
Digital
Technical
Journal

SPIKE OPTIMIZER FOR ALPHA EXECUTABLES

ANALYSIS OF MEMORY ACCESS PATERNS

OPENVMS ALPHA VLM

POWERSTORM 4DT GRAPHICS ADAPTER

FAST APPLICATION-LEVEL NETWORKING

Volume 9 Nu~nber 4
1997

Editorial
Jane C. Rl.ike,]Managing Editor
Hclen L. Patterson, Editor
I<atlilecn M . Stetson, E d ~ t o r

Circulation
Catlieri~lc M. Phillips, manager
16-~srine M. Lo\\,e, Adrnini\trator

Product ion
Chrisrn W. Jcssico, Proctuctio~l Editor
Ellzabcrh McGrnil, Typographer
Pcrcl- R. \Voodbury, illustrator

Advisory Board
Thomas F. Gannoo, Ch;iirni.in (Acting)
Scott E. Cutler
Llonald Z. Harbert
William A. Laing
Richard F. Lary
N a n G . Ncmctli
Rober t IM. Supnik

Cover Design
Thc po\\<cr of graphics workstations is mca-
SLII-ed by the spccd a t \vIiich tlic nincliinc
can creatc and manipulate 3-D objccts.
The 1'owcrSrorrii 4 D 6 0 T graphics atlaprcl-
design, a topic featurcd in this issuc, com-
bines Alpha 64-bi t niicroprocessor tcchnol-
ogy and modified rendering technology to
attain high Ievcls ofperformance both o n
leading red-\vorld CAD/Ci%U applications
such as Pro/ENGINEER, and o n widely
accepted industry bencliniarks such as
O p e n G L Viewperf. O u r cover design is
made up o f representative images from thc
Vie\\,perf benchmark prograni and srandard
\~ic\\~scts.

The ll!:,~tul 7'ech111~al,/oo1.rr~1lis a rcfcrccd
journnl published quarterly by Digital
Equipment Col-pot-ation, 50 Nagop l'nrk,
AK02-3/U3, Acron, &LA 01720-9843.

Hal-d-copy subscr~pt~ons can be ordered by
sending A ctlcck in U.S. funds (niade payable
ro lD~girol E q ~ ~ ~ p m c ~ i r Corporation) to rlie
publ~\hcd-by address. Gcncral subscription
rates arc $40 00 (non-U.S. S60) for four issues
,~nd 575.00 (non-U.S. $115) for eight issues.
Univcl-aity and collcgc professors and Ph.D.
srudenrs ill thc clccrricd cnginccring a ~ ~ d com-
purer science fields recejve complimenrarp sub-
scriptions upon request. DIGITAL customers
may q u a w for @ti subscriptions and are encour-
~ g e d to contact their sales reprcscntati\.cs.

Electronic subscriptions are a\,ailable a t
no charge by accessing URL
http://www.digital.wn~/subscription.
This service will send an electronic mail
notification when a new issue is available
on the lnternct.

Single copies and back iss~res can be ordcrcd
by scndjng the rcqucstcd issue's volumc and
numbcr and ,I check tbr 516.00 (non-U.S.
S18) each to the publi\hcd-by ndc11-ess. Recent
issues arc also ava~lable on the Intcrnct at
littp://www.digital.com/d$

LDIGITAL crnployces may order subscrip-
rions rhl-ough Rcadcrs Clioicc d r URI.
http://webrc.das.dec.corn.

Inquiries, .lddrcss cliangcs, and cornpli-
mentar? subscription orders can bc sent
t o the Drgiiai Techr7i~c1lJor1r,lcrlat the
puhl~slied by addrcas or the clccrronic
mdil address, dtjC3digital.com. Inquiries
can also be made by calling rhc jor t rnal
office a t 978-264-7556.

Comments on the content of any paper and
requests ro contact authors are \\,elcorned
and may bc sent to thc ~nanaging editor at
the published-by o r electronic mail address.

Copyright 0 1998 Digital Equipment
Corporation. Copying without fcc is pcr-
mitred provided that such copies arc made
for use in educational institutions by hculty
membcrs and arc not disrributcd for com-
mcrci.11 .idvantagc. Abstracting with credit
ofDigital Equipment Corpor.ltion's author-
s h ~ p 1s pcrnm~tred.

The informarion in thc,/ui~r.~inlis subject
to change \v~rhour noricc and should not
be consrl-ucd os a commitmcnr by Digital
Equipmcnr Corporarion or by thc colnpan-
les hcre~n represcnrcd. Digital Equipnient
Corporacion assumes no rcspolisibility for
any errors rhar may appear in the Jor.~rt?al.

ISSN 0898-901 S

Documcnrar~on Number EC-P9257-18

Book PI-oduction was done by Quantic
Communications, Inc.

The following are rrddcmArks of l)iglt.ml
F.quipmcnr Corpor'ltion. AlpliaScr\~cr,
DEC, DECner, DEC\t.lr~on, DIGITt\L,
tlic DIGITAL logo, D1C;IT.U UNIX,
Opcn\IiLIS, l'o\\.erSrornl, 2nd VkY

IUIC/INFO 1s a rcgisrcrcd rradelnal-k
of E~i\~ironme~lral Sysrems Rese.irch
Instirurc, Inc.

AuroCAD a11d Aurodesk are registered
trademarks of Autodcsk, Inc.

DircccY. hlicrosoti, VisuJ C++, and
Windo\vs N T arc registered tl-adcrnarks
of ~Microsok Corporation.

EDS and Unigaphics arc ~rcgistcrcd
trademarks of Electronic Dam Systems
Corporation.

Hc\vlett-Packard is a rrgistered trademark
of Hewlctt-Packard Company.

IBM is ;i registered rradcnlark oFInrer1inuo11ol
Busiriess ~Mnclii~ies Corpor.loor1.

Intel is a rcgistcrcd rr.~dcmark of Inrcl
Corporation.

klicroStatiori is 3 reg~srcred rr.1dernal.k
of Bcnrlcy Svsrc~ns, Incotyol-arcd

kllPS, 1<4400,and R10000 .>re rradcrn:irks
of MIPS 'rcchnologio, Inc., a \\holly o\vncd
subsidiary ofS111con Gropli~cs, I n c

OpeliGI. and Silicon Graphics are reg~stered
trademarks and Ind1go2 and IIMI'ACT are
rradc~nnrks ofSilicon Grapliics Inc.

Oracle7 is '1 trademark of Oracle Corporation.

OrCAD is a registered trademark of OrCAD,
Incorporated.

Pro/ENGINEER is a registered u-ademark
of Parametric Technology Corporation.

SolidWorks is a registered rrademark of
SoljdWorks Corporatio~).

SPEC is ,i registrrcd trademark ofstandard
Pcrfor~mncc Evaluarion corpora ti or^

Sun is ;I registered rradcmark ofSur
Mic~~osystcmr, IIIC

Svbasc is a rcgisrcrcd rrademark ond SQI.
Scrvcr is a trademark of Sybase, Incorporated.

UNIX is a regisrercd tr.ldcrndrk In rhc Un~rcd
States and other counrrio, liccnscd cuclusively
through S/Open Cornpan\> Ltd.

X Windo\\, Sysrcm is a [I-adcmark of thc
kldss~chuscrrs lnsrlrl~rc otTcchnology

T h e covcr was designed by Lucinda O'Neill
o f t h e DIGITAL Industrial and Gr.ipliic
Design Group. T h c editors thank author
Benjamin 1,ipchnk for supplying the images
used o n the cover.

Contents

Optimizing Alpha Executables on Windows NT
with Spike

Analyzing Memory Access Patterns of Programs
on Alpha-based Architectures

OpenVMS Alpha 64-bit Very Large Memory Design

PowerStorm 4DT A High-performance Graphics
Software Architecture

DART Fast Application-level Networking via
Data-copy Avoidance

Patents

Robcrt S. Cohn, L)a\,id PV. Good\\,in,
and P. Gcoffrc\r Lo\\ncy

Susanne All. Ballc dnd Sinion C,. Stccly, Jr.

Karen L. Noel and N l r ~ n Y. I<nrkhanis

Benjamin N. Lipchak, Thomas Frisingcr,
l b r c n L. Bircsak, ICcitli L. Comcfol-d,
and ~Michael I . lloscliblum

Robert J . LValsh

Editor's
Introduction

In 1992, DIGITAL announced thc
fastest 64-bit RISC microprocessor, the
Alpha, with a clock rate o f 2 0 0 MHz.
Today's Alpha processor remains tlie
leader in performance; the newest gen-
eration operates at 600)MHz, and tlic
next generation will opcrate at grcatcr
than 1,000 MHz - gigahertz spccd.
With the industry's most powcrfi~l
processor in hand, DIGITAL'S cngi-
neers are nrorking to apply Alpha in
ditkrent areas ofcomputing and effect
optimal solutions to computing prob-
Icms. Samples of that work arc prc-
se~ited in this issue and include
programming performmce tools, the
OpcnVMS operating system for very
large memory (VLIM) applications,
graphics adapters for \vorkstations,
and the DART network adapter for
high-end systems.

Spike is a profile-directed perfor-
mancc tool for optimizing Alpha ese-
cutables running on the Windo\vs NT
operating system. Designed spccifi -
cally to improve thc pcrformancc of
large, call-intensi\/c programs, such
as commercial databases, CAD pro-
grams, conipilers, and productivity
tools, Spike has been sho\vn to speed
program execution by as much as 33
percent. Robert Cohn, Ilavc Goodwin,
and Geoff Lowney describe Spike's
nvo components. The Optimizer
modifies code 1a)~o~lt to improve
instruct.ion cache behavior and per-
for~iis hot-cold optimization t o
reduce the number ofinstructions
e x e c ~ ~ t e d on frequent paths through
tlie program. The Optimization
Environment collects, manages,
and applies profile information
transparently for the programmer.

1)igical 'I'echnical Journal

hi experimental Atom-based per-
formance tool preselited by Susanne
Balle and Sirno11 Steely provides pro-
grammers \\lit11 an uncicrstanding of
tlle access pattern behavior of thcir
technical applications. Tlic tool gcn-
crates lustograrns for each niemory
rcferencc in a program, thus aUowing
the programmer t o spot bottlenecks.
T h e authors step through an instruc-
tive case s t~ tdy in the use of the tool
nrith Fortran programs, sho\ving how
different compiler s\\/itches affect the
execution o f a program algorithm.

The OpenVMS Alpha operating
system version 7.1 extends its support
for VLiM applications. The design
work discussed by IGrcn Noel and
Nitin Karklianis f o c ~ ~ s c d on increasing
flexibility for VLM applications and
o n adding system management capa-
bilities. Areas reviewed are the shared
memory objects designed to improve
application scaling on tlie s)~steni,
shared page tabl.cs to reduce applica-
tion start-up/sIiut-doc\~n times, and
the physical memory reservation sys-
tem to allow efticic~it application use
ofsystem components, namely the
translation buffcr.

DIGITAL'S Po\vcrStorm series
of graphics adapters for mid-range
workstations provides cxccprional
performance on thc 1)IC;ITAL UNIX
and the Wiuiio\+a N'1' oprrating sys-
tems. Benj Lipchak, Tom Frisinger,
Karen Bircsak, Keith Comeford,
and mike Rosenblum have written
an inforrnativc tutorial about the
Po\\rerStorm adapter dcsign that \\?as
shaped in large part by thc existing
competitive cnvironmcnt. Thcir dis-
cussion c ~ \ ~ c r s sclcctcd bcnch~l~arl<s

Vol. 9 No. 4 1997

and real-\vorld performance experi-
ences, the advantagcs and disadvan-
tages in choosing a direct-rendering
or an indircct-rcndcring schcrne, and
the ways in \\lliicli tlic c~iginecring
tcaiii csploitcd the Alpha micro-
processor's exceptional floating-
point spccd.

DART is a 622-megabit-per-second
network adapter that connects gigabit-
class ~ien\lorks to gigabit-class 1 /0
buses. It is designed t o increase net-
\vorlc t h r o ~ ~ g h p ~ ~ t and decrease system
overliead. Bob Walsh explains that
die L)AI<T project, started in the
late 1980s, anticipated the need to
address fi~ndarncntal memory band-
width bottleneck issues from a systcm-
level perspective. The main approach
taken in thc DART adapter is data
copy avoidance, \vithout requiring
changes t o system call semantics.

The i~pcorning,/oli~-nnl will be a
special issue that features papers 011

programming langi~ages and tools.
Topics includc C and Fortran paral-
lelizing compilers, the C++ template
facility, alias analysis algorithms,
debuggcrs, and perfomlance tools
for sohvare running on the Windo\vs
NT, I T S I X , and OpcnVlMS operating
systems.

Jane C. Blake
Mur?6zging E ~ / i f o ~ -

Rober t S. Cohn
David Mr. Goodwin
P. Geoffrey Lowney Optimizing Alpha

Executables on
Windows NT with Spike

Many Windows NT-based applications are
large, call-intensive programs, with loops that
span multiple procedures and procedures that
have complex control flow and contain numer-
ous basic blocks. Spike is a profile-directed opti-
mization system for Alpha executables that is
designed to improve the performance of these
applications. The Spike Optimizer petforms code
layout to improve instruction cache behavior
and hot-cold optimization to reduce the number
of instructions executed on the frequent paths
through the program. The Spike Optimization
Environment provides a complete system for
performing profile feedback by handling the
tasks of collecting, managing, and applying
profile information. Spike speeds up program
execution by as much as 33 percent and is being
used to optimize applications developed by
DIGITAL and other software vendors.

Spike is a performance tool developed by DIGITAL to
optimize Alpha eseci~tables on the Windows NT oper-
ating system. This optimization system has two main
components: the Spike Optimizer and the Spi kt:
Optimization Environment. The Spike Optimizer'-.'
reads in an executable, optimizes the code, and writes
out the optimized version. The Optimizer uses profile
feedback from previous runs ofan application to guide
its optimizations. Profile feedback is not commonly
used in practice because it is difficult to collect, manage,
and apply profile information. The Spike Optiniization
Environment' provides a user-transparent profile feed-
back system that solves most of these problems,
allowing a user to easily optimize large applications
composed of Inany executables and dynamic link
libraries (DLLs).

Optiniizing an esecutable image after it has bee11
compiled and linked has several advantages. The Spike
Optimizer can see the entire image and perform inter-
procedural optimizations, particularly with regard to
code layout. The Optimizer can use profile feedback
easily, because the executable that is profiled is the
same executable that is optimized; no awkward map-
ping of profile data back to the source language takes
place. Also, Spike can be used when the sources to an
application are not available, which is beneficial \\/hen
DIGITAL is working with independent software \Ten-
dors (ISVs) to tune applications.

Applications can be loosely classified into nvo cate-
gories: loop-intensive programs and call-intensive
programs. Conventional compiler technology is well
suited to loop-intensive programs. The important
loops in a program in this category are within a single
procedure, which is typically the unit of compilation.
The control tlow is predictable, and the compiler can
use simple heuristics to determine the frequently exe-
cuted parts of the procedure.

Spike is designed for large, call-intensive programs;
it uses interprocedural optimizatio:~ and profile feed-
back. In call-intensive programs, the important loops
span multiple procedures, and the loop bodies contain
p r o c e d ~ ~ r e calls. Co~~sequently, oytiniizations on the
loops must be interprocedural. The control flo\v is

Digiral IPchnicnl Jo~1r1u1

- -

comples, and profile ftcdback is required to accurately
predict tlie freclucntlv executed parts of a program.
Call overhead is large for these programs. Optimiza-
tions to reduce call overhead are most cffcctive c\/ith
interprocedural information or profile feedback.

The Spike Optimizer implements nvo major optimiza-
tions to impro\,e the performance o f the call-intensive
programs just described. The first is code la! .o i~t :~
Spike rearranges the code to improve locality and
reduce the number ofinstruction cache misses. The sec-
ond is hot-cold optirni~ation (HCO):' Spiltc optimizes
the freque~lt paths t h r o ~ ~ g h a procedure at the expense
of the infrequently executed paths. HCO is particularly
effective in optimizing procedures with complex con-
trol flow and high procedure call overhead.

The Spike Optimization En\ironment pro\ides a
s!!stem for managing profile feedback optimization.'
The user interface is sililplc-it requires only t\vo user
interactions: (1) the recluest to start fccdback collec-
tion on an applicatio~i and (2) the recluest to end col-
lection and to use the feedback data to optimize the
application. Spike maintains a database of prof lc infor-
mation. When a rrser selects an application, Spilce
makes an entry in its database for the application and
for each of its component images. For each image,
Spike keeps an instrumented *ersion, an optiniized
\version, and profile infbrrnation. \Vien the original
application is run, a transparency agent s~~bs t i t i~ te s the
instrumented or optimized version o f the application,
as appropriate.

This paper disc~~sscs tlie Spike performance tool and
its use in optimizing Windo\\/s NT-based ~pplicntions
running on Alpha processors. In the followiiig scction,
we describe the characteristics of Wjndo\\.s K'I' -based
npplications. Nest, \ve discuss the optiniizations ~ ~ s c c l
in the Spike Optimizer nnd e\.aluate their eRi.cti\,cness.
We then present the Spike Optimization En\lironment
for managing profile feedback optimization. A sum-
mary ofour res~llts concludes the paper.

Characteristics of Windows NT-based
Applications

To evaluate Spike, we selected applications tliat are
typically used on Alpha colilputers running the
Windo\vs NT operating system. Tliesc applications
jnclude co~iimercial databases, computer-aided design
(CAD) programs, compilers, and personal pt-oducti\l-
ity tools. For comparison, we also included the bench-
mark programs from the SPECint95 suite.* Table I
identifies the applications and benclirnarks, and the
\\$orkloads used to exercise them. All programs are
optimized versions of DIGITAL Alpha binaries and are
compiled \\lit11 tlie same highly optimizing back end
tliat is used on the UNIX and OpenlrMS systems." '1-he
charts and graphs in tliis paper contain data from a

core set ofapplications. Note that \ire d o not haire a full
set ofmeasurements for some applications.

111 obtaining most of the profile-directed optimiza-
tion r e s ~ ~ l t s presented, in this paper, we c~sed the same
input fi)r both training and timing so that \Ire could
luio\\r the limits of our approach. Others in tlie field
have shown that a reaso~iabl!l chosen training input
\ \ f i l l \ield rcliable speedups for other inpirt sets."' Our
experience c o ~ i f r ~ n s this result. For the code layout
results presented in Figure 11, \\:e used tlie official
SPEC timing harness to measure the SI'ECint bench-
rnarlts. This linrncss uses a SI'EC training input for
profile collection and a different reference input for
timing runs.'

Figure 1 is n graph that sho~vs, for each application
and berlchnlnrk, the size of the singlc c sec~~tab le or
L>IL responsible for the majority of the execution
time. The figure contains data for most o f the applica-
tions and all the bcnchniarks listcd in Table 1. Some
Windo\\a NT-based applicatiolis are \,cry large. For
example, I'TC has 30 times more instructions than
GCC, tlic largest SPECint95 benchmark. Large
Windonrs NT-based applications lia\~e thousands of
procedures and millions of basic blocks. With such
programs, Spilte achieves sisni ficant speedups by rear-
ranging the code to reduce instruction cache misses.
Code renrrangcltlent should also rccfucc the \\;orlung
set of the program and the number of irirtual nzemory
page faults, although \\/e have not measured this
reduction.

To characterize a call-intensive application, \\/e
looked at SQLSERVR. We estirnatcd the loop behav-
ior of SQL,SERVR by classifiring each of its procedures
by the average trip count of its most frequently exe-
cutcd loop, assigning a \\.eight to c,lcli procedure
based on the number of instructions eseci~ted in tlie
procedure, and graphing the c~unulati\.e distribution
of instructions executed. The graph is presented in
Figurc 2. Note that 69 percent of the c s c c ~ ~ t i o n time
in SQLSEI<VR is spent in procedures that liave loops
\vith an average trip count less than 3. Nearly all the
r u ~ i time is spent in procedures with loops \\pith all
average trip count less than 16. An insignificant
amount o f time is spent in procedures containing
loops \\,it11 high trip counts. O f course, SQLSEKVR
executes man!: loops, but the loop bodies cross multi-
ple procedLlrcs. To improve SQISF,l<\~ll performance,
Spilte i~scs code layout tech~iiques to optimize code
paths that cross multiple procedures. Also note that 69
percent of the eseci~tion time is spent in procedures
\\.he~-e tlhc entry basic block is the most fi-eque~itl!. exe-
cuted basic block. The entry basic block doli~inates tlie
other blocks in the procedure, and compilers often
find it a con\.enient location for placing instructions,

< CCIllellt LS S L I C I I as register s,i\les. I n SQISERVlt, this p l ~ - a

a poor decision. Our HCO targets this opportunity to

1)igital Technical Jo~t l -11-1l

Table 1
Windows NT-based Applications for Alpha Processors and SPECint95 Benchmarks

Program Full Name TY pe Workload

SQLSERVR
SYBASE
EXCHANGE

EXCEL

Microsoft SQL Server 6.5

Sybase SQL Server 11.5.1
Microsoft Exchange 4.0
Microsoft Excel 5.0

Database
Database

Mail system
Spreadsheet

Transaction processing

Transaction processing
Mail processing

BAPCo SYSmark for
Windows NT Version 1.0

BAPCo SYSmark for
Windows NT Version 1.0

BAPCo SYSmark for
Windows NT Version 1.0
BAPCo SYSmark for
Windows NT Version 1.0
San Diego Users Group
benchmark

Mechanical model
Bench97

Microsoft Word 6.0 Word processing WINWORD

TEXIM Welcom Software Technology
Texim Project 2.Oe
Orcad MaxEDA 6.0

Project management

MAXEDA Electronic CAD

ACAD Autodesk AutoCAD Release 13 Mechanical CAD

Mechanical CAD
Mechanical CAD

cv
PTC

Computervision Pmodeler v6

Parametric Technology
Corporation ProJENGINEER
Release 18.0

SolidWorks Corporation
SolidWorks 97

Bentley Systems Microstation 95
Electronic Data Systems
Unigraphics 11.1
DIGITAL Light & Sound Pack

Microsoft Visual C++ 5.0

SOLIDWORKS Mechanical CAD Intake runner model

USTATION

EDS

Mechanical CAD
Mechanical CAD

Rendering

Brake shoe model

MPEG playback
5,000 lines of C code

MPEG
C1, C2

MPEG viewer

Compiler
C1 : front end
C2: back end

OPT, EM486 DIGITAL FX!32 Version 1.2 BYTEmark benchmark Emulation software
OPT x86-to-Alpha
translator
EM486: x86 emulator

Regional model Environmental Systems Geographical
Research Institute Information Systems
ARUINFO 7.1.1

VORTEX SPECint95 Database SPEC reference
GO SPECint95 Game SPEC reference
M88KSIM SPECint95 Simulator SPEC reference
L I SPECint95 LISP interpreter SPEC reference

COMPRESS SPECint95 Compression SPEC reference
IJPEG SPECint95 JPEG compression/ SPEC reference

decompression
GCC SPECint95 C compiler SPEC reference
PERL SPECint95 Interpreter SPEC reference

rno\,c instructions frorn the entry basic block to less
frcclucntly cscc~~ted blocks.

Figure 3 prcscnts the loop behavior dntn for many o f
thc Windo\vs N1'-bused applications listcd in Tnblc 1.
Notc tlint thc applications fall into tlircc groups. Thc
 no st ci~ll-intcnsi\?e app1ic:ltions arc SQLSERVR,
ACAL), and EXCEL, \\,hich spend ;~pprosimatcly 70
pcrccnt o f their run time in proccdurcs with an aver-
ngc trip count less than 2. C2, WINWORD, 2nd
USTATION arc moderately call intensive; thcy spend

approsimatcly 40 pcrccnt o f their run time ir.1 loops
with an averagc trip c o u n t less than 2. MAXEDA and
TEXIM are loop jntcnsi\re; they spend approsimatcl!!
10 percent o f their r u n timc in loops with a11 average
trip count less than 2. TEXIM is dominated by n single
loop \.clitl~ an inrerage trip co~unt of 465.

We f~~ r t l i c r characterized the nonlooping proce-
dures by control tlo\\: If a procedure consists o f only a
few basic blocks, tccliniques s~uch as inlining are cfkc-
ti1.e. To esti~natc thc control tlow complexity o f

APPLICATION OR BENCHMARK

KEY:

- INSTRUCTIONS
- - - BASIC BLOCKS

Figure 1
Sizc ofWindo\\.s NT-L>.lscd Applications anti Ucnch~n.irlts

SQLSEl<Vl<, wc classjficd each o f its procedures by thc
numl?cr of.basic blocks, assigned a \vciglit t o each pro-
ccdurc based on the nurnbcr o f i n s t r ~ ~ c t i o n s executed
in the procedure, .ind graphed a c u l n ~ ~ l a t i \ ~ c distl-ibu-
tion o f the instructio~xs c x c c ~ ~ t c d . \Vc restricted this
anal!rsis t o proccclures that ha\^ loops \\,it11 .ill ajrernge
trip C O L I I ~ ~ less tI1a11 4. (These proccc l~~res account
for 69 pcrccnt o f thc c s e c ~ ~ t i o n timc o f SQLSERVR.)
T h e line labclcd ALL in F i g ~ ~ l - e 4 rcprcscnts thc results
o f o u r an,il\/sis. N o t e that 90 DCI-ccnt o f the run time "

1 2 4 8 l6 32 64 of the nunlooping procedure: is spcnt in procedures
AVERAGE TRlP COUNT

\\.ith more than 16 basic bloclis. l 'he line labcled
FIUTEKEl) in F i g ~ ~ r e 4 represents the l-csults \\,hen i1.c

Figure 2 ignored basic blocks that are rarely csccuted. Note
Loop 13eIia\.ior ofSQISEli \~l<

that 63 pel-cent o f the run tililc o f the nonlooping pro-

AVERAGE TRIP COUNT
KEY:

+ SQLSERVR -+ WINWORD

-t ACAD * USTATION

4 EXCEL 4 MAXEDA

- 4 - C2 + TEXlM

Figure 3
I..oop Reha\ior of Windo\\,s NT-based Applicnt~ons

- - - - - - - - - - - - - -
- - I - -

L *
, I

7

, , , , , , ,
0 16 32 48 64 80 96 112 128

SlZE IN BASIC BLOCKS

KEY.

- ALL
- - - FILTERED

Figure 4
Complcsic of Procedures in SQLSERVR for Procccturcs
\virh an A\,cr~gc Trip Count Less T h a n 4, Which Account
for 69 Percent of the Execution Time

cedurcs is spent in proced~tres \\~itli more than 16 basic
blocks. In SQLSElVR, procedures are largc; Inany
b. aslc .' . bloclts arc executed, and many arc no t . Spike

~ l scs code layout and H C O t o optimize the frcq~tcntly
executed paths through large procedures.

Figure 5 presents the control flo\\~ d a t , ~ for many o f
the Windo\vs NT-based applications listed in Table 1.
Again \\,c mcasurcd only nonlooping proccdurcs and
ignored basic blocks tliat are rarely e x e c ~ ~ t e d . Note that
a11 the applications have large p r o c e d ~ ~ r c s . More than
halfthe run timc o f t h e nonloopi~ ig proccdurcs is spent
in proccdurcs that execute at least 16 basic blocl<s.

To estimate proccdurc call overhead, \ire counted
the number o f instructions executed in the prolog and
epilog o f each procedure. This estimate is conserva-
tive; it ignores the cost o f the procedure linkage and
argument setup and measures only the number o f
instructions used t o create o r remoIie a frame from the
stack and t o save o r restore preserved registers. I n
SQLSERVR, 1 5 percent ofal l instructions are in pro-
logs and epilogs. H C O rcnio\ies approximately o n e
half o f this o\~erhcad.

T h e chart in Figurc 6 sIio\\~s the procedure call over-
head for most o f the w i n d ~ \ \ ~ ~ NT-based applications
listed in Table 1 . T h e ovcrliead ranges horn 23 percent
t o 2 percent. 'l-lic applications are ordered according t o
the amount o f r u n timc in procedures \\,ith an average
trip count less than S in Figure 3. T h e call o\rerhead is
roughl!. correlated \\!it11 the amount o f run time in lo\\,
trip count proccdurcs. Figure 6 includes data for some
o f the SPECint95 benchmarks, \\/hich arc ordered by
the amount o f run time i l l procedures ulith an average
trip count less than 2 . T h c amount o f call o\ierhead for
these benchniarl<s ranges from 24 percent t o 0 percent
and is more strongly correlated with the amount of run
time in low trip count procedures.

Optimizations

T h e Spike Optimizer is organized like a compiler. I t
parses an exccutablc into an intermediate representa-
tion, optimizes the rcprcscntation, and \\,rites o u t an
optimized exccutablc. T h e intermediate representa-
tion is a list o fAlpha machine i ~ ~ s t r u c t i o n s , annotated

0- 16 32 48 64 80 96 112 128
SlZE IN BASIC BLOCKS (FILTERED)

KEY.

t SQLSERVR (69%) + WINWORD (49%)

- ACAD (82%)

. EXCEL (71%) -&- MAXEDA (13%)

- C2 (44%)

Note that the number that appears after Ihe appl~cat~on name ~nd~cates the percentage of the total
execution tlme spent In procedures with an average t r ~ p count less than 4.

Figure 5
Coniplcsit)~ of I'roccd~~res in \i\'indo\\.s NT-based Applications for Proced~~res with 'In Aver.~gc Trip Count Less T h ~ n 4

Vol. 9 No. 4 1997 7

APPLICATION OR BENCHMARK

Figure 6
Procedure Call O\,erllcad(Ti~nc Spent in Prolog and Epilog)

\\,it11 a small amount of additional information. O n top
of thc intcrrncdiatc representation, the optimizer
builds compiler-like structures, i~icluding basic blocl<s,
procedures, a flour graph, a loop graph, and a call
graph." Images arc large, and thc algorithms ancl rcp-
resentations ~ ~ s c d in the optimizer nii~st be time and
space cfficicnt.

The Spike Optimizer performs an intcrproccclur,~l
dataflow analysis to s~~mmnr izc register magc \\.itlli11
tlie image." This cnablcs opti~nizatio~is to use and
reallocate registers. The interprocedural dat.~tlo\\, is
f s t , requiring less than 20 seconds on tlic largcst
applicatiolls we tcstcd. Memory dataflow is nii~ch
Inore difficult to anal!lzc because of the limited infor-
matior1 availablc in an csecutable, so the optimizer
analyzes only rcfcrcnccs to the stack.

Optimizations rc\\,ritc tlie intermediate rcprcscntn-
tion. The importnnt optimizations are codc layout and
HCO. The Spike 0ptimizc1- also pcrforms additional
optimizations to reduce the o~~erhcad of shnrcd
libraries.

Code Layout
Wc dcri\red our coclc layo~rt algoritli~ii from prior \\,ork
on profile-guided codc positioning by I'cttis a i d
Hansen.TThc goal of the alsorithm is to reduce
instruction cachc 111iss. Our algorithm consists ofthi-cc
stcps. The first stcp reorganizes basic blocks so that the
most frequent paths in a procedure are scclucntial,
which permits more efficient use ofcachc lines and the
exploitation of instruction prefetch. Thc second stcp
places procedures in memory to avoicl instruction
c;lclie contlicts. l 'hc third step splits proccd~rrcs into
hot and cold sections to i~nprovc the performance of
procedure placc~iicnt.

The follon,ing csnlnplc illustrates basic block ~-cor-
ganization. Considcr thc flour graph in F i g ~ ~ r c 7, \~ . l~c rc
cacli node is a basic block that contains four instri~c-
tions. Tlie ar1i1s of the conditional branclics arc labclcd

n~ith thcjr rclati\.c probabilities. Assume t h ~ t tlic tarset
is an Alpha 21 164 processor." Each instruction is
4 bytes, and thc instruction cache is organized into
32-byte lines; each cache line holds n\!o of the four-
instruction basic blocks. A siniplc b~.cadth-first codc
layout orclcrs tlic codc AP, C1) EF GH, and tlie com-
mon pxth AI31)FGH requires foul- caclic lincs. T)\.o
cachc lincs (C1) and EF) each contain n basic block
t h ~ t is i~ifrcq~~cntl!. used but \\rhicl~ m u t bc resident iu
the cachc fix the t'rcquently i~scd block to bc c\-ccutcd.
If\\.c order the codc so that thc common path is adja-
cent (AB OF GH CE), the infrcqucntly ~ ~ s c d bloclts arc
in the sanic l i~ic (CE), and the!, d o not nccd to be in
the cachc to execute the frequently used blocks.

Straight-linc code is also bcttcr rlblc to exploit
instruction prcfctch. O n an instruction c.iche miss, the
Alpha 21 164 processor prefetchcs the nest four cachc
lines into a refill buffer. After an instri~ction cnclic riuss,
the processor k c q ~ ~ c ~ i t l y is able to cxccutc a s~r:ligIit-
line cock path \\'itliout stalling if the codc is in the
scconcl-lcvcl cuchc. A brancli that is t,tkcn npically
req~rircs 311 ,~dditional cache miss if the target of tlie
branch is not nlrcad!' in the instruction c:lchc.

\Vc rcorganizc tlie basic bloclis using ,I simple,
greed!. algorithm, similar to the trncc-picking algo-

Figure 7
Basic Block Ilcorganization

Vol. 9 So. 4 1997

rithm ~~scc i in tracc schedul i~ig . '~ Our goal is to find a
nc\\, ordcring of the basic blocks so that thc fall-
t h r o ~ ~ g h path is ~lsually taken. We sort the list of tlo\\l
graph cdgcs by esccution coulit and proccss thcnl in
order, beginning with the highest tlalucs. For each
edgc \vc makc the destination basic block immcdiatcly
follo~v tlic source block, unless the source has already
been assigncd a successor or the dcstinntion has
already bccn assigned a predecessor.

Wc place procedures to avoid conflicts in thc
instruction cache. An Alpha 21164 has a primary
instruction cache of 8 kilobytes (la) that holds 256
lines of 32 bytes each. Two instructions conflict in thc
cacl~c if tlicy arc more than 32 bytes apart and may to
the samc cache line, specifically, if ~~/(/re.s.s0/32 111od
256 = ac/c/t.ess1/32 mod 256. Our stratcgv is to placc
proccdurcs so that frequently called proccdurcs arc
near thc caller. Consider the simple example in Figurc
S. Assume procedure A calls proccdurc C in a loop. A
and (: map to the same cache lines, so on each call t o
C, (; rcplaccs A in the cache, and on each return from
C, A rcplaccs C. Ifwe reorganize the code s ~ ~ c h that C
follo\\ls A, both A and C can fit in the cachc at once,
and thcrc arc no conflict rnisscs whcn A calls C.

\Vc use another greedy algorithm to placc procc-
durcs. The csample presented in Figurc 9 illustrates
the steps. \Vc build a call graph and assign a \vcight to

each edge based on the numbel. of calls. If thcrc is
more than one edgc \\ritli the samc source and destina-
tion, \\fc compute thc sum of the execution counts and
delete all but one edgc. Figurc 93 slio\\,s the call graph.
To place thc proccdurcs in the graph, w e sclect the
most heavilv tvcightcd edge (13 to C), record that thc
two nodes s h o ~ ~ l d he placccl adjacently, collapse the
two nodes into one (B . C) , and merge their cdgcs (as
shown in Figure 9b) . Wc again select the most hca\~ily
wcighted edge and continue (Figure 9c) until the
graph is reduccd to J single tiode A.D.B.C (Figure
9d) . The final node contains an ordering ofall the pro-
ccdures. Special care is taken to ensure that \\.re rarely
require a branch to span more than the maxinium
branch displacement.

The effectiveness of proccdure placement is limited
by large proccdurcs. In the PERL benchmark from
SPEC, \t,hich is onc of the smallest programs \\,c stud-
ied, one frequentl!f esecutcd proccdure is larger than
32 KB, four times the size of the instruction cache on
the Alpha 2 1 164 proccssor. In SQLSERVR, more than
half the run time is spent in proccdures with more
than 16 basic blocks. To address this problem, wc split
procedures into hot and cold sections and treat each
section as an independent procedure \\!hen placing
procedures. To split a procedure, examine each
basic block and use a threshold on the execution count

Figure 8
I'roccdi~rc l ' lncc~~ic l~t

Figure 9
Step in the Prrxcdure Phce~nent Algorithm

Digital Technical Jo~trnul

-

to dccidc if a basic block is cold. We LISC a single
threshold for thc cntirc program. The threshold is
chosen so that the total cxccution time for all tlie basic
blocks bclonr the threshold constitutes n o more than
1 percent of tlie execution time of the progl-.~~n.
Proccd~~rcs \\lit11 both hot and cold basic blocks arc
split; other\vise, they are lelt int.ict.

Figure 10 illustrates the iniporta~ice of proccdurc
splitting. Thc figurc charts thc spccdup on SQLSERVlq
running on an Alpha 2 1064 \v~rks ta t ion ,~Vor the
components of our code layout algorithm. Thc bar
graph indicates that chaining basic blocks or placing
procedures r c s~~ l t s in a speedup of lcss than 4 pcrccnt,
but placing procedures after splitting yields a 15 per-
cent spccdup. Using all our optimizations (chaining,
splitting, and placing) togcthcr produces a 16 pcrccnt
speedup.

Figure 1 1 presents the speedups from code layout for
the Windo\vs NT-based applications and tlie Sl'ECint
benchmarks running on an Alpl i~ 21164 \vorltstation.
Spccdups rdngc horn 45 pcrccnt to 0 percent; most

3
0
w 5
W
n ~~~~ CHAIN PLACE PIACEISPLIT ALL
(" 0

CODE LAYOUT ALGORITHM COMPONENT

Note that this data is for the SQLSERVR application running on an
Alpha 21 064 microprocessor.

--

Figure 10
Spcedup for (:ode Layo~~t b y Opti~nizarion

applications sho\\r a noticcable impro\,enicllt. The
leftnlost seven Windows NT-based applications
(SQLSEIWR through TEXIM) are ordercd by thc
amount of time spent in proccdurcs n~itli a n avcrage
trip count lcss than 8 in Figure 3. Note that all but the
most loop-intensive application show a significant
speedup from code layout. Tlircc programs show min-
imal spccdup: TEXIM is dominated by a singlc loop
that fits in the instruction cache, and IJPEG and
COMPRESS are dorninntcd by nvo or tlirec small
loops. Thcsc programs d o not lia\,e an apprcciable
ali1oLlnt of instruction caclic miss; changing tlie code
layout cannot i~npro\,c tllcir pcrforniance.

Hot-Cold Optimization
Hot-cold optimization is a gcneralization of the
proccdurc-splitting tcchnicluc ~ ~ s c d in our codc layout
algorithm.' tk optiniizc tlic hot part of thc proccdurc
(ignoring tlie cold part) by cliniinnting all instructions
that arc required olzly by the cold pnrt. To iniplcnicnt
this optimiz~tion, \are creatc a hot procedurc by copy-
ing the frequently executed basic blocks of a proce-
dure. All calls to the original procedure are redirccted
to thc hot procedure. Flo\\. paths in the hot proccdure
that target L ~ L I S ~ C blocks that nrcrc not copied arc redi-
rcctccl to thc appropriate basic block in the original
(cold) proccdurc; that is, tlic tlo\\rs jump into tlic mid-
dlc of the original proccdurc. Wc then optimize the
hot proccdurc, possibly at thc cspense of thc tlo\\a
that pass tlirough the cold path.

HCO is best understood by \\.orking through an
estc~ldcd example. Considcr the procedurc f o o
(sho\\.n in Figure 12), \\diich is a simplified vcrsion of
a procedure fiom the Wincio\\ls NT kcrncl.

U
(I)

APPLICATION OR BENCHMARK

Figure 11
Specdup from Code Layout

\4>l. 9 No. 4 1007

1 foo: I d a sp,l6(sp) ; a d j u s t s tack
2 s t q sO,O(sp) ; save S O
3 s t q ra,8(sp) ; save r a
4 add1 aO,l,sO ; SO = a0 + 1
5 add1 aO,al,aO ; a0 = a0 + a1
6 bne sO,L2 ; branch i f SO != 0
7 L1: b s r f l ; c a l l f l
8 add1 sO,aO,tl ; t l = a0 + SO
9 s t 1 t l,40(gp) ; s t o r e t l

10 L2: l d q sO,O(sp) ; r e s t o r e SO
11 Ldq ra,8(sp) ; r e s t o r e r a
12 Lda sp,-16(sp) ; a d j u s t s tack
13 r e t (r a) ; r e t u r n

Figure I2
Siniplificd Vcrsio~i of a Procedure from thc Windo~vs NT
Kerncl

Assume that the branch in line 6 of f o o is '~lmost
al\\!ays taken and that lines 7 through 9 arc almost
ncvcr cxccuted. When \Ire copy thc liot part o f t l ~ c pro-
cedure, we csclude lines 7 through 9 of f o o . Thc
rcsultilig procedure f o o 2 is shown in Figure 13.

1 foo2: Lda sp,l6(sp)
2 s t q sO,O(sp)
3 s t q ra,8(sp)
4 add1 aO,l,sO
5 add1 aO,al,aO
6 beq s0,LI
7 Ldq sO,O(sp)
8 l d q ra,8(sp)
9 Lda sp,-16(sp)

10 r e t (r a)

Figure 13
Hot l'roccdure

Note thc rcversal of the sense of the branch fi-0111

b n e in f o o to b e q in f 0 0 2 and tlie changc of thc
branch's target from L 2 to L 1 . All calls to f o o are
redircctcd to t11c hot procedurc f 0 0 2 . If thc branch in
line 6 of f 0 0 2 is taken, then control transfers to line
7 o f f oo, \\diich is in the rniddlc of the original procc-
durc. Once passcd to tlie original proccdurc, control
ncvcr passcs back to the hot procedure. This fcati~rc
of HCO c~lablcs opti~nization; \\,lien optimizing the
hot proccdurc, \Ire can rclas some of the constraints
imposed by the cold procedure.

So hr , wc have sct up the hot proccdurc for opti-
mization, but we havc not niadc thc proccdurc any
fastcr. Now wc show IIOW to optimize tlic procedure.
Thc hot p roccd~~re n o longer contains n call, so we can
dclctc the save and restore of the return addrcss in
lines 3 and 8 o f f 0 0 2 in Figurc 13. Ifthc branch trans-
fers control to L 1 in the cold p roccd~~rc f 00, \\/c must
arrangc for r a to bc saved on the stack. In gcncl-31,
\\.licnc\~er \\?c cnter the original proccdurc fi-om tlic
hot proccdurc, we must fix up the statc to match thc
cspcctcd statc. We call the fix-up operations compcn-
sation codc. To insert colnpensation codc, \\!c crcxc 3

s t ~ ~ b 2nd rcdirect the branch in linc 6 of f 0 0 2 to

branch to the stub. The stub saves r a on tlie stack and
branches to L 1 .

Ncst, note th;lt the instruction in line 5 of f 0 0 2

\\!rites ao , but thc value of a 0 is never read in the hot
procedure. a 0 is not truly dead, Iio\\tever, because it is
still read if the branch in linc 6 of f 0 0 2 is taken.
Therefore, \;\re delete linc 5 from the hot procedure
and place a copy of the instruction on the stub. HCO
tries to eliminate the i~scs of prcscr\led registers in a
proccdurc. Prcscrved registers can be more expensive
than scratch registers because they 111~1st be saved and
restored if they are uscd. Preserved registers are typi-
cally used nrhen the lifetime of a value crosses a call. I n
the hot procedure, no lifctinic crosses a call and the
use of a preserved registcr is unnecessary. Wc rename
all uses of S O in the hot procedurc to use a free scratch
registcr t 2 . Wc insert a copy on the stub from t 2 to
s 0. We can noiv eliminate the save and restore instruc-
tions in lines 2 and 7 of Figi~rc 13 and place the savc
o n the stub.

We have eliminated all references to the stack in
the hot procedure. The stack adjusts on lilies 1 and 9
in Figure 13 can bc deleted from the liot procedure,
and the initial stack adjust can be placed in the stub.
The final code, including the stub s t u b 1 , is listed in
Figure 14. The number ofinstructions executed in the
frequent path has becn reduced from 10 to 3. If thc
stub is taken, then the fill1 10 instructions and An extra
copy and branch are esccutcd.

1 foo2: add1 aO,l,t2
2 beq t2,stubl
3 r e t (r a)
4 s t u b l : Lda sp,l6(sp)
5 s t q sO,O(sp)
6 s t q ra,8(sp)
7 add1 aO,al,aO
8 mov t2,sO
9 b r L1

Figure 14
Optimized Hot l'rocedilrc

Finall!,, \ire \\mould liltc to inlinc the liot procedi~rc.
Copies of instructions 1 and 2 can be placed inlinc.
For the inlined bra~lch, \\.c must create a new stub that
materializes the return addrcss into r a before transfcr-
ring control to s t u b I .

Escept fi,r partial i nlini ng, ulc have im plernellted all the
HCO optimizations in Spikc. Thcsc optinlizations are

w Partial dead codc clirn~nat~on'~-the rerno\lal of
dead codc in the liot proccdurc

Stack pointer adjust climinntion-the remo\lal of
the stack adjusts in the hot procedure

Preserved rcgistcr elimination-the removal of the
save and restore of prcscr\rcd registers in the hot
procedure

Digital Tcch~~ical Journal

Peephole optimization-tile rerno\ral in tlie hot
p r o c e d ~ ~ r c o f sclf-assignments atid conditio~lal
branches with an altvays-false condition

Figure 15 shows coverage statistics for the H C O
optimizations. Covcragc represents the pcrccntfigc of
cuecution tilnc spcnt in c3ch category. compute
co\rcruge, urc .~sstgncd each procedure to a cntcgorp
and then for each catcgory calculated thc total numbcr
of instructions cxecutcd by its proccdurcs. The catc-
gory OPTIMIZEI) indicates the set of proccdurcs
optimized LJ!~ HC:O. Tlic portion of the csecution
time spent in thcsc proccdures is typically 60 pcrccnt
b i ~ t often I~ighcr. The category INFKEQUENT is the
set of proccdurcs \\,host csccution times arc so small
(Icss than 0.1 pcrccnt of the total time) that \\,c did not
think it was \\~orth\\.hilc to optimize the procedures.
Ignoring procedures \\,it11 slnall esecution times ,~Ilo\\,s
us to optimizc l c s than 5 percent of the ins t r~~ct io~is i l l

a program, a significant reduction in nptimizcr time.
The category NO SPLIT represents thc proccdures
that n7e could not split into hot and cold parts bccausc
all basic blocli~ IlaJ similar execution counts. The catc-
gory SP MOl)IFlF,I) contains proccdurcs in \\.Iiich tlzc
stack pointer is modificd akcr the i~liti.11 stack adjust in

the prolog. Wc dccidcd not to optimize these proce-
dures, but it is possible to d o so with extra analysis.
Note t l ~ a t t11c csecution time spent in this category of
proccdurcs is sniall except for in C2, whcre the cate-
gory contains nvo procedirres and thc coverage is 7
pcrccnt. Finnlly, t l ~ c catcgory 1\10 ADVANTAGE rep-
resents thc proccdurcs that \\?crc split but that thc
optimizer \\,as not able to in~pro\,e.

Figure 16 sJlo\rs the overall reduction in path
length as a rcsi~lt oEHCO, broken do\vn LJ!. op t imi~n
tion, A/Iost of tlie reductio~i in path Icngtli comes
eq~iall!~ from the removal of unncccs,lry save and
restorc instructions and from the rcnio\~al of partial
dead codc. Stack pointer adjust elimination and pecp-
holc optimization result in smnllcr additional gains. A
large pccpliol~ category is usuall!, the r c s ~ ~ l t of a sa\,c
and rcstorc of n presencd register t h ~ t is made Ltnnec-
essat-! by. HCO; the restorc is co~i\-crtcd to a self-
assignment by copy propagation, which is then
rcrno\rcd by pccpliole optimization.

HCO is most cffcctive on c:ill-intc~isivc programs
such as SQI,SF.l<VR, ACAl), and (:2, \vhcre we
climiuatc CLIIIS \\'lien creating tlic hot proccdurcs. For
LVINWORI), thc spccdup is small bcc:iusc coverage is
lo\\,; xvc could not f nd a \\.a!; to split thc proccdures.

KEY

0 NO ADVANTAGE
a SP MODIFIED

NO SPLIT
INFREQUENT
OPTIMIZED

APPLICATION OR BENCHMARK

nnnnnn
1 IHI I I IUI I

Figure 15
HCO Covcmgc by lisccution Ti~nc

I 1)igital Technical Journal

APPLICATION OR BENCHMARK

KEY:

0 PEEPHOLE
n SPADJUST

DEAD CODE
SAVEIRESTORE

Figure 16
Reduction in Path Lcngth As a Result of MCO

For EXCEL, HCO \\/as able to split tlie procedures,
but there is ofien a call in the hot path. Inlining may
help in optimizing EXCEL, but frequently the call is
to a shared library.

HCO is less effective on loop-i~~tensive programs
such as USTATION, MAXEDA, and TESIM. HCO
provides a framework for optimizing loops, and
Chang, Mahlke, and Hwu have sho\\/n that eliminat-
ing tlie infrequent patlis in loops enables additional
optimizations, such as loop invariant renioval."
Ho\\rever, our current implementation of Spike
includes almost n o information about the aliasing of
niemor!l operations; it can only optimize operations to
local stack locations, such as spills of registers.

A leaf procedure is a procedure that does not
contain a procedure call. Figure 17 compares the
amotult of time spent in leaf procedures before and
after HCO is applied. By eliminating infrequent
code, HCO is able to eliminate all calls in p roced~~res
that represent 10 percent to 20 perccnt of the execu-
tion time in C2, ACAD, SQLSERVR, and MASELIA.
For the other Windows NT-based applications, the
increase in time spent in leafprocedures is very small.
Most Windo\\rs NT-based applications spend much
less than half the time in leafprocedures. To improve

tlie performance of these applications, an optimizer
needs to improve the performance of code with calls
in the frequent path.

Code size and its effect on caclie behavior is a major
concern for us. In large applications, locality for
instructions is present but not high. Ifan optimization
decreases path length b ~ ~ t also decreases locality as a
side effect, tlie net result can be 3. loss in performance.

Figure 1 S sl~o\\ls tlie total increase in code size as a
result ofoptimization. HOT + COLD is the part of the
increase that comes from replacing a single procedure
with the original procedure plus a copy of the hot part.
STUB is the increase attributed to stub procedures.
Oxlerall, the increase in size is small. The maximum
increase is 11.6 percent for C2. SQLSERVR has the
best speedup and is only 3.1 percent larger. Looking at
the increase in total code size is misleading, however.
H C O is not applied to procedures that are executed
infrequently, \vhicli typically account for more than 95
percent of the instructions in a program, so tripling
the size ofoptimized procedures \\lould result in only a
modest increase in code size. Note that tripling the
size of tlie active part of an application usuall!/ disas-
trously decreases perforniance.

Digital Technicd journal

APPLICATION OR BENCHMARK

KEY: - ORIGINAL
+ AFTERHCO

Figure 17
Timc Spcnt in Lcaf l'roccd~~rcs before and nticr H<;O

For this reason, we also measured the increase in
code size based on the procedures that \\!ere optimized.
Figure 19 compares the total sizes of the hot proce-
dures with the total sizes of the original procedures
from \\,hich they were cleri\red. For each procedure, by
copying just the f ieq~~entl!~ executed part of the p u c e -
dure, \\le excluded about 50 percent of the original.
Nest, \\!c eliminated code tliat was 6-equentlv executed
but only reachable throi~gli a11 infrequently csccuted
path and therefore unreachable in the hot proccdurc.
This code usually represents only 1 percent of the total
size of a procedure. Finally, \ire optimized the hot pro-
cedure, reducing the remaining code size by about
10 percent, tvhich is 5 percent of tlie size oftlic origi-

nal procedure. The final sizes o f the hot procedures as
percentages of tlie sizes of the original procedures
arc sho\\ln in the .line labeled HOT. Making the most
frequentl!, executed part of a program 50 percent to
80 perccnt smaller yields a big impro\vement in
instr~~ction cacl~e behavior; ho\\ie\~c~-, it \i/ould be ~nis-
leading to attribute this i~npro\rement to HCO, since
our code layout opti~nization achieves tlie same result.
When HCO is enabled, the cache layout optimizations
are run after HCO. The baseline \ire cornpare against
also has cache optimizations enabled, so improve-
ments attributed to HCO are impro\rcmcnts be!~ond
those tliat the other optimizations cdn make. HCO
does makc thc fieq~~entl!! executed parts 10 percent

APPLICATION OR BENCHMARK

KEY:

t- TOTAL
+ HOT+ COLD - STUB

Figure 18
O\rcrall Incrcnsc in Code Sizc .~fter HCO

Digital Technical Journal Vol. 9 So. 4 1997

KEY: APPLICATION OR BENCHMARK

+ TOTAL
-c- COLD
-c- HOT - STUB

Figure 19
Sizc of Optimized Proccdurcs aftcr HCO

smaller, but we did not see significantly better instruc-
tion cache behavior when we ran programs with a
cache simulator.

If we were to perform partial inlining, only the hot
procedure would be copied. Since the hot procedure is
less than half the size of the original procedure, partial
inlining would greatly reduce the growth in code size
due to inlining.

The line labeled COLD in Figure 19 shows how the
size of the cold procedure is affected by HCO. When
we redirect all calls to the hot procedure, some code in
the original procedure becolmes unreachable. The
amount of unreachable code is usually less than 10
percent, which is much smaller than the 50 percent of
the code we copied to create the hot procedure. The
infrequent paths in a procedure often rejoin the fre-
quent paths, which makes it necessary to have copies
of both types of paths in the original procedure.

The line labeled STUB shows the code size of the
stubs, which is very small. A stub contains the com-
pensation code we introduce 011 a transition from
a hot routine to a cold routine. We also implemented a
variation of H C O that avoided stubs by reexecuting
a procedure from the beginning instead of using a stub
to reenter a routine in the middle. I t is usually not pos-
sible to reexecute the procedure from the beginning
because arguments have been overwritten. Given the
small cost of stubs, we did not pursue this method.

The line labeled TOTAL shows that H C O makes
the total code (H O T + COLD + STUB) 20 percent to
60 percent bigger. A procedure is partitioned so that
there is less than a 1 percent chance that the stub and
cold part are executed, so their size should not have a
significant effect on cache behavior as long as the pro-
file is representative.

Figure 20 shows how splitting affects the distri-
bution of time spent among different procedure sizes
for two programs where H C O is effective (C2 and
SQLSEl<VR) and hvo progralils where ~t is not
(MAXEDA and WINWORD). For the graphs shown
in parts a through d of Figure 20, we classified each
procedure by its size in instructions before and after
H C O and plotted two cumulati\le distributions ofexe-
cution time. The farther apart the two lines, the better
HCO was at shifting the distribution From large proce-
dures to smaller procedures. Note that most of the
programs spend a large percentage of the time in large
procedures, which suggests that optimizers need to
handle complex control flow well, even if profile infor-
mation is used to eliminate infrequent paths.

Managing Profile Feedback Optimization

Profile feedback is rarely used in practice because of
the difficulty of collecting, managing, and applying
profile information. The Spike Optimization Environ-
ment' provides a system for managing profile feedback
that simplifies this process.

The first step in profile-directed optimization is to
instrument each image in an application so that when
the application is run, profile infor~nation is collected.
Instrumentation is most commonly done by using a
compiler to insert counters into a program during
compilation'%r by using a post-link tool to insert
counters into an image. ' 9 , 20 Statistical or sampling-
based profiling is an alternative to counter-based tech-
niques."," Some compiler-based and post-link systems
require that the program be con~piled specially, so that
the resulting images are only usehl for generating
profiles. Many large applications have lengthy and

Digital Technical Journal Vol. 9 No. 4 1997 15

MAXIMUM ROUTINE SlZE (INSTRUCTIONS)

KEY:

* HCO WEIGHT
+ ORIGINAL WEIGHT

(a) SQLSERVR

10 30 50 70 90 110 130 150 170 190

MAXIMUM ROUTINE SlZE (INSTRUCTIONS)

KEY:

+ HCO WEIGHT
t ORIGINAL WEIGH I

(c) WINWORD

MAXIMUM ROUTINE SlZE (INSTRUCTIONS)

KEY: - HCO VJEIGHT
-+- ORIGINAL WEIGHT

(b) C 2

MAXIMUM ROUTINE SlZE (INSTRUCTIONS)

KEY:

+ HCO WEIGHT
+ ORIGINAL WEIGHT

(d) lWE1)A

Figure 20
Curnulativc Distribution of Escc~~t io~i Tirnc b!. l'roccdul-c Sizc bcforc and akcr HCO

cornples build procedures. For these applications,
requiring a special rebuild o f the application to collect
profiles is an obstaclc to tlie use of profile-dircctcd
optimization.

Spike directly instruments the final proctuction
images so that a special compilatioll is not rcquircct.
Spike does require that the images be linked to include
relocatiorl information; ho\\~ever, including this cstra
information does not increase the r l ~ ~ ~ n b e r of i n s t r ~ ~ c -
tions in the image and does not pre*ent tlie compiler
from performing f i l l optiniizations when gcncrating
the image.

Most applications consist o f a mail1 excc~~tablc and
many DLLs. Ins t r~~ment ing all the images in an appli-
cation can be difficult, especiall!l when the user doing
the prof le-directed optimization does not kno\\. , ~ l l
the DLLs in the application. Spike relie1.e~ the user of
this task by finding all the 1lLLs that tlie application
uses, even if thev are loaded dynamically with a call to
Load Library.

Atter instrumentation, the next step in profile-
directed opti~nization is to cxecutc tlic instrumented
application and to collect profile infor~nation. &lost
profile-directed optimization systems require tlie ilser
t o first csplicitly create jnstruniented copics of each
image in an application. Then tlic Llscr must assemble
the instrumented images into a ne\v version of the
application and run it to collect profile inh)rmation. As
the profile information is generated, the user is
respo~isiblc for locating all the profile information
generated for each irnage and merging that informa-
tion into a single set of profiles. Our cxpcricnce with
users has shown that requiring the uscr to manage the
instrumented copies of the iniagcs and the profile
inforniation is a frequent source of problems. For
esanlple, the user may hi1 to instr~lnient each image or
may attempt to i~istrument an image that has already
been instruniented. The user may be unable to locate
all the gcnrratcd profilc iuforniation or may incor-
rectly combine the information. Spike frees the user

from these tedous and error-prone tasks by managing
both the instrumented copy of each image and the
profile information generated for the image.

After profile information is collected, the final step is
to use the profile information to optimize each image.
As with instrumentation, the typical profile-directed
optimization system requires the user to optimize each
image explicitly and to assemble the optimized appli-
cation. Spike uses the profile information collected for
each image to optimize all the images in an application
and assembles the optimized application for the user.

Spike Optimization Environment
The Spike Optimization Environment (SOE) provides a
simple means to instrument and optimize large applica-
tions that consist of many images. The SOE can be
accessed through a graphical interface or tlxough a
command-line interface that provides identicd h n c -
tionality. The command-lux interface allows the SOE to
be used as part of a batch build system such as make.2"

111 addition to providing a simple-to-use interface,
the SOE keeps the instrumented and optimized ver-
sions of each image and the profile information associ-
ated witli each image in a database. When an
application is instrumented or optimized, the original
versions of the images in the application are not modi-
fied; instead, the SOE puts an instrumented or opti-
mized version ofeach image into the database. When
the user involzes the original version of an application,
the SOE uses a transparency agent to execute the
instrumented or optimized version.

The SOE allows the user to instrument and optimize
an entire application using the following procedure:

1. Register: Tlie user selects the application or applica-
tions that are to be instrumented and optimized. The
user needs to specify only the application's main
image. Spike then finds all the implicitly lullzed images
(DLLs loaded when the main image is loaded) and
registers that tliey are part ofthe application.

2. Instrument: The user requests that an application
be instrumented. For each image in the application,
the SOE invokes the Spike Optiniizer to instrument
that image. The SOE places the instrumented ver-
sion of each image in the database. The original
images are not modified.

3. Collect profile information: The user runs tlie origi-
nal application in the normal way, e.g., from a com-
mand prompt, horn Windows Explorer, or indirectly
through another program. Our transparency agent
(explained later in this s e c ~ o n) invokes die instru-
mented version of the application in place of the
original version. Any images dynamically loaded by
the application are instrumented on the fly. Each
time the application terminates, profile information
for each image is written to the database and merged
with any existing profile information.

4. Optimize: The user requests that an application be
optimized. For each image in tlie application, the
SOE invokes the Spike Optiniizer to optimize the
image using the collected profile informati011 and
places the optimized version of each image in the
database.

5. R L I ~ the optimized version: The user runs the orig-
inal application, and our transparency agent substi-
tutes the optimized \~ersion, allowing the user to
evaluate the effectiveness of the optimization.

6. Export: The SOE exports the optimized images
from the database, placing them in a directory spec-
ified by tlie user. The optimized images can then be
packaged with other application components.

The Spike Manager is the principal user interface for
the SOE. The Spike Manager displays the contents of
the database, showing the applications registered with
Spike, the images contained in each application, and
the profile information collected for each image. Tlie
Spike Manager enables the user to control many
aspects of the instrunientatio~i and optimization
process, including specifying which images are to be
instrumented and optimized and which version of the
application is to be executed when die original applica-
tion is invoked.

Transparent Application Substitution (TAS) is the
transparency agent developed for the Spike system to
execute a modified version of an application transpar-
ently, without replacing the original images on disk.
TAS was modeled after the transparency agent in the
DIGITAL FX!32 but uses different mecha-
nisms. When the user involzes the original application,
the SOE uses TAS to load an instrumented or opti-
mized version. With TAS, tlie user does not need to d o
anything special to execute tlie instrumented or opti-
mized version of an application. The user simply
involzes die original application in the usual way (e.g.,
from a command prompt, from Windows Explorer, or
indirectly through another application), and the
instrumented or optimized application runs in its
place. TAS performs application substitution in two
parts. First, TAS makes tlie Windows NT loader use a
modified version of the main iniage and DLLs.
Second, TAS makes it appear to the application that
the original images were invoked.

TAS uses debugging capabilities provided by the
Windows NT operating system to specify that when-
ever the main iniage of an application is invoked, the
modified version of that image should be executed
instead. In each image, the table of imported DLLs is
altered so that instead of loading the DLLs specified in
the original image, each image loads its modified
counterparts. Thus, when the user involzes an applica-
tion, the Windows NT operating system loads the
modified versions of the images contained in die appli-
cation. Some applications load DLLs with explicit calls

Digital Tcchn~cal Journal

to LoadLibrary. TAS intercepts those calls and instead
loads the modified versions.

The second part ofTAS makes the modified \lersion
o f the application appear to be the origj~ial version of
the application. Applications ohen use tlie name of the
main image to find other files. For example, if an
instrumented image requests its full path name, TAS
instead returns the full path name of the corresponding
original image. To d o this, TAS replaces certain calls to
kerriel32.dll in the instrumented and optimized in~ages
with calls to hook procedures. Each hook procedure
determines tlie outconie the call ~vould Iiavc had for
the original application and returns that result.

Instrumentation
Spike instruments an image by inserting counters into
it. Using the results of these counters, tlie optimizer
can determine the n ~ ~ n i b e r of times each basic block
and control tlo\-\l edge in the image is esecuted. Spike
uses a spanning-tree technique proposed by Knuth2j
to reduce the number of counters required to fi~lly
instrument an image. For example, in a11 if-then-else
clause, counting the nu~nber of times the if and then
statements are executed is enough to determine the
number of times the else statement is executed.
Register usage information is used to find free re,' ulsters
for the instrumentation code, thereby reducing the
number ofsa\les ancl restores necessary to free up reg-
isters." Typically, instrunientation makes tlie code 30
percent larger. As part of the profile, Spike also cap-
tures the last target of a jump or procedure call tliat
cannot be determined statically.

Spike's profile information is persistent; s1iia11
changes to an image d o not invalidate die profile infor-
mation collected for that image. Profile persistence is
essential for applications that require a lengthy o r
cun~bersome process to generate a profile, even when
using low-cost methods like statistical sampling. For
example, generating a good profile of a transaction
processing system requires extensive staging of the sys-
tem. Even when it is possible to automate the genera-
tion of profiles, some ISVs find the extra build time
unacceptable. With persistence, the user can collect a
profile once and continue to use it for successive builds
of a program as small changes are made to it. Our
experience with an ISV has slion~n that tlie speedup
from Spike declines as tlie profile gets older, but using
a two- or three-week-old profile is acceptable. It is also
possible to merge a profile generated by an older
image with a profile generated by a newer image.

When using an old profile, Spike must match LIP
procedures in the current program with procedures in
the profiled program. Spike discards profiles for proce-
dures that have changed. Relying on a procedure
name derived from debug information to d o the

matching is not practical in a production environment.
Instead, Spike generates a signature based on the flow
graph of each procedure. Since signatures are not
based on tlie code, small changes to a procedure will
not inval~date tlie profile. Signatures arc not unique,
Iio\ve\rer, so it can be difficult to niatcli nvo lists ofsig-
natures u~hen tliere are differences. A minimum edit
distance algorithmza is used to find the best match
between the list of signatures of the current program
and the 11st of signatures of the profiled program.

Summary

Many Windows NT-based applications are large, call-
intensive programs, with loops tliat cross multiple pro-
c e d ~ ~ r e s and procedures that have cornplicnted control
flow and many basic blocks. The Spike optimizatioli
system uses code layout and hot-cold optimization to
optimize call-intensive programs. Code la\lout places
the frequently executed portions of the program
together in Ineliior)r, thereby reducing instruction
cachc ~iiiss and impro\~ing pcrforrriance LIP to 33 per-
cent. Our code layout algorithm rearranges basic
blocks so that the fall-through path is the common
path. The algorithm also splits each procedure into a
frequently executed (hot) part and nn infrequently
esecuted (cold) part. The split procedures are placed
so that freqi~ent (caller, callee) pairs are adjacent.

The hot part of a procedure is tlie collection of the
common paths through the procedure. These paths
can be optimized at the expense of the cold paths by
removing instructions that are required only if the cold
paths are e sec~~ted . Hot-cold optimization exploits this
opportunity by performing opti~iiizations that remove
partially dead code and replace uses of preser~led regis-
ters with uses of scratch registers. Hot-cold optimiza-
tion reduces the instruction path length through the
call-intensive programs by 3 percent to 8 percent.

Profile fcedbuck is rarely used because of the diffi-
culty of collecting, managing, and applying profile
information. Spike provides a co~nplete system for
profile feedback optimization that eliminates these
problems. I t is a practical system that is being actively
used to optimize applicatioris for Alpha processors
running the Windows NT operating system.

Acknowledgments

Trygpe Fossu~n supported the de\rclopment of Spilce
from the beginning; he also implemcntcd two ofour earl!!
optimizations. David Wall helped us get started parsing
Windo*s NT images. h u e LMcCallig implemented our
first symbol table package. Norman Rubin contributed to
the design of the transparency agent. Man!! people helped
collect the data presented in tlus paper, including Michelle

18 Di~irnl Technical Journal Vol. 9 No. 4 1997

Alexander, Brush Bradley, Bob Corrigai, Jeff Donsbach,
Hans Graves, John Henning, Phil Hutchinson, Herb
Lane, matt Lapine, Wei Liu, JeffSeltzer, Arnaud Sergent,
John Shnkshober, and Robert Zhu.

References

1. R . Cohn, D. Good\vin, P. G . Lo\\lncy, and N.
Rubin, "Spike: An Optimizer for Alplia/NT Exe-
cutablcs," The USENIX Wirzdou~s IVT \Vorkshop Pro-
ccedir~~qs. Scattle, Wash. (August 1997): 17-24.

2. A. Srivastava and D. Wall, "Link-time Optimization
of Address Calculation on a 64-bit Architccturc,"
I~rocccdi17,qs of the ACibl SJGPLAI\"~~ Cor.!fire~zce
or? Pro<r(rclr??ming Langnage Design and Irnplenicn-
tctliorz, Orlando, Fla. (Junc 1994): 49-60.

3. L. Wilson, C. Neth, and M. hckabaugh, "L)cli\~er-
ing I3inary Object Modification Tools for Progra~u
Analysis and Optimization," Digital T~chrtice11
,/oto~~ral, vol. 8, no. 1 (1996): 18-31.

4. S. McFarling, "Program Optimization for Instruc-
tion Caches," ASPLOS III Proceedings, Boston,
Mass. (April 1989): 183-193.

5. W. Hwu and P. Chang, "Achieving High Instruc-
tion Cachc Performance with an Optimizing Com-
pilcr," Procc~ecli~zgs of the Sixteo17th A~II / I IN/
lirtcr1?crtio17al Sytnposc~~m on Corrzprtlcr A~.chitec-
IIIIY', Jcrusalcm, Israel (J i ~ n r 1989).

6 I<. l'cttis and R. Hanscn, "Profile Guided Code
Positioni~ig," P~'oceeclrngs oJrhe AC'i1.I SIC;EJLAh"90
C O I ~ ~ ~ ~ I ~ C ~ I ~ C C ' 011 Programming Ln~iglicl~qr~c 1)csign
a n d liriplementntion, White Plains, N.Y. (June
1990): 16-27.

7. R. Colin and P. G. LOWIICY, "Hot Cold Optinliza-
tion of Largc Windows/NT Applications," MICl<O-
29, Paris, France (December 1996): 80-89.

8. Information about the SPEC benchmarks is avail-
able from the Standard Perfbrma~icc Evaluation
Corporation a t http://\\~\~\~.spccbc~icli,org/.

9. 13. 13lickstcin et a l . , "The GEM Optimizing Com-
pilcr System," lligilal TechniculJo~rrnal, \TO/. 4, no. 4
(1992): 121-136.

10. B. Caldcr, D. Grunwald, and A. Srivastava, "The
Prcdictability of Branches in Libraries," Proceed-
ings of the Twenty-eighth Ann~tal hzlt~r?2alionul
Symposiunz or) Microarchitectztre, Ann Arbor,
Mich. (November 1995): 24-34.

11. A. Aho, R. Sethi, and J. Ullman, Coinpi1cr.s; IJrinci-
plcs. Techr?iyrrcs, ancl Tools(Rcading, Mass.: Add.ison-
Wesley, 1985).

12. 1). Good\\~i~i, "I~itcrproccdural Dataflo\v Analysis
in an Execi~tablc Optimizcr," I'rocccdings oj' the
ACIM SIGPLAA:'97 Conference on Program~ning
Lctrzg~rage Desigrz alzd Imple~ne~?tation. Las Vegas,
Ncv. (June 1997): 122-133.

13. Alpha 2 1164 ~Vlicroprocessor Hardware Reference
Ma~z~lctl, Order Xo. EC-QAEQB-TE mayna nard,
Mass.: Digital Equipment Corporation, April
1995).

14. J . Fisher, "Tracc Scheduling: A Technique for
Global Microcode Compaction," IEEE Transc~c-
tioms O I Z Comp~.iters, C-30, 7 (J u l y 1951): 478-490.

15. DECchg 21064 a n d IlECchip 21064A Alpha AXP
Microprocessors Hardware I<eference Man~ial,
Order No. EC-Q9ZUA-TE (Maynard, Mass.: Dig-
ital Equipment Corporation, Junc 1994).

16. J. Knoop, 0 . Riithing, and B. Steffen, "Partial Dead
Code Elimination," Proceedings of the AC11.1 SIC-
PLAi\-94 COT(/~JI*EIICC 011 ['I-ogram~nrng Lar2gttage
Des~gn ~ o t d Imp1e1~~o~ratror.r Orlando, Fla. (June
1994): 147-1 58.

17. P. Chang, S. Mahlkc, and W. H\vu, "Using Profile
Information to Assist Classic Codc Optimizations,"
Softu~are-Pr~ictice arrd Expcv?ence. vol. 2 1, no.
12 (1991): 1301-1321.

18. P. G. Lowncy ct al., "The Multiflow Trace Schedul-
ing Compiler," The , / o ~ ~ r n a l oj' S~iperco~nputi~zg,
vol. 7, no. 1/2 (1993): 51-142.

19. A. Srivastava and A. Eustacc, "ATOM: A System for
Building Customized Program Analysis Tools,"
Procccclings (!/' Ihc ACIW SIGI'LAiVP4 CollJerevtce
or? P r o g m ~ n ~ j ~ iir,q Lcolgrtcrge ncsrg17 UIZCI Zmnp1ei~ze1~1-
tutior7. Orlando, Fla. (Junc 1994): 196-205.

20 L:l/lIIJIS-1,' Nej&rerz~c 11.1~117rrcrl (prxre and plsstats)
(Sunnyvale, Calif.: MIPS Computer Systems,
1990).

21. J. Anderson et al., "Continuous Profiling: Whcrc
Have All the Cyclcs Gonc?" Proceedirzgs of the Six-
teenth ACM Symposium on Operating System Prin-
ciples. Saint-Malo, Francc (October 1997): 1-14.

22. X . Zhang et al., "System Support for Automatic
Profiling and Optimization," Proceedi?zgs of the
Sixtce~zth ACIVI S)~~nposium or1 Operztting S ~ a t c ~ n
P r i ~ ~ i p l e s , Saint-ivlalo, Francc (October 1997):
15-26.

23. S. Feldrnan, "Makc-A Program for maintaining
Computer Programs," Softu.a~-e-Practice a n d
Experience, vol. 9,110.4 (1979): 255-265.

24. R. Hookway and M. Hcrdeg, "DIGITAL FX!32:
Combining Emulation and Binary Translation,"
Digit611 Technical./otrr~7al, vol. 9, 110. 1 (1997):
3-12.

25. D. Ihuth , The Art qfCo~nprrter Programmi~zg; 1/01,
7, Fr,trzdarnental A/~qorith~ns(Reading, Mass.: Addi-
son-Wesley, 1973).

26. W. Miller and E. Mcycrs, "A File Comparison Pro-
gram," Sojt~tlare-Plactice cr ncl Experie~zce, vol . 1 1
(1985): 1025-1040.

Digital Technical Journal vo1.9 No. 4 1997 19

Biographies

Robert S. Cohn
l<oobert Cohn is a consulting engineer in thc VSSAD
Group, ~ r h c r c he works on hdvi~iced compiler technology
for Alpha microprocessors. Since joining DIGITAL, in
1992, Robert has irnplcn~ented profile-feedback and trncc
scheduling in the GEM compiler. H c also implcmcntcd the
code l a y o ~ ~ t optimizations in UNIX O M . Robert has been
a key contributor to Spikc, implementing both hot-cold
optimization and the code layout optimizations. Robcrt
received a B.A. from Corncll Uni\,crsity and a Ph.D. in
computer science from Cnrnegie Mellon University.

David W. Goodwin
David W. Good\sin is a principal cngh~cer in the VSSA1)
Group, where he ~vorks on architecture and compiler
ad\,anced development. Sincc joining DIGITAL in 1996,
he has contsibutcd to the pcrfol.mancc analysis of the 2 1164,
21 164PC, and 21264 microprocessors. For the Spike pro-
jcct, David implemented the Spike Optimizatioli Environ-
ment and the intcrproccdural dataflow analysis. David
rcccivcd a R.S.E.E. from Virg~l iaTech. and n 1'h.D. in
computer science from the Uni\rersin of California, Da\.is.

P. Geoffrey Lowney
P. Gcoffrc)) Lo\\rncy is a senior consulting cnginccr in the
VSSAD Group, whcrc he \vorks o n compilcrs 2nd architec-
ture to improve the performance ofAlpha microprocessors
Geoffis the lcndcr of the Spike project. For Spikc, he
implemcntcd thc infrastructure fol- parsing csccutables.
Prior to joining DIGITAL in 1991, Gcoff\\rorkcd at
Hc\vIctt Packard/Apollo, Multiflo\\, C o r n p ~ ~ r c r , and
l'ork Uni\rcrsity. Geoff received n B.A. in mathcmntics and
a Ph.D. in computer scicncc, both from l'alc Uni\.crsin.

I
Susanne M. B d e
Simon C . Steely, Jr.

Analyzing Memory
Access Patterns of
Programs on Alpha-
based Architectures

The development of efficient algorithms on
today's high-performance computers is far from
straightforward. Applications need to take full
advantage of the computer system's deep mem-
ory hierarchy, and this implies that the user
must know exactly how his or her implementa-
tion is executed. The ability to understand or
predict the execution path without looking
at the machine code can be very difficult with
today's compilers. By using the outputs from
an experimental memory access profiling tool,
the programmer can compare memory access
patterns of different algorithms and gain insight
into the algorithm's behavior, e.g., potential
bottlenecks resulting from memory accesses.
The use of this tool has helped improve the
performance of an application based on sparse
matrix-vector multiplications.

The development of efficient algorithms on today's
high-performance computers can be a challenge. One
major issue in implementing high-performing algo-
rithms is to take full advantage of the deep memory
hierarchy. To better understand a program's perfor-
mance, two things need to be considered: computa-
tional intensiveness and the amount of memory traffic
involved. In addition to the latter, the pattern of the
memory references is important because the success of
hierarchy is attributed to locality of reference and
reuse of data in the user's program.

In this paper, we investigate the memory access pat-
tern of Fortran programs. We begin by presenting an
experimental Atom1 tool that analyzes how the pro-
gram is executed. We developed the tool to help us
~inderstand how different compiler sulitches impact
the algorithm implemented and to determine if the
algoritl~m is doing what it is intended to do. In addi-
tion, our tool helps the process of translating an algo-
rithm into an efficient implementation on a specific
machine. The work presented in this paper focuses
primarily o n a better understanding of the behavior
of technical applications. Related work for Basic
Linear Algebra Subroutine implementations has been
des~ribed.~ In most scientific programs, the data ele-
ments are matrix-elements that are usually stored in two-
dimensional (2-D) arrays (column-major in Fortran).
Knowing the order of array referencing is important in
determining the amount of memory traffic.

In the final section of this paper, we present an
example of a memory access pattern study and illus-
trate how the use of our program analysis tool
improved the considered algorithm's performance.
Guidelines on how to use the tool are given as well as
comments about conclusions to be derived from the
histograms generated.

Memory Access Profiling Tool

Our experimental tool generates a set of histograms
for each reference in the program or in the subroutine
under investigation. The first histogram measures

Digital Technical Journal

strides from the previous refcrence, the second liis-
togram gives the stride from the second-to-last refer-
cnce, and so on, for a total of l\lAXEL histograms for
each memory rcfcrcncc in the part of tlie program we
investigate. By stride, \ve mean the distancc bctween
two memory references (load o r store). Wc chosc a
W Y E L of five for our case study, but L W E L can be
given any value.

T\vo variants of this tool \Irere implcmcnted.

1. The first version t a l a all memory references into
account in all histogr3nis.

2. The second version takes into account jn the next
histogram thosc J1iernory references wl~osc stride
is more than 128 bytes. I t does not consider in tlie
(i + 1) th histogram (i = 1,. . . ,5) strides that are less
than 128 bytes in the ith Iustogram.

The second version of the tool has proven to be
more useful in understanding the access pattcrns. It
highlights memory accesses tliat are stridc onc for a
while and then have a stride greater than 128 bytcs.
The choice of 128 bytcs was arbitrary; the valuc can be
changed.

The follo\\ling bins are used in the histograms: 0-
through 127-byte strides are accounted for separately.
Strides greater than or equal to 128 bytes arc groupcd
into the follo\\ling intcr\~als: [I 2 8 through 2551, [256
through 51 11, [512 througli 1,0231, 11,024 tl.~rougli
2,0471, [2,048 tlirougl~ 4,0951, [4,096 through
8,1911, [8,192 through 16,3831, [16,384 through
32,7671, and [32,768 through infinity].

In the ncxt section, \ye present the output his-
tograms obtained with the second version of this
experimental tool for a Fortran loop. In our casc stitd!;
\ve chose to pcrform the histograms on a single array
instead of all references in the program. This mctliod
provided a clcarcr picture of the memory access pat-
tern for each array in the piece of the program under
consjderation. We present separate histograms for the
loads and the storcs ofeach array in the memory traffic
of tlie subrou t i~~e \\/c investigated.

Wlien looking at nienlorJr access patterns, it is
important not to include load instructions that pcr-
form prefetching. Even though prefetching adds to
the memory traffic, its load instructions pollute the
mcmory access pattern picture.

Case Study

In this section, we study and compare different ver-
sions of the code presented in Figure 1 usjng our
experimental memory access profiling tool. Wc sho\v
that the same code is not executed in tlie same \vay for
different compiler switches. Often a developer has to
dcl\te deeply into thc asse~nbler of the given loop to
understand how and \\/lien the different instructions

I Q(i)=O, i = l , n
2 d o k l = 1 , 4
3 i n d e x = (k l - 1) * numrows
4 do j = l , n
5 pl=COLSTR(j ,k l)
6 p2=COLSTR(j+l , k l)-I
7 p3= C s n i p l
8 sumO=O. do
9 suml=O.dO
10 sum2=0. d0
I 1 sum3=0. d0
12 XI = P(index+ROWIDX(p l ,k l))
13 x2 = P(index+ROWIDX(pl+l,kl))
14 x3 = P(index+ROWIDX(pl+2,kl))
15 x 4 = P(index+ROWIDX(pl+3,kl))
16 do k = p l , p3, 4
17 sum0 = sum0 + AA(k,kl) * XI
18 sum1 = sum1 + AA(k+l ,k l) * x2
19 sum2 = sum2 + AA(k+Z,kl) * x3
20 sum3 = sum3 + AA(k+3,kl) * x4
2 1 XI = P(index+ROWIDX(k+4,k1))
22 x2 = P(index+ROWIDX(k+5,kI))
23 x3 = P(index+ROWIDX(k+6,kI))
24 x4 = P(index+ROWIDX(k+?,kI))
25 enddo
26 do k = p3+1, p 2
27 xl=P(index+ROWIDX(k,k l))
28 sum0 = sum0 + A A (k , k l) * x l
29 end do
30 YTENP(j,kl)=sumO+suml+sum2tsum3
31 enddo
22 do i = 1, n, 4
33 Q (i) = Q (i) + YTENP(i ,k l)
W Q (i + l) = Q (i + l) t YTENP(i+ l ,k l)
35 Q(i+Z) = Q (i + 2) + YTEMP(i+Z,kl)
36 Q (i + 3) = Q (i + 3) + YTEMP(i+3,kl)
37 enddo
33 enddo

where n = 14000,
r e a l * 8 AA(511350,4), YTEMP(n,4)
r e a l * 8 Q (n) , P(n)
i n t e g e r * 4 ROWIDX(511350,4), COLSTR(n,4)

Figure 1
Origin31 Loop

are executed. The o ~ ~ t p u t histograms fro111 our tool
ease t h ~ t proccss and give a clcar pict111.c of the refer-
encc patterns. The loop presented in Fig111.c 1 imple-
ments a sparse matrix-vector multiplication and is part
of a larger application. Ninety-six pcrccnt of the appli-
cation's execution time is spent in that loop. We ana-
lyze the loop compiled with two different sets of
compiler switches. To illustrate tlie effective use of the
tool, we present the enhanced performance results
due t o changes made based on the output histograms.

From lines 5 and 6 in the loop sho\vn in Figure 1,
\ve \vould expect the array COLS'ITR to be read stride
one 100 percent of the time. Linc 30 of thc figure
indicates tliat).Ti?i\/IP is accessed stridc one through
the \vholc,iloop. From lines 33 tllr0~1gI1 36, nze expect
rfil[P's stridc to bc equal to one most of the time and
equal to the number of columns in the array e\,cr!l
time k l is incrcmented. Q should be referenced 100

L)ipit.ll 'lcchnicnl Journal Vol. 9 No. 4 1997

percent stride one for both the loads and the stores
(lines 33 through 36). As illustrated in lines 12
through 15, 21 through 24, and 27, ROWDX is
expected to be accessed with a stride of one benveen
the pl and p 2 bounds of the k loop. Even though it
looks like the k loop is violating the array bounds of
ROWDXin lines 21 through 24 for the last iteration of
the loop, this is not the case. We expect array P t o have
nonadjacent memory references since we have deliber-
ately chosen an algorithm that sacrifices tlus array's
access patterns to improve the memory references of
Q and AA.

Original Code
We investigate the memory access patterns achieved
by the loop in Figure 1 when compiled with the fol-
lowing switches:

The - g 3 switch is needed to extract the addresses
of the arrays fiom the symbol table. For more infor-
mation on DIGITAL Fortran compiler switches, see
Reference 3.

From Figures 2 and 3, we see that array Qis accessed
as we expected, 100 percent stride one for the loads
and the stores. Since Q is accessed contiguously in 100
percent of its memory references, we wvill not have any
entries in the nest four histograms. As described in

the previous section, we only record in the next his-
togram the strides that are greater than 128 bytes in
tlie current histogram.

Figure 4 illustrates that COLSm is accessed 50
percent stride zero and 50 percent stride one. This is
unespected since lines 5 and 6 in Figure 1 suggest that
this array mould be accessed stride one 100 percent of
the time. The fact that we have entries only for the
strides between the current and the previous loads
indicates that the elements of COU77i'are accessed in a
nearly contiguous way. A closer look at Figure 1 tells
us that the compiler is loahng COLSiT twice. We
expected thc compiler to do only one load into a regis-
ter and reuse the register. The \vork-around is to per-
form a scalar replacement as described by Blickstein et

We put p 2 = COLSTR(1,kl) -1 outside the j loop
and substituted inside the j loop pl = COLSm(j,kl)
with pl = p 2 + 1. Inside the j loop, p 2 remains the
same. Eliminating the extra loads did not enhance per-
formance, and a possible assumption is that the analy-
sis done by the compiler concluded that no gain would
result horn that optimization.

Figures 5 and 6 show the strides for the loads and the
strides for the stores for the array YX%kIP. One more
time, the implementation is not being exccuted the
way cve thought it would. In Figure 1, lines 33 through
36 suggested that W P would be referenced stride
one through the \\!hole i loop as well as with a stride

KEY:

a 1 STEP AGO 1 4 STEPS AGO

2 STEPS AGO 5 STEPS AGO

1 3 STEPS AGO

STRIDES IN BYTES

Figure 2
Strides for Array Qbetwern the Current Load and the Load One through Five Steps Ago

Digital Technical Journal Vo1.9 No. 4 1997 23

80 -

f
W 7 0 -
0
a
W

a 6 0 -
(I)
W
a: p 5 0 -
(I)

b 4 0 -
a
W g 3 0 -
Z

20 -

10 -

KEY:

1 STEP AGO 4 STEPS AGO

C] 2 STEPS AGO rn 5 STEPS AGO

3 STEPS AGO

STRIDES IN BYTES

Figure 3
Stritics for Array Q between the Current Store and the Store One through Five Steps Ago

STRIDES IN BYTES
r-J

KEY:

1 STEP AGO 4 STEPS AGO

2 STEPS AGO rn 5 STEPS AGO

3 STEPS AGO

Figure 4
Strides Corhray COLS7R benveen the Currcnt Load and the Load One through Five Stcps Ago

Vol. 9 No. 4 1997

100 -

90 -

80 -

2 7 0 -

7

0
LI

6 0 -
0
0

5 0 - 9
u
O 4 0 - r
W
rn 5 3 0 -
z

1
20 -

10 -

b W W I I I I I I z _ w : W : y ~ ~ y y
STRIDES IN BYTES 10 m a 1

KEY: - Y N

1 STEP AGO 4 STEPS AGO
0

2 STEPS AGO rn 5 STEPS AGO

E] 3 STEPS AGO

Figure 5
Strides for Array Y7;FMP between the Current Load and the Load One t l ~ r o u g l ~ Five Steps Ago

Figure 6
Strides for Array ~ ~ 2 1 4 ~ beween the Current Store and the Store One tlirough Five Steps Ago

100

90

80

5
7 0 -

W
a ;; 6 0 -
W
a:

5 0 -
V)

B
rr 40-
W

5 3 0 -
Z

20

10

Digital Technical Journal

-

-

-

-

-

r N

KEY: STRIDES IN BYTES

1 STEP AGO 4 STEPS AGO
m

2 STEPS AGO 5 STEPS AGO

3 STEPS AGO

equal to the number ofcolumns in the array \vJien k l is
incremented. By considering Figurc 5 along uith lines
3 3 through 36 in Figure I , \ve conclude that)-E,\IPis
unrolled by four in the kl-direction in t11c i loop. Thc
fact that all strides benvcen thc currcnt load and the
load t\vo loads back or three loads back or four loads
back have a stride between 32I< and infinity is consis-
tent with traversing a matrix along rows. Figure 6
shocvs that the j loop is not unrollcd by four in the
k1 -direction, because all tlie loads of 1TI:MP are 100
pcrcent stridc one. The compiler must split thc 121 loop
into t\vo scparate loops, tlie first consists of tlic j loop
and thc second consists of thc i loop. 'l'hc latter has
bcen unrolled by four in tlie kl-direction tlicreby elim-
inating tlie estra o~rerllead fi-om tlie k l loop.

Figure 7 shows that the matris i l i l is acccsscd as \ire
cspccted. strides arc not greater than 128 bytes
or, in other \\lords, a maximum stridc of 16 elements.
The t ict that thcre is n o stride otlicr than the one
bctwcen the current load and thc prc\~ious load in the
histograms sho.rvs that AA is refcrcnccd in a controlled
\yay. In this case, is accessed 39 pcrccnt of its total
loads in stride one and 2 3 percent in stridc two.

From lines 12 tlirough 15, 17 through 20, and 21
through 2 4 in Figure 1, \\re kno\\r that the arrays ~bl

and ROW7DnY should ha\,e relativel!~ si~iiilnr belia\~iors.
Only the four extra prefctches of ROK7Il.X'in lines 21
through 24 for the last iteration in tlic,jloop diffcren-

KEY:

1 STEP AGO rn 4 STEPS AGO

2 STEPS AGO 5 STEPS AGO

3 STEPS AGO

tiate the acccss pattcrns of thc hvo arrays. Figure S
confirms that assumption. RO WfDX is referenced \\litli
co~ltrolled stridcs. Bccausc IZOW4DX' is accessed closc
to contig~~ousl!~, wc nrill not have any entries in tlic
nest four histograms. As described in tlie previous scc-
tion, \ve only record in the nest histogram the strides
that are greater than 128 bytes in the current his-
togram. KOKYIIXis referenced 2 4 percent of its total
loads in stridc onc and 34 percent in stride two.

As illustrated in Figure 9 , array Pis accessed exactly
the way we expcctcd it. When desiglung this algorithni,
we had to ~rlakc somc compromises. We decided to
havc iu~d Qrcfcrcnced as closely as possible to stridc
one, thus giving LIP tlic control of P's references.

By esmiining tllcsc al-~-a!,s' acccss patterns, \ve can scc
h o n ~ they are acccsscd and \\hether or not thc implc-
mentation is doing tvl~at it is supposed to do. If the loop
in Figure 1 is used on a larger matrix [n = 75,000 and
M(204427,12) has 15 million nonzero elements], thc
execution tinic for the total application on a singlc
2 1 164 proccssor of an Alphaserver 8400 5/625 system
is 1,970 scconds. The application esecutes 26 x 75
(= 1,950) tinics the considered loop. When profiling
thc progranl, \vc nicasurcd that tlie loop under investi -
gation taltcs 9 6 pcl-ccnt of the total esecution time. It is
therefore a fair assu~nption to say tliat an!' improvcmcnt
in this building block \ \ , i l l in ipro~~e the overall pcrfor-
maice of the total program.

STRIDES IN BYTES

Figure 7
Stridcs ti)r Array iZA bemeen the Current Ix)nd and rhc Ioad One through IZi\,c Stcps Ago

1)igitnl Technical Journal \k)l. 9 No. 4 1997

KEY:

1 STEP AGO 4 STEPS AGO

2 STEPS AGO rn 5 STEPS AGO

3 STEPS AGO

STRIDES IN BYTES

Figure 8
Strides for Array ROWDXbenvecn the Current Load and the Load One through Five Stcps Ago

STRIDES IN BYTES KEY:

1 STEP AGO 4 STEPS AGO

2 STEPS AGO rn 5 STEPS AGO

3 STEPS AGO

Figure 9
Strides for Array Pberween the Currcnt Load and the Load O n e through Five Steps Ago

Digital Technical Journal Vol. 9 No . 4 1997 27

Modified Code
In this section, we describe a new espcri~nent in \vhicl~ \ve
~ ~ s e d different compiler snitches ;u~d changed the original
loop to tlle loop in Figure 10. Thc code clianb-. ~ t s were
based on the analysis hi the previous scction as \\~clI as 011 a
more extended series of investigations.

In this example, we used the follo\ving con~piler
s\vi tches:

Lines 3, 5, and
mcnted the scalar
Rlickstein et al.' to

6 fiom Figure 10 she\\, that ure in~ple-
replacement technique as described by
avoid COLS7ll being loaded nvice. From

Figurc 1 1, we see that array COLS?R is no\\: behaving as \I-e
expect: 100 percent of the strides for the loads are stride one.

In our tirst attempt to optimize the original loop,
split the kl loop into t\vo loops in the samc \\!a!, thc coni-
piler did as described UI idle previous scction. We then ha~id
unrolled the Ymk fP array in thc bl direction. Further
analysis showed that a considerable gain could be made
by removing the Y E M P array and writing the results
directly into Q. By replacing the zeroing out oftlie Qarray

1 d o k l = l , 4
2 index = (k l - 1) * numrows
3 p2=COLSTR(l, k l)-I
4 d o j = l , n
5 pl=p2+1
6 p2=COLSTR(j + l , k 1) - l
7 p3= Csnip l
8 sum0=0. d0
9 sum1 =O. d0
10 sum2=0. d0
I I sum3=0. d0
12 XI = P(index+ROWIDX(pl,kl))
13 x2 = P(index+ROWIDX(pl+l , k l))
14 x3 = P(index+ROWIDX(pl+2,kl))
15 x4 = P(index+ROWIDX(pl+3,kl))
16 do k = p l , p3, 4
17 sum0 = sum0 + AA(k,kl) * XI
18 sum1 = sum1 + AA(k+ l ,kl) * x2
19 sum2 = sum2 + AA(k+Z,kl) * x3
20 sum3 = sum3 + AA(k+3,kl) * x4
21 XI = P(index+ROWIDX(k+4,k1))
22 x2 = P(index+ROWIDX(k+5,k1))
23 x3 = P(index+ROWIDX(k+6,kI))

24 x4 = P(i ndex+ROWIDX(k+7, k 1))
25 enddo
26 do k = p3+1, p2
27 xl=P(index+ROWIDX(k,kl))
28 sum0 = -sum0 + AA(k,k l) *x l
29 enddo
30 i f (k l . e q . 1) then
31 Q (j) = sum0 + sum1 + sum2 + sum3
32 e l s e
33 Q (j) = Q (j) + sum0 + sum1 + sum2 + sum3
24 endi f
35 enddo
36 enddo

where n = 14000,
reaL*8 AA(511350,4)
reaL*8 Q(n), P(n)
i n t e g e r * 4 ROWIDX(511350,4), COLSTR(n,4)

Figure 1 0
Modif cd Loop

(Figure 1, line 1) \\.it+ an IF statement (Figure 10, line 30),
we fi~rtlier improved the performance of the loop. The last
nvo changes wcrc possible because we decided that, for
performance cnliancement issues, the serial version of the
code \\!as going to be different from its parallel version.

Figurcs 12 and 13 s l ~ o \ \ ~ that Q's load and store access
pattern is 100 percent stride one as \ve espected it to be.
For both ROW7DX and &i, we see a significant incrcasc in
stride one refercnccs. Figure 14 shows that &i is now
accessed 69 pcrccnt stridc onc instead of 39 percent.
ROWDX's stridc onc increased to 52 percent from 2 4
percent as illustrated in F i g ~ ~ r e 15. These two arrays are
the reason for wing thc - u n r o 1 1 I switch. Without it,
stride one for both arrays would stay approsimately the
same as in the prc\rious study. The pattern of accesses of
array P in F i g ~ ~ r e 16 is siniilar t o the prior pattern of
accesses in Figure 9 as expected.

To better understand the effects of the unrolling, we
counted the number of second-level cache ~t~isses for 26
calls to the loop, using nn Atom tool' that simulatcd a
4-megabyte dircct-mappcd cache. By considering only these
26 matrh-vector multiplications, \ye d o not get a full picture
of what is going on and how the dfferent arrays interact.
Nevertheless, it gives us hints about \vhat caused the
impro\rement in pcrformance. Use of the cache tool on the
\!!hole application would increase the run time dra~natically

T\venty-six calls to the original loop (Figure 1) have a
total of 1,476,017,322 memot-!! references, of \\,hich
77,638,624 arc cache misses. The modified loop (Figure
lo) , on the otlicr hand, has fewer references due to the hct
that \\re eliminated an expensive array initializatior~ at each
stcp a id removcd thc tcmporxy array I'7Z3WP. The numbcr
of cachc misses droppcd from 77,638,624 to 72,384,345
or a reduction in misses of 7 pcrcent. If \ifc compile the
moditied loop \\ithout the - u n r o 1 1 1 s\vitch, the numbcr
of cache misses increases slightl)~. O n the 21 164 Alpha
microprocessor, all the misses are effectively performed in
serial. Tlus means that for memory-bound codes like the
loop we are currentl!~ investigating, execution time primar-
ily depends on the number ofcache misses.

The Iustograms illustrati~lg the access strides for the dif-
ferent arrays helped us design a more suitable algorithm fbr
our architecture. lI!. jncreasing the stride one refercnccs in
the loads for the arrays AA and ROWDX, eli~ninating the
extra references in C'OJLS7xand Q and improving thc stridcs
for Q, we increased the pcrformmce of this application dra-
matically. Counting thc number of cache misses gave us a
better understanding as to \vhy the new access patterns
achieve enhanced performance. I t also helped us under-
stand that not allocving the compiler to unroll the already
hand-unrolled loops in the modified loop decreased the
number of cache misses. The esecution time for this appli-
cation 112 = 75,000 and m(204427,12) has 15 million
nonzero clcmcnts] dccrcased from 1,970 seconds to 1,831
seconds on a singlc 625-megahertz (MHz) 21 164 Alpha
microprocessor of an AlphaScrlrer 8400 5/625 system.
Tlus is an impro\lcment of 139 scconds or 8 percent.

28 Digiral 'rcchnical Journal VoI. 9 No. 4 1997

KEY:

1 STEP AGO 4 STEPS AGO

2 STEPS AGO rn 5 STEPS AGO

3 STEPS AGO

STRIDES IN BYTES

Figure 11
Strides for Array COJS7R benveen the Current Load and thc Load O n e through Five Steps Ago

o ~ a ~ ~ ~ ~ g ~ w o * a ~ ~ o ~ ~ - m b m - m b
W W

I I I -
* W W l l I l ~ ~ L

Y " " z y g * I L
STRIDES IN BYTES O - z

m

KEY:

1 STEP AGO 4 STEPS AGO

2 STEPS AGO rn 5 STEPS AGO

3 STEPS AGO

Figure 12
Strides for Array Q between the Current Load and the Load 0 1 i e through Fivc Steps Ago

Digital Technical Journal Vo1.9 No. 4 1997 29

KEY:

1 STEP AGO rn 4 STEPS AGO

2 STEPS AGO 1 5 STEPS AGO

3 STEPS AGO

STRIDES IN BYTES

Figure 13
Strides for A r r ~ v Qbenveen thc Currcl i t Storc 2nd tllc Storc O n e t l i rougl~ F l \c Steps Ago

KEY:

1 STEP AGO rn 4 STEPS AGO

2 STEPS AGO 1 5 STEPS AGO

3 STEPS AGO

Figure 14
Stridcs for Array benvren the Currcn t Loat! and thc L.ond O n c througll F ~ v c Stcps .4go

30 Digitdl Tcchnicnl Journal Vol. 9 No. 4 1997

KEY

1 STEP AGO 4 STEPS AGO

2 STEPS AGO rn 5 STEPS AGO

3 STEPS AGO

STRIDES IN BYTES

Figure 15
Strides for Array NOWDX b e n \ ~ c e ~ ~ the Currcnt Load a n d the Load O n e through Fivc Steps Ago

o ~ m ~ a o ~ m ~ a o ~ m ~ a o ~ m - m b m - m ~

* m a I I I I
" " , y y N : I z

STRIDES IN BYTES m % %
7 Y

N m
KEY.

1 STEP AGO 4 STEPS AGO

2 STEPS AGO rn 5 STEPS AGO

3 STEPS AGO

Figure 16
Strides for Arrav P benveen the Current Load m d the L o a d O n c through Five Steps Ago

Digital Tcchnicd Journal Val. 9 N o . 4 1997 31

Conclusion

T h e case study sho\vs that, given the right program
analysis tools, a program developer can take better
advantage o f his o r her computer system. T h e experi-
mental tool w e designed was very usefill in providing
insight into the algorithm's behavior. T h e approach
considered yields a n improvement in performance of
8 percent o n a 6 2 5 - M H z 21 164 Alpha microproces-
sor. This is definitely a worthwhile exercise since a sub-
stantial reduction in execution time was obtained
using straightfor\vard and easy guidelines.

T h e data collected from a mernor!, Access p rof ling
tool helps the user understand a given program as well
as its memory access patterns. I t is nn easier and faster
\vay t o gain insight h t o a program than examining the
listing and the assembler generated by t h e compiler.
Such a tool enables t h e programmer t o compare mem-
ory access patterns o f different algorithms; therefore,
it is very useful when optimizing codes. Probably its
most important value is that it shows the developer if
his o r her implementation is d o i n g what he o r she
thinks t h e algorithm is do ing and highlights potential
bottlenecks resulting from memory accesses. Opti niiz-
ing an application is an iterative process, ancl being able
t o use relativelv eas!f-to-use tools like Atom is a very
important part o f the process. T h e major advantage o f
the tool presented in this paper is that n o source code
is needed, so it can be used t o analvze the perR)rmuice
o f program esecutables.

Acknowledgments

T h c authors wish t o thank David LaFrance-Linden,
Dwight Manley, Jean-Marie \Terdun, and Dick Foster
for fruitful discussions. Thanks t o John Eck, Dwight
Manley, N e d Anderson, and Chuck Schneider for
reading and c o ~ n m e ~ l t i ~ l g o n earlier versions o f the
paper. Special thanks g o t o the anonymous referees for
colilments and suggestions thnt helped us consider-
ably improve the paper. Finally, we thank John
Kreatsoulas and Dave Fcn\vick for encouraging o u r
collaboration.

References

1 . IJn)grurnmrr s Guide, Digital I ;VfX Vcrsion 4.0, chapter
9 (Maynard, Mass., Digital Equipment Corporation,
M,~rch 1996).

2. 0. Brcwer, J . Dongarra, and D. Sorenscn, Tools tu.Aitl in
the Ar~a(ysis of ~Wernoty Acc-(,.is P~rlt~~rrt.s,/bt'):ortnoi Pro-
grcirns, Technical Rcport, k g o n n e National 1,aborntory
(June 198s) .

3 . 1)E:'C' Foi1r~w1 L ~ i l) , o i ~ ~ ~ g e R ~ ~ ~ I P I I (. (J iI~lci11~1~i1 (Maynard,
Mass., Digin1 Equipment Corporation, 1997).

32 Digital Technical JoumJ Vol. 9 No. 4 1997

4. 1). Kl~ckstcin, P. Craig, C. Da\,idson, R. Fairnan, K. Glos-
sop, R. Gro\,c, S. Hobbs, and W. Noyce, The GEM
Optimizing Compiler System, Digital Techi?ic~iI Jour-
nal. vol. 4,110.4 (1992): 121-136.

Biographies

Susanne M. Balle
Susanne Rallc is currently a member ofthe High Perfor-
mance Computing Espcrtisc Center. Her work areas arc
performancc prediction for 21264 microprocessor-bascd
architectures. memory acccss pattern analysis, parallel
Lanczos algorithms for solving very large eigenvdue prob-
lems, distributed-mc~nory matrix computations, as \\,ell as
improving pcrformancc ofstandard industry and customer
benchmnrks. Bcforc joining DIGITAL, she was a postdoc-
toral felJo\v at tlic Mathematical Sciences Depxtrnent at tlie
Ink1 Thomas J. \'Vatson Researcli Center where shc worked
on Iiigli-pcrforrna~~ce mathematical sofn*are. From 1992 to
1995, shc cons11 l tcd for die Connection Machine Scicntif c
Sohvarc Library (CMSSL) group at Thinking hdachincs
Corporation. Sussnnc rccci\eed a Ph.D. in matl~ematics and
an M.S. in mechanical engineering and computational fluid
dynamics from the Tcchnical U~liversicy ofDenmark. She is
a mc~nbcr ofShV1.

Simon C. Steely, Jr.
Simon Steely is a consulting cngineer in DIGITAL'S
AlphaScr\,cr Platfor111 Dc\,clopment Group. In his 21 years
at DIGITAL, he has worked on many projects, including
development ofthe PDP-11, VAX, and Alpha systems. His
work has focused on writing nlicrocode, designing proccs-
sor and system architccturc, and doing performance analysis
to make design decisions. 111 his most recent project, he wns
a rncnlber ofrhc 31.cllitcct~r~ tcam for a f i ~ n ~ r e system. In
~ddit ion, lie led the team dc\'cloping the cache-coherency
protocol on that project. His primary interests are computcr
architecturc, pcrformancc analysis, prediction tcchnologics,
cachc/rnemory hicrarcliies, and opumizatio~l of code for
best perforniancc. Simon has a B.S. in enginecring fiom tlic
University of Nc\v Mcsico and is a mcn~ber of IEEE and
ACM. H e holds 15 patents and has sc\,eral more pending.

Karen L. Noel
Nitin Y. Ibrkhanis

OpenVMS Alpha 64-bit
Very Large Memory
Design

The OpenVMS Alpha version 7.1 operating
system provides memory management features
that extend the 64-bit VLM capabilities intro-
duced in version 7.0. The new OpenVMS Alpha
APls and mechanisms allow 64-bit VLM applica-
tions to map and access very large shared mem-
ory objects (global sections). Design areas
include shared memory objects without disk
file backing storage (memory-resident global
sections), shared page tables, and a new physi-
cal memory and system fluid page reservation
system.

Database products and other applications impose hea\y
demands on physical memory. The newest version of
DIGITAL'S OpenVMS Alpha operating system extends
its very large memory (VLM) support and allows large
caches to remain memory resident. OpenVlMS Alpha
version 7.1 enables applications to take advantage of
both 64-bit virtual addressing and very large memories
consistent with the OpenVMS shared memory model.
In this paper, we describe die new 64-bit VLiM capabili-
ties designed for the OpenVMS Alpha version 7.1 oper-
ating system. We explain application flexibility and the
system management issues addressed in the design and
discuss the performance improvements realized by
64-bit VLM applications.

Overview

A VLM system is a computer with more than 4 giga-
bytes (GB) of main memory. A flat, 64-bit address
space is commonly used by VLM applications to
address more than 4 GB of data.

A VLM system allows large amounts of data to
remain resident in main memory, thereby reducing
the time required to access that data. For example,
database cache designers implement large-scale caches
on VLM systems in an effort to improve the access
times for database records. Similarly, VLM database
applications support more server processes than ever
before. The combination of large, in-memory caches
and an increased number of server processes signifi-
cantly reduces the overall time database clients wait to
receive the data requested.'

The OpenVMS Alpha version 7.0 operating system
took the first steps in accommodating the virtual
address space requirements of VLA4 applications by
introducing 64-bit virtual addressing support. Prior to
version 7.0, large applications-as well as die OpenVMS
operating system itself-were beconling constrained by
the limits imposed by a 32- bit address space.

Although version 7.0 eased address space restric-
tions, the existing OpenVMS physical memory man-
agement model did not scale well enough to
accommodate VLM systems. OpenVMS imposes spe-
cific limits on the amount of physical memory a

Digital Tcchnic'~l Jou~.nal Vo l . 9 N o . 4 1997 33

process can occupy. As a result, applications lacked the
ability to keep a very large object in physical memory.
In systems on which the physical Inemor!/ is not plen-
tifill, the niechanisnis that limit per-process memory
utilization serve to ensure fair-and-eclual 1 . cccss - - - to a
potentially scarce resource. Ho\vevel-, o n systems rich
with memory whose intent is to service applications
creating VLM objects, the limitations placed on per-
process memory utilization inhibit the o\lerall perfor-
mance of those applications. As a result, thc benefits of
a VLM system may not be conipletely realizcd.

Applications that require very large amounts of
physical memory need additional VLM support. The
goals of the OpenVMS Alpha VLIM project \\.ere the
follo\\,ing:

A~lasimize the operating system's 64- bit capabilities

Take full advantage of the Alpha Arcliitecti~re

Not require excessive application change

Simpli@ the system management of a VLM system

Allow for the creation ofVLM objects th,it exhibit
the same basic characteristics, fro111 the program-
mer's perspective, as other virtual niemorv objects
created with the OpenVlMS system service pro-
graniniing interface

These goals became the foundation for the follo\v-
ing VLlM teclinolog)~ iniplenlented i n the OpenVMS
Alpha version 7.1 operating system:

Memory-resident global sections-shared memory
objects that d o not page to disk

Shared page tables-page tables mapped by multiple
processes, ivhich in turn map to memory-resident
global S ~ C ~ O J ~ S

Tlie reserved memory registry-a memory reserva-
tion system that supports memory-resident global
sections and shared page tables

The remainder of this paper describes the major
design areas of VLM support for OpenVMS and dis-
cusses the proble~ns addressed by the design team, the
alternatives considered, and the benefits of thc cstcnded
VLh4 support in OpenViMS Alpha version 7.1.

Memory-resident Global Sections

We designed menior)l-resident global sections to
resol\lc thc scaling problems experienced by VLlM
appl~cat~ons 017 OpenVMS. We focused our design o n
the cxlstlng shared memory model, using the 64-bit
addressing support. Our project goals included simpli-
fi'ing sptelii nianagement and harnessing the speed of
the Alpha n~icroprocessor. Before describing memory-
resident global sections, we provide a brief explanation
of shared memory, process \\lorking sets, and a page
fault handler.

Global Sections
An OpenVMS global section is a shared memory
object. The memory \\iithin the global section is
shared among different processes in the system. Once
a process has created a global section, others may map
to the section to share the data. Several types of global
sections can be created and mapped bv calling
OpenVbIS system services.

Global Section Data Structures Internally, a global
section consists of several basic data structures that are
stored in system address space and are accessible to all
processes from kernel mode. When a global section is
created, OpcnVMIS allocates and ~niualizes a set of
these data structures. Tlie relationsh~p between the
structures is illustrated in Figure 1. The sample global
section is named ''SH1<0RJ7' and is 2,045 Alpha pages
o r 1 6 megabytes (IMR) in size. Two processes have
lnapped to the glob31 section by referr~ng to the global

GLOBAL SECTION DESCRIPTOR

HEADER

I OTHER INFORMATION I

I "SHROBJ" I

GLOBAL SECTION TABLE ENTRY

HEADER *Fd
SIZE = 2,048 PAGES I

REFCNT = 4,096

--GG--l
FILE BACKING STORAGE
INFORMATION, ETC. 1

KEY:

GSTX GLOBAL SECTION TABLE INDEX
GPTX GLOBAL PAGE TABLE INDEX
GPTE GLOBAL PAGE TABLE ENTRY

GLOBAL PAGE TABLE

PAGE 0

PAGE 1

PAGE 2.047

Figure 1
Global Scctio~i Data Str~rct~~res

34 1)igit.d Tcch~licnl Journal Vol. 9 No. 4 1997

section data structures in their process page table
entries (PTEs).

Process PTEs Mapping t o Global Sections When a
process maps to a global section, its process PTEs refer
to global section pages in a one-to-one fashion. A page
of physical memory is allocated when a process
accesses a global section page for the first time. This
results in both the process PTE and the global section
page becoming valid. The page frame number (PFN)
of the physical page allocated is stored in the process
PTE. Figure 2 illilstrates two processes that have
mapped to the global section where the first process
has accessed the first page of the global section.

When the second process accesses the same page as
the first process, the same global section page is read
from the global section data structures and stored in
the process PTE of the second process. Thus the two
processes map to the same physical page of memory.

The operating system supports two types of global
sections: a global section whose original contents are
zero or a global section whose original contents are
read from a file. The zeroed page option is referred to
as demand zero.

Backing Storage for Global Sections Global section
pages require backing storage on disk so that more fre-
quently referenced code or data pages can occupy
physical memory. The paging of least recently used
pages is typical of a virtual memory system. The back-
ing storage for a global section can be the system page
files, a file opened by OpenVMS, or a file opened by
the application. A global section backed by system
page files is referred to as a page-file-backed global sec-
tion. A global section backed by a specified file is
referred t o as a file-backed global section.

When a global section page is invalid in all process
PTEs, the page is eligible to be written to an on-disk

backing storage file. The physical page rnay remain in
memory on a list of modified or fiee pages. OpenVMS
algorithms and system dynamics, however, determine
which page is written to disk.

Process Working Sets
On OpenVMS, a process' valid memory is tracked
within its working set lists. The working set of a
process reflects the amount of physical memory a
process is consuming at one particular point in time.
Each valid working set list entry represents one page of
virtual memory whose corresponding process PTE is
valid. A process' worlzing set list includes global sec-
tion pages, process private section pages, process pri-
vate code pages, stack pages, and page table pages.

A process' working set quota is limited to 512 MB
and sets the upper limit on the number of pages that
can be s\vapped to disk. The limit on working set
quota matches the size of a swap 1/0 request.* The
effects on swapping would have to be examined to
increase working set quotas above 512 MB.

Process worlzing set lists are kept in 32-bit system
address space. When free memory is plentihl in the sys-
tem, process \?iorlzing set lists can increase to an extended
quota speci6ed in the system's account file for the user.
The system parameter, WSMAX, specifies the madximum
size to which a process working set can be estended.
OpenVMS specifies an absolute maximum value of 4 GB
for the WSMAX system parameter. An inverse relation-
ship exists between the size specified for W S h W and the
number of resident processes OpenVMS can support,
since both are maintained in the 32-bit addressable por-
tion of system space. For example, specifying the maxi-
mum value for W S W sharply decreases the number of
resident processes tliat can be specified.

Should OpenVMS be required to support larger
working sets in the future, the worlung set lists would
have to be moved out of 32-bit system space.

FIRST PROCESS PTEs GLOBAL PAGE TABLE

VALID - PFN VALID - PFN

INVALID - GPTX

INVALID - GPTX +I-+

SECOND PROCESS PTEs

7
INVALID - GPTX

KEY:

GPTX GLOBAL PAGE TABLE INDEX
GPTE GLOBAL PAGE TABLE ENTRY

Figure 2
Process and Global PTEs

Digital Techl~ical Journal Vol. 9 No. 4 1997 35

Page Fault Handling for Global Section Pages
The data within a global section may be heavily
accessed by the many processes that are sharing the
data. Therefore, the access titile to the global section
pages may influence the overall performance of the
application.

Many hardware and sohvare factors can influence
the speed at which a page within a global section is
accessed by a process. The factors relevant to this dis-
cussion are the following:

Is the process PTE valid or invalid?

If the process PTE is invalid, is the global section
page valid or invalid?

If the global section page is invalid, is the page on
the modified list, free page list, or on disk within the
backing storage file?

If the process PTE is invalid at the time the page is
accessed, a translation invalid fault, or page fault, is
generated by the hardware. The OpenVMS page fault
handler determines the steps necessary to make the
process PTE valid.

If the global section page is valid, the PFN of the
data is read from the global section data structures.
This is called a global valid fault. This type of fault is
corrected quickly because the data that handles this
fault is readily accessible from the data structures in
memory.

Ifthe global section page is invalid, the data may still
be within a physical page on the modified or free page
list maintained by OpenVMS. To correct this type of
fault, the PFN that holds the data must be removed
from the modified or free page list, and the global sec-
tion page must be made valid. Then the fault can be
handled as if it were a global valid fault.

If the page is on disk within the backing storage file,
an l/O operation must be performed to read the data
from the disk into memory before tlie global section
page and process PTE can be made valid. This is the
slowest type ofglobal page fault, because perfor~ning a
read 1 /0 operation is much slower than manipulating
data structures in memory.

For an application to experience the most efficient
access to its shared pages, its process PTEs should be
kept valid. An application may use system services to
lock pages in the working set or in memory, but typi-
cally the approach taken by applications to reduce
page fault overhead is to increase the user account's
worlung set quota. This approach does not work when
the size of the global section data exceeds the size of
the working set quota limit of 512 MB.

Database Caches as File-backed Global Sections
Quick access to a database application's shared mem-
ory is critical for an application to handle transactions
quickly.

Global sections implement shared memory on
OpenVMS, so that many database processes can share
the cached database records. Since global sections
must have baclting storage on disk, database caches are
either backed by the system's page files or by a file cre-
ated by the database application.

For best performance, the database application
should keep all its global section pages valid in the
process PTEs to avoid page fault and I/O overhead.
Database processes write modified buffers from the
cache to the database files 011 an as-needed basis.
Therefore, the baclting storage file required by
OpenVMS is redundant storage.

Very Large Global Sections
The OpenVMS VLM project focused on VLM data-
base cache design. An additional goal was to design
the VLM features so that other types of VLM applica-
tions could benefit as well.

Consider a database cache that is 6 GB in size.
Global sections of this magnitude are supported on
OpenVMS Alpha \vitli 64-bit addressing support. If
the system page files are not used, the application must
create and open a 6-GB file to be used as backing stor-
age for the global section.

With the maximum quota of 512 MB for a process
cvorlting set and with tlie maximum of a 4-GB workng
set size, no process could keep the entire 6-GB data-
base cache valid in its working set at once. When an
OpenVMS global section is used to implement the
database cache, page faults are inevitable. Page fault
activity severely impacts the performance of the VLM
database cache by causing unnecessary 1/0 to and
from the disk while managing these pages.

Since all global sections are pageable, a 6-GB file
needs to be created for backing storage purposes. In
the ideal case, the backing storage file is never used.
The baclting storage file is act~~ally redundant with the
database files tl~emselves.

VLM Design Areas
The VLM design team targeted very large global sec-
tions (4 GB or larger) to share data among many
processes. Furthermore, we assumed that the global
section's contents would consist of zeroed memory
instead of originating from a file. The team explored
whether this focus \\/as too narrow. We were con-
cerned that implementing just one type ofVLM global
section would preclude support for certain types of
VLM applications.

We considered that VLM applications might use
very large amounts of memory whose contents origi-
nate from a data file. One type of read-only data from
a file contains program instructions (or code). Code
sections are currently not pushing the limits of 32-bit
address space. Another type of read-only data from a
file contains scientific data to be analyzed by the VLM

36 Digital Technical Journal

application. To accommodate very large read-only
data of this type, a large zeroed global section can be
created, the data from the file can be read into mem-
ory, 2nd then the data can be processed in memory.

Ifwritablc pagcs are initially read from a file instead
of zeroed, the data will most likely need to be \vritten
back to the original file. In this case, the file can be
used as the backing storage for the data. This type of
VLM global section is supported 011 OpenVMS Alpha
as a file-backed global section. The operating system's
algorithm for working set page replacement keeps the
most recently accessed pages in memory. Working set
quotas greater than 512 M B and \vorking set sizes
greater than 4 GR help tl%s type of VLM application
scale to higher memory sizes.

We also considered very large demand-zero private
pages, "malloc" or "heap" memory. system page
files are the baclung storage for dernand-zero private
pages. Currently, processes can have a page file quota
as large ,IS 32 GR. A VLM application, however, may
not want these private data pages to be written to a
page fi lc since the pages are used in a similar fashion as
in-memory caches. Larger working set quotas also
Iielp this type of VLh4 application accommodate ever-
increasing nieniory sizes.

Backing Storage Issues
For many years, database cachc designers and database
pcrformance esperts had requested that the
OpenVlMS operating system support niemor!i with no
backing storage files. The backing storage \\!as not
only redundant but also wasteful of disk space. Tlie
waste issue is made worse as the sizes of the database
caches approach the 4-GB range. As a result, the
OpenVMS Alpha \rLM design had to allow for non-
file- backcd global sections.

The support of64-bit addressing a id VI,M has always
been viewed as a two-phased approach, so that function-
ality could be delivered in a timely fashion.WpcnV~MS
Alpha version 7.0 provided the essentials of 64-bit
addressing support. The VLM support \\,as \ie\ved as an
extension to the memory malagenlent model and was
deferred to O p e n W S Alpha version 7.1.

Working Set List Issues. Entries in the process work-
ing set list are not required for pages that can ncvcr be
writtcn to a backing storage file. The fundamental con-
cept of the OpenVMS working set algorithms is to sup-
port the paging ofdata from memory to disk and back
into memory when it is needed again. Since the focus
of the VLiM dcsign was on memory that \vould not be
backed by disk storage, the VLM design team realized
that these pages, although valid in the process PTEs,
did not need to be in the process' \\forking set list.

VLM Programming Interface
The OpenVMS Alpha VLM design provjdes a new pro-
gramming interface for VLM applications to create,

map to, and delete demand-zero, memory-resident
global sections. Tlie existing programming interfaces
did not easily accommodate tlie new VLlM features.

To justif\l a nc\v pl-ogra~nrning interface, \rie looked
at the applications that would be callilig t l ~ e new system
service routines. T o address more than 4 GB of mem-
ory in the flat OpenVMS 64-bit address space, a 32-bit
application must be rcconlpiled to use 64-bit pointers
and often requires source code changes as \veil.
Database applications were already modi@ing their
source code to use 64-bit pointers and to scale their
algorithms to handle VLM systems.Therefore, calling
a new set of systeni service routines \\,as considered
acceptable to the programmers of VLIM applications.

Options for Memory-resident Global Sections
To initialize a very large niemor\i-resident global sec-
tion mapped by several processes, the overhead of
hardware faults, allocating zeroed pages, setting
process PTEs valid, and setting global section pages
valid is eliminated by preallocating the physical pages
for the memory-resident global section. Preallocation
is performed by the reserved memory registry, and is
discussed later in this paper. Here we talk about
options for how the reserved memory is used.

T\vo options, ALLOC and FLUID, are available
for creating a denland-zero, memory-resident global
section.

ALLOC Option The ALLOC option uses preallocated,
zeroed pages of memory for the global section. When
the ALLOC option is used, pages are set aside during
system start-up specifically for the memory-resident
global section. Preallocation of contiguous groups of
pages is discussed in the section Reserving Memory
during System Start-up. Preallocated memory-resident
global sections are fastcr to initialize than memory-
resident global sections that LISC the FLUID option.

Kun-time performance is improved by using the
Alpha Architecture's granularity hint, a mechanisni we
disci~ss later in this paper. T o use the ALLOC option,
the system must be rebooted for large ranges of physi-
cally contiguous memory to be allocated.

FLUID Option The FLUID option allows pages not
yet accessed \vithin the global section to remain fluid
within the system. This is also referred to as the fiult
option because the page fault algorithm is used to allo-
cate tlie pages. When the FLUID (or fault) option
is used, processes or the systenl can use the physical
pages until they are acccsscd within tlie memory-
resident global section. The pages remain \vithin the
system's fluid memor!! until they are needed. This type
of memorjr-rcsident global section is more flexible
than one that uses the AL1,OC option. If an applica-
tion that uses a memorll-resident global section is run
on a system that cannot be rebooted due to system

Digital Tcchn~cal J o ~ ~ r n ~ ~ l Vol. 9 No. 4 1997 37

availability concerns, it can stdl use the FLUID option.
The system will not allow this application to run unless
enough pages of memory are available in the system
for the memory-resident global section.

The system service internals code checks the
reserved memory registrv to determine the range of
pages preallocated for the memory-resident global
section or to determine if thc FLUID option will be
used. Therefore the decision to usc the ALLOC or the
FLUID option is not made \vithin thc system services
routine interface. The system manager can determine
which option is used by specifying preferences in the
reserved rnclnory registry. An application can be
switched from using the ALLOC option to using the
FLUID option without requiring a system reboot.

Design lnternals
The jl~ternals ofthe design choices underscore the mod-
ularity of the shared memory model using global sec-
tions. A new global section type was easily added to the
OpenVMS system. Those aspects of memory-resident
global sections that are identical to pageable dobal sec-
tions required no code modifications to support.

To support mernory-resident global sections, the
MRES and ALLOC flags were added to the existing
global section data structures. The MRES flag indi-
cates that the global section is memory resident, and
the ALLOC flag jndicates that contiguous pages were
preallocated for the global section.

The file-backing storage information within global
section data structures is set to zero for memory-
resident global sections to indicate that no backing
storage file is used. Other than the new flags and the
lack of backing storage file information, a dernand-
zero, memory-resident global section looks to
OpenVMS Alpha nlemory management h e a demand-
zero, file-backed global section. Figure 3 sho~vs the
updates to the global section data structures.

One important difference with memory-resident
global sections is that once a global section page
becomes valid, it remains valid for the life of the global
section. Global section pages by definition can never
become invalid for a memory-resident global section.

When a process maps to a memory-resident global
section, thc process PTE can be either valid for the
ALLOC option or invalid for the FLUlD option.
When the ALLOC option is used, no page faulting
occurs for the global section pages.

When a process first accesses an invalid memory-
resident global section page, a page fault occurs just as
with traditional file-backed global sections. Because
the same data structures are present, the page fault
code initially executes the code for a dernand-zero,
file-backed global section page. A zeroed page is allo-
cated and placed in the global section data structures,
and the process PTE is set valid.

The working set list manipulation steps are skipped
when the LURES flag is encountered in the global sec-
tion data structures. Because these global section
pages arc not placed in the process working set list,
they are not considered in its page-replacement algo-
ritlu~l. As such, the OpenVMS Alpha working set
n~anipulation code paths remained unchanged.

System Management and Memory-resident Global
Sections
When a mernor~f-resident global section is used
instead of a traditional, pageable global scction for a
database cache, there is no longer any wasted page file
storage required by OpenVMS to back up the global
section.

The other system management issue alleviated by
the implementation of rnemory-resident global sec-
tions concerns working set sizes and quotas. Whcn a
file-backed global section is used for the database
cache, the database processes require elevatcd working

GLOBAL SECTION DESCRIPTOR GLOBAL SECTION TABLE ENTRY GLOBAL PAGE TABLE

KEY:
GSTX GLOBAL SECTION TABLE INDEX
GPTX GLOBAL PAGE TABLE INDEX
GPTE GLOBAL PAGE TABLE ENTRY
DZRO DEMAND ZERO

HEADER --
GSTX

OTHER INFORMATION

"SHROBJ"

Figure 3
~Memory-resident Global Section Data Structures

38 Digital Technical Journal

HEADER -
GPTX

SIZE = n

REFCNT

FLAGS 1X

Vol. 9 No. 4 1997

\
MRES ALLOC
FLAG FLAG

FILE BACKING STOR
INFORMATION = 0

?

INVALID - DZR0,GSTX PAGE n - 1

INVALID - DZR0,GSTX

INVALID - DZR0,GSTX

PAGE 0

PAGE 1

set quotas to accommodate the size of the database
cache. This is n o longer a concern because memory-
resident global section pages are not placed into the
process working set list.

With the use of memory-resident global sections,
system managers may reduce the value for the
WSMAX system parameter such that more processes
call remain resident within the system. Recall that a
process working set list is in 32-bit system address
space, which is limited to 2 GB.

Shared Page Tables

VLM applications typically consume large amounts of
physical memory in an attempt to minimize disk 1 / 0
and enhance overall application performance. As the
physical memory requirements of VLM applications
increase, the following second-order effects are
observed due to the overhead ofmapping to very Large
global sections:

Noticeably long application start-up and shut-
down times

Additional need for physical memory as the num-
ber of concurrent sharers of a large global section
increases

Unanticipated exhaustion of the working set quota
and page file quota

A reduction in the number of processes resident in
memory, resulting in increased process swapping

The first two effects are related to page table map-
ping overhead and size. The second nvo effects, as
they relate to page table quota accounting, were also
resolved by a shared page tables implementation. The
following sections address the first t\vo issues since
they uniquely pertain to the page table overhead.

Application Start-up and Shut-down Times
Users of VLM applications can observe long applica-
tion start-up and shut-down times as a result of creat-
ing and deleting very large amounts of virtual
memory. A single process mapping to a very large
virtual memory object does not impact overall system
performance. However, a great number of processes
that simultaneously map to a very large virtual mern-
ory object have a noticeable impact on the system's
responsiveness. The primary cause of the performance
degradation is the accelerated contention for internal
operating system locks. This observation has been
witnessed on OpenVMS systems and on DIGITAL
UNIX systems (prior to the addition ofVLM support.)

O n OpenViMS, the memory management spinlock
(a synchronization mechanism) serializes access to priv-
ileged, memor)l-management data structures. We have
observed increased spinlock contention as the result
of hundreds of processes simultaneously mapping to

large global sections. Similar lock contention and sys-
tem unresponsiveness occur when multiple processes
attempt to delete their address space simultaneously.

Additional Need for Physical Memory
For pages of virtual memory to be valid and resident,
the page table pages that map the data pages must also
be valid and resident. If the page table pages are not in
memory, successfill address translation cannot occur.

Consider an 8-GB, memory-resident global section
o n an OpenVMS Alpha system (with an 8-kilobyte page
size and 8-byte PTE size). Each process that maps the
entire 8-GB, memory-rcsident global sectlon requires
8 MB for the assoc~ated page tablc structurcs. If 100
processes are mapping die memory-resident global sec-
tion, an additional 800 MB of physical memory must be
available to accommodate all processes' page table
structures. This hr ther requires that working set list
sizes, process page file quotas, and system page files be
large enough to accommodate the page tables.

When 100 processes are mapping to the saliie
memory-resident global section, the same PTE data is
replicated into the page tables of the 100 processes.
If each process could share the page table data, only
8 MB of physical memory would be required to map
an 8-GB, mernor~l-resident global section; 792 MB of
physical memory would be available for other system
purposes.

Figure 4 shows the amount of memory used for
process page tables mapping global sections ranging in
size from 2 to 8 GB. Note that as the number of
processes that map an 8-GB global section exceeds

-
0 1
2,048 3.072 4,096 5,120 6,144 7.168 8,192

GLOBAL SECTION SIZE (MEGABYTES)

KEY:

+ 1,000 PROCESSES
+ 800 PROCESSES
t 600 PROCESSES
-m- 400 PROCESSES
+ 200 PROCESSES

Figure 4
Process Page Table Sizes

Digital Teclinical Journal

1,000, the amount of memory used by process page
tables is larger than the global section itself.

Shared Memory Models
We sought a solution to sharing process page tables
that would alleviate the performance problems and
nicn1ory utilization overhead yet stay '~\iitliin the
shared memory framework provided by the operating
system and the architecture. Two shared memory
models are implemented on OpenVMS, shared system
address space and global sections.

The OpenVMS operating system supports XI address
space layout that includes a shared system address
space, page table space, and private process address
space. Shared system address space is created by plac-
ing the physical address of the shared system space
page tables into evcry process' top-level page table.
Thus, every process has the same lower-level page
tables in its virtual-to-physical address translation
path. In turn, the same operating system code and
data are found i l l all processes' address spaces at the
same virtual address ranges. A similar means could be
used to create a shared page table space that is used to
map one or more memory-resident global sections.

An alternative for sharing the page tables is to create
a global section that describes the page table structure.
The operating system could maintain the association
benveen the memory-resident global section and the
global section for its shared page table pages. The
shared page table global section could be mapped at
tlie upper levels of the table structure such that each
process that maps to it has the same lower-level page
tables in its virtual-to-physical address translation
path. This in turn \vould cause the data to be mapped
by all the proccsses.

Figure 5 providcs a concept~~al representation of the
shared memory model. Figure 6 estends the shared
memory model by demonstrating that the page tables
become a part of the shared memory object.

The benefits and drawbaclts of botli sharing models
are highlighted in Table 1 and Table 2.

Model Chosen for Sharing Page Tables
After examining the existing memory-sharing models
on OpenVlMS and taking careful note of the composi-
tion and characteristics of shared page tables, t l ~ c design
team chose to implement shared page tables as a global
section. In addition to the benefits listed in Table 2, the

UPPER LEVEL * LOWER LEVEL

LEVEL 1 LEVEL 2 LEVEL 3

BASE REGISTER

SHROBJ 0
Figure 5
Shared Memory Object

40 Di~ital Technical Journal Vol.9 No. 4 1997

UPPER LEVEL t LOWER LEVEL

LEVEL 1 LEVEL 2 LEVEL 3

BASE REGISTER

Figure 6
Shared memory Objects Using Shared Page Tables

Table 1
Shared Page Table Space-Benefits and Drawbacks

Benefits Drawbacks

Shared page table space begins at the same
virtual address for all processes.

The virtual address space is reserved for every process.
Processes not using shared page tables are penalized
by a loss in available address space.
Shared page table space is at least 8 GB in size,
regardless of whether the entire space is used.
A significant amount of new code would need t o be
added t o the kernel since shared system space is man-
aged separately from process address space.

Table 2
Global Sections for Paae Tables-Benefits and Drawbacks

Benefits Drawbacks

The same virtual addresses can be used by all Shared page tables are mapped at different virtual
processes, but this is not required. addresses per process unless additional steps are taken.
The amount of virtual address space mapped by shared
page tables is determined by application need.
Shared page tables are available only t o those processes
that need them.
Shared page tables allow for significant reuse of existing
global section data structures and process address space
management code.

Digital Technical Journal

design team noticcd that shared page table pages bear
great resemblance to the memory-resident pages they
map. Specifically, for a data or code page to be valid and
resident, its page table page must also be valid and resi-
dent. The ability to reuse a significant amount of the
global section management code reduced the debug-
ging and testing phases of the project.

In the initial implenientation, shared page table
global sections map to memory-resident global sec-
tions only. This decision was made becausc the design
focused on the demands ofVLM applications that use
n1emor)i-resident global sections. Should significant
demand exist, the implementatio~i can be expanded to
allow the mapping of pageable global sections.

Shared page tables can never map process private data.
The design team had to ensure that the shared page table
implementation kept process private data from entering
a virtual address range mapped by a shared page table
page. If tlus were to happen, it would compromise the
security of data access between processes.

Shared Page Tables Design
The goals for the design ofshared page tables included
the following:

w lZeducc the time rcquired for multiple users to map
the same memor)r-resident global section

Reduce the physical memory cost of maintaining
private page tables for multiple mappers of the same
memory-resident global section

w D o not require the use of a backing storage file for
shared page table pages

w Elinlinate the working set list accounting for these
page table pages

w Implement a design that allows upper levels of the
page table hierarchy to be shared at a later time

Figure 6 demonstrates the shared page table global
section model. The dark gray portion of the figure
highlights the level of sharing supplied in OpenVMS
Alpha version 7.1. The light gray portion highlights
possiblc levels of sharing alloured by creating a shared
page table global section consisting of upper-level
page table pages.

Modifications to Global Section Data Structure Table 2
noted as a benefit the ability to reuse existing data
structures and code. Minor modifications were
exacted to the global scction data structures so that
they could be used to represent a shared page table
global section. A new flag, SHARED-PTS, was added
to the global section data structures. Coupled with
this change was the requirement that a lnernory-
resident global section and its shared page table global
section be uniquely linked together. The correspon-
dence benveeli the two sets of global sections is man-
aged by the operatiug system and is used to locate the
data structures for one global section when the struc-
tures for the other global section are in hand. Figure 7
highlights the changes tnade to the data structures.

Creating Shared Page Tables To create a memory-
resident global section, an application calls a system
scrvice routine. N o flags or cstra arguments are
required to enable the creation of an associated shared
page table global section.

The design team also providcd a means to disable
the creation of the shared page tables in the event that
a user might find shared page tables to be undesirable.
T o disable the creation of shared page tables, the
reserved memory registry entry associated wit11 the
memory-resident global section can specie that page
tables are not to be used. Within the system service
routine that creatcs a memory-resident global section,

GLOBAL SECTION DESCRIPTOR GLOBAL SECTION TABLE ENTRY GLOBAL PAGE TABLE

KEY:

GSTX GLOBAL SECTION TABLE INDEX
GPTX GLOBAL PAGE TABLE INDEX
GPTE GLOBAL PAGE TABLE ENTRY

Figure 7
Data Structure Modifications

PAGE 0

PAGE 1

PAGE n - I

42 Digital Technical Journal

VALID GPTE

VALID GPTE

VALID GPTE

HEADER -
GSTX

OTHER INFORMATION
RELATED-GSTX

"SHROBJ"

Vol. 9 No. 4 1997

\
SHPTS
FLAG

HEADER -
GPTX

SIZE = n

REFCNT

FLAGS 1

INFORMATION = 0

1

the reserved memory registry is examined for an entry
associated with the named global section. If an entry
exists and it specifies shared page tables, shared page
tables are created. If the entry does not specih shared
page tables, shared page tables are not created.

I f n o entry exists for the global section at all, shared
page tables are created. Thus, shared page tables are
created by default if n o action is talzen to disable their
creation. We believed that most applications ~ l o u l d
benefit from shared page tables and thus should be
created transparently by default.

Once the decision is made to create shared page
tables for the global section, the system service routine
allocates a set of global section data structures for the
shared page table global section. These structures are
initialized in the same manner as their memory-
resident counterparts, and in many cases the fields in
both sets of structures contain identical data.

Note that o n current Alpha platforms, there is one
shared page table page for every 1,024 global section
pages or S MB. (The number of shared page table
pages is rounded up to accommodate global sections
that are not even multiples of 8 MB in size.)

Shared PTEs represent the data within a shared page
table global section and are initialized by the operating
system. Since page table pages are not accessible
through page table spacei until the process maps to
the data, the initialization of the shared page table
pages presented some design issues. To initialize the
shared page table pages, they must be mapped, yet
they are not mapped at the time that the global section
is created.

A simple solution to the problem was chosen. Each
shared page table page is temporarily mapped to a sys-
tem space virtual page solely for the purposes of initial-
izing the shared PTEs. Temporarily mapping each
page allo\vs the shared page table global section to be
fi~lly initialized at the time it is created.

An interesting alternative for initializing the pages
would have been to set the upper-level PTEs invalid,
referencing the shared page table global section. The
page fault handler could initialize a shared page table
page when a process accesses a global section page,
thus referencing an invalid page table page. The
shared page table page could then be initialized
through its mapping in page table space. Once the
page is initialized and made valid, other processes
referencing the same data \vould incur a global valid
fault for the shared page tabJe page. This design was
rejected due to the additional overhead of faulting
during execution of the application, especially when
the ALLOC option is used for the memory-resident
global section.

Mapping to a Shared Page Table Global Section Map-
ping to a memory-resident global section that has
shared page tables presented new challenges and con-

straints on the mapping criteria normally imposed by
the virtual address space creation routines. The map-
ping service routines require more stringent mapping
criteria when mapping to a memory-resident global
section that has shared page tables. These require-
ments serve two purposes:

1 . Prevent process private data from being mapped
onto shared page tables. If part of a shared page
table page is unused because the memory-resident
global section is not an even multiple of S MB, the
process would normally be allowed to create private
data there.

2. Accomn~odate the virtual addressing alignments
required when mapping page tables into a process'
address space.

For applications that cannot bc changed to confor111
to these mapping restrictions, a memory-resident
global section with shared page tables can be mapped
using the process' private page tables. This capability is
also usefi~l \\/hen the memor!r-resident global section is
mapped read-only. This mapping cannot share page
tables \vidi a writable mapping because the access pro-
tection is stored within the shared PTEs.

Shared Page Table Virtual Regions The virtual regon
support added in OpenVh4S Alpha version 7.0 \t7as
extended to aid in prohibiting process private pages
from being mapped by PTEs within shared page
tables. Virtual regions are lightweight objects a
process can use to reserve portions of its process
virtual address space. Reserving address space prevents
other threads in the process from creating address
space in the reserved area, unless they specify the
handle of that reserved area to the address space cre-
ation routines.

To control which portion of the address space
is mapped with shared page tables, the shared page
table attribute was added to virtual regions. T o map a
memory-resident global section with shared page
tables, the user must supply the mapping routine with
the name of the appropriate global section and the
region handle of a shared page table virtual region.

There are two constraints on the size and alignment
of shared page table virtual regions.

1. The size of a shared page table virtual region must
be an even multiple ofbytes mapped by a page table
page. For an 8-IU3 page system, the size of any
sharcd page table virtual region is an even multiple
of 8 MB.

2. The caller can spec@ a particular starting virtual
address for a virtual region. For shared page table
virtual regions, the starting virtual address must be
aligned to an 8-MB boundary. If the operating
system chooses the virtual address for the region, it
ensures the virtual address is properly aligned.

Digital Technic31 Journal Vol.9 No.4 1997 43

If either the size o r the alignment recluirernent for a
shared page tablc v i r t~~a l region is not met, the service
fails to create thc region.

The size and alignment constraints placed on shared
pagc table virtual regions kccp page table pages from
spanning two different \.irtual regions. This allo~vs the
operating system to restrict proccss private mappings
in shared pagc tablc regions and shared page table
mappings in other regions by checlting the shared
page table's attribute of the region bcfore starting the
mapping operation.

Mapping within Shared Page Table Regions The address
space mapped within a shared pagc table \rirtual region
also must be page tablc pagc aligned. This ensures that
mappings to multiplc ~~iemory-resident global sec-
tions that have ~lnique sets of shared pagc tables d o
not encroach upon each othcr.

The map Icngtli is thc only argument to thc map-
ping system scrvice routines that need not bc an even
multiple of bytes mapped by a pagc tablc page. This
is allowed because it is possible for thc sizc of the
niemory-rcsident global scction to not be an even
multiple of bytes niappcd by a page table page. A
memory-resident global section that fits this length
description will have a portion of its last shared page
table page unuscd.

The Reserved Memory Registry

O~CIIVLMS Alplin VLLM support provides a plijrsical
memory rcser\~atio~i system ttiat can be esploitcd by
VLM applications. The main purposc of this system is
to provide portions of the systeni's physical memory
to multiple consumers. When ncccssar!; a consumer
can reser\,e a quantity of physical addrcsscs in an
attempt to make the most cfficicnt t~sc of system com-
ponents, namely thc translation buffer. More efficient
use of the CPU and its peripheral coniponents leads to
incrcascd application pcrformancc.

Alpha Granularity Hint Regions
A translation buffer (TB) is '1 CPU component tliat
caches recent virtual-to-ph!lsicaI address translations
of valid pages. Thc TH is a small amount of\.er\l fist
memory and therefore i5 only capablc ofcaching a lim-
ited ~ x ~ m b e r of translations. Each entry in the TB rcp-
resents a singlc succcssfi~l \lirt~~al-to-physical address
translation. TB cntrics arc p~lrgcd either when a
request is made by sofhvare o r when the TR is f i l l 1 and
a more recent translation needs to be cached.

The Alpha Architecture coupled with software can
help make more effectivc use of the TB by allowing
several contiguous pages (groups of 8,64, or 5 12) to
act as a single huge pagc. This single huge page is

44 Digital Technical Journal Vol. 9 No. 4 1997

called a granularity hint region and is composed of
contiguous virtual and physical pages whose respective
first pages are esactly aligned according to tlie number
ofpages in the region. When the conditions for a gran-
ularity hint region prevail, thc singlc huge page is
allowed to consume a single TB cntry instead of sev-
eral. Minimizing the number ofcntries consumed for
co~itiguous pages greatly reduccs turnover \vitliin tlie
TB, leading to higher chances of a TH hit. Increasing
the likelihood of a TR hit in turn rnini~iiizes the nuni-
ber of virtual-to-physical translations perforrncd by
the CPU."

Since memory-resident global scctions are nonpage-
able, mappings to memorj!-residcnt global sections
greatly benefit by exploiting gran~~larity hint regions.
Unfortunately, there is no guarantee that a contiguous
set of pfiysical pages (let alone pagcs that mcet the
alignment critcria) can be located oncc the system is
initialized and ready for steady-state operations.

Limiting Physical Memory
One technique to locate a contiguous set of PFNs on
OpenVMS (previously used o n Alpha and VAX plat-
forms) is to limit the actual numbcr of physical pages
uscd by the operating systeni. This is acco~iiplislied by
setting the PHYSICAL-MEIVORY ~!~stcni parameter
to a value smaller than the actual ;Imoilnt of physical
memory available in thc systcni. The systcrn is then
rebooted, and the PFNs that represent higher physical
addresses than tliat spccifed by the paramcter are allo-
cated by the application.

This technique \\forks \~rcll tbr a singlc application
that wishes to allocate or use a rangc of PFNs not ~lsed
by the operating system. Unfortunately, it suffers from
the follo\\ing problen~s:

I t requires the application to detcrminc tlic frst
page not used by the operating systcni.

I t requires a process running this application to be
liiglily privileged since thc opcrating systcrn does
not check \vhich PFNs arc being ~nappcd.

Since tlie operating systcrn docs not arbitratc acccss
to the isolated physical addresscs, only onc appllcd-
tion can safely use them.

The Alpha Architecture allocvs for i~nplerncntations
to support discontiguous physical mcmory or phys-
ical memory holes. This mcans that thcrc is 110

guarantee tliat the isolated physical addresscs arc
successi\lely adjacent.

The PFNs above the limit set are not managed by
the operating system (physical memory data struc-
tures d o not describe these PFNs). Tlierefore, tlie
pages above the limit cannot be recl'iimed by tlie
operating systeni once tlie application is finished
using them unless the system is rebooted.

The Reserved Memory Solution
The OpenVMS reserved memory registry was created
to provide contiguous physical memory for the pur-
poses of further improving the performance of VLM
applications. The reserved memory registry allows the
system manager to specify multiple memory reserva-
tions based on the needs of various VLM applications.

The reserved memory registry has the ability to
reserve a preallocated set of PFNs. This allows a set of
contiguous pages to be preallocated with the appro-
priate alignment to allow an Alpha granularity hint
region to be created with the pages. I t can also reserve
physical memory that is not preallocated. Effectively,
the application creating such a reservation can allocate
the pages as required. The reservation ensures that the
system is tuned to exclude these pages.

The reserved memory registry can specify a reserva-
tion consisting of prezeroed PFNs. I t can also specify
that a reservation account for any associated page
tables. The reservation system allows the system man-
ager to free a reservation when the corresponding
consumer n o longer needs that physical memory.

The memory reserved by the reserved memory reg-
istry is communicated to OpenVMS system tuning
facilities such that the deduction jn fluid memory is
noted when computing system parameters that rely on
the amount ofphysical memory in the system.

SYSMAN User Interface The OpenVMS Alpha
SYSbLAN utility supports the RESERVED-MEIVORY
command for nianipulating entries in the reserved
memory registry. A unique character string is specified
as the entry's handle when the entry is added, rnodi-
fied, or removed. A size in megabytes is specified for
each entry added.

Each reserved memory registry entry can have the
following options: preallocated PFNs (ALLOC), zeroed
PFNs, and an allotment for page tables. VLM applica-
tions enter their unique requirements for reserved
memory. For memory-resident global sections, zeroed
PFNs and page tables are usually specified.

Reserving Memory during System Start-up To ensure
that the contiguous pages can be allocated and that
run-time physical memory allocation routines c a i be
used, reserved memory allocations occur soon after
the operating system's physical memory data struc-
tures have been initialized.

The reserved memory registry data file is read t o
begin die reservation process. Information about each
entry is stored in a data structure. Multiple entries
result in multiple structures being l i ~ h e d together in a
descending-order linlced list. The list is intentionally
ordered in this manner, so that the largest reservations
are honored first and contiguous memory is not frag-
mented with smdler requests.

For entries \vith the ALLOC characteristic, an
attempt is made to locate pages that will satisfy the
largest granularity hint region that fits within the
request. For example, reservation requests that are
larger than 4 MB result in the first page allocated to be
aligned to meet the requirements o f a 512-page gran-
ularity hint region.

The system's fluid page counter is reduced to
account for the amount of reserved memory specified
in each entry. Thls counter tracks the number of phys-
ical pages that call be reclaimed from processes o r the
system through paging and swapping. Another system-
defined value, minimum fluid page count, is calculated
during system initialization and represents the
absolute minimum number of fluid pages the system
needs to function. Deductions from the fluid page
count are always checked against the minimum fluid
page count to prevent the system from becoming
starved for pages.

Running AUTOGEN, the OpenVMS system tuning
utility, after modifying the reserved memory registry
allows for proper initialization of the fluid page
counter, the minimum fluid page count, and other sps-
tem parameters, thereby accommodating the change
in reserved memory. AUTOGEN considers entries in
the reserved memory registry before selecting values
for system parameters that are based on the system's
memory size. Failing to retune the system can lead to
unbootable system configurations as well as poorly
tuned systems.

Page Tables Characteristic The page table reserved
memory registry characteristic specifies that the
reserved memory allotment for a particular entry
should include enough pages for its page table
requirements. The reserved memory registry reserves
enough memory to account for lower-level page table
pages, although the overall design can accommodate
allotments for page tables at any level.

The page table characteristic can be omitted if
shared page tables are not desired for a particular
memory-resident global section o r if the reserved
memory will be used for another purpose. For exam-
ple, a privileged application such as a driver could call
the kernel-mode reserved memory registry routines
directly to use its reservation from the registry. In this
case, page tables are already provided by the operating
system since the reserved pages hvill be mapped in
shared system address space.

Using Reserved Memory Entries are used and
returned to the reserved memory registry using a set
of kernel-mode routines. These routines can be called
by applications running in kernel mode such as the
system service routines that create memory-resident

Digital Technical Journal Vol. 9 No. 4 1997 45

global sections. For a11 application to create a memory-
resident global section and use reserved memory, the
global section name must exactly match the name of
the reserved memory registry entry.

Afier the system service routine has obtained the
reserved memory for the memor)l-resident global sec-
tion, it calls a reserved memory registry routine again
for the associated shared page table global section. If
page tables were not specified for the entry, the system
service routine does ~ i o t create a shared page table
global section.

A side benefit of using the ALLOC option for the
memor!~-resident global section is that the shared page
tables can be mapped into page table space using gran-
ularity hint regions as well.

Returning Reserved Memory The memory used by
a memory-resident global section and its associated
shared page table global section is returned to the
reserved memory registry (by calling a kernel-mode
routine) when tlie global section is deleted. Reserved
memory is only returned when a memory-resident
global section has no more outstanding references.
Preallocated pages are not returned to the system's
fi-ee page list.

Freeing Reserved Memory Preallocated resenled mem-
ory that is unused or partially used can be freed to the
system's free page list and added to the system's fluid
page count. Reserved fluid memory is returned to the
system's fluid page count only.

Once an entry's reserved memory has been freed,
subsequent attempts to use reserved memory witli the
same name may be able to use only the FLUID option,
because a preallocated set of pages is no longer set
aside for the memory-resident global section. (If the
system's fluid page count is large enough to accom-
modate the request, it will be honored.)

The ability to Free unused or partially used reserved
memory registry entries adds flexibility to the manage-
ment of the system. If applications need more mem-
ory, the registry can still be run with the FLUID
option until the system can be rebooted with a larger
amount ofreserved memory. A pool ofreservcd mem-
ory can be freed at system start-up so that multiple
applications can use memory-resident global sections
to a limit specjfied by the system manager jn the
reserved memory registry.

Reserved Memory Registry and Other Applications
Other OpenVMS system components and applications
may also be able to take advantage of the reserved
memory registry.

Applications that relied upon modifications to the
PHYSICAL-MEMORY system parameter as a lneans

of gaining exclusive access to physical memory can
enter kernel mode and call the reserved memory reg-
istry kernel-mode routines directly as an alternative.
Once a contiguous range of PFNs is obtained, the
application can map tlie pages as before.

Using and returning reserved memory registry
entries requires lcernel-mode access. This is not viewed
as a problem because applications using the former
method (of modifying the PHYSICALMEMORY
system parameter) were already privileged. Using the
reserved memory registry solves the problems associ-
ated with the previous approach and requires few code
changes.

Performance Results

In a paper describing the 64-bit option for the Oracle7
lielational Database System,' the author underscores
the benefits realized on a VLM system running the
DIGITAL UNIX operating system. The test results
described in that paper highlight the benefits of being
able to cache large amounts of data instead of resort-
ing to disk I/O. Although the OpenVMS design team
was not able to execute similar kinds of product tests,
we expected to realize similar performance improve-
ments for die following reasons:

More of a VLM application's hot data is kept resi-
dent instead of paging between memory and sec-
ondary storage.

Application start-up and shut-down times are sig-
nificantly reduced since the page table structures
for the large shared memory object are also shared.
The result is t l~at many fe\vcr page tables need to be
managed and manipulated per process.

Reducing die amount of PTE manipulations results
in reduced lock contention when hundreds of
processes map the large shared memory object.

As an alternative to product testing, the design team
devised experiments that simulate the simultaneous
start-up ofmany database server processes. The exper-
iments were specifically designed to measure the
scaling effects of a VLM system during application
start-up, not during steady-state operation.

We performed two basic tests. In the first, we used a
7.5-GB, memory-resident global section to measure
the time required for an increasing number of server
processes to start up. All server processes mapped to
the same memory-resident global section using shared
page tables. The results shown in Figure 8 indicate
that the system easily accommodated 300 processes.
Higher numbers of processes run simultaneously
caused increasingly large amounts of system stress due
to the paging of other process data.

46 Digital Technical Journal Vo1.9 No. 4 1997

50 100 150 200 250 300 350 400 450 500 550
PROCESS COUNT

KEY:
+ MEMORY-RESIDENT GLOBAL SECTION/SHARED PAGE

TABLE

Figure 8
Server Start-up Time versus Proccss Count

In another test, we used 300 processes to measure
the time required t o map a memory-resident global
section with and without shared page tables. In this
test, the size ofglobal section was varied. Note that the
average time required to start up the server processes
rises at nearly a constant rate when not using shared
page tables. When the global section sizes were 5 GB
and greater, the side effect of paging activity caused
the start-up times to rise more sharply as shown in
Figure 9.

'The same was not true when using shared page
tables. The time req~~ired to map the increasing sec-
tion sizes remained constant at just under three sec-
onds. The same experiment on an Alphaserver 8400
system with 28 GB of memory showed identical con-
stant start-up times as the size of the memory-resident
global section was increased to 27 GB.

01
2.048 2,560 3,072 3.584 4.096 4.608 5,120 5,632 6,144

GLOBAL SECTION SIZE (MEGABYTES)

KEY:
+ MEMORY-RESIDENT GLOBAL SECTION/PRIVATE OR

PROCESS PAGE TABLE
+ MEMORY-RESIDENT GLOBAL SECTION/SHARED PAGE

TABLE

Figure 9
Scrvcr Start-up Timc 011 an 8-GB System

Conclusion

The OpenVMS Alpha VLM support available in ver-
sion 7.1 is a natural extension t o the 64-bit virtual
addressing support included in version 7.0. The 64-bit
virtual addressing support removed the 4-GB virtual
address space limit and allowed applications to make
the most of the address space provided by Alpha sys-
tems. The VLM support e~iables database products or
other applications that make significant demands on
physical memory t o make the most of large memory
systems by allowing large caches to remain memory
resident. The programming support provided as part
of the VLM enhancements enables applications to take
advantage of both 64-bit virtual addressing and very
large memories in a modular fashion consistent with
the OpenVMS shared memory model. This combina-
tion enables applications to realize the full power of
Alpha VLM systems.

The Oracle7 Relational Database LManagement
System for OpenVMS Alpha was modified by Oracle
Corporation to exploit the VLM support described in
this paper. The combination of memory-resident
global sections, shared page tables, and the reserved
memory registry has not only improved application
start-up and run-time performance, but it has also
simplified the management of OpenVMS Alpha VLM
systems.

Acknowledgments

The authors wish to thank other members of the
OpenVMS Alpha Kernel Group who contributed to
the design and implementation of \rLM support on
OpenVMS Alpha: Tom Benson, Richard Bishop, Clair
Grant, Andy Ki~ehnel, and Dave Wall. Jef Kennedy
and Tony Lekas of Oracle Corporation provided great
assistance as well. We would also like to thank Ron
Higgins for his management support and Mike
Harvey for his long-standing mentorship. lMargie
Sherlock and Tom Benson were especially helpful in
assisting us with the writing aspects of this paper. We
are also thankhl to Gaitan D'Antoni who found the
time in current project schedules to accommodate the
writing of this paper.

References

1. V. Gokhale, "Design of the 64-bit Option for the Ora-
cle7 Relational Database Management System," Digital
TecbizicalJo~~1-na1, vol. 8, no. 4 (1996): 76-82,

2. R. Goldenberg and S. Saravanan, Open I/iVISAXP Inter-
n a l ~ and Data Sti-~lctures, Versiolz 1.5 (Newton, Mass.:
Digital Press, 1994).

3. T. Benson, K. Nocl, and R. Peterson, "The OpenVMS
Mixed Pointer Sized Environnlent," Digital Technical
,Jour~zal, vol. 8 , no. 2 (1996): 72-S2.

Digital Tcchnical Journal \iol. 9 No. 4 1997 47

4. M. Harvey and L. Szubowicz, "Extending OpenVMS
for 64-bit Addressable Virtual Memory," Digital Tech-
nical./ournal, vol. 8, no. 2 (1996): 57-71.

5. R. Sites and R. Wjtek, Alpha AXPArchitecture Reference
Ma??ual, 2d ed. (Newon, Mass.: Digital Prcss, 1995).

General References

Open VMS Alpha Guide to 64-bit Addressing and VLM Fca-
tures (Maynard, Mass.: Digital Equipment Corporation,
Order No. AA-QSBCB-TE).

Open L'IWS Sj~stem Sen~ices Reference 1l4al?ual: A-GET/WSG
 mayna nard, Mass.: Digital Equipment Corporation, Order
ATo. M-QSBMG-TE) and O p e n W Systein SenAce.7
Reference Manual: GETQUI-Z (Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-QSBNB-TE).

For a more complete description of shared mcmory creation
on DIGITAL UNIX, see the DIGITAI. IliVIX Progrctmmer's
Guide.

Biographies

Karen L. Noel
A consulting engineer in the OpenVMS Engineering
Group, Karen Noel was the technical leader for the VLM
project. Currently, as a member of tlie OpenVMS Galaxy
design team, Karen is contributing to the overall Galaxy
architecture and focusing on the design of n~ernory parti-
tioning and shared menlory support. After receiving a
B.S. in computer science from Cornell University in 1985,
Karen joined DIGITAL'S RSX Development Group. In
1990, she joined the VMS Group and ported several parts
of the VMS kernel from the VAX platform to the Alpha
platform. As one of the principal designers of OpenVMS
Alpha 64-bit addressing and VLlM support, she has applied
for nine software patents.

48 Digital Techn~cal Journal

Nitin Y. Karkhanis
Nitin IOrkhanis joined DIGITAL in 1987. As a nicmber
of the OpenVA4S Alpha Executive Group, he \\.as onc of
the developers of OpenVMS Alpha 64-bit addressing sup-
port. H e was also the primary de\,elopcr for thc physical
memory hole (dscontiguous pl1)lsical memor)~) support for
OpenVMS Alpha. H e is a coapplicant for nvo patents 011

OpenVMS VLM. Currently, Nitin is a principal sofnvarc
engilleer in the OpenVMS N T Infrastructure Engineering
Group, where he is a melnbcr of the OpenVMS DCOM
porting team. Nitin recejved a B.S. in computcr science
from tlie Uni\gersity ofVermont in 1987.

I
Benjamin N. Lipchak
Thomas Frisinger
Karen L. Bircsak
Keith L. Comeford
Michael I. Rosenblum

PowerStorm 4DT A High-
performance Graphics
Software Architecture

The PowerStorm 4DT series of graphics devices
established DIGITAL as the OpenGL performance
leader for mid-range workstations, both on the
DIGITAL UNIX and the Windows NT operating
systems. Achieving this level of success required
combining the speed of the Alpha microprocessor
with the development of an advanced graphics
subsystem architecture focused on exceptional
software performance. The PowerStorm 4DT
series of graphics adapters uses a modified
direct-rendering technology and the Alpha CPU
to perform geometry and lighting calculations.

The PowerStorrn 4D40T, 4D50T, and 4D60T mid-
range graphlcs adapters from DIGITAL have exceeded
the performance of all OpenGL graphics de\ ' x e s cost-
ing as much as $25,000. In addition, these products
achieved twice the price/performance ratio of com-
peting systems at the time they were announced.

The PowerStorm 4DT series of mid-range graphics
devices was developed in 1996 to replace the com-
pany's ZLX series. In its search for a vendor to replace
the graphics hardware, DIGITAL found Intergraph
Systems Corporation. This company had been design-
ing three-dimensional (3-D) graphics boards for a
few years and was then on its second-generation
chip design. The schedule, cost, and performance of
Intergraph's ne\v design matched our project's target
goals. Intergraph was building software for the
Windows NT operating system on its Intel processor-
based workstations, but was not doing any work for
the UNIX operating system or the Alpha platform.

The goals of the PowerStorm 4 D T project were to
develop a mid-range graphics product powered by the
Alpha microprocessor that would lead the i n d ~ ~ s t r y in
performance and price/perforniance.

This paper describes the competitive environment
in the graphics industry at the conception of the
PowerStorrn 4DT project. I t discusses our design deci-
sions concerning the graphics subsystem architecture
and performance strategy. The paper concludes with a
performance summary and comparison in the industry.

Competitive Analysis

Overall performance of today's mid-range workstations
is markedly better than that of just two years ago. T h s
improvement is largely due to the dramatic increases in
CPU speeds, both in the number of instructions exe-
cuted per clock cycle and the number ofclock cycles per
second. Without trivializing the efforts of the CPU
architects, such year-over-year increases in CPU perfor-
mance halie become the trend of the last decade, espe-
cially with the Alpha microprocessor.

Digital Technical Joulmal 1'01. 9 No. 4 1997 49

More astounding is the central role that the graphics
component o f the workstation is playing in defining
tlic o\~erall performance o f the \vorkstation. IVc are in
the age o f visual computing. Whether o r no t an appli-
cation r e q ~ ~ i r e s 3 - D graphics, even t h e most primitive
applications ofien rely o n a graphical user interface
(GUI) . As such, the graphical components o f today's
system-levcl benchmarks now carry significant weight.

Adore iniportantly, a prospecti\~e buyer often loolts
a t results from standard graphics benchmarks as a gen-
eral indication o f a machine's overall performance. 112
tlie computer-aided desig~~/computer-aided manu-
facturing (CAD/CAM) market, a customer typically
buys a worltstation t o run a set o f applications that has
a large 3-D component . Performance is measured by
ho\v fast a \\~orkstation can create and manipulate 3-13
objects. For the 111ost part, this performance is deter-
mined wholly by tlie graphics subsystem. T h e hard-
\\fare conlponents o f the graphics subs!~stem, ho\veve~-,
vary from vendor t o vendor and may o r may n o t
include tlie CPU.

Performance Metrics
Simply stated, the primary goal o f the l'o\\~erStorrn
4 D T graphics device series was t o provide the fastest
rnid-range O p e n G L graphics performance while offer-
ing the best price/performance ratio. O p e n G L is the
industry-standard 3 - D graphics application program-
ming interface (MI) and associated library that p ro-
vides a p la t fo rm- i~ ldepende~i t interface for rendering
3 - D graphics.'

Quantifjiing performance can be an elusive goal.
Product managers in o u r bVorltstation Graphics Group
chose two metrics t o compare the performance o f the
l'o\\~erStorm 4 D T adapter t o o u r co~npet i tors ' prod-
ucts. T h e first metric was perfonndnce o n the indus t ry
standard O p e n G L Viewvperf benchmark, C o n c e p t ~ ~ a l
Dcsign and Rendering Software (CDRS).' This bench-
mark was chosen for its uni\lersal acceptance in the
CAD/CAM and process control markets. When buyers
compare graphics perfor~iiance of two systems running
OpenGL, thc Vie\vperf scores are a m o n g the first
m c a s ~ ~ r c m e n t s they seek. T h e second measurement
was performance o n the l'ro/ENGINEER application
from Parametric Technology Corporation (PTC) .

T h e CDRS benchmark, as shown in Figure 1, .vclas
established by the O p e n G L Performance Charactei-i-
zation (O P C) organization as one o f several Vien~per f
viewsets. I t emulates the variety o f operations a usel.
typically executes \vlien r ~ i n n i n g a <:AD/CAM applica-
tion. Specifically, this benchmarlt uses a series o f tests
that rotate a 3 - D model o n the screen in a variety o f
modes, including wireframe vectors, smooth-shaded
facets, texturing, and transparency. Performance is
rncasured by liowr~ many frames per second can be
generated. Higher frame rates equate t o faster and
smoother rotations o f the model. Each test carries a

Figure 1
CDlG Viewpe~-f Renchmark of OpenGL Performance

weight determined t o roughly correspond t o how
important that operation is in a rcal-world CAD/CAM
package. T h e test results are geometrically averaged t o
produce a coniposite score. This single number is a
representation o f tlie g~-aphics performance o f any
given systein.

Although standard benchmarks are good perfor-
mance indicators, they cannot substitute for actual
performance o n a n application. To ensure that the
l'o\verStor~n 411T adapter realized exceptional real-
world performance, the second metric chosen was the
CAD/CAii/l industry's rnarket share leader, the Pro/
ENGINEER application. PTC provides the industry
\vith a set o f playback files called trail files. As shown in
Figure 2, each file contains a recording o f a session in
\vhich a user has created and rotated a 3 - D part. T h e
recordings typically have large wireframe and smooth-
shading components and little o r n o texture niapping.
Performance is measured by h o w quickly a system can
play back trail file. 'The C1)IIS benchmark stresses
onl!~ the graphics subs)atcni, bu t the Pro/ENGINEElI
trail file stresses the C P U and the memory subsystem
as \\Jell.

Graphics Hardware Standards
In 1996, Silicoil Graphics Inc. (SGI) captured the
mid-range graphics ulorltstation niarltet \\jith its
Indigo2 Maximum IiMPACT graphics subsystem pow-
crcd by the LMIPS lXlOOOO microprocessor. DIGITAL,
Sun ~Microsystel~ns, and International Dusiness Maclunes
(IRh/I) Corporation had yet t o produce a product with
the perforniancc SGI offered; instead, they competed
in tlie low t o lo~wicr mid-range graphics arena.

Vol. 9 No. 4 1997

-- [m , r l q h L b u l . L m ~ I u m m ~ L . #I la. I m bu ,.Lon $a .kmrL. --
I L bu1.L-D 1.1 II -::I , rlm hL buI.Lmn I u mrmL. n l a d 1. bul.Lon I s # . m r L .

---&a

,+

-7 - I..

Figure 2
Screen Capture from the Pro/ENGINEER Trail File Used to Stress the PowerStorm 4DT Series

Hewlett-Packard was notably absent from either
bracket due to its lack ofa mid-range workstation with
OpenGL graphics capability. Mid-range workstations
can be loosely classified as costing from $15,000 to
$40,000. Graphics performance in this price range dif-
fers, sometimes dramatically, from vendor to vendor.

Considering only raw graphics hardware perfor-
mance, a vendor had to offer a certain level ofperfor-
rnance to be competitive with SGI. By 1996 standards,
a competitive device needed to be capable of achieving
the following:

w 1 million Gouraud-shaded, 25-pixel, Z-buffered
triangles per second

w 2 million flat-shaded, antialiased, 10-pixel vectors
per second

Trilinear, miprnapped, texture f i l l rates of 30 mega-
pixels per second

w 24-bit deep color buffer

4-bit overlay buffer

w 4-MB dedicated or unified texture memory

w Dedicated hardware support for double buffering
and Z-buffering

w Screen resolution of 1,280 by 1,024 pixels at 72 hertz

In 1996, the PowerStorm 4D60T, the most
advanced graphics adapter in the new series, was capa-
ble of the following:

w 1.1 million Gouraud-shaded, 25- to 50-pixel,
2-buffered triangles per second

2.5 million flat-shaded, antialiased, 10-pixel vectors
per second

w Trilinear, mipmapped, texture fill rates of greater
than 30 megapixels per second

w 32-bit deep color buffer

w 8- bit overlay buffer

w 0- to 64-MI3 dedicated texture memory

w Dedicated hardware support for double buffering
(including overlay planes) and Z-buffering

w Screen resolution up to 1,600 by 1,200 pixels at 76
hertz

Digital Technical Journal Vol. 9 No. 4 1997 51

I t is important to understand that these are hard-
ware maximums. Tlie interesting work is not in
achieving these rates under the best of conditions, but
in aclieving these rates under most conditions. T o
reiterate, building liard\\lare that can theoretically per-
form well and building a system that performs well in
benchmark applications are two distinctly different
goals. The latter requires the former, but the former in
no way guarantees the latter.

Different viewpoints on the best way to provide the
highest level of performance have divided the industry
into several camps. Workstation vendors must decide
which approach best exploits the conlpetitive advan-
tages of their systems. In the mid-range workstation
market, our graphics philosophy is decidedly dfferent
from that of our conlpetitors. For the most part,
DIGITi% is alone in its choice o fa CPU-based, direct-
rendering graphics architecture.

I n the next section, we discuss the various graphics
design architectures in the industry, focusing o n the
design of the PowerStorm series and comparing it
\\~itll SGI's approach.

Graphics Subsystem Architectures

The two essential choices for graphics subsystem design
are deciding between indirect and direct rendering and
choosing whether the CPU or an application-specific
integrated circuit (ASIC) performs the geometry and
lighting calculations. In tlis section, we discuss the
advantages and disadvantages of both rendering
schemes and calculation devices and explore designers'
decisions for graphics subsystenl architectures.

By order of occurrence, 3 -D graplics can be divided
into three stages: (1) transferal of OpenGLAPI calls to
tlie rendering library, (2) geometry and lighting, and
(3) rasterization. In the next section, we compare
direct and indirect image rendering.

Direct Versus Indirect Rendering
Before the popularization of the Windows NT operat-
ing system and the personal computer, almost all
graphics workstations used the X Window System or
a closely related derivative. The typical X Window
System implementation is a standard client-server
model."n application that draws to the screen
requests the X server to manage the graplics hardware
on its behalf.

The graphics M I , either Xlib for two-dimensional
(2-D) applications or OpenGL for 3-D, was the h n c -
tional breaking point. Traditionally, client applications
would make graphics API calls to d o drawing or
another graphics-related operation. These calls would
be encoded and buffered on the client side. At some
point, either explicitly by the client or implicitly by tlie
API library, the encoded and buffered requests would
be flushed to the X server. These commands would

then be sent to the X server over a transport such as
the Transmission Control Protocol/Internet Protocol
(TCP/IP), a local UNIX domain socket, or local
shared memory.

When the requests arrived at the X server, it \\~ould
decode and execute them in order. Many requests
~ r o u l d then require the generation of commands to be
sent to the hardware. T h s client-server model was
named indirect rendering because of the indirect way
in which clients interacted with the graphics hardware.

Direct rendering is a newer method often employed
in the design of high-end graphics system^.^.^ In this
scheme, the client OpenGL library is responsible for all
or most 3-D rendering. Instead of sending commands
to the X server, the client itself processes the com-
mands. Tlie client also generates hardware command
buffers and often communicates directly with the
graphics hardware. In this rendering scheme, the X
server's role is greatly diminished for 3 - D OpenGL
requests but remains the same for 2 - D Xlib requests.

The designers chose to support direct rendering for
the PowerStorm 4DT adapter. Direct rendering offers
considerably better performance than indirect render-
ing. Note, however, direct rendering does not pre-
clude indirect rendering. All devices that support
direct rendering under the X Window System also
support indirect rendering.

In the following subsections, we discuss the advan-
tages and disadvantages of direct and indirect render-
ing. We also explain the impetus for making the
PowerStorm 4DT adapter the first graphics device
from DIGITAL capable of direct rendering.

lndirect Rendering One advantage of indirect ren-
dering that should never be underestimated is its proven
track record. This techno log)^ is widely accepted and
understood. I t offers network transparency, whch
nieans a client and server need not reside on the same
nlachine. A client can redirect its graphics to any
macline running an X server as long as the two
machines are connected on a TCP/IP network. Tlus
model worked well until faster CPUs and graplics
devices were developed. The protocol encode, copy,
and decode overhead associated with sending requests
to the server became a bottleneck.

The increased use of display lists provided an inter-
mediate solution to this probleni. Display lists are a
group ofOpenGL commalids that can be sent to the X
server once and executed multiple times by referenc-
ing the display list ID instead of sending all the data
each time. Display lists dramatically reduced commu-
nication overhead and returned graphics to the point
at which communication to die X server \+/as no longer
the bottleneck.

Unfortunately, display lists had significant disadvan-
tages. Once defined, they could not be modified. T o
achieve perforlnance using indirect rendering, almost

52 Digitdl 'Tccluiical Journal

all OpenGL commands had to be collected into dis-
play lists. This caused resource problems because
display lists could be quite large and had to be stored
in the X server until explicitly deleted by the client.
Probably the greatest disadvantage was that display
lists were generally awkward for application programs
to use. Application programmers prefer the more
straightforward method of immediate-mode pro-
gramming by which commands are called individually.
For these reasons, indirect rendering proved to be
insufficient, even with the advent of display lists.

Direct Rendering The PowerStorm 4DT project
team was committed to designing a product with lead-
ership performance for both the display-list-mode and
immediate-mode rendering. The designers realized
early that they would have to adopt direct rendering to
address the performance problems with immediate-
mode indirect rendering.

As mentioned earlier, the philosophy behind classi-
cal drect rendering is that each client handles all
OpenGL processing, creates a buffer of hardware
commands for the device, and then sends the com-
mands to the device without any X server interaction.
This model has several drawbacks. First, access to the
graphics hardware is difficult to synchronize between
clients and the X server. Second, windows and their
properties such as position and size have to be main-
tained by the clients, which also requires a complex
sylichronization design. SGI used this model for its
IMPACT series of graphics devices.

The PowerStorm 4DT designers took a more con-
servative approach, based largely on the same model.
One fundamental difference is that each client gener-
ates hardware command buffers in shared memory.
The client then sends requests to the X server telling it
where to locate the hardware commands. The X server
sets up the I~ardware to deal with window position and
size and then initiates a b e c t memory access (DMA) of
the hardware command buffer to the graphics device.
Essentially, the X server becomes an arbitrator of hard-
ware buffers. This approach worked quite well, because
the X server was the logical place for synchronization to
occur and it already maintained window properties. We
were able to have all the performance benefits ofclassi-
cal direct rendering without the pitfalls.

One implication of direct rendering is that the client
and the server have to be on the same physical machine.
When first evaluating direct rendering, designers were
curious to determine how ofien our customers used
tlis configuration; that is, did most users perform their
work and display their graphics on the same computer?
Our surveys showed that more than 95 percent of
users did display their graphics locally. The remaining
5 percent rarely cared about performance. Today, this
may seem obvious; two years ago, it could not be
assumed.

Direct rendering offered a huge performance
improvement to nearly all our customers. The perfor-
mance gains were two to four times the performance
of indirect rendering.

Direct-rendering 2-D Most graphics device imple-
mentations use direct rendering only for OpenGL,
because indirect rendering of immediate-mode
OpenGL is protocol rich. As mentioned previously,
the transferal of this protocol to the X server can be
quite expensive. One interesting aspect of our design
is its support for direct rendering of2-D ,Nib calls.

Other graphics vendors consider 2-D performance
important only for 2-D benchmarks. These bench-
marks, which largely stress the graphics hardware's
ability to draw 2-D primitives quickly, can generate a
lot of work for the hardware with relatively few
requests. Unlike 3-D, these requests do not need
much geometry processing before they can be sent to
the hardware. This means that very little protocol is
needed to saturate the hardware. As long as the proto-
col generation does not produce a bottleneck, indirect
rendering performs as well as direct rendering. In
addition, given that OpenGL benchmarks like CDKS
have almost no 2 -D component, it seems reasonable
to conclude that inbrect-rendered 2-D should suffice.

Benchmarks ofien are not sufficiently representative
of real applications, especially when they isolate 2-D
and 3-D operations. CAD/CAM applications typically
have a substantial 2 -D GUI, which interacts closely
with the 3-D components of the application. A bench-
mark that exercises both 2-D and 3-D by emulat i~~g a
user session on an application will provide results that
more accurately reflect the performance witnessed by
an end user. These benchmarks simply measure how
long it takes to complete a session, so both 3-D and
2-D performance impact the overall score.

Our research showed that with a highly optimized
OpenGL implementation, in many cases it was n o
longer the 3-D components that slowed down a
benchmark, but the 2-D components. Further exam-
ination revealed that it was the same protocol bottle-
neck evident with indirect-rendered OpenGL.
Applications were generating relatively small drawing
operations with many drawing attribute changes
intermixed, such as draw line, change color, draw
line, change color, and so forth. This type of request
stream tends to generate tremendous amounts of
protocol, unlike 2-D benchmarks that rarely change
drawing attributes.

Accordingly, 2-D direct rendering presented itself as
the logical solution. With the direct-rendering infra-
structure and design already in place, developers sim-
ply needed to extend it for 2-D/Xlib. This required
the development of two additional libraries: the
Vectored X library and the Direct X library (unrelated
to Microsoft's DirectX API).

Digital Technical Journal Vol. 9 No. 4 1997 53

The Vectored X library replaced the preexisting Xlib.
I t allows devices that support direct rendering to vector,
or redirect, Xlib hnction calls to direct-rendering rou-
tines instead ofgenerating the X protocol and sending it
to the X server. If a graphics device docs not support
direct rendering, it defaults to the generic protocol-
generating routines. I t is important to understand that
this is a de\~icc-independent library responsible only tor
vectoring Nib calls to die appropriate library.

The Direct X library, on the other hand, is a dcvicc-
dependent library. It contains all the vectored fi~nctions
that the Vectored X library calls when the device sup-
ports direct rendcring. This library operates in much
the same way as the direct-rendering OpenGL, library.
I t processes the requests and places graphics hard\varc
commands in a shared memory buffer. The X server
later sends the buffer to the graphics device by DMA.

The entire hnctionality of die X library is not implc-
mented through d rec t rendering for several reasons. In
many cases, a shared resource resides in thc scrvcr (c.g.,
the X server performs all pismap rendering). 111 other
cases, the hardware is not drectly addressable by thc
clicnt (e.g., the X server handles all Frame bufkr reads).
Often the client does not have access to all \vindo\\~
information that the server majntains (e.g., the X server
handles all window-to-window copies). Fort~~nately,
these operations arc either not fiequentl\l i~sed, not
expected to be fast, or easily saturate the hard\vare.

Further details of the Vectored X library and Direct
X library arc beyond tlie scope of this papcr. The con-
cept ofdirect-rendered 2-D, however, is sound. It has
helped DIGITAL outperform other vendors on many
application benchmarks that \\/ere largely focused on
OpenGL but had significant 2 -D components. Our
2-D direct-rendering technology has also enhanced
2-D performance and response time for the many
thousands of exclusively 2-D applications for the
X Window System.

Geometry and Lighting
The geometry and lighting phase can be performed by
the host CPU or by a specialized, high-speed ASIC,
\vhich is typically located on the graphics device.
Regardless of where these calculations cake place, the
general idea is that the user's vertices are transformcd
and lit, then fed to the rasterizer. Since the rastcrizer is
on the graphics dcvice, choosing the host t o d o the
geometry and lighting implies that the transformcd
and lit vertices are then sent across the bus to the ras-
terizer. The use of a specialized ASIC implies that the
user's vertices are sent across tlie bus, transformed and
lit by tlie custom ASIC, and then fed directly to the
rasterizer. The information transferred across the bus
is obviouslv different, but in terms of amount of data
per vertex, it is approximatel!l the same. Tlicrcforc,
bus bandwidth does not become a deciding factor for
either design.

Host CPU Geometry and Lighting Trad i t iona l ly ,
DIGITAL has chosen the host CPU to perform thc
gcometry and lighting calculations. The l'o\\.erStorm
project designers chose this approach because of the
Alpha microprocessor's exceptional floating-point
speed, and because almost all 3-D calculations invol\:e
floating-point values. At the time this project \\.as con-
ccivcd, thc only general-purpose, \videly available
processor capable of feeding more than 1 million
transformed and lit vertices per second to tlie hard-
\\,'Ire was the Alpha CPU. An additional bcnetit of
having the Alpha CPU d o the work was an overall cost
reduction of the graphics device. Custom ASlCs are
espensive to develop and rnanufacturc.

Another important and rclated advantage is that our
sohz~are becomes proportionally filstcr as clocli spccds
rise on a\,nilable Alpha microprocessors. This results
in a near linear perforrnancc incrcasc \ \ , i t l io~~t any
additional engineering cost. For csamplc, usins thc
same sohvare, a 500-megahertz (IMHz) Alpha micro-
processor is ablc to produce 25 perccnt morc vcrticcs
per second than a 400-MHz Alpha micropl-occssor.
Bccause of this, dcvelopers can \vrite optiniizcd Alpha
codc oucc and reuse it for successive gcncrations of
Alpha CPUs, reaping performance impro\.cments \\,ith
virtually no fi~rther invested effort.

I t is obvious that rendering can proceed no hster
than vcrticcs can be generated. If thc OpenGL library
can transform and light only 750,000 vertices pcr sec-
ond, and the graphics dcvice can rasterize 1 million,
the effective rendering rate will bc 750,000. In this
example, the OpenGL geometry and lighting sohvare
stages are tlie bottleneck. Ho\\~ever, if the numbcrs
\ \ l c ~ - ~ reversed, and the .hard\vare c o ~ ~ l d only rasterize
750,000 vertices \vhile the OpcnGL sohvarc pro\~ided
1 millio~i, the rasterization hard~\~arc \\,auld become
thc bottleneck.

Thus fir, haire discussed two potential hottlc-
necks: the OpenGL implementation itself and tlic ras-
terization liard\vare. The third and potentiall!, most
da~iiaging bottleneck may be the clicnt's ability to feed
vcrticcs to thc OpenGL library. I t should be clear that
tliis is the top level ofvertcs processing. The OpcnGL
library can render n o faster than thc rate at \vIiich the
client application feeds it ~cr t iccs . Consequently, thc
rastcrizcr can render primitives no hstcr than thc
OpenGL library can produce them. Thus, a bottlcncck
in generuting vertices for the OpenGL library will slo\\,
the cntire pipeline. Ideally, we would like each Icvcl to
be ablc to produce at least as many verticcs as thc
lo\vcr Ic\~cIs can coIisiIIne.

Clearly, the perforlnancc of the application, in tcrlns
of handing vertices to thc OpenGL library, is a f t~nc-
tion of CPU speed. :This is o~i l !~ an i s s ~ ~ c fix applica-
tions that have large computation o\,crhcad bcforc
rcndcring. Currently, almost a11 graphics bcnchniarks
h;i\,e littlc or no computation o\re~-hcad in getting vcr-

54 Digir.11 .l?chnical Journal Vol. 9 No. 4 1997

tices to the OpcnGL library. Most attributes are pre-
computed, since they are trying to measure only the
graphics performance and throughput. For the most
part, this holds true for the traditional CAD/ChV
packages. Ho\vevcr, some emerging scientific visual-
ization applications as well as some high-end CAD
applications require significant compute cycles to gen-
erate the vertices sent to the OpenGL library. For
these applications, only the DIGITAL Alpha CPU-
based \vorltstations can produce the vertices fast
enough for interactive ratcs.

There are some potential disadvantages to tlus
design. Namely, die CPU is responsible for both die
application's and the graphics library's computations. If
the application and d ~ c OpenGL implementation must
contend for compute cycles, overall performance will
suffer. Analysis ofapplications revealed that typical 3-D
and 2-D graphics applications d o internal calculations
follo\\,ed by rendering. 0111y under rare circumstances
d o die nvo processes mix with a substantial ratio. If the
applications should start mixing their orvn processing
needs wid1 those of the OpenGL library, the notion of
host-based geometry \vould need to be revisited.

Another potential disadvantage is the rate at \\~hich
Alpha CPU performance increases versus the rate at
Ivhich the rasterizer chip's performance increases. The
emerging generation of graphics devices is capable of
rastcrizing more than 4 ~iiillion triangles per second. I t
is unkno\\~n \vhether f i~ture generations of the Alpha
Cl'U will be able to feed the faster grapliics hardrvare.

ASIC-based Geometry and Lighting Performing gconi-
en31 and lighting calculations ~ 4 t h a custom ASIC on the
graplics device is often referred to as OpenGL in hard-
ware because most of the OpenGL pipeline resides in the
ASIC. The OpenGL library is limited to handing the API
calls to die hard\vare. SGI has adopted die ASIC-based
approach for many generations of \vorkstations and
graphics devices. 111 this section, we discuss why d i s
method uiorlts for diem and its potential shortcomings.

SGI ~vorkstations use either the R4400 or the KlOOOO
CPU developed by MIPS Teclmologies. Although these
CPUs have good integer performance, tlieir floating-
point performance cannot generate the number of ver-
tices that the Alpha Cl'U can. As a consequence, SGI has
to use the custom-graphics ASIC approach. One advan-
tage to the custoni ASIC is die decoupling of graphics
from the CPU. Sincc each can operate aspnclironously,
die application has full use of the CPU.

Typically, custom geometry ASICs, also kno\vn
as geometry engines, perform better than a general-
purpose CI'U for several reasons. First, the custom
ASIC must perform only a \\lell-understood and lim-
ited set of calculations. This allo\vs tlie ASIC designers
to optimize their chip for these specific calculations,
releasing them from the burden and complexit\r of
general-purpose Cl'U design.

Second, the graphics engine and the rasterizer can
be tightly coupled; in fact, they can be located on the
same chip. This allows for better pipelining and
reduced comniunication latencies between tlie two
components. Even if the geometry engine and raster-
izer are located on different chips, \vhich is not at all
uncomn~on, a much stronger coupling exists benveen
tlie geometry engine and the rasterizer than does
between the host CPU and rasterizer.

Third, geometry engines can yield high perfor-
mance when executing certain display lists. The use of
a display list allows an object to be quicltly re-rendered
from a different \rienr by changing the orientation of
tlie vie\ver and recxecuting the stored geometry. If the
display list can fit within the geometry engine's cache,
it can be executed locally without having to rcsend the
display list across the bus for each execution. This
helps alleviate the transportation overhead in getting
the display list data over the bus to the graphics device.
I t is unclear ho\v often this redly happens since rasteri-
zation is typically the bottleneck. If the display list is
filled uritli ruany small area primitives, ho~vever, its use
can result in noticeable performance gains. Geometry
engines often have a limited amount of cache. If an
application's display list exceeds the amount of cache
memory, performance degrades significantly, often to
below die performance attainable \vithout a geometry
accelerator. Our researcli sho\\a that display list sizes
used by applications increase every year; therefore,
cache size must increase at the same rate to maintain
display list pertbrmancc ad\~antages.

The primary disadvantage of using custom ASICs to
perform the geometry and lighting calculations is tlie
expense associated ivith their design and manufacture.
In addition, a certain risk is in~lolved rvith their devel-
opment: hardware bugs can seriously impact a prod-
uct's viability. Fixing the bugs causes tlie schedule to
slip and the cost to rise. Hardware bugs disco\~ered by
customers can be devastating. With host-based geonl-
etry, a sohvare fix in tlle OpenGL library can easily be
incorporated and distributed to customers.

A sometimes unrecognized disadvantage of dedi-
cated geometry engines is that they are bound to fixed
clock ratcs, with little room for scalability. Although
this is true ofmost CPU designs, CPU vendors can jus-
ti@ the engineering effort required to move to a faster
technology, because of competitive pressures and the
larger volume of host CPU chips.

Ras teriza tion
Duri~ig the rasterization phase, primitives are shaded,
blended, textured, and Z-buffered. In the early years
of raster-based computer graphics, rasterization was
done sing sofnvare. As computer graphics became
more prevalent, graphics performance became an
issue. Because rasterization is highly con~putational
and requires many accesses to fi-arne buffer memory,

lligitd Technii-nl Journal Vol .9 No. 4 1997 55

it quickly became the performance bottleneck.
Specialized hardware was needed to accelerate the
rasterization part of graphics. Fortunately, hardware
acceleration of rasterization is well understood and is
now the de facto standard. Today, nearly evcry graph-
ics device has rasterization hardware. Even low-priced
commodity products have advanced raster capabilities
such as texture mapping and antialiasing.

In the next section, we relate our strategy for
obtaining optimal graphics software performance
from an Alpha processor-based system.

Performance Strategy

The goals of the PowerStorm 4DT program \Irere
largely oriented toward performance. Our strategy
consisted of having a generic code path and then tun-
ing performance where necessary using Alpha assem-
bly and integrated C code.

Performance Architecture
The designers optimized the software performance
of the Powerstorm 4DT series within the framework
of a flexible performance architecture. This architec-
ture provided complete hnctionality throughout the
performance-tuning process, as well as the flexibility
to enhance the performance of selected, performance-
sensitive code paths.

In this context, code paths refer to the vertex-
handling routines that conduct each vertex through
the geometry, lighting, and output stages. Whereas
most OpenGL API calls simply modify state condi-
tions, these vertex routines perform the majority of
computation. T h s makes them the most likely choices
for optimization.

The Generic Path A solid, all-purpose code base
written in C and named the generic path offers full
coverage of all OpenGL code paths. The generic path
incurs a significant performance penalty because its
universal capabilities require that it test for and handle
every possible combinatio~l of state conditions. In fact,
~ ~ n d e r certain conditions, the generic path is incapable
of driving the hardware at greater than 33 percent of
its maximum rendering rate. The generic path assumes
responsibility for the rare circumstances that are not
deemed performance-sensitive and thus not worthy
of optimization. It also acts as a safety net when high-
performance paths realize mid-stride that thcy are not
equipped to handle new, unanticipated conditions.

Multicompiled Speed of Light (SOL) Paths H i g h -
performance SOL paths provide greatly increased per-
formance where such performance is necessary. Under
prescribed conditions, SOL paths replace the generic
path, yielding equivalent hnctionality with perfor-
mance many times that of the generic path. SOL paths

56 Digital Technical Journal Vol. 9 No. 4 1997

were written for the combinations of state conditions
exercised most frequently by the target applications
and benchmarks.

The developers responsible for performance tuning
designed two classes of SOL paths. First, they gener-
ated a large number of SOL patlls by compiling a C
code template multiple times. Whereas the generic
path is composed ofseveral routines, each correspond-
ing to a single stage of the pipeline, a multicompiled
SOL path integrates these stages into a monolithic
routine. Each compilation turns on and off a different
subset of state conditions, resulting in integrated paths
for every combination of the available conditions. This
~nulticompilation of integrated SOL paths yields the
following benefits:

The C compiler is allowed a broader overview of
the code and can more wisely schedule instructions.
In contrast, the generic path is composed of several
individual stages. These relatively short routines do
not provide the C compiler with enough space or
enough scope to make informed and effective,
instruction-ordering decisions. Multicompiling the
various stages into a series of monolithic, integrated
routines relieves each of these problems.

The multicompilation assumes a fixed set of condi-
tions for each generated path. This eliminates the
need for run-time testing of these conditions dur-
ing each cxecution of the path. Instead, such test-
ing is necessary only when state conditions change.
Validation, as this testing is called, determines
which new path to employ, based on the new state
conditions. With the great number and complexity
of state conditions influencing this decision, valida-
tion can be an expensive process. Performing vali-
dation only in responsc to state changes, rather
than for every vcrtes, results in significant perfor-
mance gains.

The SOL path coverage at least doubles every time
that support for a new state condition is added to
the template. Each new condition increases the
number ofcombinations ofconditions being multi-
compiled into SOL paths by a factor of two or
more. An adverse side effect of this strategy is that
the compile time and resulting library size will
increase at the same rate as the SOL path coverage.

Assembly Language SOL Paths Hand-coded Alpha
assembly language paths constitute the other class of
high-performance SOL paths. These paths, designed
specifically for extremely performance-sensitive con&-
tions, require much more time and attention to pro-
duce. Taking advantage of the many features of the
Alpha nlicroprocessor transforms assembly language
coding from a science into an art form.6 The Alpha
assembly coders kept the following issues foremost in
their minds:

The 21164 and subsequent Alpha microprocessors
are capable of quad-issuing instructions, which
means that as many as four instructions can be initi-
ated during each cycle. The combination ofinstruc-
tions that may be issued, however, depends on the
computational pipelines and other resources
employed by each instruction. Coders must care-
hlly order instructions to gain the maximum bene-
fit from the multiple-issue capability.

As a consequence of the above restrictions, inte-
ger and floating-point operations must be sched-
uled in parallel. With few exceptions, only two
floating-point and two integer instructions can
be issued per cycle. Efficiency in this case requires
not only local instruction-order tweaking but also
global changes at the algorithmic level. Integer
and floating-point operations must be balanced
throughout each assembly routine. If a particular
computation can be easily performed using either
integer math or floating-point math, the choice is
made according to which pipeline has more free
cycles to use.

Register supply is another factor that affects the
design of an assembly language routine. Although
the Alpha microprocessor has a generous number
of registers (32 integer and 32 floating-point), they
are still considered a scarce resource. The coder
must organize the routine such that some calcula-
tions complete early, freeing registers for reuse by
subsequent calculations.

The crucial performance aspect of assembly coding
is transporting the data where and when it is
needed. The latency of loading data from main
memory or even from cache into a register can eas-
ily become any routine's bottleneck. To minimize
such latencies, load instructions must be issued well
in advance of a register's use; otherwise, the
pipeline will stall until the data is available. In an
ideal architecture with an infinite quantity of regis-
ters, all loads could be performed well in advance.
Unfortunately, due to the scarce amount of free
registers, the number of cycles available between
loading a register and its use is frequently limited.

Each of these assembly language programming con-
siderations requires intense attention but yields
unmatched performance.

Performance Tuning
After reviewing benchmark comparisolis and recom-
mendations from independent software vendors, we
determined which areas required performance improve-
ment. We approached performance tuning from two
directions: either by increasing SOL path coverage or
improving the existing SOL code.

Increasing SOL path coverage was the more straiglit-
forward but the more time-consuming approach. If an
SOL path did not exist for a specific condition, a new
one would have to be written. Addng a new option to
the multicompilation template required a significant
effort in some cases. Implementing a new assembly
language SOL path always required significant effort.

Improving the performance of an existing SOL
path required an iterative process of profiling and
recoding. We employed the DIGITAL Continuous
Profiling Infrastructure (DCPI) tools to analyze and
profile the performance of our code.' DCPI indicated
where bottlenecks occurred and whether they were
due to data cache misses, instruction slotting, or
branch misprediction. This information provided the
basis for obtaining the maxin~um performance from
every line of code.

Development of 3-D Graphics on Windows NT

At the start of the PowerStorm 4DT project, the
Windows NT operating system uJas an emerging tech-
nology. The DIGITAL UNIX platform held the larger
workstation market share, while Windows NT
accounted for only a small percentage of customers.
For that reason, designers targeted performance for
applications running on DIGITAL UNIX and devel-
oped 3-D code entirely under that operating system.

Nevertheless, we recognized the potential gains of
developing 3-D graphics for the Windows NT system.
O ~ l e of the company's goals was to be among the first
vendors to provide accelerated OpenGL hardware and
software for Windows NT.

With a concerted effort and a few compromises, the
team developed the PowerStorm 4DT into the fastest
OpenGL device for Windows NT, a title that was held
for more than 18 months. To achieve this capability,
the designers made the following key decisions:

To write code that was portable between the
DIGITAL UNIX and Windows NT systems.

To dedicate two people to the integration of the
DIGITAL UNIX-based code into the Windows NT
environment. Most OpenGL code was operating-
system independent, but supporting infrastructure
needed to be developed for Windows NT.

To use Intergraph's preexisting 2-D code and to
avoid writing our own. Intergraph provided us with
a stable 2-D code base for Windows NT. This code
base had room for optimization, but further opti-
mization of the 3-D code took precedence.

To ship the graphics drivers for DIGITAL UNIX
first, and the graphics drivers for Windows NT
three months later. In t h s way, we allowed the
DIGITAL UNIX development phase to advance
unimpeded by the efforts to port Windows NT.

Digital Technical Journal 1'01.9 No. 4 1997 57

Results and Conclusion

In August of 1996, the PowerStorm 4D60T graphics
adapter Mias best in its price category with a CDRS per-
formance number of 49.01 using a 500-h4Hz Alpha
processor. I t yielded a new price/performance record
of $321 per frame per second. At the same time, SGI
attained a CDRS number of only 48.63 on a system
costing nearly three times as much.

Figure 3 shows the relative performance of the
Po\verStorm 4D60T for four of the major Viewperf
benchmarlts. The viewsets are based on the follou~ing
applications: CDRS, a computer-aided industrial design
package from PTC; Data Explorer (DX), a scientific
ilisualization package froni IUM; DesigiRevie\\~ (DlIV),
a model review package from Intergraph; Advanced
Visualizer, a 3-D animation system from Alias/
Wavefront (APVadvs).

The PowerStorm 4D60T mid-rangc graphics adapter
easily outperformed die Indigo2 Hi41 lMPACT system
froni SGI by a \vide margin and even surpasscd SGI's
more expensive graphics card, tlie Indigo2 Maxi-
mum IlMl'ACT, by a factor of morc than 2 : l in pricc/
performance on these benchmxks. Figure 4 sho\\s
that the Po\\,erStorm 4D6OT nras tlie performance
leader in three of the four benchmarks. SGI has yet to
produce a graphics product in this price range that
outperforms the PowerStorrn 4D6OT.

Acknowledgments

Tlic authors \\/auld likc to acltno\\dcdge thc many
other engineers \\~Iio made the l'o\\ferStorrn 4DT proj-
cct a successful one, including A/Ionty Brandcnburg,
Shill-Tang Cheng, Bill Clifford, John Ford, Chris
IGiiker, Jim Rees, SIILIIILI~ Shen, Sliree Sridlinran,

CDRS

KEY

I POWERSTORM 4D60T

SGI MAXIMUM IMPACT

SGI HIGH IMPACT

DRV

Figure 3
Price/Performance Co~nparison of Graphics Adnptcrs on Vic\vperf Gcnchniarks

"
CDRS DX DRV AWADVS

KEY

I SGI MAXIMUM IMPACT

SGI HIGH IMPACT
POWERSTORM 4D60T

Figure 4
Performance of Graphics Adapters on Viewpcrf Benchmarlis

58 111g1td '?cchnical Journa l Vol.9 No . 4 1997

Bruce Stockwell, and Mark Yeagcr. \Vc would also like
to thank the Graphics Quality Assurance G r o u p and
the Workstation Application Benchmarking G r o u p for
their unending patience and cooperation.

References

1. M. Segal and I<. Akeley, 73e OperzGL Graphics System: A
Specijzcation (Mountain View, Calif.: Silicon Graphics,
Inc., 1995).

2. The OpenGL Performance Characterization Project,
http://w\w.specbench .org/gpc/opc.stauc.

3. R. Scheifler and J . Gettys, X \.U/lndozo Sjatem (Boston:
Digital Press, 1992).

4. H. Gajewska, M. Manasse, and J . ILIcCormack, "Why X
Is Not Our Ideal Windo\\! System," Softuwre Practice
a~id Eh"perieuce (October 1990).

5. M. Kilgard, "Dl 1: A High-Performance, Protocol-
Optional, Transport-Optional Window System with
X11 Compatibility and Semantics," n e Ninth Annual
X Technical Conference, Boston, [Mass. (1995).

6. R. Sites and R. Witek, Alpha AXP Architecture Rejer-
ence ~Vfanz~al(Boston: Digital Press, 1995).

7. J. Anderson et d., "Continuous Profiling: Where Have All
the Cycles Gone?" The 16th ~ C I ~ ~ S J J ~ I ? / I O A I L ~ ~ ? or7 Opernt-
wzg Sys/enisPnncq~les, St. mal lo, France (1997): 1-14.

General References

J. Folep, A. van Dam, S. Feiner, and J . Hughes, Computer
Grnphics Principles a n d Practice (Reading, Mass.: Addison-
Wesley, 1993).

LM. Woo, J. Neider, and T. Davis, OpenGL Progr.ainming
Grride (Reading, Mass.: Addison-Wesley, 1997).

Biographies

Benjamin N. Lipchak
Benjamin Lipchak joined DIGITAL in 1995 to develop
software for the PowerStorm 4 D T graphics adapter and
later developed 3-D sohvarc for thc Po\verStor~n 4D30T
project. A senior sohvarc engineer in the Workstation
Graphics Group, he is currently leading the sohvare effort
ofa new graphics project. Benjamin received R.S. (highest
honors) and M.S. degrees in computcr science from
Worcester I'olyteclinic Institute. He is the recipient of the
Salisbury Award in Computer Science.

Thomas Frisinger
Tom Frisinger was a scnior s o h a r e engineer in thc
Workstation Graphics Group at DIGITAL for three)!cars.
During that time, he contributed to nearly all aspects of the
Po~lerStorni 4DT project. As a member of the core soft-
ware engineering team, he helped develop software for the
4D40T, 4DSOT, and 4D60T graphics adapters as well as
the 4D30T and 4D51T models. H e was also part of the
core software design team for the 4D31T graphics acceler-
ator. Tom is currently doing research and development in
PC graphics for AT1 Research, Inc.

Karen L. Bircsak
As one of the developers of the Powerstorm 4DT graphics
adapter, Karen Bircsak designed and implemented
enhancements to the X library and contributed to other
sofnvare development areas. A principal software engineer
in the Workstations Graphics Group, Karen is currently
working on supporting new graphics hardware. Prior to
joining DIGITAL in 1995, she held sofhvare engineering
positions at Concurrent Compi~ter Corporation and Data
General Corporation. She earned a B.S. in computer sci-
ence and engineering from the University of Pennsylvania
in 1984 and an 1M.S. in computer science from Boston
University in 1990.

Digital Technical Journal

Keith L. Comeford
Keith Corneford is a principal software engineer in the
Workstation Graphics Development Group. Hc is currently
worlung on the next generation of graphics cards and accel-
erators for DIGITAL. Keith was thc project leader for the
Windows NT drivers for tile PowerStorn~ 4D40T/50T/60T
graqhics cards. In previous project work, Keith contributed
s~gn~ficantly t o the GKS and PHIGS implementations in a
variety of capacities from developer to project leader for
more than10 years. Keith joined DIGITAL in 1983 after
receiving a B.S. in computer science from Worcester
Polytechnic Institute.

Michael I. Rosenblum
Mike Rosenblum is a consulting software engineer at
DIGITAL and the technical director for the Workstations
Business Segment Graphics Group. H e was the project
leader and architect of the Powerstorm 4DT series and
implemented some ofits 2-D DDX code. Currently, he is
managing two graphics projects and consulting to the
company on graphics-related issues, Mike joined DIGITAL
in 198 1, to work on the terminal driver in the VMS
Engineering G r o ~ ~ p . Later he helped design the company's
first workstations. H e has a B.S. in computer scicnce from
Worcester Polytechnic Institute and is a member of the
ACM.

60 Digital Technical Journal Vol. 9 No. 4 1997

m
Robert J. Walsh

DART: Fast Application-
level Networking via
Data-copy Avoidance

The goal of DART is to effectively deliver high-
bandwidth performance to the application,
without a change to the operating system call
semantics. The DART project was started soon
after the first DART switch was completed, and
also soon after line-rate communication over
DART was achieved. In looking forward to giga-
bit class networks as the next hurdle to conquer,
we foresaw a need for an integrated hardware-
software project that addressed fundamental
memory bandwidth bottleneck issues through
a system-level perspective.

0 1997 IEEE. Reprinted, with permission, from IEEENetwork,
July/August 1997, pages 28-38.

The Ethernet supported large 100-node networks in
1976.' By 1985,lO Mb/s Ethernet had been available
for a while, even for PCs. However, high-performance
hardware and software lagged, due to system bottle-
necks above the physical layer. The premier implemen-
tations for UNIX were achieving only 800 kb/s (8 %of
10 Mb/s) in benchmark scenarios on common system
platforms of the day2

:The deployment of 100 Mb/s fiber distributed data
interface (FDDI) provided an order of magnitude
bandwidth increase in the link speed around 1987.
However, the end system could not saturate the link
on generally available machines and operating systems
until 1993," when Transmission Control Protocol
(TCP) improvements and a CPU capable of 400 mil-
lion operations per second became available:' Once
again, high-performance hardware and sohvare
lagged the potential provided by the physical layer.

The current tecl~nological approach is switching.
Gigabit-class links and adapters, such as 622 Mb/s
asynchronous transfer mode (ATM), are becoming
available. Since ATM links are dedicated point-to-
point connections, the use of 622 Mb/s in switch-to-
switch links and at the periphery implies that one
ought to be able to move data at gigabit rates.

Switched capacity promises a lot to servers; how-
ever, mainstream systems are not currently capable of
effectively using the bandwidth. The DART project
attempts to avoid the Ethernet and FDDI scenarios
where end-system performance lags physical-layer
potential.

One of the early goals was to go beyond simple
benchmark scenarios where line rate communication
connects a phony bit source to a phony bit sink, with
the CPU saturated. The context for the work was to
connect two applications at high speed, leaving CPU

TThc TCP improvements includcd a small architectural update,
the window scaling extension, to abstractly support the advertisc-
ment of more than 64 kbytcs of receive buffering. The rest of the
impro\wnents derived from implementation efforts to increase
the actual buffering allocated to advertised TCP windows, and to
improve the segmentation of the TCP byte stream into packets.

Digital Technical Journal Vol. 9 No. 4 1997 61

resources available to execute the applications. 111 the
past, the CPU had been saturated in Ethernet and
FDDI quests for line rate communication.

Layering

The moti\~ation for DART arises from the specific Iay-
cring and abstraction used in BSD-dcr~ved UNIX sys-
tems, but the context is sufficiently general that the
problem and solution have wide applicability. Since
various layers within system software will be refer-
enced repeatedlv, we introduce them using Figure 1.

The ~ppl icnt ion generates and consumes data. I t
tells the operating system which data to communicate
when, by iislng read and write syste~ii calls.

The socket iayermoves data between the operating
system and the application. I t also synchronizes the
application with the nenvorking protocols based on
data and buffer availability.

The transportprotocol layer provides a connection
to the remote pecr. In the case ofTCP, the connection
is a reliable byte stream. TCP takes on tlie responsibil-
ity of retrans~n~tting lost or corrupted data, and of
ignoring reception of retransmitted data that was pre-
viously received.

The network protocol layer provides an abstract
address and path to the remote host. I t hides the vari-
ous hardware-specific addresses used by the various
media in existence. In the case of IP, fragmentation
allows messages to traverse med~a which have different
frame sizcs.

A conventional driver layer moves data between thc
network and the system. I t uses buffers and data struc-
tures whose representation percolates throughout all
the operating system networking layers.

The DART Concept

DART increases network throughput and decreases
system overheads, while preserving current system call
semantics. The core approach is data copy avoidance,
to better utilize memory bandwidth.

APPLICATION

I
SOCKET

TRANSPORT PROTOCOL
OPERATING (TCP, UDP)
SYSTEM

NETWORK PROTOCOL

DRIVER

Figure 1
Software Layering

Memory bandwidth is a scarce resource that must
not be squandered. In DIGITAL'S transition from
MIPS processor systems to Apha processor systems,
CPU performance increased more rapidly than main
memory bandwidth. I t took approximately 340 ps to
move 4500 bytes on the MIPS-based DECstation
5000/200, and approxinlatelp 200 ps on the Apha-
based DEC 3000/500. I n the same time, the fised
pcr-packet costs were reduced by a fiqctol- of three or
more. (General tl-ends are also stated in Reference 4 .)

One breakdown of nehvorki~ig costs is reported in
Reference 5. The variable per-byte costs reported
there are all associated with memory bandwidth,
which is improving slowvly. The fixed per-packet costs
in the driver, protocol, and operating system overhead
are all generally associated with the CPU, which is
i~nproving rapidly. Thus, we focus on the per-byte
memory bandwidth issues as those most needing
architectural improvement.

A traditional system follows the nenvorking subsys-
tem model implemented within the BSD releases of
UNIX, shown in Figure 2 . An application uses the
CPU to create data (l) , the socket portion of the sys-
tem call interface copies the data into operating system
buffers (2 and 3), the nehvork transport protocol
checksu~ns the data for error detection purposes (4) ,
and the device driver uses programmed input/output
(I/O) or direct memory access (DMA) to move the
data to the network (5). Graphs showing the domi-
nant costs of checksumming and kernel buffer copies
are presented in Reference 6.

These five memory operations are a profligate waste
of memory bandwidth. A system with a 300 Mbyte/s
memory system would achieve at most 300*8/5 =

480 Mb/s 1 /0 rates. The system would be saturated.
The DART model is shown in Figure 3. The DART

model is that data is created (1) and sent (2). Two
memory operations make efficient use o f the memory
bandwidth.

Figure 2
BSD Copy-based Architecture

Figure 3
DART Zero-copy Architect~~re

Digital Technical Jo~ir1131 Vol. 9 No. 4 1997

Squandering of memory bandwidth is avoided. A
system with a 300-Mbyte/s memory system would
encounter the larger bound of 300*8/2 = 1200 M b/s
for 1 / 0 rates. Resources are available for the applica-
tion even when running at line rate!

To support the DART concept, we need a spstem
perspective that integrates the hardware and software
changes implied by the DART model. Hardware is
responsible for checksumming instead of sofmlare.
Hardware is solely responsible for data movement,
instead of redundant actions by both hardware and
sohvare. These hardware changes are bounded and
generic.

Operating system software retains the application
interface and general coding of the BSD UNIX imple-
mentation. Extensive changes are unnecessary, since
the f o c ~ ~ s is the core lines that represent data move-
ment consumption of memory bandwidth. Extensive
changes are also undesirable, since there is a large base
of software written to the current properties of the
BSD networking subsystem.

The DART Hardware

The first implementation of the DART concept is a
high-performance 622-Mb/s ATM network adapter
for the PC1 bus called DART. DART'S design reflects
an awareness of the interactions of the colnponents of
the system in which it is placed. The PC1 bus, main
memory, cache, and system sofnvare can all be used
efficiently.

Store-and-Forward Buffering and DMA
DART is an adapter that connects a gigabjt-class net-
work to a gigabit-class 1 / 0 bus, and is appropriate for
systems with gigabit-class memory systems. DART is
focused on the server market where a slight increase in
adapter cost can be acceptable if the spstem perfor-
mance is significantly improved, since main memory
and other costs dominate the cost of the DART
adapter.

DART alleviates main memory bottlenecks through
a store-and-forward design, as shown in Figure 4.
Traditional networking software subsystems and appli-
cations perform at least five memory operations to cre-
ate, copy, checksum, and communicate data. DART's
exposed bzflering allows data to be created and com-
municated with just two main memory operations.

" ~ h c 1200-iMb/s figure 111cludes thc cost of lh~ving the application
\vrirc the data to memory. Some Incmory bnnd\vidtli might be
c o n s ~ ~ m e d to fi l l the CPU's cache in order to cxesute the applica-
tion and operating system. In this scenario, if non-network band.
\vidth is grcarer rhan 300*8 - 2"lOOO = 400 iMb/s, data
producuon would be rhc bottlclleck and thc ncnvork would
run at less than line ratc. This is beneficial; thc bottleneck has
been moved to the appl~cation.

The adapter memory is a resource that can be better
utilized by esposing it to the operating system, and
better performance results as well. T h s is similar to the
exposure of the CPU-internal mechanism in the CISC-
N S C (complex to reduced instruction set) transition.

DART confains a number ofJl?atures fo make the
store-andTfortoard design eflectiue. DART's bus mas-
ter and receiver summarize network transport proto-
col checksums for software. DART's bus master
provides byte-level scatter-gather data movement to
support communication out of application buffers,
not just operating system buffers. DART provides
packet headers for sofhvare to parse so that software
can direct the bus master to place received data jn the
application's buffers when the application desires,
without operating system copy overhead.

Buffering Design An ATM segmentation and reassem-
bly (SAR) chip accesses virtual circuit state for each
cell, and operates on 48-byte cell payloads. The pay-
load naturally corresponds to a burst-mode operation,
leading to the use of synchronous dynamic DRAM
(SDRAM) to buffer cells. The circuit state is generally
smaller and randomly accessed, leading to the use of
static R M 4 (SRAM) for control information. Dividing
the data storage architecture into two parts allows the
interface designs to be tailored to the characteristics of
the data type in question.

The DART prototype uses 16 Mbytes of SDRAM
for the data memory. The prototype uses 1 Mbyte of
S W for the control memory. The SDRAM supports
hardware-generated transmissions, aggregation of
data for efficient PC1 and host memory interactions;
and buffering for received data ~ ~ n t i l the application
indicates the proper destination for it. The SRAM con-
tains the SAR intermediate state; with a large number
of virtual circuits and ATM's interleaving of packet
contents, there js too much state to be recorded on-
chip at this time.

Packet Summarization for Software The receiver parses
the cells for the various packets which are interleaved
on the network connection, and reassembles the cells
into pacltets. Once all the cells composing a packet
have been received, a packet descriptor is prepended
to the packet. The descriptor contains length, circuit
number, checksum, and all other information that the
driver may need to parse and process the packet.

Upon packet reassembly, a hardware-initiated DMA
operation moves software-configured amounts of
descriptor and packet contents to host memory. When

'Some adaptcrs segment (or reassemble) from host mcniory,
leading to 48-byte payload transactions with host memory.
TI-ansaction size should be a n integral multiple of rhe cache
block size, and should be aligned, in order ro avoid wasting
sysreln bandwidth.

Digital Technical Journal

MEMORY
CONTROL INTERFACE DATA
MEMORY MEMORY

TRANSMIT RECEIVE

Figure 4
DART Block Diagram

properly configured, the hardware provides the net-
work and transport headers, allowing software to
determine where to place the packet data. Sohvare
data copies are avoided by allowing software to initiate
a DMA operation to move the data to its final application-
desired location, rather than to some expedient, but
inefficient, operating system buffer.

Receive Buffering DART'S store-and-forward receive
buffers are divided into two classes. The per-circuit
class guarantees each circuit forward progress. Each
circuit is individually allocated some buffers in which
to store cells. No other circuit can prevent data from
passing through such buffers. The shared class is pref-
erentially used, and avoids resource fragmentation
problems. Any circuit can consume a shared buffer for
an incoming cell.

Since software specifies when and where to store
packet data, adapter buffers are recycled when soh-
ware decides to d o so, and not independently by hard-
ware. Part of a packet may be stored in application
buffers at one time, and other parts of the same packet
may be stored in application buffers at later times.
Hardware cannot assume a one-to-one correspon-
dence between receive D M and complete packet
consumption.

Flow control occurs in the socket layer based on
transmit buffer availability, in the transport layer based
on remote receive buffer availability, in the driver
based on adapter resource availability, and in the ATM
layer based on cell buffer availability within the net-
work. Credt-based flow-control protocols for ATM
are based on the source of a cell stream on a link
decreasing a counter (quota) when a cell is sent, and
increasing a counter when a credit is received.' The
decrement represents buffer consumption at the next
hop. The credit advertises buffer availability to the
source; the nest hop has forwarded a cell and thus
freed a buffer!

'~orwardm~ the ceU is required for (per-circuit) buffers ofwhich
the m s m i t t e r on the link was made aware during Link initialization.
The receiver on the link can generate credits immediately for (shared)
buffers hdden from d ~ e transmitter during Link ulitiahmtion.

With FLOWrnaster, the credit is conveyed across the
link to the source of the cell stream by overlaying the
virtual path identifier (VPI) field with the circuit to
credit. This is a nonstandard optional use of the ATM
cell header. Quantum Flow Control is a credit-based
flow-control protocol for ATM that batches the credts
into cells instead of overlaying the \TI field.

Since credit-based flow-control is based on buffer
availability, credits advertising free buffers can poten-
tially be held up by software actions. The shared class
allows immediate credit advertisement, and best
enables line rate communication. The per-circuit class
involves software packet processing in the credit
advertisement latency. To advertise a credit for a cir-
cuit whose per-circuit quota is exhausted, either the
circuit must recycle an adapter-buffered packet, or any
circuit must recycle a shared-class, adapter-buffered
packet.

A minimal memory that constantly ran out of per-
circuit buffers and flow-controlled the source would
exhibit poor performance. DART uses a large data
memory. Advertising (shared) buffers via credits keeps
the data flowing through the overall network and sys-
tems wid1 lljgll performance.

Transmit Buffering S o h a r e performs all transmit
buffer management. Software creates a free buffer list
of its own design, allocates buffers from the list to hold
packet data, and recycles buffers after observing packet
completion events. Software makes the trade-off
between large efficient buffers which may be incom-
pletely filled, and small buffers which waste less stor-
age but incur increased allocation, free, DMA
specification, and transmit description overheads.

Peer- to-Peer UO
DART avoids system resource consumption in server
designs by supporting peer-to-peer T/O. A traditional
server would consume PC1 bus and main memory
bandwidth twice by using main memory as the store-
and-forward resource between nvo 1/0 devices, as
shown in Figure 5. The PC1 bus is consumed during
steps 2 and 5. The main memory is consumed during

64 Digital Tcchrucal Journal

DEVICE 6
CONTROLLER 0 TRADITIONAL

ADAPTER

MEMORY

BRIDGE

I PC1 BUS I

Figure 5
Traditional Servcr Architecture

steps 3 and 4. 011 some systems, 1/0 operations com-
pete for cache cycles during steps 3 and 4, whether
the cache is external to or internal to the CPU. Such
resource conslimption can cause the CPU to stall even
though the CPU will never examine such data.

DART allows a single PC1 bus transaction to move
the data, as shown in Figure 6. This also avoids any
main memory bandwidth consumption when a bridge
isolates the PC1 1 /0 bus from the main system bus.
The cache is not consumed with nuisance coherence
loads for data the CPU will never examine, and the
CPU does not have to contend with 1 / 0 for cache or
main memory cycles.

For peer-to-peer 1/0 over DART, the CPU is only
involved in initiating packet transmission. This is a rel-
atively small burden, since only a little bit of control
information needs to be computed and communi-
cated to the adapter.

To enable efficient peer-to-peer I/O, DART
includes a bus slave as well as a bus master. m e bus
slave makes the internal resources of the adapter visi-
ble on the PC1 bus through DART'S PC1 configuration
space base address registers. Therefore, on the PC1
bus, the data memory looks like a linear contiguous
region of memory, just as main memory does. The bus
slave supports both read and write operations for these
typically internal resources.

PC1 BUS

CPU. CACHE,
MEMORY

Figure 6
DART Servcr Architecture

110
CONTROLLER

DART provides efficient handling of small packets.
Typically, describing a number of small packets for
transmission is onerous for software, limiting the peak
packet rate. DART'S transmitter can automatically
subdivide a large amount of data into small packets,
eliminating a lot of per-packet overhead. This feature
is appropriate for a video server, whose software can-
not possibly fill the network pipe if it must operate on
8-cell packets.

PC1 Interface
DART supports both 64- and 32-bit variants of the
PCI bus. The network interface and DART memories
provide prodigious bandwidth. To fully take advan-
tage of them, a 64-bit PC1 bus is recommended, but
DART will also operate on a 32-bit PC1 bus.

DART

Bus Reads and Writes The DART architecture sup-
ports memory write-and-invalidate hints to the bridge
between the system bus and the PC1 1 / 0 bus. Such a
hint informs the bridge that the 1 / 0 device is only
writing complete cache blocks. There is no need for
read-modify-write operations on main memory cache
blocks in such circumstances.

Write operations within a system are generally
buffered. A path from the origin of the write to the
final destination can be viewed as a sequence of seg-
ments. As data flows tlirough each segment, each
recipient accepts data with the pron~ise of completing
the operation, allowing each source to free resources
and proceed to new operations. Thus, write paths are
generally not performance-limiting as long as there is
sufficient buffering to accept burst operations. In the
DART context, the bridge between the system bus and
the PC1 1/0 bus accepts DART'S writes and provides
buffering for high throughput.

However, read operations are more problematic.
When memory locations are shared between CPUs,
caches may or may not be kept coherent by hardware.
Here, the memory locations are shared between the CPU
aid 1/0 device, and there is no coherence support. Each
DART read suffers a round-trip time through the bridge
to access the maim memory. DART addresses this latency
tlvough large read transactions (up to 5 12 bytes).

As an example, consider a simplified 64-bit bus
where 540 Mb/s of data are written in 64-byte bursts,
reads suffer 15 stall cycles until the data starts to
stream, and writes require a stall cycle for the target
to recognize its address. Address and data are time-
multiplexed at 33 MHz. Then writes consume 540 *
(1 + 1 + 8)/ 8 = 675 Mb/s of bus bandwidth. Reads
have 33 * 8 * 8 - 675 = 1437 Mb/s of bus band-
width into which they must fit. Thus, the minimum
burst length Lreq~~ired is 540 * (1 + 15 + L) = L 5 1437.
The burst must be at least 9 cycles, 72 bytes, in the
ideal case. DART'S large read burst size compensates
for overheads Like large read latencies.

BRIDGE

Digital Technical Journal

Importance of Bus Slave Interface Tlie bus master inter-
face is appropriate for software-generated transmis-
sions. A packet created by an application in main
memory can be moved via DMA to the network.

The bus slave interface is appropriate for hardware-
generated transmissions. Another I/O device wl~icli is
designed to always be bus master, like a disk interface,
can move data directly to tlie DART \iritliout interme-
diate staging in a memory. Peer-to-peer I/O, ho\vever,
was a by-product ofother concerns.

Data transfer within TCP is based on a stream of
large data packets flowing in one direction, and a
stream of small acknowledgments flowing in the
opposite direction. Traffic analysis studies ofien find a
mix of smaller and larger packets. One of the early
concerns for the DART project was to make transport
protocol generation of ackno\vledgn~ents inespensive
by avoiding DMA. A small packet, constructed entirely
by tlie CPU anyway, could be moved to the 1 /0
device instead of to main memory. This is fiindanirn-
tally a short sequence of svrite operations that could
easily be buffered, allowing the CPU to proceed in par-
allel on other work.

L)IMA from an application buffer to a device inter-
face is generally specified t o hardware by stating tlie
physical addresses of the application buffer in main
memory. D I M requires a guarantee that the data is at
the specified locations. If the virtual memory system
were to migrate the data to d s k and recycle the physi-
cal memory for some other use, the parallel DMA
activity would move the wrong data. Therefore, DMA
operations are s~irrounded by page lock and unlock
calls to tlie virtual memory system, to inform it that
certain memory locations should not be migrated.

Additional concerns tliat led to incorporation of tlie
bus slave interface were related to the cost of page
locking, and the cost of acquiring and releasing DMA
resources (e.g., in the bridge). An ackno\vledgment
might be constructed in nonpaged kernel memory,
but a small application packet would likely be con-
structed in application memorv s~lbject to paging.
Even ifpage locks were cached for temporal locality, it
might be cheaper to simply move the data via pro-
grammed I/O.

The break-even point benveen LIMA and pro-
grammed 1 / 0 is system-dependent, but can be niea-
sured at boot time in order to learn an appropriate
threshold to use for such a decision. Deniands on the
main memory system from its various clients will
change over time, and a single measurement is only
optimal for tlie sample's conditions. The suggestion
here is to enable a quick judgment in the s o h a r e . Tlie
intent is to make large gains and avoid egregious per-
formance errors. We suspect that fine-tuning the deci-
sion is less important, and requires the collection of
excessive information during the normal operation of
tlie system:

Interrupt Strategy As noted above, on-chip access
rates for the CPU increase more quickly than off-chip
access rates. Interrupt processing and context switching
are hndamentally off-chip actions; new register values
niust be loaded into the CPU, and the cache niust be
primed with data. Thus, die general system trend is that
interrupt processing and context switching improve
more slowly than ra\v processing perfornilu~ce.

DART provides a programmable interrupt holdoff
mechanism. By delaying interrupts, events can be
batched to reduce various system overheads. If the
batching mechanism were not present, an interrupt per
packet would swamp system software at gig a b' ~t rates.

Since the interrupt delay interval is programmable,
software may use adaptive algorithms to decrease
interrupt latency ifthe system is idle, or to increase the
amount of batching if the system is busy. The delay
timer starts decrenienting as soon as it is written.
Typically, the timer will be written at the end of the
interrupt service routine.

Interrupts can be divided into nvo classes by
sohvare. Each class has its own delay interval, in
case sohvare assigns distinct importance o r latency
requirements to the classes.

The Dart Software

DART provides increased performance with the same
system calls, and with the existing system call seman-
tics. The only change is to the underlying implementa-
tion of the existing system call semantics.

Unmodij?edexisting applications can consume giga-
bit network bandwidth. The application can assist the
system sohvare by using large contiguous data buffers,
but it is not required. System software can specify byte-
level scatter/gather operations to the DART adapter in
order to access arbitrary application buffers.

Changes to the system software are confined to a
few locations above the driver layer, and are generic.
Successive hgh-bandnlidth adapters fbr other media
can be supported by just writing drivers; no changes
\\/ill be needed above the driver layer. The shared set of
upper-layer software changes are only needed to take
ma~in ium advantage o fa DART-style adapter; a tradi-
tional copy-based implementation is supported by the
hardware.

'Given the parallel. nature o f the environnlenr (other 1/0, cache
opcrarions, and ~nultiprocessor CPUs), s sofnware system could
only csrilnarc non-DART niemory loads. Queued DMA opernrio~is
[nay srarr larer than expectcd, o r finish before rhc~r completion has
been noricecl. CPU cache activity is dependent on rlic program
csccuti~ig .lr that molnenr; hie-tuning is problcmaric. Thc focus o f
L)AI<T has becn h e large gains, like a \ :o~d~ng cop~cs, or ~lllowing
cirhcr L>MA or programmed 1/0 to be used. The focus has been
on thc structure ofthe sysrem.

Digir.11 'lkchnical Journal Vol. 9 No. 4 1997

We developed a prototype UNIX driver to test the
upper-layer changes, and executed a modified kernel
against a user-level behavioral model of a DART-style
adapter. The code was subjected to constant back-
ground testing on a workstation relied on for daily use.
The prototype driver supports buffer descriptors refer-
encing either kernel buffers or adapter buffers. The
implementation effort to support kernel-buffered
packets was minimal, and enables multiple protocol
families to be layered above the driver.

The sofhvare changes modifi the existing upper-
level software, rather than bypassing it via a collapsed
socket, transport, network, and driver implementa-
tion. The current UNIX networking subsystem pro-
vides a rich set of features that needs t o be completely
supported for backward compatibility.

Transmit Overview
A comparison of traditional transmission with DART
transmission is shown in Table 1. For a traditional
adapter, the system call layer copies application data to
operating system buffers. With a DART adapter, the
data is copied to die adapter. Uiomove is the copy
hnction typically used within UNIX. The DART
mechanism is to use an indirect function call through a
pointer, rather than a direct function call to an address
specified by the compiler's linker. High-performance
copy functions are associated with the device driver.
The driver's copy function is free to use DMA or pro-
grammed I/O, depending on the length of the copy.

For a traditional adapter, softcvare wastes machine
resources computing checksums. With a DART
adapter, the checksum is computed by hardware as the
data flows into the adapter. The adapter can patch the
checksum into the packet header. The adapter can also
move checksum summaries back to host memory so
that they are available for retransmission algorithms.

For a traditional adapter, the driver instigates addi-
tional memory references to copy the data to the
adapter for transmission. With a DART adapter, the
data is already on the adapter, ready to be sent! Much
of the data copy avoidance work is throughput-related.
In this instance, we also create the potential for a
latency advantage for the DART model, since the data
copy overlapped work in the system call, transport, net-
work, and dnver layers of the operating system.

Table 1
Transmit Overview

Receive Overview
In many ways, the receive path for networking is usu-
ally considered more complicated than the transmit
path, since the various demultiplexing and lookup
steps are based on fields that historically have been
considered too large to use simple table indexing oper-
ations. Also, the receive path requires a rendezvous
behveen the transport protocol and the application (to
unblock the application process upon data arrival). So
it should come as a pleasant surprise that the DART-
style changes for packet reception can be as simple and
localized as two conditionals in the soclcet layer and
one in the network transport layer.

Table 2 is a comparison of traditional receive pro-
cessing with DART receive processing. It is almost
identical to the packet transmission comparison. The
distinction is which portion of the DART adapter
computes the checksum on behalf of the sofhare
(receiver instead of DMA engine).

Interrupts
Transmit completion interrupts do not need to be
eagerly processed. Software can piggyback processing
to reclaim transmit buffers upon depletion of transmit
buffer resources, upon unrelated packet reception
events (e.g., User Datagram Protocol, UDP), and
upon related packet reception events (e.g., TCP
aclinowledgment). The transmit completion events
can be masked, or the hardware interrupt holdoff
mechanism can be used to give them a longer latency.

Receive interrupts are batched to reduce overheads.
Short packets are hlly contained in the initial paclcet
summary wluch would be deposited in a lcernel buffer.
Adapter buffers for short packets can be recycled
immediately by system sofhvare. Long packets are not
fully contained in the initial packet summary provided
s o h a r e for parsing and dispatch. The summary is
noticed during one interrupt, and scatter/gather 1 /0
completion into application buffers is noticed during
another interrupt if performed asynchronously.

The side-effect of the decision to create a store-and-
forward adapter is that a received packet is related to
two interrupts. The intent is not to burden a systeni
and cause mi~ltiple interrupts per packet. The distinc-
tion between relation and causality is important.

When the system is under load, there is a steady
stream ofpackets, and thus a steady stream of batched

Traditional DART

System call layer Uiomove user buffer to kernel buffer *Uiomove user buffer to adapter buffer
Protocol layer For all buffers for all bytes, update checksum For all buffers, update checksum
Driver layer Programmed I10 or DMA Data is already on the adapter!

Digtal Technical Journal Vo1.9 No. 4 1997 67

Table 2
Receive Overview

Traditional DART

Driver layer Programmed I10 or DMA Data stays on adapter!
Protocol layer For all buffers for all bytes, update checksum Use checksum computed by receiver

hardware as packet was reassembled
System call layer Uiornove kernel buffer t o user buffer Uiomove adapter buffer to user buffer

interrupts. If 3 Mbytes were transferred using a burst
of l-kbyte packets, there would be 3000 packets.
Batching 20 packets/interrupt, there would be 150
interrupts to report packet arrivals. The first interrupt
is just for packet arrival events, to allow header parsing.
The intent is for the next 149 interrupts to report 20
new arrivals and the DMA completion for 20 previous
arrivals. A final interrupt would take care of the final
D I M requests. In this case, the additional interrupt
load for a DART adapter is minor: one interrupt for
3000 packets. The interrupt load is not doubled (even
if one chooses to move received data asynchronously).

Store-and-forward latency is incurred because of
the memory write and read on the adapter (to store
data from the network and to later move it to the
application's buffers). DART adapter memory oper-
ates at a high rate, over 4 Gb/s, to minimize this. Due
to the intervening software decision concerning where
to place DART data for large packets, the data may be
placed at its initial location in host memory later than
for a traditional adapter which fills kernel buffers.
However, store-and-forward reduces main memory
bandwidth consumption, and quickly places the data
at its Jnnl location within the application buffers in
host memory. The correct metric is latency to data
availability to the application, not data latency to first
reaching t l ~ e system bus.

CSR Operations
Control and status registers (CSRs) are used within
hardware implementations to allow software to con-
trol the action of hardware, and for hardware to pre-
sent information to sofhvare. For example, a CSRcan
inform a device of the device's address on a bus. In this
case, the CSR's definition is generic in the context of
the bus definition. Alternatively, a CSR can be used to
initialize a state machine within the hardware imple-
mentation. In that case, the CSR's definition is specific
to that version of the device.

CSRreads are very expensive. Generally, a single CSK
read is required for DART interrupt processing, and
that CSR is placed in the PC1 clock domain of DART in
order to avoid operation retries on the PC1 bus.

Most packet processing information is written to
host memory by the adapter for quick and easy CPU
access. For example, packet summaries are placed in

one or more arrays in host memory, and sohvare can
use an ownership bit in each array element to termi-
nate processing ofsuch an array.

CSK writes are buffered; nevertheless, the11 can be
minimized. The packet sum~naries in host memory are
managed with a single-producer, single-consumer
model. When the consumer and producer indices into
an array are equal, the array is empty. When hardware's
producer index is greater, there are entries to be
processed by software. (Redundant information in
array element ownership bits means that sofiware does
not actually need to read the DART adapter to perform
the producer-consumer comparison.) When the hard-
ware's producer index reaches the sofnvare's consumer
index minus one, the array is hUp utilized. When soft-
ware has processed a number of packet summaries, the
hardware can be informed that they can be recycled by
a single write of the consumer index to the adapter.

The DMA engine processes a list of "copy t h s from
here to there" commands. By supporting a list of
operations instead of a single operation, software can
quickly queue an operation and move along to its next
action without a lot of overhead. The copy commands
reside in an array within host memory, with a software-
specified base and a software-specified length.

DMA commands also follow the producer-consumer
model. However, since instructions are only read by
DART, there are no ocvnership-bit optimizations. To
compensate for this, sohvare can allocate a large array
and cache a pessimistic value for the hardware's con-
sumer index in order to avoid CSR reads. Alternatively,
the DMA engine could periodically be given instruc-
tions to DMA such information to host memory.

A typical DART interrupt involves one CSR read and
three CSR writes, yielding an efficient interface. One
read determines interrupt cause. One write informs the
D I M en,he of new copy commands for newly received
data. Another write informs the DMA engine that the
CPU processed a number of the packet summaries
DART placed in main memory. A tlurd write initializes
the interrupt delay register to batch future events.

Occasionally, an interrupt also involves an extra CSR
read. The read discovers a large number of commands
processed by the DMA engine, allowing software to
recycle entries in the command queue and thereby
issue more commands.

68 Digital Technical Journal Vol. 9 No. 4 1997

Driver
The driver classifies received packets, and decides
whether to continue to use adapter buffers for them,
or to copy the data into kernel buffers. For the proto-
type, adapter-buffered packets are:

Long enough to contain maximal-length IP and
transport protocol headers.

H Version 4 IP packets (buffering assumptions perco-
late throughout the layers of the system, so a proto-
col family must be updated and tested to support
adapter-buffered packets).

H TCP or UDP protocol packets. Other protocols lay-
ered over IP do not use adapter buffers, to make the
scope of the effort manageable by handling just the
common case.

The operating system uses a single mbuf to describe
a single set of contiguous bytes in a buffer which may
be within or external to the mbufstructure. Mbufs can
be placed in lists to form packets from a number of
noncontiguous buffers.

Received adapter-buffered packets are two mbufs
long. The first mbufcontains the initial contents ofthe
packet DMAed into memory by the adapter, that is the
protocol headers and summary information from the
adapter.

The second mbuf refers to the packet in adapter
memory. For ATM, the received packet is stored in a
linked list of buffers on the adapter. Programmed 1 /0
access to the buffers requires sofiware to traverse the
links, but this would not be done in practice since the
CPU read path to the 1/0 device is unbuffered and
high-latency. The DART DMA hardware would be
used, and it would traverse the links as-needed. The
DIMA hardware allows the s o b a r e to pretend the
packet is contiguous.

Fields of the second mbuf are used in specific ways.
The length of the second mbuf does not contain the
jnitial portion of the packet copied into the first mbuf,
even though the adapter memory buffers the entire
packet. The initial portion is replicated, but only the
copy local to the CPU is accessed. The pointers of the
second mbuf point to bogus virtual addresses, even
though the adapter looks like an extension of main
memory. This speeds software debugging by trapping
inefficient accesses to the adapter. Adjusting the
length and pointer fields is still allowed in order to
drop data from the front or back of the mbuf. The
m-ext fields record the location and amount of
adapter buffering used to hold the packet. Thcy also
point to a driver-specific buffer reclamation routine.

For TCP, or for UDP packets with nonzero check-
sums, the driver makes incremental modifications to
the DART receive hardware's checksum. The hard-
ware computes the 1's complement checksum over all
the cell payloads except for the final ATM trailer bytes.

As a result, the driver modifies the hardware checksum
to account for:

H Contributions made by IP options

Construction of tlie pseudo-header which is not
transmitted on the network

The transport layer checksum, \;vhich was zero
when the checksum was computed but may be
nonzero on the network

To transmit a packet, the transport and network lay-
ers operate on protocol headers in main memory. The
driver moves the headers to the adapter as part of
transmitting a packet whose encapsulated data is in
adapter buffers.

The ifnet structure is the interface benveen the pro-
tocol layers and the driver. I t contains, for example,
fields expressing the maximum packet size on the
directly connected nenvork, the network-layer address
of the interface, and hnction pointers used to enter
the driver.

We add an (* i f_ uiomove)() field to be associated
with buffers as described below. It represents a driver
entry to copy data to or from the adapter. We also add
an (*zf_ xmtbzlfn1loc)O field to be used within the
mbuf allocation loop of the transmit portion of the
socket layer. This allows the socket layer to give prece-
dence to allocating (large) adapter buffers over main
memory buffers.

The driver always retains some transmit adapter
buffers for its own use. When the system is busy, there
will be TCP packets consuming adapter buffers. The
packets are associated with the socket send queue.
There will also be packets on the interface send queue,
which may or may not use adapter buffers. If the first
item on the interface queue uses just kernel buffers,
then the driver must have reserved adapter buffers in
order to complete the transmission and avoid transmit
deadlock. At least one packet of adapter buffering
must be reserved for the driver output routine.

UDP
UDP motivates many of the changes without getting
involved in the complexity of retransmission and relia-
bility. Many of these changes are generic to UDP and
TCP: augmenting the buffer and interface descrip-
tions, discovering the availability of efficient buffers
for a connection, and allocating and filling the etxcient
buffers.

One portion of the mbuf is the stnictpkthdr, which
is used only in the first mbuf ofa packet. It summarizes
interesting information about the packet, like its total
length.

We add a protocolSum field to the pkthdr of the
mbuf so that the driver can communicate the received
transport-layer checksum to the upper layers. The
transport-layer checksum is not ignored, as it would

Digital Technical Journal

be if checksums were negotiated away or cavalierly
disregarded. The checksum is verified by the trans-
port layer as usual, but without accessing all the bytes
of the packet. The protocolSum field is valid if an
rM_PROTOCOL-SUM bit is set in the mbuf m-flags field.

Another portion of the mbuf is the stmct m-ext,
which is used to describe data buffers external to the
mbuf structure. We add an (*uiomove- f)O field so
that the driver can communicate a buffer- or driver-
specific copy routine to the socket layer. Soclzet layer
usage of the standard pre-existing uiomove routine
assumes that the received data is in the address space
and should be moved by CPU byte-copying. The indi-
rection allows the data to be moved by programmed
1/0 or DMA. The uiomove-f field is valid if an
LM-UIOMOVE bit is set in the mbuf m-flags field.
Parameters to the uiomove-f function are an mbuf, an
offset into the packet at which to start copying bytes, a
number of bytes to copy, and the standard uio struc-
ture that describes where the application wants the
data.

The UDP input routine performs protocol process-
ing on received UDP packets. Before the pseudo-
header is constructed for checksum verification, the
M-PROTOCOL-SUM bit is tested in order to skip
CPU-based checksumming.

i f (m->m-flags & M-PROTOCOL-SUM) C
N E T I O ~ C O U N T (r c h ~ h w ~ s u m) ;
assert(m->m-f lags & M-PKTHDR);
i f (ui->ui-sum != m->mgkthdr .protocolSum) C

NETIO-COUNT(rch-hw-sum-bad);
goto badsum;

1
got0 ok;

1

Error processing can be based on packets reformat-
ted into kernel buffers. The UDP output routine per-
forms protocol processing on transmitted UDP
packets.

Checksum overhead avoid'mce is similar to the receive
path; but instead of testing the M-PROTOCOL-SUM
bit, the mbuf checksum field is assumed to be valid for
all transmit mbufs referencing adapter buffers (they
have the M-UIOMOVE bit set). We assume that no
adapter which saves the operating system the effort of
data copying \\/auld forget to save the operating sys-
tem the effort of checksumming. It does not make
sensc to eliminate some, but not all, of the per-byte
overhead o p e r ~ t ' lons.

For UDP transmission, software recycles (adapter)
buffering after the packet has been transmitted.

Changes like checksum avoidance are based on
adding a conditional to the existing code paths. For a
DART adapter, the test and branch penalty are small
relative to the gain. For large external buffers, there
are one or two M-PROTOCOL SUM tests per
packet, depending on packet length and buffer size.
This could be viewed as a constant-time overhead.

The gain is avoiding the linear-time access of each byte
within each packet.

For a traditional adapter, the test and branch repre-
sent overhead for each packet. The cost of the added
conditionals occurs in the context of a large code base
between the system call interface and the driver, and
that networking code provides a rich feature set
through the use of conditionals. If the added condi-
tionals are viewed as significant, consider the approach
of generating two binary files from a single source
module. To avoid penalizing systems populated solely
wit11 traditional adapters, opcratblg system software
config~~ration procedures can choose not to incorpo-
rate the DART-conditionalized version of the code. A
DA.RT adapter installed at a later date would still oper-
ate under such a software configuration, but would not
reach its peak performance until the sohvare is recon-
figured to use the DART-conditionalized version.

TCP
The TCP input routine performs protocol processing
on received TCP packets. Before the pseudo-header is
constructed for checksum verification, the M-PRO-
TOCOL-SUM bit is tested in order to skip CPU-based
checksumming. The only differences with the UDP
input processing change are the names of the TCP
header structure and TCP header checksum field.

All the adapter resources represented by the second
mbuf of a received packet are consumed until the final
reference to the packet is frced. If large packets are
exchanged and the application is doing small reads,
not until the final read is any storage reclaimed. This
space consumption is represented on the socket
receive queue, and therefore affects the advertised
TCP windo\v.

The TCP output routine performs protocol pro-
cessing on transmitted TCP packets. The check sun^
overhead avoidance is similar to that done for UDP.
Checksum computations for transport-layer retrans-
missions are simplified by the association of checksum
contributions with mbufs, rather than an association
of checksums with packets. The association with
buffers instead of packets also simplifies handling of
packets using a mix of kernel and adapter buffers.

For TCP transmission, sofhvare recycles (adapter)
buffering after the packet has been acknowledged by
the remote end of the connection. Between transmis-
sion and acknowledgment, the data is held on the
socket's send queue. Previously, the socket code
copied data from one mbuf into anotlicr whenever
both mbufs' contents fit into one, trading increased
CPU load for space efficiency. For DART adapters, the
copy decision is cut short.

We add a bytessummed field to the mbuf so that
when a packet is transmitted or retransmitted by the
transport layer, code can double-check that all the data
the checksum is supposed to cover is still present in the

70 Digital Technical Journal Vo1.9 No. 4 1997

buffer. For example, a TCP aclu~owledgment ofpart of
an original packet generally leads to the sender delet-
ing its copy of the acknowledged data retransmitting
the rest. The software implementation handles the
generality of acknowledgments which are not com-
plete transmit mbufs, the unit covered by the
protocolSum field. A retransmission must not send a
packet with an improper transport-layer checksum,
even if it means using an algorithm linear in the num-
ber of bytes remaining in the buffer to recompute the
checksum.

The transmitter's socket layer buffers data in seg-
ments convenient for both the network-layer protocol
and the driver. Checksum contributions remembered
for retransmission are recorded at a similar level of
granularity. The transmitter is liberal in what the
receiver can acknowledge; the receiver's implementa-
tion affects efficiency, but not correctness.

Socket Data Movement
The copy from the network buffers to the application
data space occurs in the soreceive routine, which uses
information left in the mbuf by the device driver. The
call(s) to uiomove become conditionalized as follows:

i f (m->m-f lags & N-UIONOVE) C
asser t (m->m-f lags 8 N-EXT);
e r r o r = (*m->m-ext.uiomove-f)(m, moff, Len, uio);

) e l s e
e r r o r = uiomove(mtod(m, caddr-t) + moff, Len, uio);

The reverse copy in sosmd is similar.
The standard uiomo\ie function makes the opti-

mistic assumption that the addresses of user buffers
provided by the application are valid. If addresses are
not valid, a trap occurs and situation-specific code is
called.

To support drivers that use programmed 1 / 0
movements with the application's buffer, an additional
code point is added to the error processing so that an
EFAULT error is returned to the application.

Note that the changes are generic, and can be used
with existing devices. The uiomove-f function can per-
form both copies to kernel buffers and protocol check-
summing for transmission over tradtional adapters.

In the transmit portion of the socket layer, the appli-
cation data is moved to kernel buffers or to adapter
buffers by sosend. In order to take advantage of DART
adapters, sosend needs to Iwow:

That the protocol layers between the socket and
driver support DART-style buffering

That the driver supports DART-style buffering

In general, formatting data efficiently for transmis-
sion can require knowing the amount ofheaders that
will be prepended by the various layers below the
socket layer, so device alignment restrictions can be
met. Due to protocol options and to the variety of

media in existence, the amount prepended may vary
from socket to socket. Given a socket, we introduced a
function that computes:

A function pointer for allocating adapter-based
buffers

A function pointer for moving data from user
buffers to adapter buffers

The number of bytes required to prepend all headers

To simplifi the prototype implementation effort,
the hnct ion disallows the use of adapter buffers for IP
multicast packets.

When allocating adapter buffers, sosend uses the
zf_xmtbufnlloc entry to allocate adapter buffers. Each
time it does so, it passes a maximum number of bytes
of buffering that attempts to allocate a buffer for the
entire (remaining portion of the) packet. The driver
indicates the actual amount of buffering allocated;
sosend loops until all the necessary buffering is allo-
cated. The driver may decline to allocate an adapter
buffer if the requested amount of buffering is small. At
that time the driver can best decide if CPU-based byte
copying from user buffers to kernel buffers, and also
copying kernel buffers to the adapter, is preferable to
programmed 1 / 0 or DMA from user buffers.

Once an adapter buffer allocation fails, n o further
allocations are attempted within a segment that will be
passed to the lower layers. This ensures that drivers will
see, at worst, an (internal) mbuf containing headers,
one or many adapter buffers containing data, and
potentially one or many kernel buffers containing the
rest of the packet. This simplifies the driver, and
ensures that alignment restrictions are met without
shuffling data around on the adapter. I t also simplifies
transport-layer checksum co~nputation algorithms.

There is an unusual boundary case in which a long
segment of transmit data may not immediately be
copied to adapter buffers, even though the driver
would prefer t o d o so. If the driver has many free
transmit adapter buffers when the socket code starts to
prepare a segment, it may not have any free buffers
when the segment nears completion. This is because
the socket layer runs at a lower interrupt priority level
than the device driver, and buffers are allocated indi-
vidually. A device interrupt can lead to servicing the
device output queue, consuming adapter buffers in
order to transmit traditional kernel-buffered packets.
&ther than block and wait for transmit adapter buffer
availability, the prototype software uses kernel buffers.

Both the socket and network protocol (TCP) layers
contain segmentation algorithms. In the socket layer,
the segmentation process is confused with the (cluster
mbuf) buffer choice decision procedure. As part of
eliminating that confusion, we introduce an if_buJrn
field to the ifnet structure.

Digital Technical Journa l

If the socket layer creates segments longer than the
device frame size, cxcess work occurs in the lo\ver lay-
ers (e.g., TCP segmentation or IP fragmentation). If
die socket layer creates segments shorter than the
device frame size, the system foregoes large packet
efficiencies. A large S-kbyte write that leads to eight 1-
kbyte cluster mbufs being individually processed by
the lower layers might benefit from overlapped 1 / 0 of
the first segment with computation o f the last, but the
CPU would be wasted for a benefit that is only rele-
vant when a large number ofsuch poorly chosen seg-
ments are constructed. Such a write could go out as a
single packet over an ATM network.

Socket Buffering and Flow Control
A n ~ ~ m ber of papers have commented on thc requirc-
merit for a reasonable amount of socket buffering to
enable applications t o "fill the pipe" with a "band-
width times delay" amount of data.' Delay includes
the link distance, device interrupt latency, software
processing, and 1 /0 queuing delays. It also includes
interrupt delays that aggregate events for efficient soft-
ware processing.

The requirement for sufficient socket buffering is a
lesson learned over and over again. Tradtional solu-
tions include marginal increases in systemwide
defaults, and application niodification to request more
buffering than the default. Facilities like rsh imply that
anything can become a network application, unbe-
hiownst to the application author; so changes to
applications are a poor solution. Also, applications are
insulated fi-om the network by the network protocol
and soclzet abstractions; n o application should need to
h iow die buffering requirements for high throughput
for the media du j o ~ ~ r .

We introduce an (*zfsockbzifl(j entry that allows
the driver to increase socket buffering. When local
nenvorlc-layer addresses are bound to socket connec-
tions, an interface is associated with the coruiection, and
the driver is allowed to adjust tlie socket buffer quota.

For TCP server connections, the server may not be
restricting incoming connections to a particular inter-
face. Overriding the default buffering value must be
done on the soclcct created when the incorning S1W
arrives, not on the placeholder server socket. The
buffer allocation needs to be determined as soon as
possible, because tlie initial SlIh1 packet also triggers
the determination of the proper window scaling \ralue.

UDP does not queue packets 01 the socket send
queue. Although calls to Lsockbuf from the soclzet
layer are independent of the protocol, the buffer quota
only affects the maximum UDP packet size sent, not
the number of UDI' packets tliat can be in flight at the
same time. The socltet is not charged for UDP packets
queued on the driver output queue or UDS packets in
t l ~ c hardware transmit queues.

The adapter buffcr resources are distinct from main
memory ~ n b u f and cluster resources. The socket data
structure and support routines support consumption
and quota numbers for adapter buffer~ng that are dis-
tinct from the current main memory consumption
and quota numbers. For example, a connection re-
directed from a DART adapter to a traditional adapter
is quickly flow-controlled in the socket layer as a result.
The large adapter buffer allocation does not cnablc it
to hog nialn memory buffers and adverselv affect
otlier connections.

IP

The prototype software contains conditionals to
enable or disable the use of adapter buffers for mes-
sages undergoing IS fragmentation. This only affects
UDP, since die socket layer segments appropriately for
the TCS and driver layers. Sohvare computes the
amount of header space for the first fragment, and also
the amount of header space for the follo~iing fi-ag-
nients (which will not contain transport protocol
headers). This information is used during the socket
layer's movement of application data to kernel or
adapter buffers. UDS and IS receive thc segments as a
single message; the IS fragmentation code uses the
fragment boundaries precomputed in the socltet layer.

IP reassembly of received adapter-buffered packets
was implemented in the prototype code to keep up
with a transmitter using adapter buffers for IP frag-
mentation. The driver adjusts the hardware-computed
checlzsum to ignore the co~ltribution to the hardware
sun1 caused by the successive IS fragment headers,
whlch are not presented to the transport layer.

Resource Exhaustion
The hardware provides a scalable data memory. The
memory holds received data until the application
accepts it, and transmits data until the acknon~ledg-
nient arri\les. The prototype provides 16 Mbytes,
which was considered a significant quantity after
examining networlz subsysteni buffering at centralized
servers for several large "campus" sitcs.

When adapter memory is scarce, it should be allo-
cated to connectio~is whose current data tlon~s are
high-bandwidth flows. Low-bandwidth connections,
connections blocked by a closed remote window, and
connections over extremely loss-prone paths will not
be significantly impacted by the copying overhead
associated with tlie use of kernel buffers.

Data Relocation
Reformatting data from adapter buffers to kernel
buffers allows existing code to be ignorant of adaptcr-
buffered data. Socket-based TCP communication can
use adapter buffers for high throughput, and other

72 Digital Tcchn~cal Journal

protocol environments can siniultaneously use the
familiar kernel buffers. DART support can be phased
in by protecting legacy code with a conditional reloca-
tion call before entering or queuing data to the legacy
code. Cache f i l l operations should be targeted to main
memory, not adapter memory, for best performance in
legacy code.

Relocation is also appropriate for error handling
and other rarely executed code paths. For example,
a multi-homed host may lose TCP connectivity
through the first-hop router associated with a DART
link, and be forced to send packets over another link.
The new communication path could use any network
interface, DART or other\\iise. The software needs
to be able to handle the scenario where the new
adapter, or some system resource, has a constraint
preventing it from transmitting packets located in
DART memory.

We selected a lazy evaluation solution which
assumes that data sent over an old route will be deliv-
ered and acknowledged. An eager solution would
incur a large burst of data relocation when the new
route takes precedence, with the disadvantages that
the work would be wasted for data which is aclcnowl-
edged, and the burst of activity consumes resources
and incurs increased latency for other activities.

For TCP connections marked as using adapter
buffers, a driver entry through (*if_ pktok)O allows
the driver to comment on each outgoing packet. This
implies that the driver also comments on TCP retrans-
mission pacltets. The driver has a chance to double-
check constraints and trigger data relocation, if
necessary. Drivers not supporting Kpktok always trig-
ger data relocation, and also lead to unmarking the
TCP connection.

Comparison to Other Methods
Traditional adapters contain minimal onboard meni-
ory and hide their buffering from die CPU. Unable to
manage a traditional adapter's buffers, a copy of data
must be ltept in host memory until it is acknowledged
in case it needs to be retransmitted.

We felt copy-on-write approaches to using a tradi-
tional adapter would be inadequate due to book-
keeping overheads experienced by other projects.
Also, the application may commonly reuse the same
application buffer before the transport protocol
semantics allow. For an unmodified application, this
would lead to blocking the application, or incurring
both copy-on-write and data copy overhcads. All
applications are nenvorlt-based when one considers
networked file systems and pipes to remote program
invocations; architecturcs that require applications to
be recoded t o interact with page mapping schemes
(e.g., are inadequate. Another objection is that
copy-on-write focuses on packet transmission, ignor-
ing packet reception.

When a write is performed by an application using
DART, the application blocks only long enough to
buffer the data, as for a traditional adapter. The copy
of tlie application's data on DART enables retransmis-
sion for reliable communication. The application is
free to immediately dirty its write buffer, and n o per-
formance impact is associated with that action.

Van Jacobson's WITLES paper design uses the CPU
to copy data to and from the adapter via programmed
I/O.' Reading the adapter is an expensive operation, and
in practice would provide worse receive performance
than even a traditional adapter. The Medusa design is a
WITLES variant that uses programmed 1/0 transrnis-
sion and addresses the receive penalty with system block-
move resources for receptio~i. '~ The Afterburner design
used the same approach, achieving 200 M ~ / s . ~ The
WITLES approach keeps the packet in adapter memory
until it is copied to the application buffer.

To minimize resource consumption, the checksum
and copy loop are combined. This means that the TCP
acknowledgn~ent is deferred until the application con-
sumes the data, which might be much later than nec-
essary. Applications read data at a rate of their own
choosing. Care must be talten that this deferral does
not lead to TCP messages t o tlie data source that cause
unnecessary data retransmission.

Unlike WITLES, DART supports DMA to and from
the adapter. Sohvare can use DMA where appropriate,
intelligently balancing the costs of programmed 1/0
and DMA.

Since DART provides the IP checksum with the
packet, the TCP acknowledgment can be sent as soon
as the packet is reassembled and reported to the CPU.
The ach~owledgment contents and transmission time
are traditional BSD UNIX; it states that the data has
been received, and the offered \vindo\v reflects buffer
consumption ~lnti l the application receives the data at
its leisure.

Adapters have been built that offload protocol pro-
ccssing.' However, the cost of TCP processing is low,
and such an architecture introduces message-passing
overheads that counterbalance the offloaded protocol
processing efficiencies. CPU execution rates are scal-
ing well. The issue to address is the main memory
bandwidth bottleneck. Also, it is expensive and diffi-
cult to create, maintain, and augment the firmware for
such an adapter. The firmware is tied to a single
adapter, and replicates work done within tlie operating
system that can be shared by a number ofadapters.

DART provides assist via checksuniming methods.
It does not attempt to offload network- or protocol-
layer processing.

Performance

The simulation environment used to debug and test
the chip design was also used to extract performance

Digital Technical Jour~ial Vol. 9 No. 4 1997 73

information. The chip model used to fabricate the part
is connected to a PC1 bus simulation, some generic
bus master devices, and some generic bus slave
devices. The simulation environment is connected to
and controlled by a TCL-based environment.

Within the TCL environment, die hardware design-
ers wrote a device driver. With this driver, DART
copied packets from host memory, looped packets on
an external interface, reported packet summaries, and
copied packets into host memory. Both 64- and 32-bit
PC1 buses \\/ere exercised. Target read latency of host
memory was incorporated into the simulation (the
data presented in Figure 7 is based on a 16-cycle
latency). Credit-based flow-control operations were
enabled since they consume additional control mem-
ory bandwidth, and therefore represent worst-case-
scenario operation, Similarly, a large number of virtual
circuits were used to loop data, to prevent the use of
on-chip, cached circuit state.

Because the TCL driver was written by hardware
designers, and they were focused on designing and
testing the chip, performance numbers extracted from
their work suffer from a lot of CSK accesses. A real
driver would reduce the CSR operations and have
increased batching of interrupts and other actions.

CSR reads are costly, since they involve a round-trip
time within the chip which crosses clock boundaries,
in addition to tlie round-trip time between t l ~ e CPU
and the pins on the devjce. Crossing cloclc boundaries
means that there are internal first-in first-out (FIFO)
delays involved to deal with synchronization and
meta-stability issues. To meet PC1 latency specifica-
tions, the bus master is told to retry such operations,
freeing the PC1 bus for other use during the internal
round-trip time. CSR writes are efficient, since they
are buffered throughout the levels of the system.

The dip in Figure 7 is near the 512-byte burst size
used to read from host memory. Packet transmissions
no longer fit in a single DMA burst, and incur tlie extra
cost of an additional short fetch. This incurs additional
overhead cycles to place the address on the bus and for
the target to start to respond with the first bytes.

For each sinlulation \\re extract numerous detailed
statistics. Table 3 contains a few for 32-cell packets
(1536 bytes) on a 32-bit PC1 bus. These particular fig-
ures are for the TCL driver, and include time intervals
to initialize the adapter, to transmit before the first
packets are received, and to receive after the last packet
was transmitted.

DART 4 OR MORE VC, BIDIRECTIONAL,
FLOW-CONTROLLED PERFORMANCE

0 10 20 30 40 50 60 70
PACKET LENGTH IN CELLS

KEY:
+ PERCENT OF LlNE RATE (64-BIT BUS)
-C- PERCENT OF LlNE RATE (32-BIT BUS)

Figure 7
DART Performance

74 Digital Technical Journal Vol. 9 No. 4 1997

Table 3
Examples of Additional Statistics

Control memory idle 79%
Data memory idle 48 %
PC1 busy (frame or irdy asserted) 75%
PC1 transferring data (irdy and trdy asserted) 60%
CSR operations share of bus operations 41 %

Future Work

Due to the large amount of onboard buffering, we d o
not expect DART to encounter resource exhaustion
issues. However, some work will be appropriate to
determine the best solution should buffering require-
ments exceed the electrical capabilities of the high-
speed SAR-SDRAM interface. Is it efficient to move
unaclu~owledged data off the adapter so that new
transmit data can be moved from user space to the
adapter in the socket layer? Is it efficient to block in the
socket layer, waiting for adapter buffers to be freed by
a future, o r arrived but unprocessed, acknowledg-
ment? Is it efficient to use conventional kernel buffers
to transmit when the space allocated to DART-style
transmissions is exhausted?

DART structures the system sofnvare so that the
operating system does not examine the application's
data, which should be private to the application any-
way. This separation of control operations (on head-
ers) from data operations (primarily movement) is a
common theme in embedded system design for
bridges and routers. DART provides a generic struc-
ture that enables high-performance networking in a
variety ofsystems.

With features like peer-to-peer I/O, one can con-
ceive of a system with multiple gigabit links, where the
bottlenecks have shifted from the system sofnvare to
the application o r service. We think DART-style
adapters will enable and accomplish the delivery of
high-bandwidth service to the application.

Acknowledgments

Robert Walsh implemented the transmitter and PC1
bus interface. ICcnt Springer implemented the receiver
and packet reporting functions. Steve Glaser imple-
mented the DMA engine. Tom H u n t implemented
the external control RAM interface, the external data
RAM interface, and the board design. Robert Walsh
developed the prototype UNIX changes. Phil Pears,
Mark Mason, James lMa, and Ken-iclu Satoh provided
significant assistance in placing and routing the ASIC.

We also had assistance from Joe Todesca, Elias
IGzan, and Linda Stralde. Bob Thomas participated in
the initial concept and design. I<.I<. Ramakrishnan pro-
vided some information on networking performance.

References

1. Metcalfe, "Coniputer/Network Interface Design:
Lessons from Arpanet and Ethernet," IEEEJSAC, vol.
11, no. 2 (Feb. 1993).

2. Walsh and Gurwitz, "Converting the BBN TCP/IP
to 4.2BSD," USEIVI,Y 1984 Summer ConJ Proc. (June
1984).

3. Chang et a]., "High-Performance TCP/lP and
UDP/IP Networking in DEC OSF/1 for Alpha AXE',',"
Digital Technical Journal, vol. 5, no. 1 (Winter 1993).

4. Dalton et al., "Afterburner," IEEE i\ktwork (July 1993).

5. Clark et al., "An Analysis of TCP Processing Over-
head," IEEE Commun. Mug. (June 1989).

6 . Kay and Pasquale, "Measurement, Analysis, and
Improvement of UDP/IP Throughput for the
DECstation 5000," USEIVIX 1993 Winter ConJ Proc.
(1993).

7. Owicki, "AN2: Local Area Network and Distributed
System," Proc. 12th Symp. Pn'ncqles of Dist. Comp.
(Aug. 1993).

8. Smitli and Traw, "Giving Applications Access to Gb/s
Networking," IEEENetmrk(Ju1y 1983).

9. Van Jacobson, "Efficient Protocol Implementation,"
ACM SIGCOMM 1990 tutorial (Sept. 1990).

10. Banks and Prudence, "A High-Performance Network
Architecture for a PA-RISC Workstation," IEEEJSAC,
vol. 11, no. 2 (Feb. 1993).

Additional Reading

1. Kay and Pasquale, "The Importance of Non-Data Touch-
ing Processing Overheads in TCP/IP," Proc. SIGCOMkf
93 Symp. Commun. Architeclwres and Protocols (1993).

2 . Ramakrishnan, "Performance Considerations in
Designing Network Interfaces," I E E JSAC, vol. 11,
no. 2 (Feb. 1993).

Biography

Robert J. Walsh
Robert Walsh has been working on high-speed networking
since the beginning of the 1980s. He developed network-
ing sofnvare for BSD UNIX, BBN's Butterfly multiproces-
sor, and DIGITAL'S GIGAswitch/FDDI.

Digtal Tcch~~ical Journal

Recent DIGITAL
U.S. Patents

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied by the
U.S. Patent and Trademark Office are reproduced as they appear on the original published patent.

Robert T. Faranda and Notebook personal computer
Bradford G. Chapin

Hamid R. Soleirnani, Brian Doyle, and Hot carrier-hard gate oxides by nitrogen implantation
Ara Pldipossian before gate oxidation

Richard I. Mellitz and Michael V. Dowd Continuous motion electrical circuit intercomect test
method and apparatus

Henry S. Yang, Donald L. Post, and
Wen-Yi Huang

Pldippe Klein, David W. Maruska, and
Kevin W. Ludlam

Auto~natic nenvork speed adapter

Method and apparatus for testing Iligh speed busses
using gray-code data

David B. Loniet Method for performing private lock management

hcky S. Palmer and Larry G. Palmer Video teleconferencing for networked workstations

Robert R. ICzndo and Paul L. Godn Adapter for interconnecting single-ended and differen-
tial SCSI buses to prevent 'busy' or 'wired-or' glitches
From being passed from one bus to the other

Janos Farkas, Rahul Jairath, Matt Stell,
and Sing-1Mo Tzeng

A d K. Jain, John H. Edmondson, and
Peter J. Bannon

Dale R. Donchin

 method of using additives with silica-based slurries to
enhance selectivity in metal Ch4P

Method for increasing system bandwidth tluough an
on-chip address lock register

Pattern recognition device

Steven M. Jenness Object oricnted computer arclutecture using directory
objects

5,615,382 Vincent G. Gavin, Michael J . Seaman,
Neal A. Crook, and Bipin Mistry

Data transfer system for buffering and selectively
manipulating the size of data blocks being transferred
between a processor and a system bus of a computer
system

David B. Krakauer, Kaizad Mistry,
Steven Butler, and Hamid Partovi

Self-referencing modulation circuit for CMOS
integrated circuit electrostatic discharge protection
clamps

Flow control with smooth limit setting for multiple
virtual circuits

Cuneyt M. Ozveren, H d a m G. Murray, Jr.,
Gregory M. Waters, and Robert J. Simcoe

Rqm Sudama, David M. Griffin,
Brad Johnson, Dester Sealy,
James Shclhamer, and O~ilen H. Tallrnan

Method for providing a sccurity facility for a network
ofmanagement servers utilizing a database of trust
relations to verifjl mutual trust relations between
management servers

Simon C. Steely, Jr., David J. Sager, and
David B. Fite, Jr.

Memory reference tagging

Robert L. Travis, Jr., Andrew P. Wilson, Method and apparatus for object-oriented invocation
Neal F. Jacobson, and Michael J. Renzullo of a server application by a client application

76 Digital Technical Journal Vol. 9 No. 4 1997

Michael J . Barnaby and James W. Brissette Programmable memory controller for power and
noise reduction

Local area nenvork with server and virtual circuits Bruce E. Mann, DarreU J . Duffi,
Anthony G . Lauck, and
William D . Su-ecker

Three dimensional document representation using
strands

Peter Lucas and Jeffrey A. Senn

Larry G . Palmer and R~clql S. Palmer Audio/video storage and retrieval for multimedia work-
stations by interleaving audio and video data in data file

H o e T. Cho, ~Ma\v Z. Jau, and
W. H u g h Durdan

Apparatus and method for adapting a computer
system to different architectures

Clock architecture for synchronous system bus which
regulates and adjusts clock skew

David M . Fcnwiclt, Daniel Wissell,
Richard Watson, and Denis Foley

Bcvin R. Brett

Gilbert M . VVolrich, Timothy C . Fischer,
and John A. I<o\valeslu, Jr.

Using sorting to d o rnatchup in smart recompilation

Floating point unit data path alignment

Joseph H. Brown and Dilip I<. Bhavsar Arclutecture for system-wide standardzed intra-module
and inter-module fault testing

Michael C . Adler, Steven 0. Hobbs, and
Paul G . Lowney

Sofnvarc mechanism for accurately h a n d h g
exceptions generated by instructions scheduled
speculatively due t o branch elimination

William R. Hamburgen, John S. Fitch,
and Norman P. Jouppi

Nitin D. Godiwala, I h r t M . Thaller,
Jeffrey A. Metzger, and Barry '4. Masltas

High po\vered die with bus bars

Fault management scheme for a cache memory

Wayne M. Cardoza, Jeffrey M. Diewald,
Jeffrey E. Nelson, Steven D . DiPirro,
James R . Goddard, Wendell B. Fisher, Jr.,
Anne E. McElearney, and Richard Sayde

Method and apparatus for testing software on a
computer nenvorl<

Peter J . Bannon, Ruben W. Castelino,
and Chandrasekllara Somanatl~an

Autonomous pipeline reconfiguration for continuous
error correction for fills from tertiary cache or memory

David A. Orbits, Icenneth D. Abramson,
and H. Bruce Butts, Jr.

Enhanced cache operation with remapping of pages
for optimizing data relocation from addresses causing
cache misses

Rodney Gamache, S t ~ ~ a r t Farnham,
Michael Har\rep, William A. L i n g ,
IOthleen Morse, and Michael Llhler

Cont rohng requests for access t o resources made by
multiple processors over a shared bus

James B. Save Method and apparatus for generating and implementing
smooth schedules for forwarding data flows across ceU-
based switches

Michael Ben-Nun, Simoni Ben-mchael,
Simcha Perl, and lhdangode I<.
Rarnakrishnan

Local memory buffers management for an ATM
adapter implementing c r e d t based flow control

William B. Gist and Joscpll P. Coyle Semiconductor process, power supply voltage and tem-
perature compensated integrated system bus termination

Michael C . Adler, Steven 0 . Hobbs, and
Paul G . Lowney

Software mechanism for accurately h a n d n g exceptions
generated by speculatively scheduled instructions

Icadangode I<. Ramakrishnan and
Prabuddha Biswas

Disk cache management techniques using non-volatile
storage

Scott G. Robinson, Richard L. Sites, and
&chard T. Witek

System and method for preserving instruction state
atomicity for translated program

William F. McCarthy, Colin E. Brench,
and Daniel M . SIIO\V

Enclosure for electronic modules

Digital Technical Journal \701.9 No . 4 1 9 9 7 77

Robert C. Frarne and Mark J. Foster

Stephen R. Van Doren, Denis J. Foley,
and Maurice B. Steinman

Michael J. Seaman

Janles 0. Pazaris and &chard P. Evans

Larry L. Biro, Joel J . Grodstein,
Jeng-Wei Pan, and Nicholas L.
Rethman

Nicholas Ilyadis and Richard Graham

Martin Ed\vard Gries~lier, Parayath
Gopal Krishnakumar, and David Benson

Richard Lee Sites

5,650,997 Henry Sho-Che Yang, Anthony G. Lauck,
Kadangode K. Ramakrishnan, and
W i a m R. Hawe

5,65 1,111 William M. McKeenian and
August G. Reinig

5,652,615 Stewart Frederick Bryant and
S.haheedur Reza Haque

5,652,837 Nicholas Allen Warchol and
Chester Pa.vvlowski

5,652,861 David T. Mayo, David W. Harnvell, and
Hansel A. Collins

5,652,869 Mark A. Herdeg, James A. Wooldridge,
Scott G. Robinson, Ronald F. Brender,
and Michael V. Iles

5,652,889 Richard Lee Sites

5,654,653 Joseph P. Coyle and Willian~ B. Gist

5,657,239 Joel J. Grodstein, Nicholas L. Rethman,
and Jeng-Wei Pan

5,657,426 Keith Waters and Thomas IM. Levergood

5,657,456 William B. Gist and Joseph P. Coyle

5,657,471 Richard Lary, Robert Willard,
Catharime van Ingen, David Tluel,
William Watson, Barry Rubinson, and
VereU Boaen

5,657,480 Neal F. Jacobson

78 Digital Ttchnical Journal

Apparatus and method for accessing SMRAM in a com-
puter based upon a processor employing system manage
ment mode

Turbotable: apparatus for directing address and
commands between multiple consumers on a node
coupled to a pipelined system bus

Apparatus for message filtering in a network using
domain class

Low inductance electrical resistor terminator package

Static timing verification in the presence of logically
false paths

Inter-module interconnect for sin~ultaneous use with
distributed LAN repeaters and stations

Apparatus and method for maintai~ling forwarding
information in a bridge or router using multiple free
queues having associated free space sizes

Translating, executing, and re-translating a computer
program for finding and translating program code at
unknown program addresses

Method and apparatus for use in a network of the
ethernet type, to improve fairness by controlling
collision backoff times in the event of channel capture

Method and apparatus for producing a software test
system using complementary code to resolve external
dependencies

Precision broadcast of composite programs including
secondary program content such as advertisements

Mechanism for screening commands issued over a
commu~lications bus for selective execution by a
processor

System for interleaving memory niodules and bailts

System for executing and debugging multiple codes in a
multi-architecture environment using jacketing means
for jacketing the cross-domain calls

Alternate execution and interpretation of computer pro-
gram having code at unknown locations due to transfer
instructions having computed destination addresses

Reduced system bus receiver setup time by latching
unamplified bus voltage

Timing verification using synchronizers and timing
constraints

 method and apparatus for producing audio-visual
synthetic speech

Semiconductor process power supply voltage and
temperature compensated integrated system bus
driver rise and fall time

Dual addressing arrangement for a comniunications
interface architecture

Method of recording, playback, and re-execution of
of concurrently running application program operational
commands using global time stamps

Mike Freeman, Stuart Keith Morgan,
and Mike Romm

Paul M. Goodwin, David A. Tatosian,
and Donald Smelser

Modular coupler arrangement for use in a building wiring
distribution system

Memory stream buffer with variable-size prefetch
depending on memory interleaving configuration

Clark E. Lubbers, Susan G. Elkington,
and Richard F. Lary

Slip list data structure enhancements

Dennis Joseph Murphy and
Robert Neil Faiman, Jr.

Interface for symbol table construction in a multi-
language optimizing compiler

Alexander Stein and William Grundmann Topology independent system for state element conversion

Frank Samuel Caccavale Phase-space surface representation of server computer
performance in a computer nenvork

Edward S. Lowry Data processing system having a data structure with a
single, simple primitive

System for reconfiguring addresses of SCSI devices via
a device address bus independent of the SCSI bus

Mark F. Arnberg, William K. Miller,
Frank M. Nenieth, and
Dwayne H . Swanson

5,666,415 Charles William Kaufman

5,666,519 Pcter C. Hayden

Method and apparatus for cryptographic authentication

Method and apparatus for detecting and executing
cross-domain calls in a computer system

David M. Fenwick, Denis J. Foley,
Stephen R. Van Doren, David W. HarnveU,
Elbert Bloom, and Ricky C. Hetherington

Distributed data bus sequencing for a system bus with
separate address and data bus protocols

Rajendra K. Jain, K. K. Ramakrishnan,
and Dat-Ming Chiu

Avoiding congestion system for reducing traffic load on
selected end systems which utilizing above tlieir allocated
fair shares to optimize throughput at intermediate node

5,671,225 Donald F. Hooper, Dave M. Tongel, and
Michael B. Evans

5,671,406 Clark E. Lubbers and Susan G. Elkington

Distributed interactive multimedia service system

Data structure enhancements for in-place sorting of a
singly linked list

Method and apparatus for interconnecting network
devices in a networking hub

5,675,735 Shawn Gallagher, James Scott Hiscock,
Dahai Ding, Scott D'Edwine Laivrence

5,675,742 Rajendra K. Jain, K. K. Rarnakrishnan,
and Dah-Mng Chiu

System for setting congestion avoidance flag at
intermediate node to reduce rates of transmission
on selected end systems which utilizing above their
allocated fair shares

5,675,763 Jeffrey Clifford Mogul Cache memory system and method for selectively
removing stale aliased entries

5,675,800 MJendell Burns Fisher, Jr, and
Richard Sayde

5,678,045 Jiirgen Bettels

Metliod and apparatus for remotely booting a
computer system

Method and apparatus for multiscript access to entries
in a directory

5,680,544 John Edmondson and Scott Taylor

5,680,584 Mark A. Herdeg and Michael V. Iles

Method for testing an on-chip cache for repair

Simulator system for code execution and debugging
within a multi-architecture environment

5,680,644 David J. Sager Low delay means of comniunicating between systems
on different clocl<s

Method and device for monitoring, manipulating, and
viewing systeni inforniation

5,682,489 Jeffrey R. Harrow and Fred P. Messhiger

5,682,551 Chester Walenty Pawlowski, Nicholas
M e n Warchol, David Gerard Conroy,
and R. Stephen Polzin

System for checking the acceptance of 1/0 request to
an interface using sohvare visible instruction which
pro\ides a status signal and performs operations in
response thereto

5,684,946 James P. Ellis, Mike Kantronritz, and
Will Sherwood

Apparatus and method for improving the efficiency
and quality of k~nctional verification

Digital Technical Joumal Vol. 9 No. 4 1997 79

Paul Stuart l<otltcr and
Randall Dean Hinrichs

William B. Glst and Joseph P. Coyle

Norman Paul Jouppi

Mark A. S h u ~ d

Gerald J. Brand and L)on L. Drink\\later

Gilbert !\/I. \%lrich, Timothy C . Fischer,
and John A. I<o\valeski, Jr.

blichel Gangnct and Jean-Manuel
Van Thong

Rahul Razdan and Gabriel Biscboff

Robert Allison Hart and Rlchard
Harry Plourde

Larry D. Seiler, Robert S. McNamara,
Clu-istophcr C. Gianos, and
Joel J . McCorlnack

1Uiul Razdan, Bill Grundmann, and
~Michael D. Smith

Colin Edn~ard Brench

Yoav Raz

Ycshayahu Artsy

Stephen Michael Birch, Gerard
f iche1 Gavrel, and Zafhr Iqbal Memon

H o e T o Cho and ~Ming Huann Y~lan

Nitin Dhiroobhai Godiivala, Andrew 1Myer
Ebert, and Chcstcr Walcnt!~ Pawlo\\lski

John Anthos~y DeRosa, Jr., Benn Lce
Schreiber, Peter Chapman Hayden, and
Scott Wade Apgar

Jeffrey P. Copeland and L3ennis Robinson

Russell Ilu~aian and hchard B. Watson, Jr.

David J . Sager

David Loniet and Betty Salzbcrg

Steven A. IGrk, William Barabash, and
William S. Yerazunis

Michael Burro\vs

Michael Ben-Nun, Sinioni Rcn-blichael,
and Moshe De-Leon

80 Digirnl ?'cchnical Journal Vol. 9 No . 4 1997

System for generating error signal to indicate mismatch
in comn~ands and preventing processing data associated
with the received con~mands \\hen mismatch command
has been determined

Se~niconductor proccss, po\ver supply and temperature
compensated system bus integrated interface arcllitec-
tilre with precision receiver

Memory systcm and method for selective multi-level
caching using a cache level code

Configurable digital signal interface using field
programmable gate array to reformat data

Uninterruptible po\ver supply \vith fault tolerance in
a high \ioltage environment

Rounding adder for floating point processor

Method and apparatus for automatic gap closing in
computer adcd draw~ng

Using pre-analysis and a 2-state optimistic ~nodcl to
reduce computation in transistor circuit simulation

Probe card shipping and handling system

Method for quickly painting u ~ d copying shallow
pixels on a deep frame buffer

Dynamically programmable reduced instl-uction set
computer with programmable processor loading on pro-
gram number field and program number register contents

Two part closely coupled cross polarized ELMI shield

Distributed ni~~lti-version commitment ordering
protocols for g~rarantecing scrializability during
transaction processing

l b u t i n g objects on action paths in a distributed
computing system

Method of manufacture of an interconnect stress
test coupon

Prograrnmablc interrupt signal router

Test methodology for exceedng tester pin count f o ~
an asic device

Method and ,1pparatLls for confignring a computer
systcm

Board mourlting systcm \\it11 selfguidu~g interengagenlent

LOMT skew remote absolute delay regulator chip

 method and apparatus for parallel execution of c o n -
puter programs using information providing for recon
struction of a logical sequential program

Concurrency and recovery for index trees \vith nodal
updates using rn~~lt iple atomic actions

 method of rule execution in an expert system using
equivalence classes to group database objects

~Metliod for encoding delta values

Traffic shaping system for as!!nchronous transfer
mode ncn\~orks

	Front cover
	Contents
	Editor's Introduction
	Optimizing Alpha Executables on Windows NT with Spike
	Analyzing Memory Access Patterns of Programs on Alpha-based Architectures
	OpenVMS Alpha 64-bit Very Large Memory Design
	PowerStorm 4DT: A High-performance Graphics Software Architecture
	DART: Fast Application-level Networking via Data-copy Avoidance
	Recent DIGITAL U.S. Patents
	Back cover

