necks beyond the conlmonly addressed CPU speed,
caclic loop time, and CPU mcrnory latency. Our focus
in the 1 / 0 subsystem design was to balance systelii
pcrk)rmance in the face of a \vide range of I /O device
1~cIi;iviors. We therefore iniplemcntcd technicl~~es that
minimize the load on the PC1 bus, the spstcnl bus, and
the (:PUS. The technique dcscribcd in this section-
partial cache line nlrites-reduces the load 011 the sys-
tem bus and inipro\~cs ovcmll systcm pcrk)rmancc.

 many first- and scconci-generation PC1 controller
devices \\lcrc designed to operate in platk~rnls tliat
support 32-byte caclic lincs and 16-hytc \\!rite buffers.
It is common for an older 17(:1 dc\licc to liinit the
amount of L~IMA data it reads or writes to match this
c I 1 a! actcristic of coniputcrs tliat ere 011 the market at
tllc time those devices \vcrc designed. Some classes of
devices \\Jill, by tlicir nature, iil\\!a!a liniit tlie amount
of data ill a burst tra~isactioli.

As d o most Alpha platforms, the AlpliaServer 4100
s!!stc~ii supports a 64-byte cache linc that is n\~icc that
of other coliimon s!!stcms. When a PC1 device per-
forms n ~nemory write of less than a complete caclie
linc, the system must nicrgc the data into a cache line
while maintaining ;I consistent (coherent) view of

62 Vigiral Technical Journal

I PC1 BACKPLANE MODULE I

I
I

I
I

I
I
I

ONE DEDICATED I
PC1 AND THREE I

SHARED PClIElSA
SLOTS I

I
I
I
I

BRIDGE
I

64-BIT PC1 1
I
I

I PC1 BRIDGE MODULE

COMMANDIADDRESS A A A
DATA AND ECC

SYSTEM BUS
v

1
v

v f v 1 v f 1

Figure 1
AlphaScrvcr 4 1 0 0 Sysccni \virIi Four C P U s , l'lvo 64-b i t Buses

I - -
I PC1 BACKPLANE MODULE

I

I

I

I

I

I

I

I

I

I

I

I
ONE DEDICATED I

I PC1 AND THREE I

I SLOTS SHARED PCllElSA I
I
I SLOTS I

I
I
I
I

BRIDGE
I

64-BIT PC1 1 I
I

I -
I
I

MEMORY

COMMANDIADDRESS A A A
DATA AND ECC V V

V SYSTEM BUS

t v v

I
I PC1 BRIDGE MODULE I
I - J

I

64-BIT PC1 3 64-BIT PC1 2
I
I
I
I
I
I

FOURPCI
EXPANSION I

SLOTS

I I

Figure 2
A p h a S c r \ ~ e r 4 0 0 0 Systcni \vith 'l'wo <:Pus, Four 64-b i t Buses

D ~ g ~ u l Tcclinicnl Journal Vol. 8 No. 4 1996 63

mcmory for all CPUs on the system bus. Tliis merging
of \vritc data into tlic cache-coherent domain is typi-
cally done on the PC1 b i ~ s bridgc, \\~hicIi reads the
cnclic linc, nlcrgcs the ne\ \ bytcs, and \\!rites tlic caclic
line back o ~ ~ t to nienior)l. The rccid-modi%-\\'rite ~iiusr
be ~.xrfornied as an atoniic operation to maintain
mcniory consistency. For the duration of the atoniic
read-niodi+-write operation, the systcm bus is busy.
Conscqucntly, a write of less than a cachc linc results
in a read-~nodifjl-write that takes at least thrcc tinics as
many cycles o n tlie systeln bus as a simple 64-byte-
aligned caclic line \\Trite.

For example, if we had used an c~r l i c r DIGITAL
iniplcnicntation of a s!lstcm b ~ ~ s protocol o n the
AlphaScr\fcr 4100 system, an 1 / 0 dc\~icc opcration
o n the L'CI that perfor~ncci a single 16-byte-aligned
mcmory \\lritc \vould ha\ r consumed system bus
bnnci\vidtli that c o ~ ~ l d ha1.e mo\~ed 256 bytcs of data,
or 1 6 timcs the amount of data. We tlicrcforc had to
find a Iiiorc efficient approach to writing subblocks
into the cache-coherent donlain.

We first examined opportunities for cfficicncy gains
in the mcmory The AlpliaScr\~cr 4100 mcm-
ory systcm interface is 16 bytes \vide; a 64- byte cache
line rc;d or \\Trite takes four cycles o n the systcm bus.
Tlic Iiicmory modules themselves can be dcsig~icd to
mask one or liiore of the \\,rites and allon, al ig~ic~i
blocks that arc niultiples of 16 bytes to be \\~rittcn to
nicniory in n single system bus t rans ,~ct io~~. Tlic prob-
lem with permitting a lcss th'ln coniplctc caclic linc
\\(rite, i.c., lcss tll;l~i 64 bytcs, is that tlic \vritc goes to
main memor!l, but the only LIP-to-dntc/co~iipIctc
copy of a caclie line may be in 3 CI'U card's caclic.

T o permit the more efficient partial cnclie line
writc operations, ~ v c modified tlic systcm bus cache-
coherency protocoJ. When a PC1 bus bridgc issues
a partial cachc linc \\/rite on the system bus, each <:PU
card performs a cache lookup to scc if the targct of
the \\!rite is dirty. I n the event that tlic targct cnclic
block is dirty, tlie <:PU signals the P(:I bus bridgc
bck)rc thr end of the partial \\lritc. On ciirty partial
cnclic linc write trans~ctions, the bricigc simply pcr-
forms a second transaction as a rend-modi~-write. If
the targct caclic block is not dirty, the operation com-
plctcs in a si~iglc system bus transaction.

Address traces taken during product dc\clopment
\verc simulated to determine the f req~~cncy of dirty
cache blocks tliat are targets of DMA writcs. Our sim-
ulations showed that, for the address trace we used,
frccli~c~~cy \\pas extremely rare. Mcnsurcmcnt taken
from several applications and bcnclimnrlts confirmcci
that a dirty cnclie block is alniost never asserted \\/it11
a piirtial caclic linc \\!rite.

'Tlie l>MA transfcr of blocks that arc aligned
m~~ltiplcs of 16 bytes but less than a c;lclic line is four
timcs more efficient in tlie 4100 system tlia~i in earlier
l>IGITAL. implcmcntations.

i U ~ \ ~ c r n c n t of blocks o f lcss than 64 h!,tcs is
irnport'uit to application performance hccausc thcrc
are liigli-pcrf~~rmnncc dc\riccs tliat move Its\ tlinn
64 bytes. One csamplc is DIGITAL'S MI:IUOI<Y
(;HANNF,l. ncinptcr, \\lliicli moves 32-byte blocks i r ~ a
burst.'As MEIMOI<Y CHANNEL adapters n ~ o \ ~ c Inrgc
numbers of blocks that arc all Jess than a cachc linc of
data, the 1 / 0 subsystc~n partial cache linc writc feati~rc
improves systcni ~ L I S ~~tilization and eliminates the
systcnl bus as a bottleneck. Message latency across tlic
fabric of an AlpliaScr\/cr 4100 lMElMORY CHANKliI.
cluster (version 1.0) is approximately 6 microseconds
(ps) . Tlicrc ~l rc t\\.o I)IMA \\?rites in the mcssagc: the
first is ;I J I ICSS;I~C, nnd tlic second is a flag to \ralid,ltc tlic
lucssagc. Tlicsc l>hllA \\rrjtcs (111 the target Alph,lScr\.cr
4100 contribute to message Intenc!: 'The jmpro1.c
nient in latency pro\lidccl by the partial cache line \\.rite
featurc is approsimntcly 0.5 ~s per \\,rite. Witli t\vo
\\.rites per message, latcncy is reduced by appl-osi-
niatcly 1 5 percent over an AlpliaSer\~er 4100 systcm
\vitIi the partial caclic linc writc feature. Witli version
1.5 of MEJ\~ORY CHANNF.1, adapters, net I;ltcncy
\vill improve by ; ~ l > o ~ ~ t 3 FS, and the eff'ect of partial
cache linc writcs \ \ J i l l approach a 30 percent impro\,c-
nient in message latency.

I n sulnmar!,, the cliallc~igc is to efficiently n ~ o \ ~ c n
block of d d r ~ of a common size (multiple of 16 h!,tcs)
that is s~iiallcr tlian ;I caclic linc into the c,lclie-colicrcnt
domain. Wi t l io~~ t ally fi~rtlicr impro\rement, the tccli-
n iqw rcciuccs system bus utilization by as r n ~ ~ c l l ns 11

factor of ~) L I I - . Tliis tcclinicluc allows subblocks to bc
merged \\.ithout i~icurring the overhead of rend-modi$-
write, yet maintains caclic coherency. Tlie only draw-
back to the tccli~iiquc is sonic illcreased con~plcxity in
the CPU cachc controller to support this mode. We
considered tlie alternative ofadding a small cache to tlic
PC1 bridge. Writes into the same memory region that
occur \\,irIiin n short pcriotl of timc could merge dircctly
into '1 caclic. Tliis npproncli adds significant complexity
and incrc<~scs performance only if transactions tliat tar-
get tlic same cachc linc arc \.cry close toget1ic1- in timc.

Peer-to-Peer Transaction Support

System bus anti 1'<;1 bus utilization can be optimizccl
for certain applications by limiting tlie nunibcr of ti~iics
the sanic block of data moves through the system.
As noted in the section AlphaScrvcr 4100 Systcm
Overview, the I'CI si~bs!~stc~ii can contain t\\lo or b u r
independent PC1 bus bridges. Our design al1ou.s cxtcr-
nal de\riccs connected to tlicsc scparatc pccr I'CI bus
bridges to slinrc darn \ \ ~ i t l i o ~ ~ t ,icccssing main mcmor!r
and by sing a nii~ii~nal aniollnt ofhost bus L>ancl\\riilrli.
In other \\,ords, external dc\,iccs can effect direct access
to clata on 3 peer-to-peer basis.

111 conventional syste~iis, a data file on a disk that is
reqi~ested by a clic~lt node is transferred by DMA from
the disk, across the PC1 and the system bus, and into
main memory. Once the data is in ~iiain memory, a net-
u~ork device can rcad the data directly jn memory and
send it across the network to the client node. 111 a 4100
system, device peer-to-peer transaction circumvents
the transfer to main memory. Ho\vever, peer-to-pwr
transaction rcquires that the target dc\~ice Iiave certain
properties. The csscntial property is that the device tar-
get appear to the source device as if it is main memory.

The balance of this section explains how conven-
tional 1)MA reads and \\?rites are performed on the
AlpliaServer 4100 system, how the infrastructure for
conventional DMA can be used for pcer-to-pccr trans-
actions, and ho\v deadlock avoidance is accomplished.

Conventional DMA
We extended the features of con\cntional DMA on the
NphaScrvcr 4100 system to support peer-to-pccr
transaction. Conventional DA4A in the 4100 systc111
works as follows.

Address space 011 the Alpha processor is 2:" o r 1 tera-
byte; the AIphaServer 4100 system supports up t o
8 gigabytes (GB) of main memory. To directly address
a11 of memory without using memory management
liard\varc, an addrcss must be 33 bits. (Eight GB is
ecli~ivalent to 2.'.' bytes.)

Becai~se the amount of memory is large compared to
address space available on the PCI, some sort of inem-
or)! management hardware and sohvare is needed to
mal<e melnory directly addrcssablc by PC1 de\iiccs.
Most PC1 de\/ices use 32-bit DiMA addresses. To pro-
vide direct access for evcry PC1 device to all of the sps-
tern address space, the PC1 bus bridge has melnory
management hardware similar to that which is i~sed on

a Ci'U daughter card. Each PC1 bridge to the system
bus has a translation look-aside buffer (TLB) that con-
verts PC1 addresses into system bus addresses. The use
of a TLB permits hardware to make all of physical
memory visible through a relatively small region of
addrcss space that \\re call a DMA \vindow.

A DMA windo\\/ can be specified as "direct
mapped" or "scatter-gather mapped." A direct-
riiapped Db1A wi~ido\il adds an offset to the PC1
addrcss and passes it on to the system bus. A scatter-
gather mapped DMA window ilses the TL,B to look up
the system bus address.

Figure 3 is an example of how PC1 memory address
space might be allocated for DMA windo\vs and for
PC1 device control status registers (CSRs) and memory.

A PC1 device initiates a DMA writc by driving an
address on the bus. In Figure 4 , data from PC1 dcviccs
0 and 1 are sent to the scatter-gather 13MA windows;
data from 1'CI dcvicc 2 are sent to tlie direct-mapped
DAM n~indo\v. When an address hits in one of the
DMA windows, the PC1 bus bridge acluiowledges
the addrcss and immediately begins to accept write
data. While consu~n i~ lg write data in a buffer, the PC1
bus bridge translates the 1'CI address into a system
address. The bridge then arbitrates for the system bus
and, using the translated address, completes the write
transaction. The write transaction completes on the
1'CI before it completes on the system bus.

A DIMA rcad transaction has a longer latency than
a 1)MA write because the PC1 bus bridge niust first
translate the PC1 address into a syste~ii bus address and
fetch the data before completing the transaction. :That
is to say, tlie read transaction completes 011 the systen~
bus before it can complete on the PCI.

Figure 5 shows the address path through the 1'CI
bus bridge. All DMA writes and reads are ordered

SYSTEM ADDRESS SPACE
(240 BYTES)

PC1 MEMORY ADDRESS SPACE
(232 BYTES)

PC1 DEVICE CSRs
SCATTER-GATHER WINDOW 0

112 ME PC1 DEVICE CSRs

384 MB (UNUSED)

512 MB SCATTER-GATHER WINDOW 1 a
PC1 DEVICE PREFETCHABLE
MEMORY SPACE

DIRECT-MAPPED WINDOW 2

Figure 3
Esamplc oEl'CI Memory Addrcss Space Mnppcd to DMA Windows

Vol. 8 No. 4 1996 65

y-1 !--I-
WINDOW

I

J+ P C DEVICE 2 1
I

I SYSTEMADDRESS SCATER-GATHER PC1 MEMORY I
SPACE DMA WINDOWS ADDRESS SPACE

I-------------------------l

I

Figure 4
Esarnple of PC1 De\.ice Reads or Writcs to DMA Windo\\,s and Add1.c~~ Trar~slation to System Rus Addrcsscs

7

SYSTEM BUS

PC1 DEVICE 1

PC1 DEVICE 0

I PC1 BUS
I BRIDGE
I

I

DMA READ
PREFETCH 4 DATA

OR READ

f t
INTERRUPTS

t

POSTED PI0
WRITES BYPASS
PENDED PI0
READS

Figure 5
Diagram o f Data Paths in a Singlc PC1 1311s Bsidgc

through the outgoitig queuc (OQ) en route to the sys- Followi~lg is an esatnplc of how a con\~entional
tern bus. DMA read data is passed through an incom- "bo~~nce" DMA operation is itscd to move a file from a
ing queue (IQ) bypass by \vay o fa DMA fill data buffer local storage device to a ncnvork device. The cxa~nple
en route to the PCI. illustrates ho\v data is \\,rittcn inro memory by one

Note that the IQ orders Cl'U-initiated P I 0 transac- cic\,icc \\'here it is temporarily storcd. Later thc data is
tions. I Q bypass is necessary for correct, dead- read by another DhllA cit.\~icc. This operation is called
lock-frec operation ofpecr-to-peer transactions, \\lhich a "bounce I/O" because thc data "bou~iccs" off
are esplaincd in the next section.

66 1)igitnl Tcclinicill J o u r n a l Vol. 8 No. 4 1996

memory and out a network port, a common operation
for a network file server application.

Assume PC1 device A is a storage controller and PC1
device R is a network device:

1. Tlie storagc controller, PC1 device A, writes the file
into a buffer on the PC1 bus bridge using an
address that hits a DhL4 windo\\.

2. The PC1 bridge translates the PC1 rncmory address
into a system bus address and \\{rites the data into
nlcnlor)l.

3. 7'11~ CPU passes the network device a PC1 niemory
space address that corresponds to the system bus
address of the data in memory.

4. Thc ncnvorl< controller, PC1 device R, reads the file
in main memory using a D I M window and sends
the data across the network.

If both controllers are on the same PC1 bus segment
and if the storage controller (PC1 device A) could
write directly to the network controller (PC1 device
B), 110 traffic '~\iould be introduced on the system bus.
Traffic on the system bus is reduced by saving one
DMA write, possibly one copy operation, and one
DMA read. 011 tlie PC1 bus, traffic is also rcduced
bccausc there is one transaction rather than two.
When the target of a transaction is a de\iice other than
main memory, the transaction is called a peer-to-peer.
Peer-to-peer transactions on a single-bus system arc
simple, borderi~ig on trivial; but deadlock-free support
on a system with multiple peel- 1'CI b ~ ~ s e s is quite a bit
morc difficult.

This section has presented a high-level description
of how a PC1 device DMA address is translated into
a system bus address and data arc moved to or fi-om
main memory. 111 tlie nest section, we show how tlie
same mechanism is used to support device peer-to-
peer transactions 2nd how traffic is managed for dead-
lock avoidance.

A Peer-to-Peer Link Mechanism
For direct peer-to-peer transactions to work, the target
device must bell;~\le as if it is main memory; that is,
it must have a targct address in prefetchable PC1 mem-
ory space? Thc PC1 specification tilrtlier states that
devices are not allowed to clepend on completion of
a transaction as master.' Two devices supported by
the DIGITAL UNIS operating system meet these
criteria today with some restrictions; these are the
MEMORY CHANNEL adapter noted earlier and
the Prestoser\le N\IRAR/l, a nonvolatile niemory stor-
age device used as an accelerator for transaction
processing. The PNVIiAM \\/as part of the configura-
tion in which the AIM benchmark results cited in the
introduction were achieved.

Roth conventional DMA and pccr-to-peer trans-
actions worlc the samr \yay f r o ~ n the perspective of

the PC1 master: The device driver provides the master
device with a target address, size of tlie transfer, and
identificatio~i ofdata to be moved. 111 the case in which
a data file is to be read from a disk, the device dri\ier
sohvare gives the PC1 device that controls the disl< a
"handle," \vhich is an identifier for tlie data file and the
PC1 target address to \vhich the file should be written.
To reiterate, in a con\~entional DIVA transaction, thc
target address is in one of tlie PC1 bus bridge DMA
\\~indo\\~s. -The DMI4 window logic translates the
address into a main memory address on the system bus.
In a peer-to-peer transaction, tlie target address is
translated to a 2 address assigned to another PC1 device.

Any PC1 device capable of DMA can perfor111 peer-
to-peer transactions on tlie AIphaSer\rer 4100 s)atem.
For example, in Figure 6, PC1 dcvice A can transfer
data to or from PC1 device R ~ ' i t h o u t using any
resources or facilities in the system bus bridge. Tlie use
of a peer-to-pcer transaction is controlled entirely by
sofm~are: The device driver passes a target address to
PC1 device A, and device A uses the address as the
DMA data source or desti~lation.

If the target of the transaction is PC1 device C, then
system services sofis\lare allocates a region in a scatter-
gather map and specifies a translation that maps the
scatter-gather-~iiapped address on 1'CI bus 0 to a sys-
tem bus address that maps to PC1 device C. This
address translation is placed in tlic scatter-gather map.
Wlien PC1 device A initiates a transaction, the address
matches one of the DMA windows that has been ini-
tialized for scatter-gather. The PC1 bus bridge accepts
the transaction, lool<s up the translation in the scatter-
gather map, and uses a system address that maps
through PC1 bus bridge 1 to hit PC1 device C. The
transaction on the system bus is betwcen the two PC1
bridges, with no involvenlent by memory or CPUs. In
this transaction, the system bus is utilized, but thc data
is not stored in ~nain memory. This eliminates the
intermediate steps and overhead associated \vith con-
ventional DMA, traditionally done by the "bounce" of
the data through main memory.

The features that allo\\l sohvare to make a device on
one PC1 bus segment visible to a device 011 another are
all implicit in the scatter-gather mapping TLB. For
peer-to-peer transaction support, we estended the
range of translated addresses to include memory space
on peer I'CI buses. This allows address space o n one
independent PC1 bus segment to appear in a window
of address space on a second independent peer PC1
bus segment. O n tlie system bus, the peer transaction
hits in the address spacc of tlie other PC1 bridge.

Deadlock Avoidance in Device Peer-to-Peer Transactions
The definition of deadlock, as it is sol\red in this
design, is the state in \vhich no progress can be made
on any transaction across a bridge because the queues
are fillcd with transactions that u~ill never complete.

Digital Technical Journal Vol. 8 No. 4 1996 67

r - - - - - - - -
I BRIDGE 0

I .)

I
I
I
I

.)
COMMANDIADDRESS

6 DATA

- - - - - - - -
BRIDGE 1

DMA READ
PREFETCH
ADDRESS

.)

& DATA

DATA AND ECC t SYSTEM BUS
V 1 V 7 T

.)

4

PC1 DEVICE E o o PC1 DEVICE F V

J 4

4

- 7 P O S T E D P I O

PI0 FlLL INTERRUPTS I OR READ

I * * 4

PC1 DEVICE G o - PC1 DEVICE H U
Figure 6
Alpli;lScrvc1.4100 System Diagram Sl~o\\ i i~~g D a t n Patlis through I'(:I Ilus 131.idgcs

-7 WRITES BYPASS I
PENDED PI0 PI0 FILL INTERRUPTS
READS OR READ

I * 4 *

A dcadlock situation is allalogous to highway gridlock
in which two lines of automobiles face each other o n
a single-lanc road; there is no rootn to pass and no
to back LIP. liulcs for dcadlock avoidance arc analo-
gous to the rules for directing vehicle traffic on n rial--

row bridge.
An cs317iplc o f peer-to-peer deadlock is one in

which two 1'CI cic\~ices are dependent ou the coniplc-
tion of a \\:rite as masters before they \ \ r i l l accept \\!rites
as targets. When tliesc two devices target one another,
tlic result is dcadlock; each device responds \\?it11
luTKY to cvcry \\<rite in \\.hich it is the target, and
each ticvice is i~nablc to complete its current \\<rite
transaction bcca~~sc it is being retried.

A dcvicc that does /zo/ depend on completion of <I

transaction as master before accepting a transaction as
target may also cause deadlocks in a bridged environ-
ment. Situations can occur on a bridge in which multi-
ple outstanding posted transactions must be kept in
order. Carcfitl design is required to avoid the potential
fo r deadlock.

The dcsigli tbl. dcadlocl<-fiee peer-to-pcer transaction
support in the AlphaScrvcr 4100 system includes the

I
POSTED PI0 I
WRITES BYPASS I
PENDED PI0
READS I

I

Implcmcntation of PC1 delayed-read transactions

Use of bypass paths in the IQ and in read-return
data

This section assumes that the reader is f~milinr with
the l'(:I protocol and ordcritlg rules.-'

Figure 6 sliou,s the data paths through two P(:I
bus hricigcs. Transactions pass through thcsc briiigcs
as hllo\\rs:

(:PU sofi\\,arc-initiated P I 0 r e d s and 1'10 \\)rites
arc cntrics in the IQ.
l)c\,icc pccr-to-peer transactions targeting dc\iccs
o n p c u 1'CI segments also LISC the IQ.

P(:I-de\.icc-initiated reads and \\,rites (1')lMA or
peu-to-peer), interrupts, and P I 0 fill data arc
cntrics in the OQ.

Thc m~~ltiplcscr sclcctillg cntrics in tllc IQ allo\vs
\\/rites (P I 0 o r peer-to-peer) to bgpass dclaycd
(pcndcd) rcads (P I 0 or peer-to-pccr).

The read prcfetch address register permits rcnd-
return in the OQ data to bypass PC1 delayed rcads.

The twro bypass paths around thc 1Q and OQ arc
rcclttircd to avoid deadlocks that m y occur during
dc\~icc peer-to-pccr transactions. All PC1 orclcring ~ L I I C S
arc sntisficd fi-om thc point of view of any single dcvicc
in the system. The following example dcrnonstlx~cs
dcadlock avoidance in a de\.ice peer-to-peer \\'rite and
a cic\,ice PCCI--t~-peer read, rcfcrencing Figure 7.

The configuration in the example is an AlphaServcr
4100 system with four CPUs and two I'CI bits bridges.
Devices A and C are siniplc master-capable DMA
controllers, and devices B and D arc simple targets,
e.g., video RAMS, network controllers, PNVRAiLl, or
any device with prefetchable memory as defined in the
PC1 standard.

Esaniplc ofdevice peer-to-peer write block comple-
tion of pended PI0 read-return data:

1. PC1 device A initiates a peer-to-peer burst write
targeting PC1 devicc D.

2. Write data enters the O Q on bridge 0, filling three
posted write buffers.

3. The target bridge, bridge 1, writes data froni
bridge 0.

4. When the TQ on bridge 1 hits a threshold, it
uses the system bus flow-control to hold off the
nest write.

5. As each 64-byte block ofwrite data is retired out
of the I Q on bridge 1, an additional 64-byte
(cache line size) write of data is allowed to move
from the OQ on bridge 0 to the IQ on bridge 1.

6. If the O Q on bridge 0 is fi~ll, bridge 0 will discon-
nect from the current PC1 transaction and will
retry all transactions on PC1 0 until an O Q slot
becomes available.

7. PC1 device C initiates a peer-to-peer burst write,
targeting PC1 device B; the same scenario follo\\a
as steps 1 through 6 above but in the opposite
direction.

8. CPU 0 posts a rcad of PC1 memory space on PC1
device E.

9. CPU 1 posts a read of PC2 memory space on PC1
device G.

10. CPU 2 posts a read of PC1 memory space on PC1
device F.

11. CPU 3 posts a read of PC1 memory space on PC1
device H.

12. Deadlock:

-Both OQs are stalled waiting for the corre-
sponding IQ to complete an earlier posted write.

-The design has two P I 0 read-return data (fill)
buffers; each is hill.

-The P I 0 read-return data must stay behind the
posted writes to satis6 PCI-specified posted
write buffer flusl-~ing rules.

-A third rcad is at the bottom of each IQ, and it
cannot complete because there is no fill buffer
available in which to put the data.

To avoid this deadlock, posted writes are allowed
to bypass delayed (pended) reads in the IQ, as

sho\v~i in Figure 6. In the AlphaSer\~cr 4100 deadlock-
avoidance design, the IQ will always empty, \vliich in
turn allows the O Q to empty.

Note that the IQ bypass logic implemented for
deadlock avoidance 011 tlie Alphaserver 4100 spstem
may appear to violate General Rule 5 froni the PC1
specification, Appendix E:

A read transaction must push ahead of it through
the bridge any posted writes originating on
the same side of the bridge and posted before the
read. Before the rcad transaction can complete on
its originating bus, jt mi~st pull out of the bridge
any posted writes that originated on tlie opposite
side and were posted before the read comnialld
completes on the read-destination bus.4

In fact, because of the charactcrist~cs of tlie CPUs
and the flow-control mechanism on the system bus, all
rules are followed as observed fiom any single CPU or
PC1 device in the system. Because reads that target
a PC1 address are alwa)ls split into separate request and
response transactions, the appropriate ordering rule
for this case is PC1 Specification Delayed Transaction
R L I I ~ 7 in Section 3.3.3.3 ofthe PC1 specification:

Delayed Requests and Delaved Conlpletions
have no ordering requirements with respect to
themselves or each other. Only a Delayed Write
Completio~l can pass a Posted Memory Write. A
Posted Memory Write must be given an oppor-
tunity to pass everything except another Posted
Memory Write.'

Also note that, as show11 in Figure 6, the DMA fil l
data buffers bypass the IQ, apparently violating
General Rule 5. The purpose of General liule 5 is to
provide a mechanism in a device on one side of a bridge
to ensure that all posted writes have completed. This
rule is required because interrupts on I'CI are side-
band signals that may bypass all posted data and signal
completion of a transaction before the transaction has
actually completed. In the AlphaServer 4100 system,
all writes to or from PC1 devices are strictly ordered,
and there is no side-band signal notifjling a PC1 device
of an event. These system characteristics allow the PC1
bus bridge to permit DMA fill data (in PC1 lexicon, this
could be a delayed-read completion, or read data in a
connected transaction) to bypass posted memory
writes in the IQ. This bypass is necessary to limit PC1
target latency 011 DMA read transactions.

We have presented two IQ bypass paths in the
AlphaServer 4100 design. We describe one IQ bypass
as a reqilired feature for deadlock avoidance in peer-
to-peer transactions between devices on different
buses. The second bypass is required for performance
reasons and is discussed in the section 1 /0 Bandwidth
and Efficiency.

Digital Tecli~iical Journal

COMMANDIADDRESS
DATA AND ECC

SYSTEM BUS

I
PEER WRITE PEER WRITE 1
PEER WRITE PEER WRITE I
PEER WRITE PEER WRITE
PEER WRITE PEER WRITE
PEER WRITE PEER WRITE I

PI0 READ REQUEST I P I 0 READ REQUEST I

PC1 DEVICE A I I PC1 DEVICE 8
MASTER OF - TARGET OF
PEER WRITES PEER WRITE

PC1 DEVICE E PC1 DEVICE F

P I0 READ READREQUEST

PC1 DEVICE C PC1 DEVICE D

PEER WRITES PEER WRITE

PC1 DEVICE G PC1 DEVICE H

P I0 READ READ

- - - --

Figure 7
Block 1)iagrarn Shu\ving Deadlock Case \vithout IQ Bypass Path

Required Characteristics for Deadlock-free Peer-to-Peer
Target Devices
PC1 devices must follo\\~ all PC1 standard ordering
r ~ ~ l e s for deadlock-free peer-to-peer transaction. The
specific rule relevant to the Alphaserver 4100 design
For peer-to-peer transaction support is Delayed
Trans'ictio~i Rule 6, \vhich guarantees that the IQ \ \ , i l l
al\\,ays cmpn.:

A target r n ~ ~ s t accept all memory \\.rites
addressed to it while completing a request using
Delayed Transaction terrninatio~i.~

Our design includes a linlc ~nechanisni using scatter-
gat her TLBs to create a logical connection benveen two
PC1 devices. It includes a set ofrules for bypassing data
that ensures deudlock-free operation when all partici-
pants in a peer-to-peer transaction follow the ordering
rulcs in the PC1 standard. The link mechanism provides
a logical path for peer-to-peer transactions and the
bypassing r ~ ~ l e s guamntee the IQ \\ill al\\.~!rs drain.
The key fcature, then, is a bmarantee that the IQ \\;111

al\\.iiys dl-ain, thus ensuring deadlock-free operation.

I10 Bandwidth and Efficiency

With o\.erall system performance as our goal, we
selected nvo design approaches to deli\,cr fill1 PC1
batid\vidth ~\,ithout bus stalls. These \\;ere support for
large bursts of PCI-device-initiated DMA, and suffi-
cient buffering and prefetching logic to keep up \vith
t l ~ c PC1 and a\.oid introducing stalls. We open this sec-
tion with a revie\\. of the bandwidth and latency issues
\\re exanlined in our efforts to achieve greater band-
\vidth efficiency.

Thc band\~idth available on a platfor111 is dependent
on the efficiency of the design and on the type o f
transactions performed. Band\vidth is measured in
millions of bytes per second (MR/s). O n a 32-bit
l'C1, the available bandwidth is efficiency ~n~~l t ip l i cd
by 133 MB/s; on a 64-bit PCI, available bandwidth is
efficiency multiplied by 266 MB/s. By efficiency, nJe
mean the amount of time spent actually transferring
data as compared \\,it11 total transaction time.

Both parties in a transaction contribute to efficiency
o n the bus. The Alphaserver 4100 1 / 0 design kecps
the o\,erhead introduced by the system to a minimum
and s ~ ~ p p o r t s large burst sizes o\,er \vhic.Ii thc pcr-
tr~nsaction overhead can be amortized.

Support for Large Burst Sizes
To predict the etliciency of a given design, one must
break a transaction into its constituent parts. For exam-
ple, when an 1 /0 device initiates a transaction it must

Arbitrate for the bus

Connect to the bus (by driving the address of the
transaction target)

Transfer data (one or more bytes move in one or
more bus cycles)

Disconnect from the bus

Time actually spent in an 1 / 0 transaction is the
sum of arbitration, connection, data transfer, and
disconnection.

The period of time before any data is transferred
is typically called latency. With small burst sizes, band-
width is limited regardless of latency. Latency of
arbitration, connection, and disconnection is fairly
constant, but the amount of data moved per unit of
time can increase by making the 1 / 0 bus wider. The
Alphaserver 4100 PC1 buses are 64 bits wide, yielding
(etlicienql X 266 MB/s) of available bandwidth.

As shown in Figure 8, efficiency improves as burst
size increases and overhead (i.e., latency plus stall
time) decreases. Overhead introduced by the
Alphaserver 4100 is fairly constant. As discussed ear-
lier, a DIMA write can complete on the PC1 before it
completes on the system bus. As a consequence, we
were able to keep overhead introduced by the plat-
form to a minimum for DMA writes. Recognizing that
efficiency improves with burst size, we used a queuing
model of the system to predict how many posted write
buffers were needed to sustain DAM \\/rite bursts with-
o ~ ~ t stalling the PC1 bus. Bascd on a sirn~~lation model
of the configurations shown in Figures 1 and 2, we
determined that three 64-byte buffers werc sufficient
to stream DMA writes from the (266 MB/s) 1'CI bus
to the (1 GB/s) system bus.

Later in this paper, \ve present measured perfor-
mance of DMA write bandwidth that matches the sim-
ulation model results and, with large burst sizes,
actually exceeds 95 percent efficiency.

Prefetch Logic
DMA writes complete on the PC1 before they com-
plete on the system bus, but DMA reads must wait for
data fetched from memory or from a peer on another
PCI. As such, latency for DMA reads is al\vays worse
than it is for writes. PC? Local B ~ i s Spec@ccition
Keuisioi7 2.1 provides a delayed-transaction mechanism
for devices with latencies that exceed the PC1 initial-
latency requirement.' The initial-latency requirement
on host bus bridges is 32 PC1 cycles, ~\/hicli is the max-
imum overhead that may be introduced before the
first data cycle. The Alphaserver 4100 initial latency
for memory DMA reads is between 18 and 20 PC1

PERCENT 80'o 1
AVAILABLE 70%

SPENT
MOVING 40%
DATA
(EFFICIENCY) 30%

20%
10%
0%

OVERHEAD CYCLES
(LATENCY PLUS STALLS)

KEY:
90% - 10O0/o . 40% - 50%
80% - 90% . 30% - 40''
70%-80% . 20% - 30%
60% - 70% . 10% 2 0 %

.50%-60% . 0%-10%

DATA

IN A

Figure 8
PC1 Efficiency as a Function of Burst Sizc 2nd Latency

cycles. Peer-to-peer reads of devices on different bus
segments are always converted to delayed-read trans-
actions because the best-case initial latency will be
longer than 32 PC1 cycles.

PC1 initial latency for D M reads on the
Alphaserver 4100 system is commensurate with
expectations for current generation quad-processor
SMP systems. To maximize efficiency, we designed
prefetching logic to stream data to a 64-bit PC1 device
~v i t l~ou t stalls after the initial-latency pe~ialty has been
paid. To make sure the design could keep up with an
uninterrupted 64-bit DMA read, we used the qi~euing
model and analysis of the slatem bus protocol and
decided that three cache-line-size prefetch buffers
would be sufficient. The algorithm for prefetching
uses the advanced PC1 commands as hints to deter-
mine how far memory data prefetching should stay
ahead of the PC1 bus:

Memory Read (MR): Fetch a single 64-byte cache
line.

Memory Read Line (MRL): Fetch two 64-byte
cache lines.

Memory Read Multiple (MRM): Fetch nvo
64-byte cache lines, and then fetch one line at
a time to keep the pipeline full.

M e r the PC1 bus bridge responds to an MRM corn-
mand by fetching two 64-byte cache lines and the scc-
ond line 1s returned, the bridge posts another read; as
the oldest buffer is unloaded, new reads arc posted,
keeping one buffer ahead of the PCI. The third
prefetch buffer is reserved for the case in which a DMA

DigitJ Technical Journal Vol. 8 No. 4 1996 71

MRM completes while there arc still prefctcli rcads
outstanding. Reservation of this buffer accomplishes
two things: (1) it eliminates a time-delay bi~bble that
would appear between consec~~tive DNA read trans-
actions, and (2) it maintains a resource to fetch a
scatter-gather translation in the event that tlie next
transaction address is not in the TLR. Measured DMA
bandwidth is presented later in this paper.

The point at which the design stops prefetching is on
page boundaries. As the DlMA window scatter-gather
map is partitioned into 8-IU3 pages, the jnterface is
designed to disconnect on 8-IU3-aligned addresscs.

The advantage of prefetching reads and absorbing
posted \\?rites on this system is that the burst size can
be as large as 8 KR. With large burst size, the overliead
of connecting and disconnecting from the bus is
amortized and approaches a negligible penalty.

DMA a n d PI0 Performance Results

We haire discussed tlie relationship bct\veen burst size,
initial latency, and bandwidth and described several
techniques we used in tlie AlpliaScrver 4100 PC1 bus
bridge design tcj meet the goals for high-band\vidth
I/O. This section presents tlie performance delivered
by the 4100 1 / 0 subsystem design, which has been
measured using a high-performance PC1 transaction
generator.

Wc collected performance data under thc UNIX
operating system \\it11 a reconfigurable interfilce card
developed at DIGITAL, called PC1 Pamette. I t is a
64-bit PC1 option \vith a Xllinx FPCA interface to
PCI. The board nras configured as a programmable
PC1 transaction generator. In this configuration, the
board can generate burst lengths of 1 to 512 c)rclcs.
DMA either runs to a fixed count of \vords transferred
or runs continuous.ly (software selected). 'I'lic DMA
engine runs at a fised cadence (delay benvecn bursts)
of 0 to 1 5 cycles in tlie case of a fixed count and at 0 to
63 cycles when run continuous1)r.

The source of the DMA is a combination of a fire-
running counter that is clocked using the PC1 clock
and a PC1 transaction count. The free-running counter
time-stamps successi\lc \vords and dctccts wq' ~t states
and delays benveen transactions. 'The transaction count
identifies retries as \ d l as transaction boundaries.

As the target of P I 0 read o r write, the board can
accept arbitrarily large bursts ofeither 32 or 6 4 bits. I t
is a medium decode device and alwaja operates with
zero wait states.

DMA Write Efficiency and Performance
Figure 9 sho\vs the close cornpanson bctwccn the
AlphaServer 4100 system and a ncarly pcrfcct I'CI
design In me'~sured DMA ~ ~ 1 - 1 t e bancl\vidth. As
explained above, to sustain large bursts of DlMA
\vrites, wve implemented thrcc 64-byte posted \\trite

BURST SIZE (BYTES)
KEY:

IDEAL PC1
MEMORY WRITE (MEASURED)

Figure 9
Conlparison of l\/lensured DIMA Write Performance on an
Idcal 64-bit PC1 3 r d o n 3n Alph,~Ser\~er 4100 System

buffers. Si~ni~lntion predicted that this ~ i u ~ n b e r of
buffcrs \ v o ~ ~ l d be sufficient to sustain hll band\vidth
DIVA writ~s-e\~en \vhen the systern bus is extremely
busy-because tlie bridges to the PC1 are on a shared
system bus that has roughly 1 GB/s available band-
width. The PC1 bus bridges arbitrate for the shared
systenl bus at a priority liiglier than the CPUs, but the
bridges arc permitted to execute only a single transac-
tion each tinlc t1ie)l \\!in the systcnl bus. Therefore, in
tlie nrorst case, a PC1 bus bridge \vill wait behind three
other PC1 bus bridges for a slot on the bus, and each
bridge \\,ill have at least one quarter of the available
system bus band\vidth. With 250 MB/s available but
with potential delay in accessing the bus, three posted
\\{rite buffers are sufficient to niaintain f ~ ~ l l PC1 band-
\vidth for memory \\?rites.

The ideal PC1 system is represented by calculates
performance data for comparison plIlQOSCS. It is a sys-
tem that has three cycles of target latency for \vrites.
Three cycles is the best possible for a medium decode
device. The goal for DkM writes was to deliver perfor-
lnance limited only by the PC1 device itself, and this
goal \\,as achic\led. Figure 9 demonstrates that mea-
S L I ~ C ~ DMA write performance on the AlpliaSer\ler
4100 system approaches theoretical masimunis. The
colnbination o f optimizations and innovations used
on this platform yielded an implementation that meets
the goal for DMA writes.

DMA Read Efficiency and Performance
As noted in the section Prefctcll Logic, band\vidth
performance of DMA rcads nlill be lo\ves than the pcr-
formancc of f>MA \vritcs o n all systelns because thcre
is delay in fetching the read data from niemory. For
this reason, we inc l~~ded three cache-linc-size prefetch
buffers in the design.

72 Digital Tcchnir.il Journal \'ol. 8 No. 4 1996

Figure 10 compares DA/M read bandwidth mea-
sured 011 the AlphaServer 4100 system with a PC1 sys-
tem that has 8 cycles of initial latency in deli\lering
DMA read data. This figure shows that delivered
bandwidth improves on the AlphaServer 4100 system
as burst size increases, and that the effect of initial
latency on measured performance is diminished with
larger DMA bursts.

Tlie ideal PC1 system used calculated performalice
data for co~iiparison, assuming a read target latency of
8 cycles; 2 cycles are for medium decode of the
address, and 6 cycles are for memory latency of 180
nanoseconds (ns). This represents about the best per-
formance that can be achieved today.

Figure 10 shows memory read and memory read
line commands with burst sizes limited to what is
expected from these commands. As explained else-
where in this paper, memory read is used for bursts of
less than a cache line; menzoly read line is used for
transactions that cross one cache line boundary but are
less than two cache lines; and mcmory read ~nulk@le
is for transactions that cross mfo or more cache line
boundaries.

Tlie efficiency of nzeinoly read and nze~noly
read line does not improve with larger bursts because
there is n o prefetching beyond the first or second
cache line respectively. This sho\.vs that large bursts
and use of the appropriate PC1 commands are both
necessary for efficiency.

Performance of PI0 Operations
P I 0 transactions are initiated by a CPU. AlphaServer
4100 P I 0 performance has been measured 011 a

system with a single CPU, and the results are pre-
sented in Figure 11. The pended protocol for flow
control o n the system bus limits the number of read
transactions that call be outstanding from a single
(:PU. A single CPU issuing reads \vill stall waiting for
read-return data and cannot issue enough reads to
approach the bandwidth limit of the bridge, LMeasured
read performance is quite a bit lower than the tlieoret-
ical limit. A system with multiple CPUs doing P I 0
reads-or peer-to-peer reads-\\rill deliver P I 0 read
bandwidth that approaches the predicted performance
of the PC1 bus bridge. P I 0 writes are posted and the
CPU stalls only when the writes reach the IQ thresh-
old. Figure 11 shows that P I 0 writes approach the
theoretical limit of the host bus bridge.

P I 0 bursts are li~iiited by the size of the 1/0 read
and write merge buffers o n the CPU. A single
Alphaserver 4100 CPU is capable of bursts up to
32 bytes. P I 0 writes are posted; therefore, to avoid
stalling the slatem with syste11i bus flo\\~ co~itrol, in the
maximum configuration (see Figure 2) , we provide a
minimum of three posted write buffers that may be
filled before flow control is used. Configurations with
fewer than the maximum number of CPUs can post
more P I 0 writes before encountering flow control.

Summary

The DIGITAL AlphaServer 4100 system incorporates
design innovations in the PC1 bus bridge that provide
a highly efficient interface to 1 / 0 devices. Partial
cache line writes improve the efficiency of small writes
to memory. The peer link niecha~iisni uses TLBs to

-
32 64 128 256 512 1024 2048 4096

BURST SIZE (BYTES)

KEY:

IDEAL PC1 (8 CYCLES TARGET LATENCY)
MEMORY READ MULTIPLE (MEASURED)
MEMORY READ LINE (MEASURED)
MEMORY READ (MEASURED)

Figure 10
Comparison of D M Read Bandwidth on the AlphaServer 4100 System and on an Ideal PC1 System

Digital Tcchlical Journal

- -
P I0 WRITE, 32-BIT PC1 PI0 READ, 32-BIT PC1 P I0 WRITE, 64-BIT PC1 PI0 READ, 64-BIT PC1

KEY:

MEASURED PERFORMANCE
THEORETICAL PEAK PERFORMANCE

Figure 11
Comparison ofAlpliaSer\ter 4100 P I 0 Performance \\litli Tlicoretical 32-bvtc Burst Peak Performance

map dcvicc address space on independent peer 1'CI
buses to permit direct peer transactions. Reordering of
transactions in queues on the PC1 bridge, combined
with thc use of 1'CI delayed transactions, pro\,ides a
deadlock-free design for peer transactions. Buffers and
prefetch logic that support very large bursts without
stalls yield a s!,stem that can amortize o\,erhead a n d
deliver performance limited only by the PC1 devices
used in the system.

I n summary, this system meets and exceeds the per-
formance goals established for the 1/0 subsystem.
Notably, 1/0 subsystem support for partial cache line
writes and for direct peer-to-peer transactions signifi-
cantly improves etficiency of operation in a MEMORY
CHANNEL cluster system.

Acknowledgments

The DIGITL4L Alphaserver 4100 1 / 0 design team
\\pas responsible for the I/O subsystem iniplementa-
tion. TIic design tcam included Bill Brucc, Steve Coc,
Dennis Hu!rcs, Craig Icccfer, A~idy Iconing, Tom
McLai~ghlin, and John Lynch. The 1 / 0 design verifi-
cation team was also key to delivering this product:
Dick Beaven, Dmetro Kormeluk, Art Singer, and
Hitesli Vyas, 114th CAD support from Mark LMatulatis
and Dick Lombard.

Several system team members contributed to inven-
tions that improved product performance; most notable
were Paul Guglielmi, h c k Hetherington, Glen Herdeg,
and Maurice Steinman. Wc also estend thanks to our
performance partners Zarka Cvetanovic and Susan
Carr, who developed and ran the queuing models.

Mark S h a d designed the PC1 Parnette and pro-
vided the performance measurements ~ ~ s e d in this
paper. Many thanks for the nights and \i~cclcends spcnt
rcmotcly connected to the system in our lab to gatlicr
this data.

74 Digiral 'lkchnical Journal Vol. S No.4 1996

References and Note

1. Willtc~. UNIX H o t Iron A\\rards, UNIS EXPO I'l~rs,
Octobcr 9 , 1996, http://\\,\\.\\..aiiv corn (iblcnlo I'.irk,
Calif.: Alhl Technology).

2. R. Gillett, ''1MEA~101<l' CHANNEL Nenvork for PC[,"
IEF<t;.Lliou,(Februar!. 1996): 12-18,

3. G. Herdcg, "Dcsig~i and Irnplcnientatio~i of thc
AlphaSert~er 4100 CPU and Memory Architecture,"
Digital Technical Journal. vol. 8 , no. 4 (1996, this
issue): 48-60.

4 . PC7 Local Bzis Specflcatio~z, Re~)isio)7 2.1 (Portland,
Oreg.: PC1 Special Interest Group, 1995).

5. In PC1 terminology, a master is any device that arbitrates
for the ~ L I S and in~tiates transactions on the PC1 (i.e.,
pcrfornis DMA) before accepting a transactioii 3s target.

Biographies

Samuel H. Duncan
A consultant engineer and the architect for the AlphaSer\,cr
4100 1/0 subs)rstem design, Sam Dunc,ui 1s currently
working 01-1 core logic design and archi tec t~~re fbr the next
generation ofAlpha servers and workstations. Since join-
ing DIGITAL in 1979, he has been part of Alpha and VAX
svstcni engineering teams and has represented DIGITAI.
o n scvcl-al industry standards bodies, includinp the P<;I
Spcci~l T~itcrcst G r o ~ ~ p . H e also cliaircd the group tIi.11
dc\,clopcd the I EEE Standard for Cornn~~lnicaril lg Among
Processors and Peripherals Using Shared I\llcmory. I l c 11.1s
bccn a\\-.lrded one patent and has four patents filed for
invclltions in the AlphaSer\.er 4100 system. Sani rccci\.cd
J R.S.E.E. from Tufts Uni\,ersity.

"
Craig I(ccfer is a principal liard\vare engineer \\/hose engi-
neering expertise is designing gate arrays. H e \vas tlie gate
array designer for one of the two 2351< CMOS gate arrays
in the AlphaScr\~er 8200 systern and the team leader for the
con~niand .ind address gate drray in the AlphaSer\~cr 8400
1/0 nlodule. A mc~nbcr of the Server product Development
Group, he is now responsible for designing gate arrays for
hierarchical switch hubs. Craig joined DIGITAL in 1977
and holds a B.S.E.E from the University of l o n ~ e l l .

Thomas A. McLaughlin
Tom iMcLaughlin is a principal lhard\vare engineer \vork
ing in DIGITAL'S Server Product Development Group.
HE is currently involved with the next generation of higli-
end server platforms and is focusing 011 logic synthesis
and ASIC design processes. For the AlphaServer 4100
project, he was responsible for the logic design of the I/O
subsystem, including ASIC design, logic synthesis, logic
verification, and timing verification. Prior t o joining the
AlphaServer 4100 project, he was a member of Design
and Applications Engineering within DIGITAL'S External
Semiconductor Technology Group. Tom joined DIGITAL
in 1986 after receiving a R.T.E.E.T. fkom the Rochester
Institute ofTeclinology; lie also holds an M.S.C.S. degree
from tlie Worcester Polytechnic Institute.

Digit31 Technical Journa l

I
Viphi V. Gokhale

Design of the 64-bit
Option for the Oracle7
Relational Data base
Management System

Like most database management systems, the
Oracle7 database server uses memory to cache
data in disk files and improve the performance.
In general, larger memory caches result in better
performance. Until recently, the practical limit
on the amount of memory the Oracle7 server
could use was well under 3 gigabytes on most
32-bit system platforms. Digital Equipment
Corporation's combination of the 64-bit Alpha
system and the DIGITAL UNlX operating system
differentiates itself from the rest of the com-
puter industry by being the first standards-
compliant UhllX implementation to support
linear 64-bit memory addressing and 64-bit
application programming interfaces, allowing
high-performance applications to directly access
memory in excess of 4 gigabytes. The Oracle7
database server is the first commercial data-
base product in the industry to exploit the per-
formance potential of the very large memory
configurations provided by DIGITAL. This paper
explores aspects of the design and implementa-
tion of the Oracle 64 Bit Option.

Introduction

Historically, the li~uiting factor for the 0riicle7 rela-
tio~ial database management system (RDBlMS) perfor-
mance on any given platform has bcen'tlie amount of
computational and 1 / 0 rcsourccs available on a single
node. Although CPUs have beconic faster by an order
of lnagnitude over the last sc\reral years, 1 / 0 speeds
ha1.c 11ot irnprojred co1nmcnsur3tcl!,. For instance, the
Alp11.1 CPU clock speed alone has increased four times
since its introduction; during the same time period,
disk access times have improvcd by a factor of nvo at
bcst. The overall t h r o ~ ~ g h p ~ ~ t of database soft\\lare is
critically depende~lt o n the spccd of access to data.

To overcome the I/O speed limitation and to maxi-
mize performance, the standard Oracle7 database server
already ~~tilizes and is optimized for various parallelizu-
tion tcchniclues in soh\,arc (e.g., intelligent caclung,
data prefetching, and parallel query execution) and in
hard\vare (e.g., symmetric niultiprocessing [SIMP] sys-
tems, clusters, and massively parallel processuig [LMPP]
systems). Given the disparity i l l latency for data access
bct\\rcn memory (a fe\v tens of nanoseconds) and disk
(a fc\v milliseconds), a common technique for maximiz-
ing perfor~nance is to minimize disk I/O. Our project
originated as an investigation into possible additio~lal
performance improvements in tile Oracle7 database
server in the context of increased memory addressability
and eseciltion speed pro\rided by the AlphaSenler and
DIGITAL UNLY system. Work done as part of tl1.i~ proj-
ect subsequently became the foundation for product
de\,elopment of the Oracle 64 Bit Option.

O f the memory resource that the Oracle7 database
uses, the largest portion is used to cache the most fre-
quently used data blocks. With hardware and operat-
ing system support for 64-bit memory addresses, new
possibilities have opened LIP for high-performance
applicatio~~ software to take advantage of large mem-
ory configurations.

Two of the concepts utilized are hardly new in data-
base development, i.e., impro\.ing database server per-
formance by caching more data in memory and
irnpro\ling 1 / 0 subsystem througliput by increasing
data transfer sizes. Ho\vever, various conflicting fac-
tors contribute to the practical upper bounds on

76 Digiral Technical Journa l

perforniance impro\~ement. These hctors include
CPU architectures; memory addressability; operating
system features; cost; and product requirements for
portability, compatibility, and time-to-market. An
additional design challenge for the Oracle 6 4 Bit
Option project was a requirement for sig~lifica~it per-
formance increases for a broad class of existing data-
base applications that use an open, general-purpose
operating system and database software.

This paper provides an overview of the Oracle 6 4
Bit Option, factors that influenced its design and
implementation, and performance implications for
some database applicatio~i areas. In-depth information
on Oracle7 RDBMS architecture, administrative COIII-
mands, and tuning guidelines can be found in the
O I - L L C ~ ~ ~ Se~-ocr Docc~rne~~tn/ion Sel.' Detailed analysis,
database server, and application-tuning issues arc
deferred to tlie references cited. Overall observations
and conclusions from cxpcrimcnts, rather than specific
details and data points, are i~sed in this paper except
\+there such data is publicly available.

Oracle 64 Bit Option Goals

The goals for the Oracle 64 Bit Option project were as
follows:

Demonstrate a clearly identifiable performance
increase for Oracle7 running on DIGITAL UNIX
systems across two commonlp used classes of data-
base applications: decision support systems (DSS)
and online transaction processing (OLTP).

Ensure that 64-bit addressability and large memory
configurations are the only two control variabl.es
that influence o\~crall application perfor~iiance.

Rrcak tlie 1- to 2-GB barrier 011 tlie a ~ ~ i o u n t
of directly accessible memory that can practically
be used for typical Oracle7 database cache
implemcntations.

Add scalability and performance features that com-
plement, rather than replace, current Oracle7
server SMP and cluster offerings.

Implement all of the above goals without signifi-
cantly rewriting Oracle7 code o r introducing appli-
cation incompatibilities across any of the other
platforms on which the Oracle7 system runs.

Oracle 64 Bit Option Components

Tcvo major components make up the Oracle 6 4 Bit
Option: big Oracle hloclts (B O B) and large shared
global area (LSGA). They arc briefly described in this
section.

The BOB cornponcnt takes advantage of large
memory by making individual database blocks larger
than those on 32-bit platforms. A database block is a

basic unit for I /O and disk space allocation in the
Oracle7 RDBMS. Large block sizes mean greater den-
sity in the rows per block for the data and indexes, and
typically benefit decision-support applications. Large
blocks are also useful to applications that require long,
contiguous rows, for example, applicatio~is that store
multimedia data such as images and sound. Rows that
span multiple blocks in Oracle7 require proportion-
ately more I/O transactions to read all the picccs,
resulting in performance degradation. Most platforms
that run the Oracle7 system support a maximum data-
base bloclt size of 8 kilobytes (ICB); the DIGITAL
UNIX system supports bloclt sizes of up to 32 IU3.

The shared global area (SGA) is that area of memory
used by Oracle7 processes to hold critical shared data
structures such as process state, structured query lan-
guage (SQL)-level caches, session and tra~lsaction
states, and redo buffcrs. The bulk of the SGA in terms
of size, however, is the database buffer (or block)
cache. Use of the buffer cache means that costly disk
1/O is avoided; therefore, the performance of the
Oracle7 database server relates directly to the arnount
of data cached in the buffer cache. LSGA seeks to use
as much memory as possible to cache database blocks.
Ideally, an entire database can be cached in memory
(an "in-menior)r" database) and avoid almost all I/O
during normal operation.

A transaction whose data request is satisfied fi-om
the database buffer cache executes an order of rnagni-
tude faster than a transaction that n3~1st read its data
from disk. The difference in pcrforniauce is a direct
consequence of tlie disparity ill access ti~iics for main
memory and disk storage. A database block found in
the buffer cache is termed a "cache hit." A caclic miss,
in contrast, is the single largest contributor to dcgra-
dation in transaction latency. Both BOB and LSGA use
memory to avoid cache misses. The Oracle7 buffer
cache implementation is the same as that of a typical
write-back cache. As such, a cache miss, in addition to
resulting in a costly disk 1/0, can have secondary
effects. For instance, one o r more of thc lcast recently
used buffers may be evicted from the buffer cache if n o
free buffers are available, and additional 1 / 0 transac-
tions may be incurred if the evicted block has been
modified since the last time it was read fro111 the disk.
Oracle7 buffer cache management algoritlinis already
implcment aggressive and intelligent caching sche~ncs
and seek to avoid disk I/O. Although cache-miss
penalties apply with or \vithout tlie 64- bit option,
"cache thrashing" that results from constrained cache
sizes and large data sets can be reduced wit11 the
option to the bcnefit of many existing applications.

:I'lie Oracle7 buffer cache is specifically designed
and optimized for Oracle's multi-versioning read-
consistency transactional model. (Oracle7 buffer
cache is independent of the DIGITAL UNIX unified
buffer cache, o r UBC.) Since Oracle7 can manage its

Digital Technical Journal Vol. 8 No. 4 1996 7

o\vn buffer cache more effectively than file system
but'fer caches, it is ohcn recommended that the filc
system cache sizc be rcciuccd in favor of a Idrger
Oracle7 buffcr cache \vhcn the database resides on
3 file system. Reducing filc systcm caclie size also mini-
mizes redunda~it caching of data at the file system
level. For this reason, we rcjcctcci early on the ob i l io~~s
dcsign solutio~i of i~sing the DIGITAL UNIX file sys-
tem as a large cache for taking advantage of large
memory ~01ifig~11-atio1~s-c\~~11 t l ~ o ~ ~ g h it had tlic
appeal of complete transparency and no code changes
to the Oracle7 s!.stcrn.

Background and Rationale for Design Decisions

The primary impeti~s for this projcct was to e\~aluatc
the i~np lc t on the Oracle7 database server of emerging
64-bit platforms, such as tlie Alphaserver system and
1)IGITAL UNIS operating system. Goals set forth
for this project and subscclucnt dcsign considerations
therefore escluded any performance and fi~nctionality
enhancements in tlie Oracle7 1U)BMS that could not
bc attributed to the benefits offercd by a typical 64-bit
platform or otherwise encapsulated \\tithin platti)r~n-
spccific layers of the databasc server code or the oper-
ating system itself.

Common arcas of potential benefit for a typical
64-bit platform (rvhcn compnrcd to its 32-bit cotrn-
tcrpart) are (a) i~~crcascd direct memory addressabilit):
and (b) the potential ti)r configuring systems with
greater than 4 GB of Inemor!.. As noted above, appli-
cation perfor~iiance of tlic Oracle7 d'ltabasc ser\.er
clcpc~~ds on \\lllether o r no t data are fi)i~nd in the data-
base buffer cache. A 64-bit platform provides the
oppor t~~n i ty to expand the database buffer cache in
Oracle7 to sizes \vcll beyond those of a 32-bit plat-
form. BOB and LSGA reflect the o~ i ly logical dcsign
choices available in Oracle7 to take advantage of this
cstended addressability and meet the project goals.
Implcmentatio~~ of thcsc components focused on
ensuring scalability and maximizing the effectiveness
of avnilable nicmory resources.

BOB: Decisions Relevant to On-disk Database Size
Larger database blocks consume proportionately
largcr amounts of memory \vIicn the data contained in
those blocks are read from tlie disk into the databasc
buffcr cache. Consequently, the size of the buther
cache itself must be increased if an application reqi~ires
a greater number of thcsc largcr blocks to be cached.
For an!! given size of databasc buffer cache, Oracle7
database administrators of 32-bit platforms have
had to choose benvecn the sizc of each database block
and tlie number of databasc blocks tliat must be in
the cache to niini~nize disk I/O, t11c choice depe~lding
o n data access patterns of the applications. Memory
available for the database buffcr cache is f i~rther con-

strained by the fact tliat this resource is also shared by
man)! other critical data structures in the SGA besides
tllc Lx~ffer cache and tllc mcmor!! nccded by the oper-
ating system. 1311 eliminating the nccd to choose
bct\vccn the size of the database blocks and bi~ffcr
caclic, Oracle7 or1 a 64-bit platform can run a greatcr
nppliciition mix \vitliout sacrificing performance.

Despite the codependency and the common goal
of reducing costl!~ disk I/O, 13OB and LSGA address
nvo different dimensions of ci;lt;ih3se scnlabilin: I30B
addresses on-disk database sizc, and the LSGA addresscs
in-memory database sizc. Applicarion developers and
datab,lsc administrators l~avc complete flesibility to
hvor one o \ r r the other o r to use tlic~n in combination.

In Oracle7, the on-disk data structures that locate
a row of data in the elatabase L I S ~ a block-address-
byte-offset tuple. The data block address (DBA) is n
32-bit cli~antity, \\/hich is f~ r t l i c r brokcn up into filc
number and block ofket within that filc. The byte off-
set within a block is a 16-bit quantity. Although the
n ~ ~ l i i b c r of bits in the DRA i~scd for file nirmber and
block offsct are platform dcpcndc~it (10 bits for the filc
niunbcr and 2 2 bits for tlic block offsct is a common
ti)rmat), there exists a theoretical ~ ~ p p e r limit t o tile
size of an Oracle7 databasc. With some cxccptions,
most 32-bit platfor~us support a masimium data block
size of 8 KB, with 2 I(R as the dc fa~~ l t . For example,
using a 2-KB block sizc, the upper limit for the size
of tlic database on l>IGITAL. UNIS is slightly undcr
S terabytes (TB); whereas a 3 2 - 1 3 hlock size raises
that limit to slightly undcr 128 TI%. The ability to SLIP-
port buffer cache sizes \\.ell bc!,ond those of 32-bit
pl'ltforms \\,as a critical prcrcqi~isitc to enabling larger
sized data blocks and consecli~ently largcr sized data-
bases. Some 32-bit platforms arc also constrained by
the tjct tliat each data file cannot cxcecd a size o f 4 G'B
(especially if the data filc is a file system managed
object) and therefore may not be able to use all of the
n\railablc block offset range in the esisting DKA for-
mat. The largest databasc sizc tliat c,ln be s~ipported in
such a case is e\.eli smaller. Addressing the perceived
linlits o n the size of an Oracle7 databasc \ifas an i~npor-
tant consideration. Design alternatives that recluired
changes to the layout or an intcrpl-ctation of DBA h r -
niat \\'ere rejected, at least in this project, because such
changes would have introduced incompatibilities in
on-disk data structures.

It s l i o ~ ~ l d be pointed out that o n current Alplia
processors using an 8-ICE page sizc, a 32-KB data
block spans four memory pages, and 1 / 0 code paths
in the operating systenl 11ccd to Iock /~~n loc [~ ~ O L I K
times as man11 pages \\,hen pcrtbrming an 1/0 trans-
action. The larger transfer sizc also adds to the total
time taken to perform an I/O. For instance, four
pages of memory that contain the 32-K13 data block
may not be physically contiguous, and a scatter-gather
operation map be recluired. Althoi~gh the Oracle7

Val. 8 No. 4 I996

database supports ro\v-level locliing for maximum
concurrency in cases where unrelated transactions Ilia)[
be acccssirig different rows within a given data block,
access to the data block is serialized as each individual
change (a transaction-level change is broken down
into multiple, smaller units ofchange) is applicd to the
data block. Larger data blocks accommodate more
rows ofdata and consequently increase the probability
of contention at tlie data block level if applications
change (insert, update, delete) data and have a locality
ofrcfcrence. Experiments have sho\4~1i, however, that
this added cost is only marginal relative to the overall
pcrforrnance gains and can be offset easily by carefully
tuning the a,pplication. Moreover, applications that
mostly clucr)~ tlic data rather than niodi5 it (c.g., DSS
applications) greatly benefit fi-om larger block sizes
since in this case access to the data block need not be
serialized. Subtle costs such as the ones mentioned
above ne\lertheless help explain \vhp some applications
may not necessarily see, for example, a fourfold pcr-
formance increase when tlie change is made from an
8-IU3 block size to a 32-IUS block size.

As with Oracle7 iniplcnicntations on other platforms,
database block sizc \i~itli the 64-bit option is determined
at database creation time using db-block-size con-
figuration paranictcr.' It cannot be changed dynan~ically
at a latcr time.

LSGA: Decisions Relevant to In-memory Database Size
The focus for the LSGA effort was to idcnti@ and eli~ii-
inate any constraints in Oracle7 o n the sizes to which
the database buffcr cachc could grow. DIGITAL UNIX
meinory allocation application progrrunming interfaces
(APIs) and proccss address space layout rnaltc it fairly
straightfor\\larcl to allocate and mallage Systcrn V
shared nmnory scgmcnts. Although tlie sizc of each
shared mcmory segment is limited to a maximum of
2 GB (duc to the requirement to comply with UNIX
standards), multiplc scgmcnts can be used t o work
around this restriction. The memory management
layer in Oracle7 code therefore \vas the initial area of
focus. Much of the CIracle7 code is \vrittcn and archi-
tectcd to make it highly portable across a diverse rangc
of platforms, i~icluding memory-constrained 16-bit
desktop platforms. A particularly interesting aspect of
16-bit platforms with respect to memory management
is that these platforms cannot support contiguous
memory allocations bcyond 6 4 KB. Users arc forced
to resort to a segmented memory model such that
each individual segment does not exceed 6 4 1U3 in
size. Although such restrictions are so~newhat con-
straining (and perhaps irrelevant) for most 32-bit
platforms-more so for 64-bit platforms-which can
easily handle contiguous liiemory allocations well
in excess of 6 4 1U3, memory nianagcrnent layers in
Oracle7 code are designed to be sensitive and cautious
about large co~l t ig i~ous memory allocations and

would use segmented allocations if the size of
the mcniory allocation request exceeds a platform-
dependent tliresliold. In particular, the size in bytes
for each nlernory allocation request (a platfor~il-
dependent value) was assumed to be \veil under 4 GR,
\vJlich was a correct assumption for all 32-bit plat-
forms (and even for a 64-bit platform without ISGA).
Internal data structures i~sed 32-bit integers to repre-
sent the size of a memory allocation rcqucst.

For each buffer in the buffcr cachc, SGA also
contains an additional data structure (buffer header)
to hold all the metadata associated with that buf-
fer. Although memory for the buffer cache itself \\/as
allocated using a special interface into the lncniory
Iiianagcmcrlt layer, rnenior)~ allocation for buffcr
headers used conventional interfaces. A different
allocation scheme \\,as needed to allocate meniory
for buffer headers. The buffer header is the only
major data structure in Oracle7 code whose size
requirements are directly dependent on the number of
buffers in tlie buffer cache. Existing memory man-
agement interfices and algorithms used prior to LSGA
work were adequate until the number of buffers in
the buffer cache exceeded approximately 700,000
(or bufkr cache size of approximately 6.5 GH). Minor
code changes were necessary in memory manage-
ment algorithms to accommodate bigger allocation
requests possible with existing high-end and future
Alphaserver configurations.

The AlphaServer 8400 platform can support Inem-
ory config~trations ranging from 2 to 1 4 GB, using
2-GB memory niodules. Some existing 32-bit plat-
forms car1 support physical memory configurations
that exceed thcir 4-GB addressing limit by way ofseg-
mentation, such that only 4 GB of that meniory is
directly accessible at any time. Program~ning complex-
ity associated with such segmented memory models
precluded any serious consideration in the design
process to extend LSGA work to such platforms.
Significantly rewriting thc Oracle7 code \\!as specifi-
cally identified as a goal not to be pursued by this proj-
ect. The Alpha processor and DIGITAL UNIX system
provides a flat 64-bit virtual address space model to
the applications. DIGITAL UNIX extends standard
UNIX APIs into a 64-bit programming en\iironment.
Our choice of tlie Alphaserver and DIGITAL UNlX as
a development platform for this project was a fairly
simple one from a time-to-market perspective because
it allowed us to keep code changes to a minimum.

Efficiently managing a buffer cache of, for example,
8 or 10 GB in size was an interesting challenge. More
than five million buffcrs can be accommodated in a
10-GB cache, with a 2-KB block size. That number of
buffers is already an order of magnitude greater than
what we u7ere able to experiment with prior to the
LSGA work. The Oracle7 buffer cache is organized as
an associative write-back cache. The mechanism for

Digiral Technical Joun~al

locatbig a data block of interest in tliis c ~ c h e is s~~ppor ted
by common dgorith~ns and data structures such as hash
ti~nctio~is m d li~lked lists. I n man![cases, tral~ersing criti-
cal linked lists is serialized among contending threads of
cscc~~tion to maintain the integrity ofthc lists tlic~iiscl\~cs
and secondary data structures managed by these lists. As
a result, the sizc ofsuch critical lists, fix example, has an
impact on overall concurrency. The larger buffer count
no\\. possible in LSGA configi~~it ions had the net effcct
of reduced concurrency bcca~~sc the sizc of tlicse lists is
proportion at el!^ larger. 1SGA pro\'idcd a fi-amc\vork to
tcst contributions from other unrelated projects that
addrcssccl such potelitin1 bottlcnccl<s to concurrency, as
it could realistically simulntc rclntivcly rnorc stringent
boundary conclitions than bcfbrc.

Scalability Issues
Engineering teams at Ornclc have worked \,cry closely
\\,it11 their coulitcrparts in the 1)IGITAL UNIX operat-
ing systcni group throughout tliis project. The data
collcctcd in the course oftlic projcct \\,as ~1sefi11 in ann-
Iyzing and adcircssing the scalnbility issucs in the bnsc
opcrnting system 11s \\,ell ns in the Oracle7 product.
Examples of this \vork arc in the basc operating system
grani~larity hint regions ancl in the shared page tables.?'

For every page of physical and virtual lileniory, a11
opcrxing system niust ~iiaintain various data structurcs
such as pagc tables, data stl.ucturcs to track regions o F
mcmory with certain nttributcs (such ns S~~s tem V slixcd
nicmory regions, or tczt and data segments), or diit.1
structures that track processes which lia\.e references to
these mcniory regions. Ancillary opcr.iting system data
structures sucli as pagc tnblcs gro\tr in size pro-
~x)rtion,ltcly to the size ofpli!~sical mcmory. C:hangcs
to page table managcmcllt associntccl \\'it11 System V
shared mcmory regions ucrc ~ n a d c such that processes
that mapped the sharcd mcmorp regions could share
page tables in addition to the data pages themsclvcs.
Prior- to this change, each process mapping the shared
memory region ~ ~ s e d a copy of'associnted pagc tables.
i\ clinngc like this rcduccii physical mcmorjr consump-
tion by the operating system. For csnniple, on an Alpha
<:PU supporting an SKI3 page sizc, it would take 8 KH
in pagc table entries to m;ip 8 MR of physical memory.
For nn SGA of 8 GB, it \\lould tnkc 1 1Ml3 in page tablc
entries. I t is not ~ ~ n c o ~ i i ~ i i o ~ i in the 01-acle7 systenl for
l i~~ndreds of processes to connect to the database, and
thcrcforc niap tlie 8 GI3 ofSGA. W i t l i o ~ ~ t shared pagc
tables, 100 such processes would have consumed 100
MR of physical mcmor!l by maintaining a per-process
copy of page tablcs.

A gran~~larity hint rcgion is n rcgion ofph!aicaJly con-
tiguous pages of mcmory thnt shnrc \.irtual and physical
mappi~igs between all the proccsscs tliat map them.
Such a mcmor!l layout nllows 1)IGITAL UNIX to take
nd\,antagc of tlie granularity hilit feature supported by
Alpha processors. Gra~~ularity hilit bits in a page tablc

cntrp allo* the Alpha <:PU to use a single translation
look-aside buffer (TLB) entry to map a 512K physical
mcmory space. Using one 1'LR entry to map larger
ph!lsical memory has the potential to reduce proccsbor
stalls during 'TLB misses anci ref 11s. Also, beca~~se of the
rcquircmcnt that the grani~larity hint rcgion be both
virtually and physically cont ig~~ous , it is allocated at sys-
tem startup time and is not subject to normal virtu.11
nicmory management; tbr csamplc, it is never paged in
or O L I ~ , n~id subseq~~cntly the cost o f n page f a ~ ~ l t is mini-
mal. Since pages in g ran~~l ; i~ in , liint rcgio~is are pli!rsj-
cally contiguous, m y I/() done fiom this rcgion o f
mcmory is relatively niorc efficient because it need not
go througli the scatter-gather phase.

Summary of Test Results

One of the project goals \\]as to demonstrate cledr
pc f i) r~ i~ancc bcncfits for t\vo common classes of datn-
basc applications, DSS and 01,TI'. Tlic Transaction
Processing C o ~ ~ n c i l (Tl'C:) pro\.idcs an industry-
stanclnrd bcnchniark suite fi)r both applications, tliat
is, TI'(:-(: for OLTP anci *1'1'(:-13 for I>SS, An in dust^-!^-
sta~ldard bcnchmark \\,auld Iin\'c bccn a logicnl choice
for a \\lorkload that \\loulci dcmonstratc performance
bcncf ts. Ho\lre\rcr, the cnor~nous ti~iic, rcsoLIrccs, and
c f h r t rcquircd to stage an a ~ ~ d i t c d TlY: benchmark
and the strict g~~idelincs For nny direct coniparison of
p~~blisllcd bcnclimark results \\.ere major factors in
tlic decision to dc\rclop 3 \\rorkloaci for this projcct
that matched the spirit of the TI'(; benchmark but not
ncccssarily the letter.

I n late 1995, Oraclc Corporation ran a series ofpcr-
tbrmancc tcsts for a DSS-class \\forkload of the Oracle7
systcm, \\lit11 ancl \\zithoL~t the 64-bit option on the
AlplinSer\~cr 8400 system r u n ~ i i ~ i g the DIGITAL UNIS
operating system \\fit11 8 GR of physical mcmory. A
detailed report o n this tcst is published and available
fi-om Oraclc C ~ r p o r a t i o n . ~ Thcsc results, shown in
F i g ~ ~ r e 1 , clcarly demonstrate the benefits of a large
nmount of physical ~ncmory in ,I config~~ration \\,it11
the 64-bit option. A sunlmilr!p of thc tcsts conducted is
~wcsuitcd here along \\fit11 somc data points and kc!
observations.

(1Zcnders interested in pcrfi)rmancc characteristics ot
nn audited industry-standard O1,Tl' bcnc11nia1-k arc
referred to the nigital ~ ~ ' c . / ~ I ~ ~ c ~ I / , / o I I I ~ I ~ L I / , V~ILIIIIC 8 ,
Number 3. T\\,o papers present performance character-
istics of Oracle7 Par,illcl Scr\lcr rclc.lsc 7.3 using 5.0 GR
SGA, and a TPC-<: workload o n a fi)ur-node cl~~stcr.')

Tlic tcst database co~lsistcd o f f 1.c tables, reprcscnt-
ing approximately 6 GB of ciata. The tests incl~tdcd
t\vo separate configurations:

A "standard" config~~ration \ \ ~ t I l ,I 128-MI3 SGA
\vith a 2-KB database block sizc

A 64-bit option-e~iabled conf guration \\~ith a 7-GI3
SGA and 32-KB database bloclc sizc

Vol. 8 No . 4 1996

PERFORMANCE RATIOS OF LSGA TO SGA

" .-
1 2 3 4 5 6

TRANSACTION TYPE

Figure 1
Pcrform'i~~cc I~nprovcrncnt~ for J DSS-class \Vorkload,
Kat~os of LSGA to SGA

T h e e\~aluation inclucled running six separate trans-
action types ag'iinst these t\lro configurations:

1 . Full table scan against a table with 4 2 million rows
(witliout tlie Parallel Query Opt ion)

2 . Full table scan against a table \\/it11 4 2 million rows
(with tlie P~rallel Q ~ ~ e r y Opt ion)

3. Set o f ad lioc queries against a talsle with
4 2 nill lion rows

4 . Set o f ad hoc clucrics invol\~ing a join against
three tables with 10.5 million, 1 . 4 million, and
4 2 million rows, I-cspecti\~clp

5. Set o f ad hoc q ~ ~ e r i e s in\rol\~ing a join against four
tables with 1 million, 10.5 million, 1 . 4 million, and
4 2 million rows, respectively

6. Set o f ad h o c qileries involving a join against
five tables \\,it11 70 ,000 , 1 million, 10.5 million,
1 .4 million, and 4 2 nill lion rows, rcspccti\~cly

Each bar in Figure 1 r e p r e s u ~ t s a ratio o f execution
time (elapsed) benveen a large SGA (64-bi t op t ion)
and a slnall SGA ("standard" configuration) for each
o f the six transaction types. In every case, tlie configu-
ration with the 64-b i t option enabled consistently o u t -
pcrfor~i icd a "standard" configuration. I n some cases,
tlie pel-for~nance increase with the option enabled was
over 2 0 0 times tliat o f the standard configuration.

T h e transaction mix chosen for this test represents
database operations comnionl!~ used in DSS-class
applications (e.g., fill1 table scans, sort/merge, and
joins). T h e tcst also ~ ~ s c s a characteristically large data
set. Transaction types 1 and 2 arc identical cxccpt for t l ~ c
use o f thc Parallel Query Option. T h e Parallel Query
Option in Oracle7 breaks up sonic database operations
such as table scans and sorts/mcrge into smaller \\rork
~lnits, and executes tlic~ii co~ic~~rrcn t ly . Ry default, these
operations are csccutcd serially, using 01i1y olle thread
ofexecution. Tlic Parallel Query Opt ion (independent

o f the 64-bit opt ion) is a standard offering in tlie
Oracle7 database server product since release 7.1. Use
o f parallel query in this tcst illustrates the effcct o f the
64-bi t option enhancements o n preexisting mecha-
nisms for database performance i rnprove~~ient .

All other things being equal, if tlie only difference
between a standard configuration and a 64-bit-
option+nabIcd c o ~ ~ f i g ~ ~ r a t i o n is that the entire data set
is cached in memory in the latter configuration and tliat
typical times for main memory accesses arc a few tens o f
nanoseconds \\/hereas times for disk accesses arc a fc\v
milliseconds, only the six t o seven tinics performance
increase i ~ i t ra~lsact io~i 1 \\io~lld seem hr belo\v
expectation. For a t i l l1 table scan operation, the Oracle7
server is already optimized t o use aggressi\ie data
prefctch. Before tlie server begins processing data in
a given data bloclc, it launches a read operation for
the next block. This technique significantly reduces
application-\iisible disk access latencies by o\,erlapping
c o n i p ~ ~ t a t i o n and I/O. Disparity in access time for main
memory and disk is still largc enough t o cause the com-
putation t o stall while waiting for the read-ahead 1 / 0 t o
finish. When data is cached in memory, this rc~naining
stall point in the qllery pl-ocessing is eliminated.

I t is also important t o note that a f~ll table scan
operation tends t o access the disk sequentially. It is
typical for disk access times t o be better by a factor o f
a t lcast nvo in sequential access .is compared with rail-

d o m access. Icccping block sizc and disk and ~ i i a i ~ i
memory access times the sanic as bcforc in this equa-
tion, '1 faster Alpha Cl'U \ \~ould yield better ratios in
this test because it \vould finish c o ~ i ~ p l ~ t a t i o n propor-
tionately faster and \\lould \\lait longer for the read-
ahead I /O t o finish. Follo\v-on tests with faster CPUs
supported this observation. Overlapping computution
and 1 / 0 as in ;I tablc scan operation may no t be possi-
ble in an indcx lool<up operation. T h e sequence o f
operations for accessing a roui o f data using a B-tree
indcx, in the best case, in\~oI\~cs a11 1 / 0 t o read tlie
indcx block matching the key value first, follo\ved by
another 1 / 0 t o read the data block; a second I /O can-
no t be launched until tlie first finishes because thc
address o f the data block t o be read can only bc deter-
mined by examining the contents o f the index bloclc
I-ead in the previous operation. Unlike table scans,
thcsc I/Os arc nonscquential. Latencies o f the disk
I /O for an index l o o k ~ ~ p , as secn from the application
perspecti\/e, are consequentl!~ greater than latcncics for
3 table scan. Minimizing o r eliminating I/Os in tlie
index lookup, therefore, has the potential for even
greatcr increases in spccd. Indcs looltups arc typical in
OLTP \\lorkloads.

T h e test using transaction type 2 illustrates a c u m u -
lative effect because perfor~iiancc benefits for a single
thread ofexecution extend t o all the threads \\then the
\\iorldoad is parallelized.

Vol. 8 No. 4 1996

Unlike fill1 table scans, tlie sort/mergc operation
gcncrntcs intcrmecliatc r e s ~ ~ l t s . Depending o n the size
o f thcsc partial rcsults, they may be stored in main
Iiicmory if an a d e q ~ ~ a t e amount o f menlory is avail-
able; o r they may be \vrittcn back t o temporary storage
space i l l the ci'it,lbase. T h e latter operatio11 resi~l ts in
additional l/Os, proportionately more in nunibcr as
i ~ i p t ~ t s t o thc sort/mcrgc gro\l1 in size o r count . T h e
64-bi t option makes it possible t o eliminate thcsc I/Os
as well, as illustrated in transaction types 4 t h r o ~ ~ g h 6.
Pcrformance i m p r o v e ~ n e ~ i t s are greater as the conl-
plexity o f queries increases.

Conclusion

T h e disparity between memory speeds and disk speeds
is likely t o cont inue for the hrcsccablc future. Ldrgc
mcmory configurations represent a n opportuni ty t o
o\,ercornc this disparity and t o increase application
perhl-niancc by caching a large a m o u n t o f data in
memory. Even though the Oracle 64 Hit O p t i o n
impro\,cs database perforn~ance-two orders of mag-
nitude in so11ic cases-specific application characteris-
tics must bc cvaluatcd t o determine tlie best means k)r
maximizing o\rcrall perfoslilancc and t o balance thc
significant increase in hardware cost for tlie largc
amount o f mcmor!,. TIic Oracle 64 Bit Option com-
plements existing Oracle7 feat i~res and fi~nctionalin,.
T h e cxact cstcnt o f t h c increases in speed with the
64-bi t opt ion varies based o n the type o f database
opwruion. Faster (:PUS and denser memory allow
for c \ r c ~ ~ morc pcrforniance improve~-nents than lia\,c
bccn clcmo~latmtcd. Factors o f ilnportance t o nc\v
o r existing applications, particularly those sensiti\,e t o
response time, are an order o f magnitude performance
in terms o f spced increases and the ability t o utilize
nicmory configurations much larger than p r c \ f i o ~ ~ s l y
possiblc in Oracle7 o r fix applications that use
n~odcratc-sizc data sets. With sufficient physical mem-
ory, the d a t ~ b a s e s ~ ~ s e d bv these rcsponse-time-
scnsiti\rc applications can now be entircl!~ cached in
memory, cliniinaring \rirtually all disk I/O, \vhicIi is
oftcn a major constraint t o response time. In-memory
(o r f ~ l l y caclicd) Oracle7 databases do n o t conipro-
niise transactional integrity in any wa),; nor d o such
configurations require special hardware (for example,
nonvolatile random access menlory [RAM]).

I<ccat~sc a 64-bi t AlpliaServer and DIGITAL UNIX
operating system transparently extends existing 32-bi t
APIs into a 64-bi t prograniniing model, applications
can tnkc advantage o f added addressability \ v i t l i o ~ ~ t
 sing spccializcci Al'ls o r making significant code
changes. Pcrformance le\lels equal t o o r better than
pre\~iously possible \\,it11 specialized liard\\lare and s o h -
\\,arc can no\ \ , be achieved \vitIi industry-stanclald,
open, gcncr.~l-purpose platforms.

Acknowledgments

I\/I.III\, pcol>lc tvithin sc\.cral groups and disciplines s t both
Oracle .~nd DIGITAL h x c contrib~rted to the succc.ss of this
~>rojcct. I \\ OLIICI like to tlia~ik the follo\vinp intii\,idu.ils l iom
Or,lclc: kV.lltcr Bartistclla, Saar Maoz, let' Kcllllcd!, r11lti

l).l\.iti Ir\\,in of the 1)IGITAI. System Busincss ['nit;
,~nd fiorn DIGITAL.: Jim Wood\\zarci, PIILII;~ L,o~ip, l).~srcll
I) ~ ~ n n ~ ~ c l i , and L).l\,c Wincliell of the l)IC;l'l';iI, L S I S
Engineering ~ ~ O L I P . Mcr~~bers of tllc Computer S!,stclns
I)i\,ibion's Pcsfornlancc Group at DIGITAL. hn\rc also con-
tr~burcd to this projcct.

References

I . 01 wclc 7 SCJI.[IL'I. D O C I . I I ~ ? C ' I ~ ~ U ~ ~ O I I .Ye/ (Kcci\\,ood SI~orcs,
Calif.: Ol-nclc Corporation).

2. I~I(;I'l;Jl. L!VIX I V.0 Releclst~ ,\iol~s (Maynard, IM~ss.:
1)igiral Equipment Corporation, 1996).

3. R. Sites and R. Witek, eds., Alphu A~rhilcc'l~itr~ KC;/~,I-
c ~ r r c c ~ . I l c ~ ~ ~ ~ ~ c ~ / (N e \ \ . t o ~ i , 1Mas.s.: Digir~l I'rcss, 1995).

4. O~z~clc> 64 Bit Option Pel:/bl.n~u~lce Repol? 0 1 1 I)i~:,i/ril
I :\%Y (lLd\vood Sliorcs, Calif.: Or~cle <:orpol-ation,
p ~ r t ~ ~ u r n b c r C10430, 1996).

5. J . Pi;lntcdosi, A. Sathaye, and D. Shnkshobcr, "l'crfor-
mancc Mcns~~rc~ncnt of TruClustcr Systems under tllc
'I'I'(:-<: 13cncIirnark," and T. Kawnf, 1). Sllakshobcr, and
I). Stnnlcy, "Pcrfor~nancc Analysis Using Vcl.!~ L,;lrgc
iVlcmosy o n thc 64-bit Alphaserver Systcnl," 1) i~ i lo l
'li.cl~~~ical,/o~l~~i~ul, \,ol. 8 , no. 3 (1996): 46-05.

Biography

Vipin V. Gokhale
Vipin Gokh~lc is (1 (:onsulti~ig Sofnva1.c Engineer ;lr Orciclc
<:orlx)l-.)tion i r l the I)TGI?'.-IL Systcm Busi~lcss Unit \\.licrc
he 1135 co~itributed to porting, optimizatioll, and plarform-
specific fcnturcs ant1 fr~lcrio~iality exte~lsiorls to Ornclc's
d.lrabasc scr\-cr o n I)IGI'I'.4L's operating h!.stclns and scr
vcl-s. Hc was ~rcsporisible fbr delivering the ti rst 01-aclc7
pol-t to tllc 1)IC;I~I'AI. UNIX platform. Prior to joininp
Ornclc in 1990, Vipin \\..IS n Senior Sofn\.are E~iginccr
in India, dc\,cloping rclccorn~~~~~nicat ions soft\\.arc. Hc
received .I B.'li.ch. in Electronics and l'cIccom~nuniz.~-
rions fi-om the Institute ofTcchnology, Banaras Hinciir
University, Indin, in 1985.

Vol. 8 No. 4 1996

VLM Capabilities of
the Sybase System 1 1
SQL Server

Software applications must be enhanced to
take advantage of very large memory (VLM)
system capabilities. The System 11 SQL Server
from Sybase, Inc. has expanded the semantics
of database tables for better use of memory
on DIGITAL 64-bit Alpha microprocessor-based
systems. Database memory management for
the Sybase System 11 SQL Server includes the
ability to partition the physical memory avail-
able to database buffers into multiple caches
and subdivide the named caches into multiple
buffer pools for various I10 sizes. The database
management system can bind a database or
one table in a database to any cache. A new
facility on the SQL Server engine provides
nonintrusive checkpoints in a VLM system.

T.K. Rengarajan
Maxwell Berenson
Ganesan Gopal
Bruce McCreadp
Sapan Panigrahi
Srikant Subramaniam
lMarc B. Sugiyama

The advent of the System 11 SQL Server from Sybase,
Inc. coincided with the widespread availability and
use of very large memory (VLM) technology on
DIGITAL'S Alpha n~icroprocessor-based computer
systems. Tccl~nological features of the System 11 SQL
Server werc used to achieve record results of 14,176
transactions-per-minute C (tpmC) at $198/tpmC
on the DIGITAL Alpha~erver 8400 server product.'
One of thcse features, the Logical Memory Manager,
provides thc ability to fine-tune memory manage-
ment. I t is the first step in exploiting the semantics of
database tables for better use of memory in VLM sys-
tems. To partition memory, a database adnlinistrator
(DBA) creates multiple named buffer caches. The
1)11A then subdivides each named cache into multiple
buffer pools for various 1 / 0 sizes. The DBA can bind a
database o r one table in a database to any cache.
A ncw thread in the SQL Server engine, called the
Houseltccper, uses idle cycles to provide free (non-
intrusive) checl<points in a large memory system.

In this paper, we briefly discuss VLM technology.
Then we describe the capabilities of the Sybasc System
11 SQL Server that address the issues of fast access,
checkpoint, and recovery ofVLM systems, namely, the
Logical Memory Manager, a VLM query optimizer,
the Housekeeper, and hzzy checkpoint.

VLM Technology

The term very largc rncmor)l is subjective, and its
widespread meaning changes with time. By VLM, wc
meall systems with more than 4 gigabytes (GB) of
memory. In late 1996, perso~lal computer servers with
4 GB of memory appeared in the marketplace. At $10
per megabyte (MB), 4 GB of memory becomes afford-
able ($40,000) at the departmental level for corpora-
tions. We expect that most of the mid-range and
high-end systems \ v I I I be built with more memory in
1997. Gro\vth in the amount of system memory is 'in
ongoing trend. Growth beyond 4 GB, ho\vevcr, is a
significant expansion; 32-bit systcms run out of mem-
ory after 4 GB.

DIGITAL developed 64-bit computing with its
Alpha line of microprocessors. Digital is now

Digiral Technical Journal Vol. 8 No. 4 1996 83

\vcll-lxxitioncd t o facilitate the transition from 32-bi t
t o 64-hi t s!,stcms. S!~base, Inc. pro\idcd one o f t h c f r s t
relational database ma~iagcmcnt systcnis t o LISC V1,iM
technology. T h e Sybasc System 11 SQI. Ser\,er pro-
\ricics h l l , native support o f 64-b i t Alplid microproces-
sors and tlic 64-b i t 1)IGITAL UNlX operating systcni.
l)IGITAL, U N I S is the first operating s),stcm t o provide
a 64-bi t .~ddrcss spacc for 311 proccsscs. T h e System 11
SQT. Scrvcr uses this large address spacc primarily t o
caclic large portions o f the database in mcmory

VI,i\/l technology is appropriate fix use \\lit11 applica-
tions that Iia\~c stringent response time rccl~~ircmcnts .
With thcsc applications, for cs '~mplc, call-routing, it
b c c o ~ n c s necessar!, t o fit the cntirc databasc in nicm-
or!!.' ' T l ~ c use o f VLiM systcms can also bc bcncfcial
\\.hen the pricc/pcrfor~mance is impro\,ed by adding
mor-c r n c ~ n o r y . ~

Main Memory Database Systems

, I hc \\~idcsprcad a\~ailability of VLM systcms raises
tlic possibility o f building main mcmory database
(IMIM~)R) systcms. Se\cral techniques t o imp-o\rc the
1>ufi)r1i1.1lice o f h?i\/11)13 systems have bccn discussed
in tllc d,ltabase literature. l<cfcrcncc 5 provides ,In
csccllcnt, d c t ~ i l e d sur\rc!r. \/Vc provide a brief ciiscus-
sion in this section.

Lock contention js low in iMM1)13 systcms since the
da t ,~ resides in memory. Hence, the granulnrity o f c o n -
c~lrrcnc!~ control can be incrcascd t o minimize the
o \ ~ r l i c , l d o f lock operations. Tlic loclc manager data
structures can be combined \\,it11 the databasc objects
t o rcciucc mcmory usage. Spcciali;/cd, st,iblc memory
hard\\~arc can be used t o mini~iiizc latency of logging .
Eal-ly release of transact ion locks ancl g r o u p c o m ~ n i t
during commit processing can be uscci t o incrcasc
c o n c ~ ~ r r c n c y and t l ~ r o u g l ~ y ~ ~ t . Since random access is
tist in IMIMDBs, access mcthocis can be developed \\it11
n o Ikcy \ralucs in the index bu t only p o i ~ i t c r s t o d,lta
ro\\.s in m c m o r y . Q ~ ~ e r y optirnizcrs nccci t o consider
<:1'U costs, no t 1/0 costs, \\,hen comparing \ , a r i o ~ ~ s
,~ltcrnati\rc plans for a query. I n all 1\/1Ml)l3, clicck-
pointing and failure recolYer!' arc the orll~, reasons for
performing disk operations. A chcckpoint process can
hc made " f ~ ~ z z y " \\rich lo\\' impact o n transaction
r l i rougl ip~~t . Akcr a system failure, incrcmcntal rcco\.-
cry processing allo\\~s transaction ~ ~ o c c s s i ~ i g t o resume
bcti)rc the rcco\{crp is complctc.'

As memory sizes incrcasc with VLM systcms, dam-
b,lsc sizes ;1rc also incrrasilig. 111 gc11cra1, \tlc cspcct
thnt d ~ t ~ [> a s e s \ d l no t fit in m c m o ~ - \ ~ in the next
decade. Therefore, for most o f the databases, i\/Ih41)13
tccl~niqucs can be exploited only for those p'irts o f tlic
dntabasc that cio fit in memor!l.'

I n adciition t o the capability oFcacliing the cntirc
database in buffers, the Sybase System 11 SQI, Scr\,er

provides technological ,~d\rances that take advantage o f
VLIM systcms. Thesc Jrc the L,ogical iMcmory
Manager, VLA4 q ~ ~ c l - y optiniizatio~i, the Houscltccpcr
t h r e ~ d , and h z z y checkpoints. We discuss the signiti-
cance o f tliesc ad\~,lnces in the remaining sections o f
this paper.

Logical Memory Manager

T h e Sybase SQL, Server consists o f several I)IC;ITAI,
UNIX processes, called engines. T h e DBA confgures
the number o f engines. As sIiol\~n in F i g ~ ~ r c 1, each
engine is perrnancnrl\, dedicated t o one CPU o f .I sym-
metric ni~~lt iprocessing (SIMP) machine. T h e S y b ~ s c
engines share \'irti~.ll mcmory, \\rliich has bccn sizcci t o
include the SQL, Scr\rcr csecutable. T h e virtual mcm-
or\ , is lockcd t o pliysical Iiicmor!i. As a result, tlicrc is
never any opclating system paging for the Sybnsc
memory. This sliarcd mcmor!~ region also uses large
operating system pages t o minimize translation look-
aside buffcr (TLR) entries for the <:PU.TThc sliarcd
memory holds the c l ~ t a b ~ s c bufkrs , stored procedure
caclic, so r t buffers, and o thcr dynamic ~-~icrnor\!. This
memory is managed csclusi\~cly by the SQI, Scr\u- .
O n e S Q L Server ~ ~ s u a l l y processes trans1 , ctlons - ' on

multiple dat '~bascs. l;..icli databdse has its o \ i rn log.
Transactions can span datnb'lses using nvo-phase com-
mit. For f i~r thcr cictails o n the S Q L Server architec-
ture, plcasc scc I-ckrcncc 9.

'l'lie Logical Memory Manager (Lh4iM) pl-o\,idcs tlic
ability for a DRA t o partition the physical memor!r
available t o database buffers. T h e 13BA can partition
the mcmol-!! used 6)l- the dat'lbase buffers into multi-
ple caclics. Tlic 1713A nccds t o s p e c i ~ a size and a name
for each caclic. After all nanicd caches have been
d c f ncd, tlic system d c f ncs the remaining mcmory as
the d c f a ~ ~ l t caclic. O n c e the 1>1',A partitions the nicm-
ory, it can t l i c~ i bind databasr entities t o a particular
cache. T h e database entity is o n e o f the follo\\,ing: an

CPU

SYBASE
ENGINE

CPU

SYBASE
ENGINE

SECOND-LEVEL
CACHE

C
I I 4

BUS

MEMORY n
Figure 1
SQI, Server o n .in Slcll' S\ \rcm

Vol 8 N o . 4 I996

entire database, onc table in a database, or one index
on one table in a database. There is n o limit to the
number ofsuch entities that can be bound to a caclie.
This cache binding directs the SQL Server to use only
that cache for the pages that belong to the entity.
Thus, tlie DBA can bind a small database to one cache.
In a VLM system, if the cache were sized to be larger
than the database, an MMDB would result.

Figure 2 shows the table bindings to named caches
with the LMM. The procedure cache is used only
for keeping compiled stored procedures in memory
and is shown for completeness. The item cache is a
small cache of 1 GB in size and is used for storing
a s~iiall read-only table (item) in memory. The default
cache holds the remaining tables. Figure 2 shows one
table bound to the item cache and the other tables
bound to the default cache. By being able to partition
the use of memory for the item table separately, the
SQL Server is now able to take advantage of MMDB
techniql~es for only the item cache.

Each named cache can be larger than 4 CB. The size
is liniited only by the amount of memory present in
the system. Although we d o not expect such a need,
it is also possible to have hundreds of named caches;
64-bit pointers are used throughout the SQL Server
to address large memory spaces.

The LMM enables the DBA to fine-tune the use of
memory. The I,MM also allows for the introduction
ofspecific MMDB algorithms in the SQL Server based
on the semantics of database entities and the size of
named caches. For csample, in tlie f ~ ~ t u r e , it becomes
possible for a DBA to express the fact that most of one
table fits in one named cache in memory, so that SQL
Server can use clock buffer replacement.

VLM Query Optimization

The SQL Servcr q ~ ~ e r y optimizer co~nputes the cost
of query plans in terms of CPU as well as I/O. Both

I PROCEDURE CACHE, 0.5 GB I
I ITEM CACHE, 1 GB

DEFAULT CACHE,

Figure 2
Table Bindings t o Named Caches with Logical
lMe11101.)~ Manager

costs are reduced to an estimate of time. Since the
number of 1/0 operations depends on the amount of
memory available, the optimizer uses the size of the
cache in the cost calculations. With LMM, the opti-
mizer uses the size of the llamed cache to which a cer-
tain table is bound. Therefore, in the case ofa database
that completely fits in tnemory in a VLM system, the
optimizer choices are made purely on the basis of CPU
cost. In particular, the 1/0 cost is zero, when a table
or an index fits in a named cache.

The Spbase System 11 SQL Server introduced the
notion of tlie fetch-and-discard buffer replacement
policy. This strategy indicates that a buffer read from
disk will not be used in the near klture and hence is
a good candidate to be replaced fi-om the caclie. The
buffer management algorithms leave this buffer close
to the least-recently-used end of the buffer chain. In
the simplest example, a sequential scan of a table uses
this strategy. With VLM, this strategy is turned off
if the table can be co~npletely cached in memory. The
fetch-and-discard strategy can also be tiuied by appli-
cation developers and DBAs if necessary.

Housekeeper

One of the motivations for developing VLM was the
extremely quick response time requirements for trans-
actions. These environments also require high avail-
ability of systems. A key component in achieving high
availability is the recovery time. Database systems
write dirty pages to disk primarily for page replace-
ment. The checkpoint procedure writes dirty pages to
disk to minimize recovery time.

The Sybase System 1 1 SQL Server introduces a new
thread called the Housekeeper that runs only at idle
time for the system and does useful work. This thread
is the basis for lazy processing in the SQL Server for
now and the k~ tu re . I11 System 11, the Houselteeper
writes dirty pages to disk. At first, it writes pages to
disk from the least-recently-used buffer. In this sense,
it helps page replacement. In addition to ensuring that
there are enough clean buffers, the Housekeeper also
attempts to minimize both tlie checkpoint time and
the recovery time. If the system becomes idle at any
time during transaction processing, even for a few mil-
liseconds, tlie Housekeeper keeps the dislts (as Inany as
possible) busy by writing dirty pages to disk. I t also
makes sure that none of the dislts is overloaded, thus
preventing an undue delay if transaction processing
resumes. In the best case, the Ho~~sekeeper automati-
cally generates a free checkpoint for the system,
thereby reducing the performance impact of tlie
checkpoint during transaction processing. In steady
state, the Housekeeper continuously writes dirty pages
to disk, while minimizing the number of extra writes
incurred by premature \vrites to disk."'

Digiral Ethnical Journ;ll

Checkpoint and Recovery

As thc sizc of memory increases, the following nvo
hctors increase as well: (1) thc number of\\.rites to
disk during the checkpoint and (2) the nu~nbcr of
disk I/Os to be done during recovery. The Sybase
Syste~n 11 SQL Server allo\vs the 1'>13A to tune the
amount of buffers that will be kept clean ill1 tlic time.
This is called the wash region. I n essence, tile \vash
rcgion represents the amount of memory that is al\\~ays
clean (or strictly, in the process of being written to
disk). For example, if the total amount of mcmory for
database buffers is 6 GB and the wash rcgion is 2 GB,
then a t any time, only 4 GB of memory can be in an
~ ~ p d a t e d state (dirty). The ability to tune the \\rash
rcgion reduces the load 011 the checkpoint procedure,
as \vcll as recovery.

The Sybase System 11 SQL, Server 113s implemented
a f ~ z z y clieckpoint that allows transactions to proceed
even c l~~r ing a checkpoint operution. Tr;uisactions
:Ire stalled only when they try to ~ ~ p d a t c 3 database
page that is being written to disk by the checkpoint.
Even in that case, the stall lasts only h r tlie time
it takes the disk write to complete. I n addition, in
the SQL Server, the chcckpoint process can keep mul-
tiple disks busy by issuing a large number of asynchro-
nous \vrites one after another. During the timc of
the checkpoint, the Ho~~sekecpcr often becomes
active due to cstra idle time created by the clieckpoint.
The Ho~~sckeeper is self-pacing; it docs not S \ \ ~ J I I I ~ the
storage systcm \\lit11 writes.

Commit Processing

Thc SQL Server uses the group commit algorithm to
improve tl~roughput."'~ The group commit algorithm
collects the log records of multiple transactions and
\\!rites them to thc disk in one I/O. This allo\vs higher
transaction througliput due to the a~nor t i z~ t ion of
disk 1 / 0 costs, as \\tell as coniniitting more and more
transactions in each disk \\!rite to the log file. The SQL
Scrvcr does not use a timer, however, t o improve the
g r o ~ ~ p i n g of transactions. Instead, the duration of the
p r ~ \ l i o ~ ~ s log I/O is used to collect transactions to bc
committed in the next batch. Thc sizc o f t h c batch is
determined by the number of transactions that rcach
commit processing during one rotation of the log
disk. This self-tuning algorithm adapts itself to \ ~ n r i o ~ ~ s
speeds of disks. For tlie same transaction processing
systcm, the grouping occurs more often \vith slo\vcr
disks than with hster disks.

Consider, for example, a system performing 1,000
transactions per second. Let LIS assilme the log disk is
ratcd at 7,200 rpm. Each rotarion of the disk takes
8 nlilliseconds. Within this duration, we expect (on

Vol. 8 No 4 1996

the average) 8 transactions to complete, assuming m i -
form arrival rates at commit point. This indicates a nat-
ural grouping of S transactions per log \\lritc. For the
same system, if the log dislc is ratcd at 3,600 rpm, the
same calculation yields 16 transactions per log write.

The group conimit algorithm used by the SQL
Server also talccs advantage of disk arrays by initiating
multiple asyuclironous \\~ritcs to different mcmbcrs of
the dislc array. 'l'hc SQL Scrvcr is also able to j s s ~ ~ c up
to 16 kulobytcs in one write to a single disk. Togetlicr,
the group commit algorithnl, large writes, and the
ability to drive multiple disks in a disk array eliminate
the log bottleneclc k)r high-throughput systems.

Future Work

VWien a VLM systcm tails, tlie large number ofclatn-
base buffers in mcmor!, that are dirty necd to be
reco\~esed. Thercforc, database rccovery time gro\ils
with the size of mcmory in the VLM systcm, at least
for all database systems that irsc log-based recovery.
In addition, since there are a large number of dirty
buffers in memory, the pcrfi)rmance impact of clicck-
point on transactions also increases with memory sizc.
To minimize tlic recovery timc, one may increase the
checkpoint frcclucncv. The checkpoints have a higher
impact, liowe\,cr, anci need to be done infrecluentl!:
TIicsc conflicting requirements need to be acldresscti
for VLIM s!stcms.

When a ~i'itab,isc firs in mcmor!l, the buffer replacc-
1iie1it algorithm can be eliminated. For example, fi)r
a single table that fits in one named cache, this opti-
mization can be done with the LMM. In addition, if
a table is read-only, it is possiblc to minimizc the syn-
chronization necessary to access tlic buffers in mcm-
ory. These optimizations require syntax for the DBA
to speci@ propcrtics (for cxa~nplc, read-only) of tables,
as well as propcrtics of named caches (for cxamplc,
buffer rcplaccment ;~Igorithms).

Tliesc two arcas .is \\lcll as other IMMDK tcchniclucs
\\!ill be cxplorcd by the SQL Serves developers for
incorporation in f i ~ t i ~ r c releases.

Summary

The Sybasc System 1 1 SQL Scrver supports VLM
systems built and sold by DIGITAL. Tlic SQL Server
can complctcly c;~chc parts of a database in memory.
I t can also cache t l ~ c entire database in mcnqory if
tlie datdbasc sizc is smaller than tlie amount of mcnl-
ory. Svstc~n 11 has hcilitics that address issues of
fast access, checkpoint, and recovery ofVLM systems;
these facilities arc tlic Logical ~Mernory Manager, the
VLM clucry optimizer, the Housekeeper, and fi~zzy
checkpoint. The SQL Scrvcr product achic\.ed

SIMP T1'C per fo rmance o f 14,176 t p m C a t
$ 1 9 S / t p m C o n a D I G I T A L VLlCI sys tem. The t cch -
n o l o 8 1 de\ielopcci i n System 11 lays t h e g round \vork
for f ~ ~ r t h e r implemen ta t ion o f MM1)R t cchn iqucs in
the S Q L Scrvcr.

Acknowledgments

PVe gratefi~lly ackliowlcdge t h e various m e m b e r s o f
t h c S Q L Server devcloprncnt team who con t r ibu ted t o
t h e V L M capabilities described in this paper.

References and Notes

1 . For more i~iforniation about a ~ ~ d i t c d tpmC rncnsure-
ments, see the Transaction Processing Pcrfor~iiance
Council home page on the World Wide Web,
littp://\\o\?v.tpc.org.

2. S . - 0 . Hvasslio\rd, 0. Torbjornsen, S. UI-atsbcrg, and
1'. Holagcr, "The ClustRa 'T'clcco~l~ l)at,ibase: Higli
Availability, Higli '~Ihroughput, 21ld Ileal-Time
Response," Pt.ocecdi71gs (q. /he Llst I/o:y Large
Datal?asc Cor2Ji.r-o?ce, Zurich, Switzerland, 1995.

3. H . Jagatiisli, 1). Licu\vcn, R . Rastogi, A. Silbcrscliatz,
and S. Sudharshan, "lhli: A High Pcrtbrrnance &lain
ih4emory Storage l\4anager," Procee~lirzgs qf'tbe 20tIg
Vcty Lotfc Datnh~lse CoiIJC.r-erzcc~ Conjkrence,
Santiago, Chile, 1994.

4. iM. Hc!jrc~is, S. Listg'~rtcn, &I.-A. Nejrnar, and
I<. Widkinson, "Smallbase: A Main-iMcmory 1ILIMS
fol- High-l'crforrnance Applic,itionsn (1995) .

5. H . Garcia-Molina and I<. Salem, "ivlnin Memory
Database Systems: An O\,er\~ic\\/," 1t l : 'E T~zitzsnctions
otz K?lo~cler(qe ctrzd D61lu Er?girreerir~g. \lol. 4 , no. 6
(1992) : 509-516.

6 . D. Ga\vlick and D. IGnkadc, "Var~ctics ofConcurrcnc)~
Control in IMS/VS Fnst Path," D61tctl?nse Erzgirzeer-
ir?g B11llelir7. vol. 8 , no. 2 (1985) : 3-10.

7. E. Levy and A. Silbcrscliatz, Ir~cteir~e~z/ul Recouo:)~
i17 ibI61itz 11/Iet1lo~l D U ~ ~ I I Z I S ~ S)<C~CI I IS (University of

at Austin, l'cclinical Report TR-92-01, January
1992) .

8. 1. Hcnncssy and 1). I'attcrson, (;i,t11p11/cr A~.cI?itec-
t~11.e: A Q~tanlit~ltirc A~I~I-ooLIc'I?, Second Edition (San
Francisco: Morgan I<autinann I'ublisliers, Inc., 1995) .

9. S. Roy and M . Sugiy'~rna, Sblhcisc Pc~~;/or-t?~arzce
Tlc~rirtg (Upper Saddle River, N.J.: Prentice Hall
Professional Technical Reference, 1996) .

10. Sl'bctse S)lstetil 1 1 SQL .Set~'er D O C I I I ~ I C ~ I ~ ~ I ~ ~ ~ I ~ Set
(Eniery\~illc, C,ilif.: Sybase, Inc., 1996) .

11. 1'. Spil-o, A. Joslii, and T. licngdrajan, "Designing
'In Optilnizcd Tr.i~isdctio~l Commit I'rotocol," Di;qital
Tcchr7ical ,/out.~zal. vol. 3, no. 1 (Winter 1991) :
70-78.

Biographies

T.I<. Rengarajan
'r. I<. Rc~~garaj'in has been building high-performance
databasc systems for tlie past 10 years. He no\\3 leads the
Server Pcrfornlancc Enginccring and llcveloprnent (SPeel))
Group in SQI,Ser\,er Engineering at Sybase, Inc. His most
rcccnt focus has been System 11 scalability and self-tuning
algorirli~ns. Prior t o joining Sybasc, hc contributed to tlic
DEC Kdb s!~stc~ii 'it LIIGITAI. in the drcas of buffer man-
agclncnt, high availability, 01.1'1' pcrforniancc on Alp l i~
systems, and multimedia databdses. H c holds b1.S. degrees
in co~ i ip~~ te r -a ided design and computer science from tlie
University of ICentucky and rhc Uni\,crsity of Wisconsin,
respectively.

Max\vell Berenson
Mas Bercnson is a s taf fsofnva~.~ cnginccr in the Ser\ ,e~.
Pcrformancc Enginccring and De\~cloprncnt Group in SQI,
Server E~igincering at Syb'ise, Inc. L3uring his fbur !tears ~t
Sybase, i\/lax lids de\,clopcd tlic Logical iMernory i\/lanager
for System 11 and has ~ n a d c many buffcr manager modifi-
cations to improve S M P scalabilit!~. Prior t o joining Sybasc,
Mnx worked at DIGITAL, where he dc\~clopcd 3 relational
ddtabasc engine.

Ganesan Gopal
Gancsan Gop'il is a senior member of the Server I'crforni-
alicc Engineering and l>c\,cloprncnt Group 'it S!ib,~sc, Inc.
H e \\(as a member oftlic [cam t h ~ t implcmcntcd the House-
keeper in System 11. In 'lddition, lie has \vorkcd on a num-
ber of projects that II~I\TC c ~ i h ~ ~ ~ i c c d tlic pcrfor~n.i~ice and
sc,lling of the Sybasc SQL Server. At prcscnt, he is wol-king
o n a pcrforniancc fc,lrurc for a11 upcoming release. H e
holds bachelor degrccs in ad\,'inccd physics and in elec-
tronics and commurlication engineering k o m the Indian
Institute of Science, Ba~~galorc , 111di'i.

111g1rA Tcchnic~l Journal Vol. 8 No. 4 1996 87

Bruce McCready
B ~ L I C C McCrcady is an SQL Scr\,cr performance cngincer
in the Scrvcr Pcrfornlancc Engiiiccriiig and De\,elopment
Group at Sybase, Inc. Iirucc rccci\.cd a K.S. in computer
s c i e~~ce kom the University of <:cllili)rnia a t Bcrkclcy in 1989.

Sapan Panigrahi
A scnior performance engiliccr, Sapan Panigrah works in
rlic Scrvcr Pcrformancc Engineering and Development
Group ; ~ t Sybasc, Inc. H c \\,,is responsible for TPC bencli-
marks and perforniancc analysis li)r the S!rbnsc SQL Scr\,cr.

Sr ikant Subramaniam
A member of the Server Pcrli)rmance Engineering and
l)c\lcloprnent Group at Syhasc, Inc., Srikant Subraninniam
\\,as invol\led in the design and implementation of the VLM
support in the Sybase SQI, Scrvcr. H e was a member of
the team that iinplcmcntcd the Logical R/Ieniory Manager
in System 11. I n ;iddition, lie Iias worlied o n projects ttint
Iia\lc cnhanccd the perfol~iiiancc a ~ i d scaling o f t h c Sybnse
SQL Scrver. At present, lie is working on performance
optimizations for an upcoming rclcasc. H e holds an M.S.
in comlxiter science fi-on1 the University ofSaskatchc\\~an,
C:anaiia. His specialn arcn was thc performance o f sliarcd-
~~~~~~~~y ~ i i~~l t iproccssor  systems. 

Marc  B. Sugiyania 
Marc Sugiyarna is a statTsofn\~nrc cnginccr in the SQL 
Scr\lcr Pcrfor~nancc Enginccri~ig and 1)cvclopment C ~ L I F )  
; ~ t  Spbasc, Inc.  H e  \\,.IS the tcchoical lcad for the original 
port ofSybase SQL Servcr to  the 1)IC;ITIL Alpha OSF/I 
system. H e  is coauthor of Syh~~.so l'c~t:/i)rr~~n~~ce T L I I Z I ~ I ~ .  
pi~blislicd by Prentice Hall, 1996. 

88 1)igiral Technical Journal Vol. 8 No. 4 1996 



I 
David P. Hunter 
Eric B. Betts 

Measured Effects of 
Adding Byte and Word 
Instructions to the Alpha 
Arch i tect u re 

The performance of an application can be 
expressed as the product of three variables: 
(I) the number of instructions executed, (2) the 
average number of machine cycles required to 
execute a single instruction, and (3) the cycle 
time of the machine. The recent decision to 
add byte and word manipulation instructions 
to the DIGITAL Alpha Architecture has an effect 
upon the first of these variables. The perfor- 
mance of a commercial database running on 
the Windows NT operating system has been 
analyzed to determine the effect of the addition 
of the new byte and word instructions. Static 
and dynamic analysis of the new instructions' 
effect on instruction counts, function calls, and 
instruction distribution have been conducted. 
Test measurements indicate an increase in per- 
formance of 5 percent and a decrease of 4 to 
7 percent in instructions executed. The use of 
prototype Alpha 21 164 microprocessor-based 
hardware and instruction tracing tools showed 
that these two measurements are due to the 
use of the Alpha Architecture's new instructions 
within the application. 

The Alpha Architecture and its initial implementations 
were limited in their ability to manipulate data values 
at the byte and word granularity. Instead of allowing 
single instructions to manipulate byte and word val- 
ues, tlie original Alplla Architecture rcquired as nlall)l 
as sixteen instructions. Recently, DIGITAL extended 
thc Alpha Architecti~re t o  manipulate byte and word 
data values with a single instruction. The second gen- 
eration of the Alpha 2 1164 microprocessor, operating 
at  400 megahertz (MHz) or  greater, is tlie first imple- 
mentation to include the new instructions. 

This paper presents the results of an analysis of 
the effccts that the new instructions in the Alpha 
Architecture have on  the performance, code size, and 
dynamic instruction distribution ofa  consistent esecu- 
tion path through a comnlercial database. To exercise 
tlie database, \ye modified the Transaction Processing 
Performance Council's (TPC) obsolcte Tl'C-I3 bench- 
mark. Although it is n o  longer a valid Tl'C bench- 
mark, the TI'C-B benchmark, along with other TPC 
benchmarl<s, has been widely i~sed to study database 
performance.'-j 

We began our project by rebuilding Microsofi 
Corporation's SQL Server product to use the new 
Alpha instructions. We proceeded to conduct a static 
code analysis of the resulting images and dynamic link 
libraries (DLLs), l:he focus of the st i~dy was to invcsti- 
gate the impact that thc new instructions had up011 a 
large application and not their irnpact upon the oper- 
ating system. To this end, we did not  rebuild the 
Windows NT operating system to use the new byte 
and word instructions. 

We measured tlie dynamic effects by gathering 
instruction and fiunction traces with several profiling 
and image analysis tools. The results indicate that 
the Microsofi SQL Server product bellefits fro111 the 
additional byte and word instr~~ctions to the Alpha 
microprocessor. Oiir nleasiIrenlents of the images and 
DLLs show a decrease in code size, ranging from neg- 
ligible to almost 9 percent. For the cached TPC-B 
transactions, the number of  instructions esecuted 
per transaction decreased from 1 11,255 to  106,521 
(a 4 percent reduction). For tlie scaled TPC-B trans- 
actions, the number of  instructions executed per 

Dig~tal Technical J o ~ ~ r n n l  Vol. 8 No. 4 1996 89 



transaction ciccrcased from 115,895 to  107,854 
( a  7 percent r c ~ i ~ ~ c t i o ~ l ) .  

Tlic rest of this papcr is divided as follo\\~s: \\,c begin 
\\lit11 a brief o \~c r \~ ic \ \~  of the Alplia Architccturc n~lci its 
introduction of tlic new b l ~ c  and \\.ord manip~~la t io~i  
i~istructions. Next, \\,c cicscribe the hardnrare, sob\-arc, 
and tools i~sed in our cspcriments. Lastly, \vc pro\*idc 
an analysis of tlie instruction distribution and coiunt. 

and 12-entry ITB. Tlic chip contains tlircc on-chip 
cachcs. Tlic Ic\~cl one ( L l )  cachcs inclucic an 8-KB, 
ciircct-~nappcd I-caclic and an 8-ICE, du;il-ported, 
clircct-nxlppcd, \\,rite-through D-cache. A tliirci 
on-chip c~c l i c  is a 9 6 - I a ,  three-\\nay set-associnti\,c, 
\\.rite. hack ~iiixed instruction and data cachc. The 
floating-point pipeline was reduced to nine stages, ancl 
tlic <:I'U has t\\.o integer units and turo tloating-point 
cscci~tion 1111its.' 

Alpha Architecture 
The Exclusion of Byte a n d  Word Instructions 

The Alplin Architccturc is a 64-bit, loacl and store, 
rcciuccd instr~~ction sct computcr (RISC) ? ~c . - I  Iltccturc ' 

that was designed \\lit11 high performance and longcv- 
ity in mind. Its major areas of concentration arc 
tlic processor clock spccd, the multiple instruction 
issue, and multiple proccssor implementations. For 11 
detailed account of tlic Alplia Architecture, its major 
dcsign choices, and o\,crall benefits, see the paper 
by 11. Sitcs." l'hc original arcliitect~~re did not dctinc 
tlic capabilit\r to manipulate b!,tc- and \$lord-lc\'cl 
data \\*it11 a singlc instruction. As a result, the first 
three implcmcntatio~is of the Alpha A-chitecturc, tlic 
2 1064, the 2 1064A, and the 2 1 164  microproccssors, 
\vcrc forced to  L I S ~  as many as sistccn additional 
instructions to  accomplish this task. The Alpl~a 
Arcliitcct~rrc \\!as recently cstcnded to include six new 
i~.~structions for manipulating data at byte and \\lord 
boundaries. The sccond implenientation o f  the 21 164 
L ~ ~ i i i l y  of  microproccssors i~lcludes these extensions. 

The f rst i~iiplc~iicntatio~i of the Alpha Arclii- 
tccturc, the 21064 microprocessor, was intro- 
duced in Novc~iibcr 1992. It  was fabricated in a 
0.75-micromctcr (prn) complementary metal-oxide 
se~niconductor ((;IMOS) process and operatcci at 
s p x d s  up to 200 !MHz. It had both an 8-kilobyte 
( I tB) ,  direct-mapped, \\!rite-through, 32-byte line 
instr~~ction cachc (I-cache) and data cache (D-cache). 
Tlic 21064 rnicroproccssor nlas able to  issuc hvo 
instructions per clock cycle to a 7-stage intcgcr 
pipcline or  a 10-stage floating-point pipcli~ie.' The 
sccond implcmcntatio~i of the 21064 generation \\!as 
the Alpha 21064A niicroprocessor, introduced i l l  

October 1993. It was manufactured in a 0 .5 -pm 
CMOS p~)ccss  m ~ i  operated at spceds of 233 MHz to 
275 MHz. This implementation increased the size of 
tlic I-caclic and 1)-cache to  16 1U3. Various other tiif- 
fcrcnccs exist between the two implementations and 
arc outlinccl in tlie product data sheet." 

The Alpha 2 1  164 microprocessor was thc second- 
gcncration implc~ncntation of the Alpha Architecture 
and was introduced in October 1994. I t  was rnanu- 
fac t~~rcd i l l  a 0 . 5 - p ~ i i  C:NIC)S technology and has tlic 
abiliy to issuc f o ~ ~ r  instructions per clock c),clc. It 
contains a 64-cntrp data. translation buffer (l>TB) and 
a 48-entry instruction translation buffer (ITB) co111- 
narcd to the 2 1064A microprocessor's 32-entry DTB 

The original Alpha Architect~~rc intended that opcra- 
tions in\/ol\lcci in loading or storing aligncci bytes and 
\\lords would involve sequences as given in Tables 1 
and 2."' As many as 1 6  additional instructions ure 
rccli~ircd to accomplish these operations o n  unaligned 
darn. Tlicsc same operations in the MIPS Arcliitccturc 
invol\,c only a single instruction: I,R, I.W, SR, and 
SW." Tlic MIl'S Architect~~rc also incl~rdcs singlc 
instructions to d o  the same for ~~nal igncd J a t ~ .  (;i\vn 
n situation in \\~hich all other factors arc consistent, this 
\vould appcw to give the MIPS Architecture an  ad\,an- 
tngc in its ability to  reduce the nunbcr  of instructions 
cxccutcci per \\lorkload. 

Sitcs has prcscntcd several key Alpha Architccturc 
dcsign decisions.' Among them is the decision not to 
includc byte load and store instructions. I k y  dcsign 
nssumptions related to the esclusio~i of tlicsc fcaturcs 
inclutic thc follo\\ling: 

The majority of  operations wo~i ld  involve naturally 
aligned data elements. 

Table 1 
Loading Aligned Bytes and Words on Alpha 

Load and Sign Extend a Byte 

LDL R1, D.lw(Rx) 
EXTBL R1, #D.mod, R 1  

Load and Zero Extend a Byte 

LDL R1, D.lw(Rx) 
SLL R 1 ,  #56-8*D.m0d, R 1  
SRA R 1 ,  #56, R 1  

Load and Sign Extend a Word 

LDL R1, D.lw(Rx) 
EXTWL R1, #D.mod, R1 

Load and Zero Extend a Word 

LDL R1, D.lw(Rx) 
SLL R1, #48-8*D.mod, R 1  

SRA R1, #48, R1 

90 1)ipit;ll Tc~hnic.i l  Journal 



Table 2 
Storing Aligned Bytes and Words on Alpha 

Store a Byte 

LDL R1, D.lw(Rx) 
INSBL R5,#D.mod, R3 
MSKBL R1,  #D.mod, R1 
BIS R3, R1, R1 
STL R1, D.lw(Rx) 

Store a Word 

LDL R 1 ,  D.lw(Rx) 
INSWL R5,#D.mod, R3 
MSKWL R 1 ,  #D.mod, R 1  
BIS R3, R1, R1 
STL R1, D.lw(Rx) 

In the best possible scheme for multiple instruction 
issue, single bpte and write instructions to memory 
are not allowed. 

The addition of bytc and write i~istructions would 
require an additional byte shiher in the load and 
store path. 

These factors indicated that tlie exclusion of specific 
instructions to ~nanipulatc bytcs and words would be 
advantageous to  tlie performance of  the Alpha 
Architecture. 

The decision not to include byte and word manipu- 
lation instructions is not without precedents. The  
original MIPS Architecture developed at Stanford 
University did not have bytc instructions." Hennessy 
et al. have disc~isscd a series of hardware and software 
trade-offs for pcrhrma~ice  with respect to the MIPS 
processor.'%~ong those trade-offs are reasons for 
not including the ability to d o  byte addressing opera- 
tions. Hennessy et al, argue that the additional cost 
of including the mechanisms to d o  byte addressing 
was not justified. Their studies showed that word ref- 
erences occur more frequently in applications than d o  
byte references. Hennessy et al. conclude that to make 
a word-addressed nxichine feasible, special instruc- 
tions are required for inserting and extracting bytes. 
These instructions arc available in both the MIPS and 
the Alpha Architectures. 

Reversing t h e  Byte and Word Instructions Decision 

During the dc\~clop~iient of tlie Alpha Architecture, 
DIGITAL supported two operating systems, OpenVMS 
and UL,TIUS. The developers had as a goal the ability 
to maintain both customer bases and to  facilitate their 
transitions to tlie new Alpha microprocessor-based 
machines. In 1991, Microsoft and DIGITAL began 
work on  porting Microsoft's new operating system, 

Windows NT, to the Alpha platform. The Windows 
NT operating system had strong links to the Intel st36 
and the MIPS Architectures, both of which included 
instructions for single byte and word manipulation." 
This strong connection influenced the Microsofi devel- 
opers and independent s o h a r e  vendors (ISVs) to  
favor those architectures ovcr the Alpha design. 

Another factor contributed to this issue: the major- 
ity of code bcing run on the new operating system 
came from the Microsoh Windosvs and MS-DOS en\+ 
ronments. In  designing s o h ~ a r c  applications for these 
two en\~ironments, the n~anipulation of data at the 
byte and word boundary is prevalent. With the Alpha 
n~icroprocessor's inability to accomplish this manipil- 
lation in a single instruction, it suffered an average of 
3: l  and 4:l instructions per workload on load and 
store operations, respectively, compared to those 
architectures with single instructions for byte and 
\\lord manipulation. 

To assist in rilnning the ISV applications ~ ~ n d e r  the 
Windows NT operating system, a new tec.hnolog\~ was 
needed that would allo\v 16-bit applications to run as 
if they cvere on  the older operating system. Microsoft 
developed the Virtual DOS Machine (Vl>M) environ- 
ment for the Intel Architecture and the Windows- 
011-Windows (WOW) environment to allocv 16-bit 
Windows applications to work. For non-Intel architec- 
turcs, Insignia developed a VDM envjronment that 
emulated an Intel 80286 microprocessor-based com- 
puter. Upon examining this emulator more closely, 
DIGITAL found opportunities for improving perfor- 
mance if the Alpha Architecture had single bpte and 
word instructions. 

Rased upon this information and other factors, a 
corporate task force was commissioned in March 1994 
to investigate improving the general performance of 
Windows NT running on Alpha machines. The hr ther  
DIGITAL studied the issues, the more convincing the 
argument became to extend tlie Alpha Architecture to 
include single byte and word instructions. 

This reversal in position on  byte and word instruc- 
tions was also seen in the evolution of  the MIPS 
Architecture. In the original MIPS Architecture devel- 
oped at Stanford University, there were no load o r  
store byte i~istructions. '~ However, for the first com- 
mercially produced chip of the lMIPS Architecture, the 
MIPS R2000 RISC processor, developers added 
instructions for the loading and storing of bytes." One 
reason for this choice stemmed from the challenges 
posed by the UNIX operating system. Many implicit 
byte assumptions inside the UNIS lcernel caused per- 
formance problems. Since the operating system being 
implemented was UNIX, it made sense to  add the bpte 
instructions to the MIPS Architecture.'" 

In  June 1994, one of  the coarchitects of  the Alpha 
Architecture, Richard Sites, submitted an Engineering 

Digiral Technical Journal \hl. 8 No. 4 1996 91 





per e~ilulated instruction. When it is disabled or not 
present, the action taken depends upon the hardware 
support for tlie new instructions. If disabled in hard- 
ware, thc instruction is treated as an illegal instruction; 
if enabled, it is executed like any other instruction. 

Microsoft SQL Server 

To observe the effects of thc new instructions, we 
chose the Microsoh SQL Server, a relational database 
management system (LWBMS) for the Windows NT 
operating system. Microsofi SQL Server \\!as engi- 
neered to bc a scalable, multiplattbrm, multithreaded 
RDBMS, supporting symmetric multiprocessing 
(SMP) systems. I t  nras designed specifically for distrib- 
uted client-server computing, data warehousing, and 
database applications on the Internet. 

In an earlier investigation, Sites and Perl present a 
profile of the mcrosoft SQL Server running the TPC-B 
ben~hmark .~  They identi@ the executables and DLLs 
that are involved in running the benchmark and break 
down the percentage of time that each contributes to 
the benchmark. Their results, summarized in Figure 1, 
show that only a few SQL Server executables and 
DLLs were heavilp exercised during the benchmark. 
M e r  v e r i ~ i n g  these results with the SQL Server devel- 
opment group at Microsofi, we decided to  rebuild 
only the images and DLLs identified in Figure 1 to use 
the new byte and word instri~ctions. 

Table 5 lists thc cxccutables and DLLs that we niodi- 
fied and their correlation to tlie ones identified by Sites 
and Perl. The variations exist because of  lame changes 
of DLLs or the use of a different network protocol. We 
changed nenvork protocols for performance reasons. 

Sites and Perl used an early \u-sio~l of the Microsoft 
SQL Server version 6.0, in which the fastest network 
transport available at that time was Named Pipes. In 
the final release of SQL Server version 6.0 and sub- 
sequent versions of the product, thc Transmission 
Control Protocol/Internet Protocol (TCP/IP) 
replaced Named Pipes in this category. Based upon 
this, we rebiiilt the libraries associated with TCP/11' 
instead of those associated with Named Pipes. Other 
networking libraries, such as those for DECnet and 
Internehvork Packet Exchange/Sequenced Packet 
Exchange (IPX/SPX), were not rebuilt. 

Figure 1 
Images/DLL\ Invol\,ed in a TPC-B Trailsaction for Microsofi SQL Server Based on Sites and l'erl's Pui3l!rsis 

Table 5 
Images and DLLs Modified for the Microsoft SQL 
Server 

Digital Technical lourd  

Sites 
DLLIEXE 

sqlserver.exe 

ntwdblib.dll 

opends50.dll 

dbnmpntw.dll 

ssnmpntw.dll 

NIA 

NIA 

Vol. 8 No. 4 1996 93 

V6.0 Function 
DLLIEXE 

sqlservr.exe SQL Server Main 
Executable 

ntwdblib.dll Network 
Communications 
Library 

opends60.dll Open Data Services 
Networking Library 

N/A V4.21A Client Side 
Named Pipes Library 

N/A V4.21A Named Pipes 
Library 

dbmssocn.dll V6.5 Client Side 
TCPIIP Library 

ssmsso60.dll V6.5 Netlibs TCPllP 
Library 



Compiling Microsoft SQL Server to 
Use the New Instructions 

Our  goal nras to nicasure o~i ly  the effects introduced 
by using the new instructions and not effccts intro- 
duced by diffcre~it \lersions or  generations of compil- 
ers. Therefore, \ile ~iccdcd to tind a way to use the same 
version of a compiler that diffcrcd only in its use or  
nonuse of the necv instructions. To d o  tliis, \\lc used 
a conipiler option available o n  the Microsok Visual 
C++ conipiler. Tliis switch, available o n  all 1USC plat- 
forms that support Visual C++, allo\~a the gcncmtion 
of opti~nizcd code for a spccifc proccssor within a 
proccssor family while maintaining binary conipatibil- 
ity with all processors in the processor family. Processor 
optimizations are accomplislicd by a combination of 
specific code-pattern selection and codc scl~cduling. 
The default action of the conlpiler is to LISC a blended 
model, resulting in codc that csccutcs ccl~~ally \\,ell 
across all processors within a platkxrn Cimily. 

Using this compiler option, wc built two versions 
of the aforenlentioned images \\jitliin the SQI, 
Server application, varying only their use of  the codc- 
generation switch. The first version, refcrrcd to  as the 
Original build, \\!as built \vitho~lt spcci@ing a11 argil- 
ment for the code-generation switch. The sccond one, 
referred to as Byte/VVord, set the s\iritcl~ to generate 
code patterns  sing the new byte and ~ i ~ o r d  nlanipula- 
tion instructions. All other rccl~lired files came from rlic 
SQL Server \.ersion 6.5 Beta I1 distribution C1)-ROM. 

The Benchmark 
The be~~chmark  we chose was derived fio~rl the TPC-1% 
benchmark. As prc\riously mentioned, the TI'<:-B 
bcnchmark is now obsolete; howe\rer, it is still uscfi~l 
for stressing a database and its interaction with a com- 
puter system. The TPC-B benchmark is relatively 
easy to set u p  and scales readily. It has been used by 
both database vendors and computer ~iianufacturcrs 
to  measure the performance of either the computer 
systeni or  the actual database. We did  lot inclucic all 
the required metrics of tlic TI'<:-B bclich~llark; tlicre- 
fore, it is not in full co~npliance \ilith p~~blislicd g ~ ~ i d e -  
lines of the TPC. We refer to it henceforth sinlply as 
thc application benchmarl<. 

The application benchmark is characterized by sig- 
nificant disk 1 /0  activity, moderate systc1n and applica- 
tion execution t in~e,  and transaction integrity. The 
application benchmark exercises and measures the cffi- 
ciency of the processor, 1 /0  architecture, and RDBMS. 
The results lncasure perforn~ancc by indicating how 
many sinlulated banking transactions can be corn- 
pleted per second. This is defined as transactions per 
second (tps) and is the total n ~ ~ ~ i i b c r  of committed 
transactions that were started and co~npletcd during 
the measurement interval. 

The application benchmark can be run in two dif- 
ferent modes: cached and scaled. Tlic cachcd, or  in- 
menlory n~odc ,  is ~lsed to estimate the svste~n's 
rnaxini~~m perfi)r~nancc in this benchmark en\ '  r ~ r o ~ i -  
mcnt. Tliis is accornplishecl by building a small database 
tliat resides complctcly in tlic databasc cache, which in 
turn tits within the system's physical random-access 
mcmory (RAM). Since the entire databasc resides in 
mcmory, 'dl I/O acti\~ity is eliminated \\it11 the cscep- 
tion of log \\!rites. Consequently, the bcnchmark only 
pertbrms one disk 1 / 0  for cach transaction, once the 
c~ltirc database is rcad otYtlic disk and into the database 
caclic. The result is n representation of the r~iaximum 
number of tps tlint the system is capable of sustaining. 

The scalcd mode is run l ~ s i ~ i g  a bigger database cvith 
a largcr amount of ciisk I/O acti\,ity. The increase in 
clisk I/O is a result of the need to rcad ;wd write data to 
locations tliat arc not \vithin tlic database cache. These 
addition31 rcads and \\,rites acid cstra clisk I/Os. The 
result is nonnall!l characterized as having to d o  one 
read ancl one \\?rite to the database and 3 single write to 
the transaction log for cach transaction. T l ~ e  combina- 
tion of a largcr database and additional 1 /0  activity 
decreases the tps wluc from the cached \.crsion. Rased 
upon our prc \ , io~~s  c ~ p c r i e ~ ~ c c  running this bcnchmark, 
the scalcci bc11cl11na1-k can be cspcctcd to reacli approx- 
imately 80 percent of the cachcd pcrfi)rmance. 

For the scalcd tests, \\re built a datab;ise sizcd to 
accommodate 50 tps. Tliis \\,as less than SO percent 
of the m a s i m ~ ~ m  tps produced by tlie cached results. 
We chose this size because \\re \\!ere concentrating 
o n  isolating n single scalcd tunsaction under a ~nodcr-  
ate load and not under the maximum scaled perfor- 
mance possible. 

Image Tracing and Analysis Tools 
Collecting only static nicas~~remcnts of tlic executables 
and l>I..Ls affcctcd was insufticicnt to determine tlie 
applicability of the new instructions. We collected the 
actual instruction traccs of SQL Server while it exc- 
c~l ted  thc application bcncIi~narl<. Furtliermorc, \llc 
decided tliat thc ~bil i ty to trace the actual instri~ctions 
being cscci~tcd \\pas more desirable than dc\~cloping or  
cstcnding a simulator. To obtain tlie traccs, we needed 
n tool that \ \ f o ~ ~ l d  allow us to 

Collect both system- and user-modc codc. 

C:ollecr f~nc t ion  tr'iccs, \i~liicli \\could allow us to 
align the starting 31id stopping points of different 
benchmark runs. 

Work w i t l i o ~ ~ t  niodi%ing cithcr the application or 
the operating system. 

In  tlic past, tlic only tool that would provide 
instruction traccs ~~nc lc r  tlic Windoiia NT optrating 
system WAS the debugger running in single-step mode. 

Digital Technical Journal Vol. 8 No. 4 I996 



Obtaining traces through either the ntsd o r  tlie 
windbg debugger is quite limited due to the following 
problems: 

The tracing rate is only about 500 instructions per 
second. This is far too slo\v to tracc an)~tliing other 
than isolated pieces of code. 

Thc tracc fiils across spstcln calls. 

The trace loops infinitely in critical section code. 

Register contents arc not easily displayed for each 
instruction. 

Real-time analysis of instruction usage and cache 
niisses are not possible. 

Instruction traces can also be obtained using the 
PatchWrks trace analysis tool.' Although this tool 
operates with near real-time performance and can 
trace instructions execiiting in I<ernel mode, it has tlie 
following limitations: 

I t  operates only on  a DIGITAL Alpha AXP personal 
computer. 

I t  requires an extra 4 0  MB of  memory. 

All images to be traced must be patched, thus 
slightly distorting text addresses and function sizes. 

Successivc runs of applicatio~i code arc not repeat- 
able duc to unpredict'~blc kcrliel interrupt bchavior 
(the traces are too accurate). 

The solution was Ntstep, a tool that can trace user- 
mode instruction execution of  any image in the 
Windows NT/Alpha environment through an innov- 
ative combination of  breakpointing and "Alpha-on- 
Alpha" emulation. I t  has the ability to trace a 
program's execution at ratcs approaching a million 
instructions per second. Ntstep can trace individual 
instructions, loads, stores, f t~nct io~i  calls, I-cache and 
D-cache misses, unaligned data acccsscs, and anything 
else that can be observed when given access to each 
instruction as it is being executed. I t  produces sum- 
mary rcports of the i~~struction distribution, cache linc 
usage, page usage (working set), and cache simulation 
statistics for a variety ofAlpha systems. 

Ntstep acts like a debugger that can exccute single- 
step instructions except that it executes instructions 
using emulation instead of  single-step breakpoints 
whenevcr possible. In practicc, emulation accounts for 
the majority of  instructions executed within Ntstep. 
Sincc a single-step execution of an instruction with 
breakpoints takes approxirnatcly 2 ~nilliseconds and 
elnulation of a11 Alpha instruction requires only 1 or 2 
microseconds, Ntstep can trace approximately 1,000 
times faster than a debugger. Unlike most emulators, 
the applicatio~i executes normally in its own address 
space and environment. 

Results 

We collected data on three different experiments. I n  
the first investigation, we loolted at the relative perfor- 
mance of the three different versions of the Microsofi 
SQL Server o ~ ~ t l i n e d  in Table 4. \Ye conipared the 
three variations using the cached version of tlie appli- 
cation benchmark. 

I11 tlie secolid experiment, we observed how tlie 
new instructions affect the instruction distribution in 
the static images and DLLs that we rebuilt. We com- 
pared the Byte/Word versions to the Original \lersio~is 
of  the images and DL,Ls. We also attenlpted to link tlie 
differences in instruction counts to tlie use of the new 
instri~ctions. 

Lastly, we in\estigated the variation benveen the 
Original and tlie Uyte/\'Vord versions with respect to 
instruction distribution on  the scaled version of the 
benchmark. This colnparison was based upon the code 
path executed by a single transaction. 

Cached Performance 
In the first experiments, we compared the relative per- 
formance inipact of  using the new instri~ctions. We 
chose to  measure performance of only the cached ver- 
sion of thc application benchmark because the 1 / 0  
subsystem available on the prototype of the 
Alphastation 500 was not adequate for a full-scaled 
measurement. We ensured that the database was hlly 
cached by using a ramp-up period of 6 0  seconds and a 
ramp-down period of  3 0  seconds. This was verified as 
steady state by observing that the SQL Server buffer 
cache hit ratio remained at o r  above 9 5  percent. The 
measurement period for the benchmark was 6 0  sec- 
onds. We ran the benchmark several times and took 
the average tps for each of the three variations outlined 
in Table 4 .  

The results of the three schemes are as follows: 444 
tps for the Original version, 460 tps for tlic Ryte/ 
Word version, and 116 tps for the Emulation ver- 
sion. The new instructions contributed a 3.5 percent 
gain in performance. The impact of emulating the 
instructions is a loss of 73.9 percent of  the potential 
performance. 

Static Instruction Counts 
To analyze thc mixture of instructions i l l  the images 
and DLLs, ive disasscniblcd each image and 13LL in 
the Original and Byte/Word versions. We then looked 
at only those instructions that exhibited a difference 
between the t\vo versions within the images or  DL.Is. 
The variations in instruction counts ofthese are shown 
in Table 6. 

To examine the images more closely, we disassem- 
bled each image and DLL and collected counts ofcode 

Digital T&d Journal Vol. 8 N o .  4 1996 



Ida 
ldah 
Idl 

Idq 
Idq-l 
Idq-u 
st1 
stb 

Table 6 
lnstruction Deltas (Normal Minus ByteIWord) for the SQL Server Images and DLLs 

stw 

stq 
s1q-c 
beq 

Instrutlion dbmrsocn.dll ntwdblib.dll opendr60.dll rqlse~r.exe rrmsso60.dll 

bge 
bgt 
blbc 
blbs 
blt 
bne 
br 
bsr 

Instruction dbmrrocn.dll ntwdblib.dll o~ends60.dll ralservr.exe srmsso60.dll 

ret 

cmpeq 
crnplt 
crnple 
cmpult 
crnpule 
and 
bic 
bis 
ornot 

xor 
511 

sra 
srl 
cmpbge 
mskbl 
rnskwl 
zapnot 
addl 
addq 
s4addl 
crnovge 
crnovne 
crnovlt 
cmovlbc 
callsys 
extqh 
ldwu 
ldbu 
mull 
sub1 
subq 
insll 
inswl 
call-pal 
extlh 
insbl 
extll 
extbl 
extwl 

size, tlie nunibcr of fi~nctions, the number and type of 
nc\v byte and \vord instructions, and lastly, nop and 
11-apb instr~~ctions.  The results are presented in Tablcs 
7 through 10. 

We expected that the instructions used to ~iianipulatc 
bytes and \\lords in the original Alpha Arcliitccturc 
(Tables 1 and 2 )  ~\~oulcl decrease proportionally to the 
usage of the nc\v instructions. Thcse assumptions hcld 
true fix all the images ancl DLLs that llsccl the new 
instr~~ctions. For example, in the original Alpha 
Architecture, the illstructions MSKBL and MSKWI, arc 
used to store a byre and ivord, respccti\,cly. I n  tlic 
sqlser\~r.exc imagc, tlicsc two instructions sho\\.cti a 
dccrcase of 3,647 and 1,604 instructions, rcspccti\,clv. 
Compare this \\rich the corresponding addition of 3,969 
STB and 2,798 STW instructions in the s,lmc inl.~gc. 
Looking furtiicr into the sqlservr.cse imagc, wc also saw 
t11at 10,231 L1>13U instl-uctions \vcre ~~scci  and tlic 
usage ofthc EXTB1,instruction was reduced hy 10,656. 
Although these numbers d o  not correlate on a one-tbr- 
one basis, \vc bclic\c this is clue to other ~~s ' igc  of  thcsc 
instructions. Other usagc might includc the compiler 
S C ~ C I I I C  for introducing the I I ~ L \ ~  instructions in plilccs 
\\~licre it uscd an I .l)L, or nn Ll3Q in tlie Original image. 

O f  the rebuilt iniages and Dl,J.s, sqlscr\~r.cse alia 
opc11ds60.dll sho\\cd the most \,ariations, \\,it11 the fie\\, 
instructions making 3.73 percent ;lnd 3.9 percent 
of these tiles. The most frcqlrcntly occul-ring nc\v 
instruction was Idbu, follo\vcd b!l Id\\,~r. Thc least- 
used instructions \ \we  sextb and scsnv. The size of 
the imagcs \\,as rcduccd in thrcc out of  tivc images. 
The image size r cd~~c t ion  ranged from negligible to 
just over 4 pcrccnt. In all cascs, the size of the code 
section \\,as ~.cduccd and rangcci from insig~iificant 
to  approximately 8.5 percent. There \\,as no change in 
the number of fi~nctions in any of the tiles. 

Dynamic Instruction Counts 
We gathered dntn f r o n ~  the application benchmark 
running in both cached and scaled ~nocics. M7c ran at 
least ouc iteration o f  the benchmark tcst prior to gath- 
ering trace data to  allo\\! both the Winclo\vs NT oper- 
ating systcm ancl tlic Microsofi SQl. Scr\cr ciat~basc to 
reach a stcady stntc o f o p c r a t i o ~ ~  on  the system u~lder  
tcst (SL"I'). Stci~ci!~ st.ttc \\,as acliic\,cci \\,hen the SQL 
Server caclic-hit ratio reached 9 5  percent o r  greater, 
the n~unbcr  of transactio~is per sccond \vas constant, 
2nd the <:1'U utilization \\pas as close to 100 pcrccnt JS 
possible. The traces were gathered over a sufficient 



Table 7 
ByteIWord Images and DLLs 

ImageIDLL Total Total Total Number Total 
File Text Code of Byte1 % Byte1 LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total 
Bytes Bytes Bytes Functions Word Word Count 9b Count % Count % Count % Count % Count 9b NOPs TRAPB 

sqlservrexe 8053624 2981148 2884776 3364 
dbrnssocn.dll 13824 5884 5520 13 
ntwdblib.dll 318464 246316 231688 429 
opends60.dll 212992 104204 97240 243 
ssrnsso60.dll 70760 9884 9128 19 

Table 8 
Original Build of  Images and DLLs 

ImageIDLL Total Total Total Number Total 
File Text Code of Byte1 %Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total 
Bytes Bytes Bytes Fundions Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB 

sqlservrexe 8337248 3264108 3153480 3364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6207 2252 
dbmssocn.dll 13824 6012 5656 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 
ntwdblib.dl1 318464 246620 231904 429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 770 10 
openddO.dll 222720 114012 105536 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 405 128 
ssmsso60.dll 71284 10300 9424 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 

Table 9 
Numerical Differences of Original Minus ByteIWord Images and DLLs 

ImagelDLL Total Total Total Number Total 
File Text Code of Byte1 %Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total 
Bytes Bytes Bytes Fundlons Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB 

lsqlservrexe -283624 -282960 -268704 0 t26869 * 4 +I0231 -38 +6320 t 2 4  +3969 +15 +2798 ~ 1 0  +I39 +1 +3412 +13 2 7 8  -33 
dbrnssocn dl1 0 -128 -136 0 -18 +1 t 9  +SO -4  t 2 2  .-3 t 1 7  -2 +ll 0 0 0 0 +5 0 
ntwdbl~b dl1 0 -304 -216 0 +9 0 + 3  -33 0 0 - 1  +ll -5 A-56 0 0 0 0 3 0 
opcnds60dll 9 7 2 8  -9808 -8296 0 +948 +4 +464 +49 +I93 +20 2216 +23 +59  16 -9 - 1  +7 +1 1 4  0 
ssmsso60.dll -524 --416 -296 0 +67 I 3  +18 +27 -35 +52 +7 +10 +3 +4 - 4  .-6 + 7 0 0 0 

Table 10 
Percentage Variation of Original Minus ByteIWord Images and DLLs 

ImagelDLL Total Total Total Number Total 
File Text Code o f  Byte1 % Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total 
Bytes Bytes Bytes Functions Word Word Count h Count % Count % Count % Count % Count % NOPs TRAPB 

sqlservrexe 3 402% -8.669% -8.521% 0 000% NIA NIA N/A NIA NIA NIA NIA NIA NIA NIA N/A N/A NIA NIA 4 .479% - 1.465% 
dbmssocn dl1 0 000% -2.129% -2.405% 0 000% N/A NIA N/A NIA NIA N/A N/A NIA NIA N/A N/A N/A NIA NIA +31.250% N/A 
ntwdblib dl1 0 000% -0.123% -0.093% 0 000% NIA N/A NIA NIA NIA N/A N/A NIA NIA NIA N/A NIA NIA NIA -0.390% 0.000% 
opends60.dll 4 368% -8.603% -7.861% 0 000% N/A NIA NIA N/A NIA NIA N/A N/A NIA N/A N/A NIA NIA N/A -3.457% 0.000% 
ssrnsso60 dl1 -0 735% -4.039% -3.141% 0 000% NIA NIA N/A NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA NIA +38.889% NIA 



period o f  time t o  ensure that we capt~rred sc\icral 
transactions. T h e  traces were then cclitcd into separate 
individual transactions. T h e  gcomctr-ic mean was 
talcen from the  resulting traces and used for all subse- 
quent  analysis. 

We used Ntstcp t o  gather cornpletc instruction and 
hnc t ion  traces o f  both versions o f t h e  S Q L  Server data- 
base while it executed the application benchmarl<. 
Figure 2 shows an example o ~ ~ t p u t  for an insrl-~lction 

t r ~ c e ,  ancl F i g ~ ~ r c  3 sIio\vs an example ou tpu t  for a 
hrnction tracc from Ntstcp. Since Ntstcp can attach t o  
3 r ~ ~ n n i n g  process, \vc al lowed the application bencli- 
mark t o  achieve steady state prior t o  data collection. 
1 his :lpproach ensured that did no t  scc the effects of 
\\)arming ~ r p  cithcr the machine caclics o r  the S Q L  
Server database c ~ c l i c .  Each instruction tracc consisted 
o f  approxim,ltcIy one  n~illion instr~rctions, \vliich \\,as 
s~rfficiclit t o  cover rii~rltib>lc t r~risact io~is .  The data \\,as 

* *  B r e a k p o i n t  ( P i d  O x d l ,  T i d  O x b 2 )  SQLSERVR.EXE p c  7 7 f 3 9 b 3 4  
* *  T r a c e  b e g i n s  a t  2 4 2 6 9 8  
o p e n d s 6 0 ! F e t c h N e x t C o m m a n d  
0 0 2 4 2 6 9 8 :  2 3 d e f f b O  I d a  sp, - 5 O ( s p )  I /  s p  now 7 2 b f f 0 0  
0 0 2 4 2 6 9 ~ :  b 5 3 e 0 0 0 0  s t q  S O ,  O ( s p )  I /  3 0 7 2 b f f 0 0  = 1 4 8 4 4 0  
0 0 2 4 2 6 a O :  b 5 5 e 0 0 0 8  s t q  s l ,  8 ( s p )  / I  @ 0 7 2 b f f 0 8  = 0  
0 0 2 4 2 6 a 4 :  b 5 7 e 0 0 1 0  s t q  s2, I O ( s p )  I /  @ 0 7 2 b f f 1 0  = 5  
0 0 2 4 2 6 a 8 :  b 5 9 e 0 0 1 8  s t q  s3, 1 8 ( s p )  / /  @ 0 7 2 b f f 1 8  = 1 4 7 6 a 8  
0 0 2 4 2 6 a c :  b 5 b e 0 0 2 0  s t q  s4, 2 0 ( s p )  / I  @ 0 7 2 b f f 2 0  = 2 c 4  
0 0 2 4 2 6 b O :  b 5 d e 0 0 2 8  s t q  s5, 2 8 ( s p )  / I  3 0 7 2 b f f 2 8  = 41 
0 0 2 4 2 6 b 4 :  b 5 f e 0 0 3 0  s t q  f p ,  3 0 ( s p )  / I  3 0 7 2 b f f 3 0  = 0  
0 0 2 4 2 6 b 8 :  b 7 5 e 0 0 3 8  s t q  r a ,  3 8 ( s p )  I /  @ 0 7 2 b f f 3 8  = 2 4 2 3 9 8  
0 0 2 4 2 6 b c :  4 7 f 0 0 4 0 9  b i s  z e r o ,  aO, S O  / I  S O  now 1 4 8 4 4 0  
0 0 2 4 2 6 ~ 0 :  4 7 f 1 0 4 0 a  b i s  z e r o ,  a l ,  s l  / I  s l  now 7 2 b f f a 0  
0 0 2 4 2 6 ~ 4 :  4 7 f 2 0 4 0 b  b i s  z e r o ,  a2, s 2  / I  s 2  now 7 2 b f f a 8  
0 0 2 4 2 6 ~ 8 :  d 3 4 0 4 e 6 7  b s r  r a ,  0 0 2 5 6 0 6 8  I /  r a  now 2 4 2 6 c c  
o p e n d s 6 0 ! n e t I O R e a d D a t a  
0 0 2 5 6 0 6 8 :  2 3 d e f f a 0  Lda sp, - 6 O ( s p )  / I  s p  now 7 2 b f e a 0  
0 0 2 5 6 0 6 ~ :  4 3 f  1 0 0 0 2  a d d 1  z e r o ,  a l ,  t l  / I  t l  now 7 2 b f f a 0  
0 0 2 5 6 0 7 0 :  b 5 3 e 0 0 0 0  s t q  S O ,  O ( s p )  / I  @ 0 7 2 b f e a 0  = 1 4 8 4 4 0  
0 0 2 5 6 0 7 4 :  b 5 5 e 0 0 0 8  s t q  s l ,  8 ( s p )  / I  @ 0 7 2 b f e a 8  = 7 2 b f f a 0  
0 0 2 5 6 0 7 8 :  b 5 7 e 0 0 1 0  s t q  s2, I O ( s p )  / I  @ 0 7 2 b f e b 0  = 7 2 b f f a 8  
0 0 2 5 6 0 7 ~ :  b 5 9 e 0 0 1 8  s t q  53, 1 8 ( s p )  / I  @ 0 7 2 b f e b 8  = 1 4 7 6 a 8  
0 0 2 5 6 0 8 0 :  b 5 b e 0 0 2 0  s t q  s4, 2 0 ( s p )  / I  @ 0 7 2 b f e c 0  = 2 c 4  
0 0 2 5 6 0 8 4 :  b 5 d e 0 0 2 8  s t q  s5, 2 8 ( s p )  / /  @ 0 7 2 b f e c 8  = 41  
0 0 2 5 6 0 8 8 :  b 5 f e 0 0 3 0  s t q  f p ,  3 0 ( s p )  / /  @ 0 7 2 b f e d 0  = 0  
0 0 2 5 6 0 8 ~ :  b 7 5 e 0 0 3 8  s t q  r a ,  3 8 ( s p )  / I  @ 0 7 2 b f e d 8  = 2 4 2 6 c c  
0 0 2 5 6 0 9 0 :  a l d 0 1 1 4 0  I d 1  s5, 1 1 4 0 ( a 0 )  I /  @ 0 0 1 4 9 5 8 0  1 4 7 9 e 8  
0 0 2 5 6 0 9 4 :  4 7 f 0 0 4 0 9  b i s  z e r o ,  aO, S O  / I  S O  now 1 4 8 4 4 0  
0 0 2 5 6 0 9 8 :  a l f O O l d O  I d 1  f p ,  l d O ( a 0 )  / I  @ 0 0 1 4 8 6 1 0  dbbaO 
0 0 2 5 6 0 9 ~ :  4 7 e 0 3 4 0 d  b i s  z e r o ,  # I ,  s 4  / I  s 4  now 1  
0 0 2 5 6 0 a O :  a 0 6 2 0 0 0 0  I d 1  t 2 ,  O ( t 1 )  I /  @ 0 7 2 b f f a 0  1 5 5 ~ 5 8  
0 0 2 5 6 0 a 4 :  b 2 3 e 0 0 4 c  s t 1  a l ,  4 c ( s p )  / I  @ 0 7 2 b f e e c  = 7 2 b f f a 0  
0 0 2 5 6 0 a 8 :  b 2 5 e 0 0 5 0  s t 1  a2, 5 0 ( s p )  / I  @ 0 7 2 b f e f 0  = 7 2 b f f a 8  
0 0 2 5 6 0 a c :  b 2 7 e 0 0 5 4  s t 1  a3, 5 4 ( s p )  I /  @ 0 7 2 b f e f 4  = 1 4 7 6 a 8  
0 0 2 5 6 0 b O :  e 4 6 0 0 0 1 d  b e q  t 2 ,  0 0 2 5 6 1 2 8  / /  ( t 2  i s  1 5 5 ~ 5 8 )  
0 0 2 5 6 0 b 4 :  2 2 0 3 0 3 e 0  I d a  aO, 3 e O ( t 2 )  I /  a 0  now 1 5 6 0 3 8  
0 0 2 5 6 0 b 8 :  4 7 f 0 0 4 0 4  b i s  z e r o ,  aO, t 3  I /  t 3  now 1 5 6 0 3 8  
0 0 2 5 6 0 b c :  6 3 f f 4 0 0 0  mb I  1 
0 0 2 5 6 0 ~ 0 :  4 7 e 0 3 4 0 0  b i s  z e r o ,  # I ,  vO I /  vO now 1  
0 0 2 5 6 0 ~ 4 :  a 8 2 4 0 0 0 0  l d l - L  t o ,  O ( t 3 )  I /  @ 0 0 1 5 6 0 3 8  0  
0 0 2 5 6 0 ~ 8 :  b 8 0 4 0 0 0 0  s t l - c  vO, O ( t 3 )  / I  @ 0 0 1 5 6 0 3 8  = 1  
0 0 2 5 6 0 c c :  e 4 0 0 0 0 b 6  b e q  vO, 0 0 2 5 6 3 a 8  / I  ( v 0  i s  1 )  
0 0 2 5 6 0 d O :  6 3 f f 4 0 0 0  mb I  / 
0 0 2 5 6 0 d 4 :  e 4 2 0 0 0 0 1  b e q  t o ,  0 0 2 5 6 0 d c  / I  ( t o  i s  0 )  
o p e n d s 6 0 ! n e t I O R e a d D a t a + O x 7 4 :  
0 0 2 5 6 0 d c :  a l b e 0 0 4 c  I d 1  s4, 4 c ( s p )  / I  @ 0 7 2 b f e e c  7 2 b f f a 0  
0 0 2 5 6 0 e O :  aOOdOOOO I d 1  v0, O ( s 4 )  / I  3 0 7 2 b f f a O  1 5 5 ~ 5 8  
0 0 2 5 6 0 e 4 :  a 0 4 0 0 3 d c  I d 1  t l ,  3 d c ( v 0 )  / I  @ 0 0 1 5 6 0 3 4  0  
0 0 2 5 6 0 e 8 :  2 0 8 0 0 4 0 4  I d a  t 3 ,  4 0 4 ( v 0 )  / I  t 3  now 1 5 6 0 5 c  
0 0 2 5 6 0 e c :  4 0 5 f 0 5 a 2  cmpeq t l ,  z e r o ,  t l  I /  t l  now 1  
0 0 2 5 6 0 f O :  e 4 4 0 0 0 0 3  b e q  t l ,  0 0 2 5 6 1 0 0  / /  ( t l  i s  1 )  
0 0 2 5 6 0 f 4 :  a 0 6 0 0 4 0 4  I d 1  t 2 ,  4 0 4 ( v 0 )  / I  @ 0 0 1 5 6 0 5 c  1 5 6 0 5 c  
0 0 2 5 6 0 f 8 :  4 0 6 4 0 5 a 3  cmpeq t 2 ,  t 3 ,  t 2  / /  t 2  now 1  
0 0 2 5 6 0 f c :  4 7 e 3 0 4 0 2  b i s  z e r o ,  t 2 ,  t l  / I  t l  now 1  
0 0 2 5 6 1 0 0 :  4 7 e 2 0 4 0 d  b i s  z e r o ,  t l ,  s 4  / I  s 4  now 1  

Figure 2 
Examplc of I n s t r u c t i o n  T r a c e  O u t p u t  fro111 Ntstcp 

98 Digiral Tcchnrcill ]our11:1l Vol. 8 No. 4 1990 



0 0 2 5 6 1 0 4 :  e 4 4 0 0 0 0 5  b e q  t l ,  0 0 2 5 6 1 1 ~  
0 0 2 5 6 1 0 8 :  aOaOOOOO L d l  t 4 ,  O ( v 0 )  
0 0 2 5 6 1 0 ~ :  2 4 d f 0 0 8 0  L d a h  t5 ,  8 0 ( z e r o )  
0 0 2 5 6 1 1 0 :  4 8 a 0 7 6 2 5  z a p n o t  t 4 ,  #3, t 4  
0 0 2 5 6 1 1 4 :  4 0 a 6 0 0 0 5  a d d 1  t 4 ,  t 5 ,  t 4  
0 0 2 5 6 1 1 8 :  bOaOOOOO s t 1  t 4 ,  O ( v 0 )  
0 0 2 5 6 1  1  c :  a O f e 0 0 4 c  L d l  t 6 ,  4 c ( s p )  
0 0 2 5 6 1 2 0 :  aOe70000 L d l  t 6 ,  O ( t 6 )  
0 0 2 5 6 1 2 4 :  b 3 e 7 0 3 e 0  s t 1  z e r o ,  3 e O ( t 6 )  
0 0 2 5 6 1 2 8 :  e 5 a 0 0 0 6 1  b e q  s4, 0 0 2 5 6 2 b 0  
0 0 2 5 6 1 2 ~ :  2 5 7 f 0 0 2 6  Ldah  s2, 2 6 c z e r o )  
0 0 2 5 6 1 3 0 :  2 1 6 b 6 2 f 8  Lda s2, 6 2 f 8 C s 2 )  
0 0 2 5 6 1 3 4 :  5 f f f 0 4 1 f  c p y s  f 3 1 ,  f 3 1 ,  f 3 1  
0 0 2 5 6 1 3 8 :  a 2 l e 0 0 5 4  L d l  aO, 5 4 ( s p )  
0 0 2 5 6 1 3 ~ :  2 2 5 e 0 0 4 0  Lda a2, 4 0 ( s p )  
0 0 2 5 6 1  4 0 :  aOObOOOO L d l  v0, O ( s 2 )  
0 0 2 5 6 1 4 4 :  2 2 7 e 0 0 4 8  I d a  a3, 4 8 ( s p )  
0 0 2 5 6 1 4 8 :  a 2 3 e 0 0 5 0  I d 1  a l ,  5 0 ( s p )  
0 0 2 5 6 1 4 ~ :  4 7 e f 0 4 1 4  b i s  z e r o ,  f p ,  a 4  
0 0 2 5 6 1  5 0 :  a 2 1 0 0 0 0 0  L d l  aO, O ( a 0 )  
0 0 2 5 6 1 5 4 :  6 b 4 0 4 0 0 0  j s r  ra ,  (vO),O 
K E R N E L 3 2 ! G e t Q u e u e d C o m p L e t i o n S t a t u s :  
7 7 e 9 8 5 a O :  2 3 d e f f c 0  Lda sp, - 4 O ( s p )  
7 7 e 9 8 5 a 4 :  b 5 3 e 0 0 0 0  s t q  SO, O ( s p )  
7 7 e 9 8 5 a 8 :  b 5 5 e 0 0 0 8  s t q  s l ,  8 ( s p )  
7 7 e 9 8 5 a c :  b 5 7 e 0 0 1 0  s t q  s2, I O ( s p )  
7 7 e 9 8 5 b 0 :  b 5 9 e 0 0 1 8  s t q  s3, 1 8 ( s p )  
7 7 e 9 8 5 b 4 :  b 7 5 e 0 0 2 0  s t q  r a ,  2 O ( s p )  
7 7 e 9 8 5 b 8 :  4 7 f 0 0 4 0 9  b i s  z e r o ,  aO, S O  
7 7 e 9 8 5 b c  : 4 7 f  1 0 4 0 a  b i  s  z e r o ,  a l ,  s 1  
7 7 e 9 8 5 c O :  4 7 f 2 0 4 0 b  b i s  z e r o ,  a2, s 2  
7 7 e 9 8 5 c 4 :  4 7 f 3 0 4 0 c  b i s  z e r o ,  a3, s 3  
7 7 e 9 8 5 c 8 :  4 7 f 4 0 4 1 1  b i s  z e r o ,  a4, a 1  
7 7 e 9 8 5 c c :  2 2 1  e 0 0 3 8  Lda aO, 3 8 ( s p )  
7 7 e 9 8 5 d 0 :  d 3 4 0 5 8 9 3  b s r  ra ,  7 7 e a e 8 2 0  

I 1  ( t l  i s  I) 
/I @ 0 0 1 5 5 c 5 8  2 0 4 2 0 0  
I 1  t 5  now 8 0 0 0 0 0  
/I t 4  now 4 2 0 0  
/I t 4  now 8 0 4 2 0 0  
11 @ 0 0 1 5 5 c 5 8  = 8 0 4 2 0 0  
/I @ 0 7 2 b f e e c  7 2 b f f a 0  
/ I  @ 0 7 2 b f f a 0  1 5 5 ~ 5 8  
I /  @ 0 0 1 5 6 0 3 8  = 0  
/I ( s 4  i s  1 )  
I 1  s 2  now 2 6 0 0 0 0  
/I s 2  now 2 6 6 2 f 8  
I 1  
/I @ 0 7 2 b f e f 4  1 4 7 6 a 8  
/I a 2  now 7 2 b f e e 0  
I 1  3 0 0 2 6 6 2 f 8  7 7 e 9 8 5 a 0  
/ I  a 3  now 7 2 b f e e 8  
I /  3 0 7 2 b f e f O  7 2 b f f a 8  
/ /  a4 now dbbaO 
/I @ 0 0 1 4 7 6 a 8  2cO 
I 1  r a  now 2 5 6 1 5 8  

11 s p  now 7 2 b f e 6 0  
I 1  @ 0 7 2 b f e 6 0  = 1 4 8 4 4 0  
/ / @ 0 7 2 b f e 6 8  = 7 2 b f f a 0  
I 1  i i1072b fe70  = 2 6 6 2 f 8  
11 @ 0 7 2 b f e 7 8  = 1 4 7 6 a 8  
/I @ 0 7 2 b f e 8 0  = 2 5 6 1 5 8  
/ /  S O  now 2cO 
/ /  s l  now 7 2 b f f a 8  
11 s 2  now 7 2 b f e e 0  
/I s 3  now 7 2 b f e e 8  
I 1  a 1  now dbbaO 
I 1  a 0  now 7 2 b f e 9 8  
/I r a  now 7 7 e 9 8 5 d 4  

Figure 2 (continued) 
Example of Instruction Trace Output from Ntstep 

then reduced to a series of single transactions and ana- 
lyzed for instruction distribution. For both the caclied- 
and the scaled-transaction instruction counts, we com- 
bined at .least three separate transactions and took the 
geometric mean of the instructions executed, which 
caused slight variations in the instruction counts. All 
resulting instruction counts were within an acceptable 
standard deviation as cornpared to individual transac- 
tion instruction counts. 

We collccted the fiulction traces in a similar fashion. 
Once the application benchmark was at  a steady state, 
we began collecting thc tiinction call tree. Based on 
previous work with the SQL Scrvcr database and con- 
sultation \vitl~ ~Microsofi cnginccrs, we could pinpoint 
thc beginning of  a single transaction. \Ve then began 
collecting samples for both traces at the same instant, 
using an Ntstep feature that allowed us to start o r  stop 
sample collection bascd upon a particular address. 

The dynamic instruction counts for both the scaled 
and the cached transactions are given in Tables 11 and 
12. We also show thc \lariation and percentage \{aria- 
ti011 between the Original and the Ryte/Word versions 
of the SQL Server. Two of the six new instructio~ls, 
sextb and sexbv, are not present in the Ryte/Word 

trace. The remaining four instructions combine to 
makc up 2.6 percent and 2.7 percent of  the instruc- 
tions executed per scaled and cached transaction, 
respecti\~ely. Other observations include the following: 

The number of instructions executed decreased 
7 percent for scaled and 4 percent for cached 
transactions. 

The number of ldl-l/stl-c scquenccs decreased 
3 percent for scaled transactions. 

All the instructions that are identified in Tables 1 
and 2 show a decrease in usage. No t  surprisingly, 
the instructions mskwl and niskbl coniplctely disap- 
peared. The ins~\~I and insbl instructions decreased 
by 47 percent and 90 percent, respectively. The sll 
instruction decreased by 38 percent, and the sra 
instruction usage decreased by 53 percent. These 
reductions hold true within 1 to 2 percent for both 
scaled and cached transactions. 

The instructions Jdq-u and Ida, which are used 
in unaligned load and store operations, show a 
dccrcase in the range o f 2 0  to 22 percent and 15 to 
16 percent, respectively. 

Digital Technical Journal Vol. 8 No. 4 1996 99 



0  * *  B r e a k p o i n t  ( P i d  Oxd7, l i d  Oxdb )  SQLSERVR.EXE p c  7 7 f 3 9 b 3 4  
0  **  T r a c e  b e g i n s  a t  0 0 2 4 2 6 9 8  
0  * *  . o p e n d s 6 0 ! F e t c h N e x t C o m m a n d  

1 3  * *  . . o p e n d s 6 0 ! n e t I O R e a d D a t a  
72  * * . . .  K E R N E L 3 2 ! G e t Q u e u e d C o m p l e t i o n S t a t u s  
85 * * . . . .  K E R N E L 3 2 ! B a s e F o r m a t T i m e O u t  
9 9  * * . . . .  n t d l l ! N t R e m o v e I o C o m p l e t i o n  

1 2 9  * * . . .  o p e n d s 6 0 ! n e t I 0 C o m p l e t i o n R o u t i n e  
2 7 2  **  . . o p e n d s 6 0 ! n e t I O R e q u e s t R e a d  
2 8 5  * * . . .  K E R N E L 3 2 ! R e s e t E v e n t  
2 9 0  * * . . . .  n t d l l ! N t C L e a r E v e n t  
3 1 8  * * . . .  SSNMPN60 ! *0x06a131 f0 *  
3 4 8  * * . . . .  K E R N E L 3 2 ! R e a d F i l e  
3 9 9  * * . . . . .  n t d L l ! N t R e a d F i L e  
412 * * . . . . .  K E R N E L 3 2 ! B a s e S e t L a s t N T E r r o r  . . . . . . . .  417  n t d l l ! R t l N t S t a t u s T o D o s E r r o r  
423  k * . . . . . . .  n t d l l ! R t l N t S t a t u s T o D o s E r r o r N o T e b  
509  * * . . . .  K E R N E L 3 2 ! G e t L a s t E r r o r  
560  * *  . o p e n d s 6 0 ! g e t - c l i e n t - e v e n t  
6 6 5  * *  . . o p e n d s 6 0 ! p r o c e s s R P C  
6 8 2  * * . . .  o p e n d s 6 0 ! u n p a c k - r p c  
7 4 9  * *  . o p e n d s 6 0 ! e x e c u t e - e v e n t  
762  * *  . . o p e n d s 6 0 ! e x e c u t e ~ s q L s e r v e r ~ e v e n t  
8 0 2  * * . . .  o p e n d s 6 0 ! u n p a c k - r p c  
8 6 4  * * . . .  SQLSERVR!execrpc  

. . . . . .  9 1 1  K E R N E L 3 2 ! W a i t F o r S i n g l e O b j e c t E x  . . . . . . .  9 3 7  K E R N E L 3 2 ! B a s e F o r m a t T i m e O u t  
9 5 0  * * . . . . .  n t d l l ! N t W a i t F o r S i n g l e O b j e c t  

1 0 2 4  * * . . . .  S Q L S E R V R ! U s e r P e r f S t a t s  
1 0 3 8  * *  . . . . K E R N E L 3 2 ! G e t T h r e a d T i m e s  

. . .  1 0 5 5  * *  . . n t d l l ! N t Q u e r y I n f o r m a t i o n T h r e a d  
1 1 7 3  * *  . . . S Q L S E R V R ! i n i t - r e c v b u f  
1 2 0 8  * *  . . . S Q L S E R V R ! i n i t - s e n d b u f  
1 2 2 7  * *  . . . SQLSERVR!po r t -ex -hand le  
1 2 6 3  * *  . . . SQLSERVR! -O tsse t jmp3  
1 3 1 3  * * . . . .  SQLSERVR!memalLoc 
1 3 6 5  X * . . . . .  SQLSERVR!-OtsZero  
1 4 0 5  * * . . . .  S Q L S E R V R ! r e c v h o s t  

. . . . . . .  1 4 3 7  SQLSERVR!-OtsMove 
1 5 0 0  * * . . . .  SQLSERVR!rnemal loc  
1 5 7 7  * *  . . . SQLSERVR! rn -cha r  
1 5 8 0  * *  . . . . S Q L S E R V R ! r e c v h o s t  

. . .  1 6 1 2  * *  . . SQLSERVR!-OtsMove 
1 7 7 7  * *  . . . SQLSERVR!parse-name 
1 8 0 8  * *  . . . . SQLSERVR!dbcs -s t rnch r  
2 1 1 5  * *  . . . S Q L S E R V R ! r p c p r o t  
2 1 3 1  * *  . . . . SQLSERVR!mema l l oc  

. . .  2 1 8 3  **  . . SQLSERVR!-OtsZero  
2 2 5 2  **  . . . . S Q L S E R V R ! g e t p r o c i d  

. . .  2 3 1 9  * *  . . S Q L S E R V R ! p r o c r e l i n k + O x 1 2 5 0  
. . .  2 5 4 6  * *  . . S Q L S E R V R ! - O t s R e m a i n d e r 3 2  

. . . . . . . . .  2 5 5 9  S Q L S E R V R ! - O t s D i v i d e 3 2 + 0 x 9 4  

. . . . . . . .  2 5 9 7  S Q L S E R V R ! o p e n t a b l e  

. . . . . . . . .  2 6 4 2  SQLSERVR!parse-name 

. . . . . . . . . .  2 6 7 3  S Q L S E R V R ! d b c s - s t r n c h r  . . . . . . . . .  2 9 7 9  SQLSERVR!parse-name 

. . . . . . . . . .  3 0 1 0  S Q L S E R V R ! d b c s - s t r n c h r  

. . . . . . . . .  3 3 2 3  S Q L S E R V R ! o p e n t a b i d  

. . . . . . . . . .  3 3 6 3  S Q L S E R V R ! g e t d e s  

. . . . . . . . . .  3 4 9 3  S Q L S E R V R ! G e t R u n i d F r o m D e f i d + 0 ~ 4 0  

. . . . . . . . . . .  3 5 1 0  SQLSERVR!-OtsZero 

. . . . . . . . .  3 6 5 8  S Q L S E R V R ! i n i t a r g  
3 6 6 8  * * . . . . . . .  S Q L S E R V R ! s e t a r g  

. . . .  3 7 0 3  * *  . . S Q L S E R V R ! - O t s F i e L d I n s e r t  
. . . .  3764  * *  . . S Q L S E R V R ! s e t a r g  
. . . . .  3 7 9 9  * *  . . S Q L S E R V R ! - O t s F i e l d I n s e r t  
. . . .  3 8 5 7  * *  . . S Q L S E R V R ! s t a r t s c a n  
. . . . .  3 9 0 1  * *  . . SQLSERVR!ge t i ndexZ  

. . . . . . . . . . .  3 9 7 8  S Q L S E R V R ! g e t k e e p s l o t  

. . . . . . . . . . .  4064  S Q L S E R V R ! r o w o f f s e t  

. . . . . . . . . . .  4 1 0 9  S Q L S E R V R ! r o u o f f s e t  

. . . . . . . . . . .  4 1 7 0  SQLSERVR!-OtsMove 

. . . . . . . . . . .  4 3 3 1  SQLSERVR!memcmp 

. . . . . . . . . . .  5323  S Q L S E R V R ! b u f u n h o l d  

. . . . . . . . . .  5 4 3 6  S Q L S E R V R ! p r e p s c a n  . . . . . . . . . . .  5 5 5 0  S Q L S E R V R ! m a t c h - s a r g s - t o - i n d e x  

Figure 3 
Es.uiiplc of Function l'rncc Outpilt from Ntstep 

Vol. 8 No. 4 1996 



Figure 3 (continued) 
Example of Function Trace Output from Ntstcp 

Digiral Tcchtiical Journal Vol. 8 No.  4 1996 101 



Table 11 
lnstruction Count and Variations for Scaled Transaction 

lnstruction Original ByteIWord Delta % Delta I Instruction Original ByteIWord Delta % Delta 

stb 
stw 
ldwu 
ldbu 
cmpbge 
cmovlbs 
addt 
cmovl bc 
cmovle 
insqh 
cmovgt 
callsys 
mulq 
s8subq 
cmovlt 
Idt 
zap 
umulh 
mull 
ornot 
cmpeq 
insql 
bl bs 
s8addl 
mskwl 
jsr 
CPYS 
rnskqh 
cmovne 
mskbl 
crnoveq 
insbl 
extwh 
trapb 
mskql 
jmp 
cmovge 
bl bc 
bgt 
Idl-l 
stl-c 
extql 

s t t  
cmple 
inswl 
srl 
extqh 
cmpule 
cmpult 
cmplt 
rdteb 
extwl 
stq-u 
blt 
bic 
extll 
extlh 
bge 
mb 
511 

subl 
br 
sra 
bsr 
s4addl 
ret 
zapnot 
addq 
subq 
ldah 
extbl 
xor 
and 
bne 
addl 
Idq-u 
st1 
Ida 
stq 
1% 
beq 
bis 
Idl 
Totals 

For the scaled transaction, a dccrcasc in 58 out of instructions pcr trilnsaction mcasurcd in Table 13. I f  
81 instructions types occurred. Of the remaining 25 this correlation holtis truc, \vc ~ \ ~ o u l d  cspcct to see an 
instructions, 21 had no change and on ly  4 instructions, increase in pcrformancc of  approsimatcly 7 percent 
mull, s8addl, trapb, and subl, showed an increase. For for scaled transactions runs. 
cached transactions, 22 instruction counts decrcascd, 
29 increased, and 22 remained unchanged. Dynamic Instruction Distribution - - 1 he performalice gain o f  3.5 perccnt mcasurcd For Tlic pcrfor~i~ancc o f  thc Alpli;l microproccssor ~lsing 
the cached version of the application benchmark cor- technical ancl comrncrcial \\/o~-1tlo;lds has bccn evalu- 
relates closely to the dccreasc in the number OF ntcd.' The commercial workload ~ ~ s e d  L V ~ S  clrl7it- 

102 Digiral Technical Journal Vol. 8 No. 4 1996 



Table 12 
lnstruction Count and Variations for Cached Transaction 

lnstruction Original ByteIWord Delta % Delta I lnstruction Original ByteIWord Delta % Delta 

s t  b 
stw 
ldwu 
ldbu 
cmpbge 
cmovlbs 
addt 
cmovl bc 
cmovle 
insqh 
cmovgt 
callsys 
mulq 
s8subq 
cmovlt 
Idt 
za P 
umulh 
mull 
ornot 
cmpeq 
insql 
blbs 
s8addl 
mskwl 
jsr 
CPYS 
mskqh 
cmovne 
mskbl 
cmoveq 
insbl 
extwh 
trapb 
mskql 
jmp 
cmovge 
blbc 
bgt 
ldl-l 
stl-c 
extql 

s t t  
cmple 
inswl 
srl 
extq h 
cmpule 
cmpult 
cmplt 
rdteb 
extwl 
stq-u 
blt 
bic 
extll 
ext l h 
bge 
mb 
sII 
sub1 
b r 
sra 
bsr 
s4addl 
ret 
zapnot 
addq 
subq 
Ida h 
extbl 
xor 
and 
bne 
addl 
Idq-u 
st1 
Ida 
stq 
Idq 
beq 
bis 
Idl 
Totals 

credit, which is similar t o  the  Tl'C-A benchniark. T h e  
TI'C-B benchmark is similar t o  the TPC:-A, differing 
only in its method o f  execution. Cvetanovic and 
Bhandarltar presented an instruction distribution 
matrix for the debit-credit \vorldoad. T h e  Alpha 
instruction type mix is dominated by the integer class, 
followed by other, load, branch, and store instructions, 
in descending order." We took a similar .~pproach 
bu t  divided the instructions into more  groups t o  
achieve a finer detailed distribution. Table 13 gives the 

instruction maltcup o f  each group.  Figure 4 sho\\ls the 
percentage o f  instructions in  each g r o u p  for t h e  four  
alternatives we  studied. In  all four cases, INTEGER 
LOADS make up  32 percent o f  the instructions exe- 
cuted.  In the scaled Byte/Word category, the new 
ldbu and I d ~ w  instructions cornpose 1 percent o f  the 
integer instructions, and t h e  new s tb  and stw instruc- 
tions accounted for 18 percent o f  the  integer store 
instructions executed. 



Table 13 
Instruction Groupings 

Instruction 
Group Group Members 
- 

Integer loads Idwu, Idbu, Idl-I, Idah, Idq-u, 
Ida, ldq, ldl 

lnteger stores 

lnteger control 
stb, stw, stl-c, stq-u, stl, stq 
blbs, jsr, jmp, blbc, bgt, blt, bge, 
br, bsr, ret, bne, beg 

lnteger arithmetic cmpbge, s8subq, umulh, mull, 
cmpeq, sgaddl, cmple, cmpule, 
cmpult, cmplt, subl, s4addl, 
addq, subq, addl 

Logical shift cmovl bs, cmovl bc, cmovle, 
cmovgt, cmovlt, ornot, cmovne, 
cmoveq, cmovge, srl, bic, sll, sra, 
xor, and, bis 

Byte manipulation insll, inslh, mskll, mskhl, insqh, 
zap, insql, mskwl, mskqh, mskbl, 
insbl, extwh, insbl, extwh, mskql, 
extql, inswl, extqh, extwl, extll, 
extlh, zapnot, extbl 

Other addt, Idt, stt ,  mulq, callsys, cpys, 
trapb, rdteb, mb 

During the scaled transactions, each instruction 
group showed a decrease in the numbcr o f  instruc- 
tions csccutcd, ranging fro111 ncgligiblc to as m u c h  as 
54 p u x n t .  I n  acidition, the number o f  byte ~nanipula- 
tion and logical shift instructions decreascci, because 

the method of loading 01- storing bytes and \vords 
o n  the originlil Alpha Architecture made hca\,y use o f  
thcsc n,pcs of  instructions. 

I n  our Inst esnniination, nre lool<cci at the instl-uc- 
tion \*.iriation bcn\,een a sc.llcd and a caclicd t l .~~is-  
action. The major difference ben\cccn the nvo 
tmnsactions i s  the additional I /O rcquircd b!, the 
scalcd version o f  the benchmark. Table 14 gives the 
results. The Original version o f  the SQL Server data- 
base c\ccuted an extra 4,596 instructions during the 
caclicd tmnsaction as compared to thc scalcd trJns- 
action. For the Ryte/Wo~-d version, only an additional 
1,334 instructions \yere executed. 

Conclusions 

The introduction o f  the ne\\ singlc byte and \vord 
manipulation instructions in the Alpha Arcliitccturc 
improved the perfornlance of the Microsoti SQI, 
Scrvc~. d,ltabasc. Wc obser\.ed a dccrcasc in the n u n -  
bcr of instr~~ctions cscc~~ted pcr transaction, the 
elimination o f  sonie instructions in the \\,orklonil, .I 

redistribution o f  the instruction nlis, and an increase 
in rclati\*c performance. The results arc in line \\:it11 
cspcctntions \\.lien the addition o f  the nc\\. instruc- 
tions \\,as proposed. 

We limited OLII- investigation to 3 singlc commercial 
\\rorltload and operating system. l'csting n \\lo~.ltloaci 
\\)it11 more I/O, such as the Tl'C-C: bc~~cllmark, \\)auld 

CACHED 
BYTENVORD 

CACHED 
ORIGINAL 

SCALED 
BYTENVORD 

SCALED 
OR G I ~ A L  

KEY: 

-- - 

0 10 20 30 40 50 60 70 80 90 100 

PERCENT 

INTEGER LOAD 
INTEGER STORE 
INTEGER CONTROL 
INTEGER ARITHMETIC 
LOGICAL SHIFT 

@ BYTE MANIPULATION 
OTHER 

Figure 4 
111s11.~1crion Gro~~p  l)isrributio~i 

Vol. 8 No. 4 I996 



Table 14 
lnstruction Variations (Scaled Minus Cached Transactions) 

lnstruction Original 

s tw 
ldwu 
ldbu 
cmovl bc 
callsys 
s8su bq 
za P 
umulh 
mull 
ornot  
cmpeq 
bl bs 
s8addl 
mskwl 
jsr 
CPYS 
mskqh 
cmovne 
cmoveq 
extwh 
t r a p b  
mskql 
jmp 

lnstruction Original 

cmplt 
rd teb  
extwl 
stq-u 
blt 
bic 
extll 
extlh 
bge 
m b  
sII 
cmovge 
bl bc 
bgt  
Idl-l 
stl-c 
extql 
cmple 
inswl 
srl 
extqh 
cmpule 
cmpult 

produce a different set o f  results and \vo~lld ~l icr i t  
investigation. T h c  use o f  another ciatabasc, such as the 
Ornclc IIl)BMS, \\,hich makes greater L I S ~  of byte opcr- 
ations, \\tould possibl!! result i l l  21.1 cvcn greater pcrfor- 
m'incc impact. Lastly, rebuilding tlic cntirc operating 
system t o  use the lie\\, instructions \ i~ould mnltc an 
interesting and \\,orthwhile study. 

Acknowledgments 

As \vitli any project, many people wcrc instrumental in 
this c f h r t .  Wim Colgatc, Michc Kakcr-Harvey, ancl 
Steve Jcnncss gave us nunnerous insights into t h e  
Windo\\.s N T  operating system. T o m  Van Rnak pro-  
\ridcd sc\,cml analysis and t rncing/sim~~lat ion tools for 
tlic Windo\vs N T  cn \ . i ronn~cnt .  Rich G r o \ ~ c  pro\lided 
.~cccss to c ~ r l y  builds of tlic GEM compiler back end 
that contained byte and \\lord support .  Stan Gaza\vay 
l x ~ i l t  the S Q L  Server application \\,it11 tlnc moditica- 
tions. Vclibi Tasar provided encouragement iund sanity 
chcclting. John Shakshober lent i~is ight  into tlnc world 
o f  TI'(:. Pctcr Bannon pro\iidcd the  early prototype 
m a c l i i ~ ~ c .  Contr ibutors  from  microso oft Corporation 
included T o d d  l h g l a n d ,  who hclpcci rebuild the SQL, 
Scrvcr; Kick Vicik, w h o  provided cictailcd insights into 
the operation o f  the S O L  Ser\!cr; and Damien 
Lindaucr, \\:Ilo helped set LIP and run  the  TP<: bcnch- 
mark. Finally, \vc thank  Dick Sitcs for cnsouraging 
us to undcrtakc this effort. 

lnstruction Original ByteIWord 

sub1 
br 
sra 
bsr 
s4addl 
ret 
zapnot  
addq  
su bq 
ldah 
extbl 
xor 
a n d  
b n e  
addl  
Idq-u 
st1 
Ida 
stq 
Idq 
beq 
bis 
Idl 
Totals 

References and Notes 

1. 7,. C\.ctano\.ic and 13. Bha~idarkar, "C:harnctcl.izarion 
ofiUpI1.l A S P  Pcrform.lncc Using TI' and SPEC Work- 
lodds," Llst il/~tlci~tl Itrlerrrationul Sympo.siri~n 0 1 2  

Conrprrtcr- A~z'hittxtrrr~, C:hicago (1994). 

2. MI. Kohler ct al., "l'crformancc Evaluation ofTransdc- 
tion Processing," Digital Technical Journal, vol. 3, 
no. 1 (Winter 1991): 45-57. 

3. S. Lcutcncggcr and 1). Dins, "A Modeling Study of the 
TPC-C 1Senchmark," /'rocc~cclill<qs of the 199.3 ACi1.I 
Sl(;ic101> Itltcr-~iatioreul Cor lJi~rer~ce or1 ~M~etzclgr- 
ttrerrt ?/!J'rlcttrt, SIGILIOI) Record 22 ( 2 ) ,  (June 1993). 

4. R .  Sitcs n~ld E. Pcrl, PrttchWrk7~-A D)~I.~G/.~v~c 
Exec~itiotl Ttze~.itrg %)ol (Palo Alto, Calif.: Digital 
Eq~~ipmcnr  Corporation, Sysrcms Rescnrch Ccntcr, 
1995). 

5 .  W. Kohlcr, A .  Sh.111, .ind F. Ranb, 0ueri)ieto oj"/PC' 
Bo~cht17ot./.? C: 7771. Otzlet.-Et~tq., Derichnzark (Snn 
Jose, Calif: '11.onsaction l'rocessing Perforlnancc 
<:ouncil Tcchnicnl Rcporr, 1991). 

6. R .  Sitcs, "Alpha ASP Architccrure,'' Digilal Techni- 
ca1Jo111-lrul. \.ol. 4,  no. 4 (Special Issue 1992): 19-34. 

7.  Alpha AXP S ~ s t c ~ n . ~  H~rrrdbook (Maynard, Mass.: 
Digital Equipment COI-porntion, 1993). 

8. DECchip 21064A-23.3. 2 7 5  Alpbn A . W  ~Vficro- 
processor DLI~LI S l ~ c ~ c ~ t  ( M,lynard, (Mass.: Digital 
Eq~~ipmcnt  Corporation, 1994). 

Vol. 8 No .  4 1996 105 



9 .  Alpha 2 1  163  Micro-or H c ~ I ~ ~  Kt$! 
errce hlalr l~d (Maynard, Mas.: 1)igital Eqoipmt 
Corporation, 1994).  

10. K. Sites and R. Witck, A@l'a ~ X J ' A l z . / n k t u m ~ # -  
rnce ~Mrr~rl~ul, 2d cd.  (Newton, Mass.: lXdd Pma, 
1995).  

1 1 . G. Kane, ~ ~ l l ~ . S  /<2000 l<lSc;'Architc~ctri~ ( F m $ d  
Cliffs, N.J. :  Prcnticc Hall, 1987) .  

12. J .  Hcnncssy, N .  jtrilppt, E.'. Ilaktb md I. GJ& W.f: 
A IxSl P n x w  Ar&&mm (SontiKd, U f . :  
Computer Spttmt khtanp, Smhd U~urmty, 
'l'cclinical 1-rt No.  223, 1981).  

13. J. Henness!; N, Jouppi, i-. B~ske t t ,  1'. Gross, 1. Gill, 
and S.  Prz!~lsyM, ffu~zlli~~z~-e/SoJ~i~~r~.o ?hrclc1r!fi,k)r 
lrzo~c~rsc~rl R~V$JI-II /~IIIL.~~ (Stanford, Calif.: (:oniputcr 
Systems l..lbinatory, Snnford Unitcrsity, Tcclinical 
Report No.  228,19R3). 

14. 'l'hr original MIPS m i t e c t u r e  at  Stanti)rd Uni\.crsity 
did not  contzln dngk byte manipulation instructions; 
this decision w a ~  for thc first commercially 
produced MIPS K2000 processor. Tlic 111tcl x86 
Arcliitect~trc hns:iI\ \~)~s included these instructions. 

15. C. Cole and L <:rudclc, personal corrcspo~ldence, 
December 1996, 

16.  microso oft C o p r a t i o 1 1  developed thc ARC firni\vare 
for the MII?; p b r t b r ~ n .  l>uring the early days of  the 
port  o f  Windows N'I' to Alpha, l>IGI'TAL's cnginccrs 
ported the A l K  firm\\,are to  the Alpha platform. 

17. T h e  Alpha instruction type mix includcd PA1,code 
calls, barriers, and other implemcntnrion-s}>ccific 
MLcodc i n s t r ~ r c t i o ~  

Biographies 

David P. H u n t e r  
I)a\.id Hunter is thc cndncccing nianagcr of  the 1)IGITAI. 
Software Partners -Advtuad Dcvclopmcnt 
Group, \vhere he lm % &led hp&mnnce invcsti- 
gations ofdatabasa  and thdrhtrminru with U N i S  and 
Windows NT. Pricwta tbkwwk, k k l d p s i t i o n s  in rllc 
Alpha Migration (- rht TSV Porting Group, 
and the Governni~xiz G u @ s  Tc~bnicd P m g r ~ m  [Manage- 
ment Office. H e  j & d  DlCIlTALin rhe Lsboratory 1)nra 
I'roducts Group i l l  1 9 8 3 , a h h t d ~ ~ d q e d  thc t:.\;Ylab 
User M a n g n i i e ~ l c  m. Hc &a thc projc.ct lcader of the 
advanced d e v e l o p ~ m  ysricb, m, an a e c u t i ~ ~ e  i n h r ~ n a -  
tion system, for \\hicti k d m  and soti\\.arc 
components. David h a  mop- p p p k d o n s  pcnding in 
rhc arca o f s o h v a ~ r  cnglnbng. Hc holds a dcgrcc in clectri- 
c;ll and coniputcr tng ine t l i r rgh  M h t a s t c r n  U~ii\crsity 

106 Digital Technical Journ;il Vol. 8 No.4 1996 

Eric B. Betts 
Eric Retts is 3 principal sofnvare c ~ ~ g i ~ l c c r  in thc DIGITAL 
Sofnvarc l'artncrs Engineering Group, \vlic~-c lie has been 
involvcd \\,it11 pcrh)rmance e~igiurcring, project manage- 
~ n c n t ,  a n d  bcnclimarking for the Microsoti SQI. Scr\.cr 
and Windoivs NT products. I ' r e \ ~ i o ~ ~ s l ~ ~  \\,it11 rlic Fcdclal 
Go\7crnnicnt lkgion,  Eric was a mc~i ibcr  o f rhc  technical 
support  group and J reclinical lead o n  scvcr.~l go\.ernment 
progrmis. I<cti)rc joining 1)IGITAL. in 1990, hc ivorkcd 
in man!. dilikrcnt sotnvarc dcveloymcnt arcas at  Martin 
M~r ic t t a  and  the I)cfc~ise ~nti ,rmition S\,htcms Agcncy 
l-,ric rccci\.cd a R.S. in  computcr scicl~cc fi-om North 
Carolina <:cntral University. 



Further Readings 

The Digilnl Tcchi~icu~/o~~r-r raI  is a refereed, quarterly 
publication of papers that csplorc the foundatiolls 
of DIGITAL'S prodllcts and tccli~~ologies.~~o~/r~zc,l 
content is selected by the Journal Ad\lisory Board, 
and papers are written by DIGITAL,'s engineers 
and engineering partners. Engineers who would 
like to contribute a paper to  theJorima1 should 
contact the managing editor, Jane Rlake, at 
Jane.Blake@ Ijo.dec.com. 

Topics covcrcd in previous issues of the Digital 
Technica,/o~.irrrnlarc as follows: 

Internet Protocol V.6/Preservation of Historical 
Computer Syste~ns/Fortran for Parallel Computing/ 
Server Performance Evaluation and Optimization/ 
Internet Collaboration Software 
Vol. 8, No. 3, 1996, E(:-N7285- 1 S 

Spiralog Log-structured File System/ 
OpenVMS for 64-bit Addressable Virtual Memory/ 
High-performance Message Passing for Clusters/ 
Speech Recognition Software 
VO~. 8, No. 2, 1996, EY-N6992- 1 S 

Digital UNIX Clusters/Object Modification Tools/ 
excursion for Windows Operating Systems/ 
Network Directory Services 
\kl. 8, No.  1, 1996, EY-U025E-1'1 

Audio and Video Technologies/ UNIX Available 
Servers/Real-time Debugging Tools 
Vol. 7, No. 4, 1995, EY-UOO2E-TJ 

High Performallce Fortran in Parallel Environments/ 
Sequoia 2000 Research 
VOI. 7, NO. 3, 1995, EY-T838E-TJ 
~ A ~ ~ a i l a h l e  orrly or!  Ihc I~tertret l  

Graphical Software Development/Systems Engineering 
Vol. 7, No. 2, 1995, EY-U001E-TJ 

Database Integration/Alpha Servers & Workstations/ 
Alpha 21 164 CPU 
Vol. 7, No. I ,  1995, EY-T135E-TJ 
(Aouiluhk orrly on the Intemc~l) 

RAID Array Controllers/Worktlow Models/ 
PC LAN and System Management Tools 
Vol. 6, No. 4, Fall 1994, EY-T11SE-TJ 

Alphaserver Multiprocessing Systems/ DEC OSF/1 
Symmetric M~lltiprocessing/ Scientific Computing 
Optimization for Alpha 
\lol. 6, No. 3, Summcr 1994, EY-S799li-TJ 

Alpha AXP Partners-Cray, Raytheon, Kubota/ 
DECchip 21071/21072 PC1 Chip Sets/ 
DLT2000 Tape Drive 
Val. 6, No. 2, Spring 1994, F,Y-F947E-TJ 

High-performance Networking/OpenVMS AXP 
System Software/Alpha AXP PC Hardware 
Vol. 6, No. 1, Winter 1994, EY-QOl 1 E-TJ 

Software Process and Quality 
Vol. 5, No. 4, Fall 1993, EY-P920E-L)P 

Product Internationalization 
Vol. 5, No. 3, Summer 1993, EY-1'986E-DP 

Multimedia/Application Control 
Vol. 5, No. 2, Spring 1993, EY-1'963E-L>P 

DECnet Open Networking 
Vol. 5, No. 1 ,  Winter 1993, EY-1M770E-l)P 

Alpha AXP Architecture and Systems 
Vol. 4, No. 4, Spccial Issue 1992, EY-JSS6E-DP 

NVAX-microprocessor VAX Systems 
Vol. 4, No. 3, Stlmmer 1992, EY-J884E-L)P 

Semiconductor Technologies 
1/01, 4, No. 2, Spring 1992, EY-152 1 E-I)P 

PATHWORKS: PC Integration Software 
Vol. 4, No. 1, Winter 1992, EY-J825E-1)P 

Image Processing, Video Terminals, and 
Printer Technologies 
Vol. 3, No. 4, Fall 1991, EY-HS89E-L)P 

Availability in VAXcluster Systems/ 
Network Performance and Adapters 
Vol. 3, No. 3, Summcr 1991, EY-I-IS90E-DP 

Fiber Distributed Data Interface 
Vol. 3, No. 2, Spring 1991, EY-HS76E-1)P 

Transaction Processing, Databases, and 
Fault-tolerant Systems 
Val. 3, No. 1, Winter 1991, EY-F58SE-DP 

VAX 9000 Series 
Vol. 2, No. 4, Fall 1990, EY-E762E-1)P 

DECwindows Program 
Vol. 2, No. 3, Su~nmer 1990, EY-t;756E-l>P 

VAX 6000 Model 400 System 
\hl. 2, No. 2, Spring 1990, EY-C197E-DP 

Compourld Document Architecture 
Vol. 2, No. 1 ,  Winter 1990, EY-C196E-DP 

Digid Technicat Journal Vol. 8 No. 4 1996 107 



Call for Authors 
from Digital Press 

Digital Press is an imprint of Butterworth-Heinemann, a major international pub- 
lisher of professional books and a member of the Reed Elsevier group. Digital 
Press is the authorized publisher for Digital Equipment Corporation: The two 
companies are working in partnership to identifjr and publish new books under the 
Digital Press imprint and create opportunities for authors to publish their work. 

Digital Press is committed to publishing high-quality books on a wide variety of 
subjects. We would like to hear from you ifyou are writing or thinking about writ- 
ing a book. 

Contact: Liz McCarthy, Associate Acquisitions Editor, or 
Mike Cash, Digital Press Manager 

DIGITAL PRESS 
31 3 Washington Street 
Newton, MA 02158-1626 
U.S.A. 
Tel: (617) 928-2649, Fax: (617) 928-2640 
E-mail: Liz.McCarthyQrepp.com or 
Mike.Cash@BHein.rel.co.uk 




	Front cover
	Contents
	Editor's Introduction
	AlphaServer 4100 Performance Characterization
	The AlphaServer 4100 Cached Processor Module Architecture and Design
	The AlphaServer 4100 Low-cost Clock Distribution System
	Design and Implementation of the AlphaServer 4100 CPU and Memory Architecture
	High Performance I/O Design in the AlphaServer 4100 Symmetric Multiprocessing System
	Design of the 64-bit Option for the Oracle7 Relational Database Management System
	VLM Capabilities of the Sybase System 11 SQL Server
	Measured Effects of Adding Byte and Word Instructions to the Alpha Architecture
	Further Readings
	Call for Authors from Digital Press
	Back cover



