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Editor's 
Introduction 

In 1992, DIGITAL announced thc 
fastest 64-bit RISC microprocessor, the 
Alpha, with a clock rate o f 2 0 0  MHz. 
Today's Alpha processor remains tlie 
leader in performance; the newest gen- 
eration operates at 600 )MHz, and tlic 
next generation will opcrate at grcatcr 
than 1,000 MHz - gigahertz spccd. 
With the industry's most powcrfi~l 
processor in hand, DIGITAL'S cngi- 
neers are nrorking to apply Alpha in 
ditkrent areas ofcomputing and effect 
optimal solutions to  computing prob- 
Icms. Samples of that work arc prc- 
se~ited in this issue and include 
programming performmce tools, the 
OpcnVMS operating system for very 
large memory (VLIM) applications, 
graphics adapters for \vorkstations, 
and the DART network adapter for 
high-end systems. 

Spike is a profile-directed perfor- 
mancc tool for optimizing Alpha ese- 
cutables running on the Windo\vs NT 
operating system. Designed spccifi - 
cally to  improve thc pcrformancc of 
large, call-intensi\/c programs, such 
as commercial databases, CAD pro- 
grams, conipilers, and productivity 
tools, Spike has been sho\vn to speed 
program execution by as much as 33 
percent. Robert Cohn, Ilavc Goodwin, 
and Geoff Lowney describe Spike's 
nvo components. The  Optimizer 
modifies code 1a)~o~lt to  improve 
instruct.ion cache behavior and per- 
for~iis hot-cold optimization t o  
reduce the number ofinstructions 
e x e c ~ ~ t e d  on  frequent paths through 
tlie program. The  Optimization 
Environment collects, manages, 
and applies profile information 
transparently for the programmer. 

1)igical 'I'echnical Journal 

hi experimental Atom-based per- 
formance tool preselited by Susanne 
Balle and Sirno11 Steely provides pro- 
grammers \\lit11 an uncicrstanding of 
tlle access pattern behavior of thcir 
technical applications. Tlic tool gcn- 
crates lustograrns for each niemory 
rcferencc in a program, thus aUowing 
the programmer t o  spot bottlenecks. 
T h e  authors step through an instruc- 
tive case s t~ tdy  in the use of  the tool 
nrith Fortran programs, sho\ving how 
different compiler s\\/itches affect the 
execution o f a  program algorithm. 

The  OpenVMS Alpha operating 
system version 7.1 extends its support 
for VLiM applications. The  design 
work discussed by IGrcn Noel and 
Nitin Karklianis f o c ~ ~ s c d  on  increasing 
flexibility for VLM applications and 
o n  adding system management capa- 
bilities. Areas reviewed are the shared 
memory objects designed to improve 
application scaling on tlie s)~steni, 
shared page tabl.cs to  reduce applica- 
tion start-up/sIiut-doc\~n times, and 
the physical memory reservation sys- 
tem to allow efticic~it application use 
ofsystem components, namely the 
translation buffcr. 

DIGITAL'S Po\vcrStorm series 
of  graphics adapters for mid-range 
workstations provides cxccprional 
performance on thc 1)IC;ITAL UNIX 
and the Wiuiio\+a N'1' oprrating sys- 
tems. Benj Lipchak, Tom Frisinger, 
Karen Bircsak, Keith Comeford, 
and  mike Rosenblum have written 
an inforrnativc tutorial about the 
Po\\rerStorm adapter dcsign that \\?as 
shaped in large part by thc existing 
competitive cnvironmcnt. Thcir dis- 
cussion c ~ \ ~ c r s  sclcctcd bcnch~l~arl<s 
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and real-\vorld performance experi- 
ences, the advantagcs and disadvan- 
tages in choosing a direct-rendering 
or an indircct-rcndcring schcrne, and 
the ways in \\lliicli tlic c~iginecring 
tcaiii csploitcd the Alpha micro- 
processor's exceptional floating- 
point spccd. 

DART is a 622-megabit-per-second 
network adapter that connects gigabit- 
class ~ien\lorks to gigabit-class 1 /0  
buses. It  is designed t o  increase net- 
\vorlc t h r o ~ ~ g h p ~ ~ t  and decrease system 
overliead. Bob Walsh explains that 
die  L)AI<T project, started in the 
late 1980s, anticipated the need to 
address fi~ndarncntal memory band- 
width bottleneck issues from a systcm- 
level perspective. The  main approach 
taken in thc DART adapter is data 
copy avoidance, \vithout requiring 
changes t o  system call semantics. 

The i~pcorning,/oli~-nnl will be a 
special issue that features papers 011 

programming langi~ages and tools. 
Topics includc C and Fortran paral- 
lelizing compilers, the C++ template 
facility, alias analysis algorithms, 
debuggcrs, and perfomlance tools 
for sohvare running on  the Windo\vs 
NT, I T S I X ,  and OpcnVlMS operating 
systems. 

Jane C. Blake 
Mur?6zging E ~ / i f o ~ -  



Rober t  S. Cohn 
David Mr. Goodwin 
P. Geoffrey Lowney Optimizing Alpha 

Executables on 
Windows NT with Spike 

Many Windows NT-based applications are 
large, call-intensive programs, with loops that 
span multiple procedures and procedures that 
have complex control flow and contain numer- 
ous basic blocks. Spike is a profile-directed opti- 
mization system for Alpha executables that is 
designed to improve the performance of these 
applications. The Spike Optimizer petforms code 
layout to improve instruction cache behavior 
and hot-cold optimization to reduce the number 
of instructions executed on the frequent paths 
through the program. The Spike Optimization 
Environment provides a complete system for 
performing profile feedback by handling the 
tasks of collecting, managing, and applying 
profile information. Spike speeds up program 
execution by as much as 33 percent and is being 
used to optimize applications developed by 
DIGITAL and other software vendors. 

Spike is a performance tool developed by DIGITAL to 
optimize Alpha eseci~tables on  the Windows NT oper- 
ating system. This optimization system has two main 
components: the Spike Optimizer and the Spi kt: 
Optimization Environment. The Spike Optimizer'-.' 
reads in an executable, optimizes the code, and writes 
out the optimized version. The Optimizer uses profile 
feedback from previous runs ofan application to guide 
its optimizations. Profile feedback is not commonly 
used in practice because it is difficult to collect, manage, 
and apply profile information. The Spike Optiniization 
Environment' provides a user-transparent profile feed- 
back system that solves most of these problems, 
allowing a user to easily optimize large applications 
composed of Inany executables and dynamic link 
libraries (DLLs). 

Optiniizing an esecutable image after it has bee11 
compiled and linked has several advantages. The Spike 
Optimizer can see the entire image and perform inter- 
procedural optimizations, particularly with regard to 
code layout. The Optimizer can use profile feedback 
easily, because the executable that is profiled is the 
same executable that is optimized; no awkward map- 
ping of profile data back to  the source language takes 
place. Also, Spike can be used when the sources to an 
application are not available, which is beneficial \\/hen 
DIGITAL is working with independent software \Ten- 
dors (ISVs) to tune applications. 

Applications can be loosely classified into nvo cate- 
gories: loop-intensive programs and call-intensive 
programs. Conventional compiler technology is well 
suited to loop-intensive programs. The  important 
loops in a program in this category are within a single 
procedure, which is typically the unit of compilation. 
The control tlow is predictable, and the compiler can 
use simple heuristics to determine the frequently exe- 
cuted parts of the procedure. 

Spike is designed for large, call-intensive programs; 
it uses interprocedural optimizatio:~ and profile feed- 
back. In call-intensive programs, the important loops 
span multiple procedures, and the loop bodies contain 
p r o c e d ~ ~ r e  calls. Co~~sequently,  oytiniizations on the 
loops must be interprocedural. The control flo\v is 
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comples, and profile ftcdback is required to accurately 
predict tlie freclucntlv executed parts of a program. 
Call overhead is large for these programs. Optimiza- 
tions to reduce call overhead are most cffcctive c\/ith 
interprocedural information or  profile feedback. 

The Spike Optimizer implements nvo major optimiza- 
tions to impro\,e the performance o f  the call-intensive 
programs just described. The first is code la! .o i~t :~  
Spike rearranges the code to improve locality and 
reduce the number ofinstruction cache misses. The sec- 
ond is hot-cold optirni~ation (HCO):' Spiltc optimizes 
the freque~lt paths t h r o ~ ~ g h  a procedure at the expense 
of the infrequently executed paths. HCO is particularly 
effective in optimizing procedures with complex con- 
trol flow and high procedure call overhead. 

The Spike Optimization En\ironment pro\ides a 
s!!stem for managing profile feedback optimization.' 
The user interface is sililplc-it requires only t\vo user 
interactions: (1)  the recluest to start fccdback collec- 
tion on an applicatio~i and (2) the recluest to end col- 
lection and to use the feedback data to optimize the 
application. Spike maintains a database of prof lc infor- 
mation. When a rrser selects an application, Spilce 
makes an entry in its database for the application and 
for each of its component images. For each image, 
Spike keeps an instrumented \*ersion, an optiniized 
\version, and profile infbrrnation. \Vien the original 
application is run, a transparency agent s~~bs t i t i~ te s  the 
instrumented or  optimized version o f the  application, 
as appropriate. 

This paper disc~~sscs tlie Spike performance tool and 
its use in optimizing Windo\\/s NT-based ~pplicntions 
running on Alpha processors. In  the followiiig scction, 
we describe the characteristics of Wjndo\\.s K'I' -based 
npplications. Nest, \ve discuss the optiniizations ~ ~ s c c l  
in the Spike Optimizer nnd e\.aluate their eRi.cti\,cness. 
We then present the Spike Optimization En\lironment 
for managing profile feedback optimization. A sum- 
mary ofour  res~llts concludes the paper. 

Characteristics of Windows NT-based 
Applications 

To evaluate Spike, we selected applications tliat are 
typically used on  Alpha colilputers running the 
Windo\vs NT operating system. Tliesc applications 
jnclude co~iimercial databases, computer-aided design 
(CAD) programs, compilers, and personal pt-oducti\l- 
ity tools. For comparison, we also included the bench- 
mark programs from the SPECint95 suite.* Table I 
identifies the applications and benclirnarks, and  the 
\\$orkloads used to  exercise them. All programs are 
optimized versions of DIGITAL Alpha binaries and are 
compiled \\lit11 tlie same highly optimizing back end 
tliat is used on the UNIX and OpenlrMS systems." '1-he 
charts and graphs in tliis paper contain data from a 

core set ofapplications. Note that \ire d o  not haire a full 
set ofmeasurements for some applications. 

111 obtaining most of  the profile-directed optimiza- 
tion r e s ~ ~ l t s  presented, in this paper, we c~sed the same 
input fi)r both training and timing so that \Ire could 
luio\\r the limits of our approach. Others in tlie field 
have shown that a reaso~iabl!l chosen training input 
\ \ f i l l  \ield rcliable speedups for other inpirt sets."' Our  
experience c o ~ i f  r ~ n s  this result. For the code layout 
results presented in Figure 11, \\:e used tlie official 
SPEC timing harness to  measure the SI'ECint bench- 
rnarlts. This linrncss uses a SI'EC training input for 
profile collection and a different reference input for 
timing runs.' 

Figure 1 is n graph that sho~vs, for each application 
and berlchnlnrk, the size of the singlc c sec~~tab le  or 
L>IL responsible for the majority of the execution 
time. The figure contains data for most o f the  applica- 
tions and all the bcnchniarks listcd in Table 1. Some 
Windo\\a NT-based applicatiolis are \,cry large. For 
example, I'TC has 30 times more instructions than 
GCC, tlic largest SPECint95 benchmark. Large 
Windonrs NT-based applications lia\~e thousands of 
procedures and millions of basic blocks. With such 
programs, Spilte achieves sisni ficant speedups by rear- 
ranging the code to  reduce instruction cache misses. 
Code renrrangcltlent should also rccfucc the \\;orlung 
set of the program and the number of irirtual nzemory 
page faults, although \\/e have not measured this 
reduction. 

To characterize a call-intensive application, \\/e 
looked at SQLSERVR. We estirnatcd the loop behav- 
ior of SQL,SERVR by classifiring each of its procedures 
by the average trip count of its most frequently exe- 
cutcd loop, assigning a \\.eight to c,lcli procedure 
based on  the number of instructions eseci~ted in tlie 
procedure, and graphing the c~unulati\.e distribution 
of instructions executed. The  graph is presented in 
Figurc 2. Note that 69  percent of the c s c c ~ ~ t i o n  time 
in SQLSEI<VR is spent in procedures that liave loops 
\vith an average trip count less than 3. Nearly all the 
r u ~ i  time is spent in procedures with loops \\pith all 
average trip count less than 16.  An insignificant 
amount o f  time is spent in procedures containing 
loops \\,it11 high trip counts. O f  course, SQLSEKVR 
executes man!: loops, but the loop bodies cross multi- 
ple procedLlrcs. To  improve SQISF,l<\~ll performance, 
Spilte i~scs code layout tech~iiques to optimize code 
paths that cross multiple procedures. Also note that 69 
percent of the eseci~tion time is spent in procedures 
\\.he~-e tlhc entry basic block is the most fi-eque~itl!. exe- 
cuted basic block. The entry basic block doli~inates tlie 
other blocks in the procedure, and compilers often 
find it a con\.enient location for placing instructions, 

< CCIllellt LS S L I C I I  as register s,i\les. I n  SQISERVlt, this p l ~  - a  

a poor decision. Our  HCO targets this opportunity to 
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Table 1 
Windows NT-based Applications for Alpha Processors and SPECint95 Benchmarks 

Program Full Name TY pe Workload 

SQLSERVR 
SYBASE 
EXCHANGE 

EXCEL 

Microsoft SQL Server 6.5 

Sybase SQL Server 11.5.1 
Microsoft Exchange 4.0 
Microsoft Excel 5.0 

Database 
Database 

Mail system 
Spreadsheet 

Transaction processing 

Transaction processing 
Mail processing 

BAPCo SYSmark for 
Windows NT Version 1.0 

BAPCo SYSmark for 
Windows NT Version 1.0 

BAPCo SYSmark for 
Windows NT Version 1.0 
BAPCo SYSmark for 
Windows NT Version 1.0 
San Diego Users Group 
benchmark 

Mechanical model 
Bench97 

Microsoft Word 6.0 Word processing WINWORD 

TEXIM Welcom Software Technology 
Texim Project 2.Oe 
Orcad MaxEDA 6.0 

Project management 

MAXEDA Electronic CAD 

ACAD Autodesk AutoCAD Release 13 Mechanical CAD 

Mechanical CAD 
Mechanical CAD 

cv 
PTC 

Computervision Pmodeler v6 

Parametric Technology 
Corporation ProJENGINEER 
Release 18.0 

SolidWorks Corporation 
SolidWorks 97 

Bentley Systems Microstation 95 
Electronic Data Systems 
Unigraphics 11.1 
DIGITAL Light & Sound Pack 

Microsoft Visual C++ 5.0 

SOLIDWORKS Mechanical CAD Intake runner model 

USTATION 

EDS 

Mechanical CAD 
Mechanical CAD 

Rendering 

Brake shoe model 

MPEG playback 
5,000 lines of C code 

MPEG 
C1, C2 

MPEG viewer 

Compiler 
C1 :  front end 
C2: back end 

OPT, EM486 DIGITAL FX!32 Version 1.2 BYTEmark benchmark Emulation software 
OPT x86-to-Alpha 
translator 
EM486: x86 emulator 

Regional model Environmental Systems Geographical 
Research Institute Information Systems 
ARUINFO 7.1.1 

VORTEX SPECint95 Database SPEC reference 
GO SPECint95 Game SPEC reference 
M88KSIM SPECint95 Simulator SPEC reference 
L I SPECint95 LISP interpreter SPEC reference 

COMPRESS SPECint95 Compression SPEC reference 
IJPEG SPECint95 JPEG compression/ SPEC reference 

decompression 
GCC SPECint95 C compiler SPEC reference 
PERL SPECint95 Interpreter SPEC reference 

rno\,c instructions frorn the entry basic block to less 
frcclucntly cscc~~ted blocks. 

Figure 3 prcscnts the loop behavior dntn for many o f  
thc Windo\vs N1'-bused applications listcd in Tnblc 1. 
Notc tlint thc applications fall into tlircc groups. Thc 
  no st ci~ll-intcnsi\?e app1ic:ltions arc SQLSERVR, 
ACAL), and EXCEL, \\,hich spend ;~pprosimatcly 70 
pcrccnt o f  their run time in proccdurcs with an aver- 
ngc trip count less than 2. C2, WINWORD, 2nd 
USTATION arc moderately call intensive; thcy spend 

approsimatcly 40 pcrccnt o f  their run time ir.1 loops 
with an averagc trip c o u n t  less than 2. MAXEDA and 
TEXIM are loop jntcnsi\re; they spend approsimatcl!! 
10 percent o f  their r u n  timc in loops with a11 average 
trip count less than 2. TEXIM is  dominated by n single 
loop \.clitl~ an inrerage trip co~unt of 465. 

We f~~ r t l i c r  characterized the nonlooping proce- 
dures by control tlo\\: If a procedure consists o f  only a 
few basic blocks, tccliniques s~uch as inlining are cfkc- 
ti1.e. To esti~natc thc control tlow complexity o f  
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SQLSEl<Vl<, wc classjficd each o f  its procedures by thc 
numl?cr of.basic blocks, assigned a \vciglit t o  each pro- 
ccdurc based on the nurnbcr o f  i n s t r ~ ~ c t i o n s  executed 
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Figure 2 ignored basic blocks that are rarely csccuted.  Note  
Loop 13eIia\.ior ofSQISEli \~l< 

that 63 pel-cent o f  the run tililc o f  the nonlooping pro-  

AVERAGE TRIP COUNT 
KEY: 

+ SQLSERVR -+ WINWORD 

-t ACAD * USTATION 

4 EXCEL 4 MAXEDA 

- 4 -  C2 + TEXlM 

Figure 3 
I..oop Reha\ior of Windo\\,s NT-based Applicnt~ons 
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Figure 4 
Complcsic of Procedures in SQLSERVR for Procccturcs 
\virh an A\,cr~gc Trip Count Less T h a n  4, Which Account 
for 69 Percent of the Execution Time 

cedurcs is spent in proced~tres  \\~itli more than 16 basic 
blocks. In SQLSElVR,  procedures are largc; Inany 
b. aslc .' . bloclts arc executed, and many arc no t .  Spike 

~ l scs  code layout and H C O  t o  optimize the frcq~tcntly 
executed paths through large procedures. 

Figure 5 presents the control flo\\~ d a t , ~  for many o f  
the Windo\vs NT-based applications listed in Table 1. 
Again \\,c mcasurcd only nonlooping proccdurcs and 
ignored basic blocks tliat are rarely e x e c ~ ~ t e d .  Note that 
a11 the applications have large p r o c e d ~ ~ r c s .  More  than 
halfthe run  timc o f t h e  nonloopi~ ig  proccdurcs is spent 
in proccdurcs that execute at  least 16 basic blocl<s. 

To estimate proccdurc call overhead, \ire counted 
the number  o f  instructions executed in the prolog and 
epilog o f  each procedure. This  estimate is conserva- 
tive; it ignores the  cost o f  the procedure linkage and 
argument  setup and measures only the  number  o f  
instructions used t o  create o r  remoIie a frame from the 
stack and t o  save o r  restore preserved registers. I n  
SQLSERVR, 1 5  percent ofal l  instructions are in pro- 
logs and epilogs. H C O  rcnio\ies approximately o n e  
half o f  this o\~erhcad.  

T h e  chart in Figurc 6 sIio\\~s the procedure call over- 
head for most o f  the w i n d ~ \ \ ~ ~  NT-based applications 
listed in Table 1 .  T h e  ovcrliead ranges horn 23 percent 
t o  2 percent. 'l-lic applications are ordered according t o  
the amount  o f r u n  timc in procedures \\,ith an average 
trip count  less than S in Figure 3. T h e  call o\rerhead is 
roughl!. correlated \\!it11 the amount  o f  run time in lo\\, 
trip count  proccdurcs. Figure 6 includes data for some 
o f  the SPECint95 benchmarks, \\/hich arc ordered by 
the amount  o f  run time i l l  procedures ulith an average 
trip count  less than 2 .  T h c  amount  o f  call o\ierhead for 
these benchniarl<s ranges from 24 percent t o  0 percent 
and is more strongly correlated with the amount  of  run 
time in low trip count  procedures. 

Optimizations 

T h e  Spike Optimizer is organized like a compiler. I t  
parses an exccutablc into an intermediate representa- 
tion, optimizes the rcprcscntation, and \\,rites o u t  an 
optimized exccutablc. T h e  intermediate representa- 
tion is a list o fAlpha  machine i ~ ~ s t r u c t i o n s ,  annotated 

0- 16 32 48 64 80 96 112 128 
SlZE IN BASIC BLOCKS (FILTERED) 

KEY. 

t SQLSERVR (69%) + WINWORD (49%) 

- ACAD (82%) 

. EXCEL (71%) -&- MAXEDA (13%) 

- C2 (44%) 

Note that the number that appears after Ihe appl~cat~on name ~nd~cates the percentage of the total 
execution tlme spent In procedures with an average t r ~ p  count less than 4. 

Figure 5 
Coniplcsit)~ of I'roccd~~res in \i\'indo\\.s NT-based Applications for Proced~~res with 'In Aver.~gc Trip Count Less T h ~ n  4 
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Figure 6 
Procedure Call O\,erllcad(Ti~nc Spent in Prolog and Epilog) 

\\,it11 a small amount of additional information. O n  top 
of thc intcrrncdiatc representation, the optimizer 
builds compiler-like structures, i~icluding basic blocl<s, 
procedures, a flour graph, a loop graph, and a call 
graph." Images arc large, and thc algorithms ancl rcp- 
resentations ~ ~ s c d  in the optimizer nii~st  be time and 
space cfficicnt. 

The Spike Optimizer performs an intcrproccclur,~l 
dataflow analysis to s~~mmnr izc  register magc \\.itlli11 
tlie image." This cnablcs opti~nizatio~is to use and 
reallocate registers. The interprocedural dat.~tlo\\, is 
f s t ,  requiring less than 20 seconds on tlic largcst 
applicatiolls we tcstcd. Memory dataflow is nii~ch 
Inore difficult to anal!lzc because of the limited infor- 
matior1 availablc in an csecutable, so the optimizer 
analyzes only rcfcrcnccs to the stack. 

Optimizations rc\\,ritc tlie intermediate rcprcscntn- 
tion. The importnnt optimizations are codc layout and 
HCO. The Spike 0ptimizc1- also pcrforms additional 
optimizations to reduce the o~~erhcad  of shnrcd 
libraries. 

Code Layout 
Wc dcri\red our coclc layo~rt algoritli~ii from prior \\,ork 
on profile-guided codc positioning by I'cttis a i d  
Hansen.TThc goal of the alsorithm is to reduce 
instruction cachc 111iss. Our  algorithm consists ofthi-cc 
stcps. The first stcp reorganizes basic blocks so that the 
most frequent paths in a procedure are scclucntial, 
which permits more efficient use ofcachc lines and the 
exploitation of instruction prefetch. Thc second stcp 
places procedures in memory to avoicl instruction 
c;lclie contlicts. l 'hc third step splits proccd~rrcs into 
hot and cold sections to i~nprovc the performance of 
procedure placc~iicnt. 

The follon,ing csnlnplc illustrates basic block ~-cor- 
ganization. Considcr thc flour graph in F i g ~ ~ r c  7, \~ . l~c rc  
cacli node is a basic block that contains four instri~c- 
tions. Tlie ar1i1s of the conditional branclics arc labclcd 

n~ith thcjr rclati\.c probabilities. Assume t h ~ t  tlic tarset 
is an Alpha 21 164 processor." Each instruction is 
4 bytes, and thc instruction cache is organized into 
32-byte lines; each cache line holds n\!o of the four- 
instruction basic blocks. A siniplc b~.cadth-first codc 
layout orclcrs tlic codc AP, C1) EF GH, and tlie com- 
mon pxth AI31)FGH requires foul- caclic lincs. T)\.o 
cachc lincs (C1) and EF) each contain n basic block 
t h ~ t  is i~ifrcq~~cntl!. used but \\rhicl~ m u t  bc resident iu 
the cachc fix the t'rcquently i~scd block to bc c\-ccutcd. 
If\\.c order the codc so that thc common path is adja- 
cent (AB OF GH CE),  the infrcqucntly ~ ~ s c d  bloclts arc 
in the sanic l i~ic (CE),  and the!, d o  not nccd to be in 
the cachc to execute the frequently used blocks. 

Straight-linc code is also bcttcr rlblc to exploit 
instruction prcfctch. O n  an instruction c.iche miss, the 
Alpha 21 164 processor prefetchcs the nest four cachc 
lines into a refill buffer. After an instri~ction cnclic riuss, 
the processor k c q ~ ~ c ~ i t l y  is able to cxccutc a s~r:ligIit- 
line cock path \\'itliout stalling if the codc is in the 
scconcl-lcvcl cuchc. A brancli that is t,tkcn npically 
req~rircs 311 ,~dditional cache miss if the target of tlie 
branch is not nlrcad!' in the instruction c:lchc. 

\Vc rcorganizc tlie basic bloclis using ,I simple, 
greed!. algorithm, similar to the trncc-picking algo- 

Figure 7 
Basic Block Ilcorganization 
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rithm ~~scc i  in tracc schedul i~ig . '~  Our  goal is to find a 
nc\\, ordcring of the basic blocks so that thc fall- 
t h r o ~ ~ g h  path is ~lsually taken. We sort the list of tlo\\l 
graph cdgcs by esccution coulit and proccss thcnl in 
order, beginning with the highest tlalucs. For each 
edgc \vc makc the destination basic block immcdiatcly 
follo~v tlic source block, unless the source has already 
been assigncd a successor or  the dcstinntion has 
already bccn assigned a predecessor. 

Wc place procedures to  avoid conflicts in thc 
instruction cache. An Alpha 21164 has a primary 
instruction cache of 8 kilobytes (la) that holds 256  
lines of 32 bytes each. Two instructions conflict in thc 
cacl~c if tlicy arc more than 32 bytes apart and may to 
the samc cache line, specifically, if ~~/(/re.s.s0/32 111od 
256 = ac/c/t.ess1/32 mod 256. Our  stratcgv is to  placc 
proccdurcs so that frequently called proccdurcs arc 
near thc caller. Consider the simple example in Figurc 
S. Assume procedure A calls proccdurc C in a loop. A 
and (: map to the same cache lines, so on each call t o  
C, (; rcplaccs A in the cache, and on each return from 
C,  A rcplaccs C. Ifwe reorganize the code s ~ ~ c h  that C 
follo\\ls A, both A and C can fit in the cachc at  once, 
and thcrc arc no conflict rnisscs whcn A calls C. 

\Vc use another greedy algorithm to placc procc- 
durcs. The csample presented in Figurc 9 illustrates 
the steps. \Vc build a call graph and assign a \vcight to 

each edge based on the numbel. of calls. If thcrc is 
more than one edgc \\ritli the samc source and destina- 
tion, \\fc compute thc sum of the  execution counts and 
delete all but one edgc. Figurc 93 slio\\,s the call graph. 
To  place thc proccdurcs in the graph, w e  sclect the 
most heavilv tvcightcd edge (13 to C), record that thc 
two nodes s h o ~ ~ l d  he placccl adjacently, collapse the 
two nodes into one ( B . C ) ,  and merge their cdgcs (as 
shown in Figure 9b) .  Wc again select the most hca\~ily 
wcighted edge and continue (Figure 9c)  until the 
graph is reduccd to J single tiode A.D.B.C (Figure 
9d) .  The final node contains an ordering ofall the pro- 
ccdures. Special care is taken to ensure that \\.re rarely 
require a branch to span more than the maxinium 
branch displacement. 

The effectiveness of proccdure placement is limited 
by large proccdurcs. In  the PERL benchmark from 
SPEC, \t,hich is onc of the smallest programs \\,c stud- 
ied, one frequentl!f esecutcd proccdure is larger than 
32 KB, four times the size of the instruction cache on 
the Alpha 2 1 164 proccssor. In SQLSERVR, more than 
half the run time is spent in proccdures with more 
than 16 basic blocks. To address this problem, wc split 
procedures into hot and cold sections and treat each 
section as an independent procedure \\!hen placing 
procedures. To  split a procedure, examine each 
basic block and use a threshold on the execution count 

Figure 8 
I'roccdi~rc l ' lncc~~ic l~t  

Figure 9 
Step in the Prrxcdure Phce~nent Algorithm 
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to dccidc if a basic block is cold. We LISC a single 
threshold for thc cntirc program. The threshold is 
chosen so  that the total cxccution time for all tlie basic 
blocks bclonr the threshold constitutes n o  more than 
1 percent of tlie execution time of the progl-.~~n. 
Proccd~~rcs  \\lit11 both hot and cold basic blocks arc 
split; other\vise, they are lelt int.ict. 

Figure 10 illustrates the iniporta~ice of  proccdurc 
splitting. Thc figurc charts thc spccdup on SQLSERVlq 
running on  an Alpha 2 1064 \v~rks ta t ion ,~Vor  the 
components of our code layout algorithm. Thc bar 
graph indicates that chaining basic blocks or placing 
procedures r c s~~ l t s  in a speedup of lcss than 4 pcrccnt, 
but placing procedures after splitting yields a 15 per- 
cent spccdup. Using all our optimizations (chaining, 
splitting, and placing) togcthcr produces a 16 pcrccnt 
speedup. 

Figure 1 1 presents the speedups from code layout for 
the Windo\vs NT-based applications and tlie Sl'ECint 
benchmarks running on an Alpl i~  21164 \vorltstation. 
Spccdups rdngc horn 45 pcrccnt to 0 percent; most 
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CODE LAYOUT ALGORITHM COMPONENT 

Note that this data is for the SQLSERVR application running on an 
Alpha 21 064 microprocessor. 

-- 

Figure 10 
Spcedup for (:ode Layo~~t b y  Opti~nizarion 

applications sho\\r a noticcable impro\,enicllt. The 
leftnlost seven Windows NT-based applications 
(SQLSEIWR through TEXIM) are ordercd by thc 
amount of time spent in proccdurcs n~itli a n  avcrage 
trip count lcss than 8 in Figure 3.  Note that all but the 
most loop-intensive application show a significant 
speedup from code layout. Tlircc programs show min- 
imal spccdup: TEXIM is dominated by a singlc loop 
that fits in the instruction cache, and IJPEG and 
COMPRESS are dorninntcd by nvo or  tlirec small 
loops. Thcsc programs d o  not lia\,e an apprcciable 
ali1oLlnt of instruction caclic miss; changing tlie code 
layout cannot i~npro\,c tllcir pcrforniance. 

Hot-Cold Optimization 
Hot-cold optimization is a gcneralization of the 
proccdurc-splitting tcchnicluc ~ ~ s c d  in our codc layout 
algorithm.' tk optiniizc tlic hot part of thc proccdurc 
(ignoring tlie cold part) by cliniinnting all instructions 
that arc required olzly by the cold pnrt. To iniplcnicnt 
this optimiz~tion,  \are creatc a hot procedurc by copy- 
ing the frequently executed basic blocks of a proce- 
dure. All calls to the original procedure are redirccted 
to thc hot procedure. Flo\\. paths in the hot proccdure 
that target L ~ L I S ~ C  blocks that nrcrc not copied arc redi- 
rcctccl to thc appropriate basic block in the original 
(cold) proccdurc; that is, tlic tlo\\rs jump into tlic mid- 
dlc of the original proccdurc. Wc then optimize the 
hot proccdurc, possibly at thc cspense of thc tlo\\a 
that pass tlirough the cold path. 

HCO is best understood by \\.orking through an 
estc~ldcd example. Considcr the procedurc f o o  
(sho\\.n in Figure 12), \\diich is a simplified vcrsion of 
a procedure fiom the Wincio\\ls NT kcrncl. 

U 
(I) 
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Figure 11 
Specdup from Code Layout 

\4>l. 9 No. 4 1007 



1 foo:  I d a  sp,l6(sp) ; a d j u s t  s tack  
2 s t q  sO,O(sp) ; save S O  
3 s t q  ra,8(sp) ; save r a  
4 add1 aO,l,sO ; SO = a0 + 1 
5 add1 aO,al,aO ; a0 = a0 + a1 
6 bne sO,L2 ; branch i f  SO != 0 
7 L1: b s r  f l  ; c a l l  f l  
8 add1 sO,aO,tl ; t l  = a0 + SO 
9 s t 1  t l,40(gp) ; s t o r e  t l  

10 L2: l d q  sO,O(sp) ; r e s t o r e  SO 
11 Ldq ra,8(sp) ; r e s t o r e  r a  
12 Lda sp,-16(sp) ; a d j u s t  s tack  
13 r e t  ( r a )  ; r e t u r n  

Figure I2 
Siniplificd Vcrsio~i of a Procedure from thc Windo~vs NT 
Kerncl 

Assume that the branch in line 6 of f o o  is '~lmost 
al\\!ays taken and that lines 7 through 9 arc almost 
ncvcr cxccuted. When \Ire copy thc liot part o f t l ~ c  pro- 
cedure, we csclude lines 7 through 9 of f o o .  Thc 
rcsultilig procedure f o o 2 is shown in Figure 13. 

1 foo2:  Lda sp,l6(sp) 
2 s t q  sO,O(sp) 
3 s t q  ra,8(sp) 
4 add1 aO,l,sO 
5 add1 aO,al,aO 
6 beq s0,LI 
7 Ldq sO,O(sp) 
8 l d q  ra,8(sp) 
9 Lda sp,-16(sp) 

10 r e t  ( r a )  

Figure 13 
Hot l'roccdure 

Note thc rcversal of  the sense of the branch fi-0111 

b n e  in f o o  to b e q  in f 0 0 2  and tlie changc of thc 
branch's target from L 2  to L 1 .  All calls to f o o  are 
redircctcd to t11c hot procedurc f 0 0 2 .  If thc branch in 
line 6 of f 0 0 2  is taken, then control transfers to line 
7 o f f  oo, \\diich is in the rniddlc of the original procc- 
durc. Once passcd to  tlie original proccdurc, control 
ncvcr passcs back to the hot procedure. This fcati~rc 
of HCO c~lablcs opti~nization; \\,lien optimizing the 
hot proccdurc, \Ire can rclas some of the constraints 
imposed by the cold procedure. 

So hr ,  wc have sct up the hot proccdurc for opti- 
mization, but we havc not niadc thc proccdurc any 
fastcr. Now wc show IIOW to optimize tlic procedure. 
Thc hot p roccd~~re  n o  longer contains n call, so we can 
dclctc the save and restore of the return addrcss in 
lines 3 and 8 o f f  0 0 2  in Figurc 13. Ifthc branch trans- 
fers control to  L 1  in the cold p roccd~~rc  f 00, \\/c must 
arrangc for r a  to bc saved on  the stack. In  gcncl-31, 
\\.licnc\~er \\?c cnter the original proccdurc fi-om tlic 
hot proccdurc, we must fix up the statc to  match thc 
cspcctcd statc. We call the fix-up operations compcn- 
sation codc. To insert colnpensation codc, \\!c crcxc 3 

s t ~ ~ b  2nd rcdirect the branch in linc 6 of f 0 0 2  to 

branch to the stub. The stub saves r a on  tlie stack and 
branches to L 1 . 

Ncst, note th;lt the instruction in line 5 of f 0 0 2  

\\!rites ao ,  but thc value of a 0  is never read in the hot 
procedure. a 0 is not truly dead, Iio\\tever, because it is 
still read if the branch in linc 6 of f 0 0 2  is taken. 
Therefore, \;\re delete linc 5 from the hot procedure 
and place a copy of the instruction on the stub. HCO 
tries to eliminate the i~scs of prcscr\led registers in a 
proccdurc. Prcscrved registers can be more expensive 
than scratch registers because they 111~1st be saved and 
restored if they are uscd. Preserved registers are typi- 
cally used nrhen the lifetime of a value crosses a call. I n  
the hot procedure, no  lifctinic crosses a call and the 
use of a preserved registcr is unnecessary. Wc rename 
all uses of S O  in the hot procedurc to use a free scratch 
registcr t 2 .  Wc insert a copy on the stub from t 2 to 
s 0. We can noiv eliminate the save and restore instruc- 
tions in lines 2 and 7 of Figi~rc 13 and place the savc 
o n  the stub. 

We have eliminated all references to the stack in 
the hot procedure. The stack adjusts on lilies 1 and 9 
in Figure 13 can bc deleted from the liot procedure, 
and the initial stack adjust can be placed in the stub. 
The final code, including the stub s t u b  1 ,  is listed in 
Figure 14. The number ofinstructions executed in the 
frequent path has becn reduced from 10 to 3. If thc 
stub is taken, then the fill1 10 instructions and An extra 
copy and branch are esccutcd. 

1 foo2: add1 aO,l,t2 
2 beq t2,stubl 
3 r e t  ( r a )  
4 s t u b l :  Lda sp,l6(sp) 
5 s t q  sO,O(sp) 
6 s t q  ra,8(sp) 
7 add1 aO,al,aO 
8 mov t2,sO 
9 b r  L1 

Figure 14 
Optimized Hot l'rocedilrc 

Finall!,, \ire \\mould liltc to inlinc the liot procedi~rc. 
Copies of instructions 1 and 2 can be placed inlinc. 
For the inlined bra~lch, \\.c must create a new stub that 
materializes the return addrcss into r a before transfcr- 
ring control to s t u b I . 

Escept fi,r partial i nlini ng, ulc have im plernellted all the 
HCO optimizations in Spikc. Thcsc optinlizations are 

w Partial dead codc clirn~nat~on'~-the rerno\lal of 
dead codc in the liot proccdurc 

Stack pointer adjust climinntion-the remo\lal of  
the stack adjusts in the hot procedure 

Preserved rcgistcr elimination-the removal of the 
save and restore of prcscr\rcd registers in the hot 
procedure 
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Peephole optimization-tile rerno\ral in tlie hot 
p r o c e d ~ ~ r c  o f  sclf-assignments atid conditio~lal 
branches with an altvays-false condition 

Figure 15 shows coverage statistics for the H C O  
optimizations. Covcragc represents the pcrccntfigc of 
cuecution tilnc spcnt in c3ch category. compute 
co\rcruge, urc .~sstgncd each procedure to a cntcgorp 
and then for each catcgory calculated thc total numbcr 
of instructions cxecutcd by its proccdurcs. The catc- 
gory OPTIMIZEI) indicates the set of proccdurcs 
optimized LJ!~ HC:O. Tlic portion of the csecution 
time spent in thcsc proccdures is typically 60 pcrccnt 
b i ~ t  often I~ighcr. The category INFKEQUENT is the 
set of  proccdurcs \\,host csccution times arc so  small 
(Icss than 0.1 pcrccnt of the  total time) that \\,c did not 
think it was \\~orth\\.hilc to  optimize the procedures. 
Ignoring procedures \\,it11 slnall esecution times ,~Ilo\\,s 
us to  optimizc l c s  than 5 percent of the  ins t r~~ct io~is  i l l  

a program, a significant reduction in nptimizcr time. 
The category NO SPLIT represents thc proccdures 
that n7e could not split into hot and cold parts bccausc 
all basic blocli~ IlaJ similar execution counts. The catc- 
gory SP MOl)IFlF,I) contains proccdurcs in \\.Iiich tlzc 
stack pointer is modificd akcr the i~liti.11 stack adjust in 

the prolog. Wc dccidcd not to optimize these proce- 
dures, but it is possible to  d o  so with extra analysis. 
Note t l ~ a t  t11c csecution time spent in this category of 
proccdurcs is sniall except for in C2, whcre the cate- 
gory contains nvo procedirres and thc coverage is 7 
pcrccnt. Finnlly, t l ~ c  catcgory 1\10 ADVANTAGE rep- 
resents thc proccdurcs that \\?crc split but that thc 
optimizer \\,as not able to in~pro\,e. 

Figure 16 sJlo\rs the overall reduction in path 
length as a rcsi~lt oEHCO, broken do\vn LJ!. op t imi~n  
tion, A/Iost of tlie reductio~i in path Icngtli comes 
eq~iall!~ from the removal of unncccs,lry save and 
restorc instructions and from the rcnio\~al of partial 
dead codc. Stack pointer adjust elimination and pecp- 
holc optimization result in smnllcr additional gains. A 
large pccpliol~ category is usuall!, the r c s ~ ~ l t  of a sa\,c 
and rcstorc of n presencd register t h ~ t  is made Ltnnec- 
essat-! by. HCO; the restorc is co~i\-crtcd to a self- 
assignment by copy propagation, which is then 
rcrno\rcd by pccpliole optimization. 

HCO is most cffcctive on c:ill-intc~isivc programs 
such as SQI,SF.l<VR, ACAl), and (:2, \vhcre we 
climiuatc CLIIIS \\'lien creating tlic hot proccdurcs. For 
LVINWORI), thc spccdup is small bcc:iusc coverage is 
lo\\,; xvc could not f nd a \\.a!; to split thc proccdures. 

KEY 
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Figure 15 
HCO Covcmgc by lisccution Ti~nc 
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Figure 16 
Reduction in Path Lcngth As a Result of MCO 

For EXCEL, HCO \\/as able to split tlie procedures, 
but there is ofien a call in the hot path. Inlining may 
help in optimizing EXCEL, but frequently the call is 
to a shared library. 

HCO is less effective on loop-i~~tensive programs 
such as USTATION, MAXEDA, and TESIM. HCO 
provides a framework for optimizing loops, and 
Chang, Mahlke, and Hwu have sho\\/n that eliminat- 
ing tlie infrequent patlis in loops enables additional 
optimizations, such as loop invariant renioval." 
Ho\\rever, our current implementation of Spike 
includes almost n o  information about the aliasing of 
niemor!l operations; it can only optimize operations to 
local stack locations, such as spills of registers. 

A leaf procedure is a procedure that does not 
contain a procedure call. Figure 17 compares the  
amotult of  time spent in leaf procedures before and 
after HCO is applied. By eliminating infrequent 
code, HCO is able to eliminate all calls in p roced~~res  
that represent 10 percent to 20 perccnt of the execu- 
tion time in C2, ACAD, SQLSERVR, and MASELIA. 
For the other Windows NT-based applications, the 
increase in time spent in leafprocedures is very small. 
Most Windo\\rs NT-based applications spend much 
less than half the time in leafprocedures. To improve 

tlie performance of  these applications, an optimizer 
needs to  improve the performance of  code with calls 
in the frequent path. 

Code size and its effect on  caclie behavior is a major 
concern for us. In large applications, locality for 
instructions is present but not high. Ifan optimization 
decreases path length b ~ ~ t  also decreases locality as a 
side effect, tlie net result can be 3. loss in performance. 

Figure 1 S sl~o\\ls tlie total increase in code size as a 
result ofoptimization. HOT + COLD is the part of the 
increase that comes from replacing a single procedure 
with the original procedure plus a copy of the hot part. 
STUB is the increase attributed to stub procedures. 
Oxlerall, the increase in size is small. The maximum 
increase is 11.6 percent for C2. SQLSERVR has the 
best speedup and is only 3.1 percent larger. Looking at 
the increase in total code size is misleading, however. 
H C O  is not applied to procedures that are executed 
infrequently, \vhicli typically account for more than 95 
percent of the instructions in a program, so tripling 
the size ofoptimized procedures \\lould result in only a 
modest increase in code size. Note that tripling the 
size of tlie active part of an  application usuall!/ disas- 
trously decreases perforniance. 
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Figure 17 
Timc Spcnt in Lcaf l'roccd~~rcs before and nticr H<;O 

For this reason, we also measured the increase in 
code size based on  the procedures that \\!ere optimized. 
Figure 19 compares the total sizes of the hot proce- 
dures with the total sizes of the original procedures 
from \\,hich they were cleri\red. For each procedure, by 
copying just the f ieq~~entl!~ executed part of the p u c e -  
dure, \\le excluded about 50 percent of the original. 
Nest, \\!c eliminated code tliat was 6-equentlv executed 
but only reachable throi~gli a11 infrequently csccuted 
path and therefore unreachable in the hot  proccdurc. 
This code usually represents only 1 percent of the total 
size of a procedure. Finally, \ire optimized the hot pro- 
cedure, reducing the remaining code size by about 
10 percent, tvhich is 5 percent of tlie size oftlic origi- 

nal procedure. The final sizes o f the  hot procedures as 
percentages of tlie sizes of  the original procedures 
arc sho\\ln in the .line labeled HOT. Making the most 
frequentl!, executed part of a program 50  percent to  
80 perccnt smaller yields a big impro\vement in 
instr~~ction cacl~e behavior; ho\\ie\~c~-, it \i/ould be ~nis-  
leading to attribute this i~npro\rement to HCO, since 
our code layout opti~nization achieves tlie same result. 
When HCO is enabled, the cache layout optimizations 
are run after HCO. The baseline \ire cornpare against 
also has cache optimizations enabled, so  improve- 
ments attributed to HCO are impro\rcmcnts be!~ond 
those tliat the other optimizations cdn make. HCO 
does makc thc fieq~~entl!! executed parts 10 percent 

APPLICATION OR BENCHMARK 
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t- TOTAL 
+ HOT+ COLD - STUB 

Figure 18 
O\rcrall Incrcnsc in Code Sizc .~fter HCO 
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Figure 19 
Sizc of Optimized Proccdurcs aftcr HCO 

smaller, but we did not see significantly better instruc- 
tion cache behavior when we ran programs with a 
cache simulator. 

If we were to perform partial inlining, only the hot 
procedure would be copied. Since the hot procedure is 
less than half the size of the original procedure, partial 
inlining would greatly reduce the growth in code size 
due to inlining. 

The line labeled COLD in Figure 19 shows how the 
size of the cold procedure is affected by HCO. When 
we redirect all calls to the hot procedure, some code in 
the original procedure becolmes unreachable. The 
amount of unreachable code is usually less than 10 
percent, which is much smaller than the 50 percent of 
the code we copied to create the hot procedure. The 
infrequent paths in a procedure often rejoin the fre- 
quent paths, which makes it necessary to have copies 
of  both types of paths in the original procedure. 

The line labeled STUB shows the code size of  the 
stubs, which is very small. A stub contains the com- 
pensation code we introduce 011 a transition from 
a hot  routine to a cold routine. We also implemented a 
variation of  H C O  that avoided stubs by reexecuting 
a procedure from the beginning instead of  using a stub 
to reenter a routine in the middle. I t  is usually not pos- 
sible to reexecute the procedure from the beginning 
because arguments have been overwritten. Given the 
small cost of stubs, we did not pursue this method. 

The line labeled TOTAL shows that H C O  makes 
the total code ( H O T  + COLD + STUB) 20 percent to 
60 percent bigger. A procedure is partitioned so that 
there is less than a 1 percent chance that the stub and 
cold part are executed, so  their size should not have a 
significant effect on  cache behavior as long as the pro- 
file is representative. 

Figure 20 shows how splitting affects the distri- 
bution of time spent among different procedure sizes 
for two programs where H C O  is effective (C2 and 
SQLSEl<VR) and hvo progralils where ~t is not  
(MAXEDA and WINWORD). For the graphs shown 
in parts a through d of Figure 20, we classified each 
procedure by its size in instructions before and after 
H C O  and plotted two cumulati\le distributions ofexe- 
cution time. The farther apart the two lines, the better 
HCO was at shifting the distribution From large proce- 
dures to smaller procedures. Note that most of the 
programs spend a large percentage of the time in large 
procedures, which suggests that optimizers need to  
handle complex control flow well, even if profile infor- 
mation is used to eliminate infrequent paths. 

Managing Profile Feedback Optimization 

Profile feedback is rarely used in practice because of  
the difficulty of collecting, managing, and applying 
profile information. The Spike Optimization Environ- 
ment' provides a system for managing profile feedback 
that simplifies this process. 

The first step in profile-directed optimization is to  
instrument each image in an application so  that when 
the application is run, profile infor~nation is collected. 
Instrumentation is most commonly done by using a 
compiler to insert counters into a program during 
compilation'%r by using a post-link tool to insert 
counters into an image. ' 9 , 20  Statistical or sampling- 
based profiling is an alternative to counter-based tech- 
niques."," Some compiler-based and post-link systems 
require that the program be con~piled specially, so that 
the resulting images are only usehl for generating 
profiles. Many large applications have lengthy and 
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Figure 20 
Curnulativc Distribution of Escc~~t io~i  Tirnc b!. l'roccdul-c Sizc bcforc and akcr HCO 

cornples build procedures. For these applications, 
requiring a special rebuild o f the  application to collect 
profiles is an obstaclc to tlie use of profile-dircctcd 
optimization. 

Spike directly instruments the final proctuction 
images so that a special compilatioll is not rcquircct. 
Spike does require that the images be linked to include 
relocatiorl information; ho\\~ever, including this cstra 
information does not increase the r l ~ ~ ~ n b e r  of i n s t r ~ ~ c -  
tions in the image and does not pre\*ent tlie compiler 
from performing f i l l  optiniizations when gcncrating 
the image. 

Most applications consist o f a  mail1 excc~~tablc and 
many DLLs. Ins t r~~ment ing all the images in an appli- 
cation can be difficult, especiall!l when the user doing 
the prof le-directed optimization does not kno\\. , ~ l l  
the DLLs in the application. Spike relie1.e~ the user of 
this task by finding all the 1lLLs that tlie application 
uses, even if thev are loaded dynamically with a call to 
Load Library. 

Atter instrumentation, the next step in profile- 
directed opti~nization is to cxecutc tlic instrumented 
application and to collect profile infor~nation. &lost 
profile-directed optimization systems require tlie ilser 
t o  first csplicitly create jnstruniented copics of each 
image in  an  application. Then tlic Llscr must assemble 
the instrumented images into a ne\v version of the 
application and run it to collect profile inh)rmation. As 
the profile information is generated, the user is 
respo~isiblc for locating all the profile information 
generated for each irnage and merging that informa- 
tion into a single set of profiles. Our  cxpcricnce with 
users has shown that requiring the uscr to manage the 
instrumented copies of the iniagcs and the profile 
inforniation is a frequent source of problems. For 
esanlple, the user may hi1 to instr~lnient each image or  
may attempt to i~istrument an image that has already 
been instruniented. The user may be unable to locate 
all the gcnrratcd profilc iuforniation or may incor- 
rectly combine the information. Spike frees the user 



from these tedous  and error-prone tasks by managing 
both the instrumented copy of each image and the 
profile information generated for the image. 

After profile information is collected, the final step is 
to use the profile information to optimize each image. 
As with instrumentation, the typical profile-directed 
optimization system requires the user to optimize each 
image explicitly and to assemble the optimized appli- 
cation. Spike uses the profile information collected for 
each image to optimize all the images in an application 
and assembles the optimized application for the user. 

Spike Optimization Environment 
The Spike Optimization Environment (SOE) provides a 
simple means to instrument and optimize large applica- 
tions that consist of many images. The SOE can be 
accessed through a graphical interface or tlxough a 
command-line interface that provides identicd h n c -  
tionality. The command-lux interface allows the SOE to 
be used as part of a batch build system such as make.2" 

111 addition to providing a simple-to-use interface, 
the SOE keeps the instrumented and optimized ver- 
sions of each image and the profile information associ- 
ated witli each image in a database. When an 
application is instrumented or  optimized, the original 
versions of the images in the application are not modi- 
fied; instead, the SOE puts an instrumented or  opti- 
mized version ofeach image into the database. When 
the user involzes the original version of an application, 
the SOE uses a transparency agent to execute the 
instrumented or  optimized version. 

The SOE allows the user to instrument and optimize 
an entire application using the following procedure: 

1. Register: Tlie user selects the application or applica- 
tions that are to be instrumented and optimized. The 
user needs to specify only the application's main 
image. Spike then finds all the implicitly lullzed images 
(DLLs loaded when the main image is loaded) and 
registers that tliey are part ofthe application. 

2.  Instrument: The user requests that an application 
be instrumented. For each image in the application, 
the SOE invokes the Spike Optiniizer to  instrument 
that image. The SOE places the instrumented ver- 
sion of each image in the database. The original 
images are not modified. 

3. Collect profile information: The user runs tlie origi- 
nal application in the normal way, e.g., from a com- 
mand prompt, horn Windows Explorer, or  indirectly 
through another program. Our  transparency agent 
(explained later in this s e c ~ o n )  invokes die instru- 
mented version of the application in place of the 
original version. Any images dynamically loaded by 
the application are instrumented on the fly. Each 
time the application terminates, profile information 
for each image is written to the database and merged 
with any existing profile information. 

4. Optimize: The user requests that an application be 
optimized. For each image in tlie application, the 
SOE invokes the Spike Optiniizer to optimize the 
image using the collected profile informati011 and 
places the optimized version of each image in the 
database. 

5. R L I ~  the optimized version: The user runs the orig- 
inal application, and our transparency agent substi- 
tutes the optimized \~ersion, allowing the user to 
evaluate the effectiveness of the optimization. 

6. Export: The SOE exports the optimized images 
from the database, placing them in a directory spec- 
ified by tlie user. The optimized images can then be 
packaged with other application components. 

The Spike Manager is the principal user interface for 
the SOE. The Spike Manager displays the contents of 
the database, showing the applications registered with 
Spike, the images contained in each application, and 
the profile information collected for each image. Tlie 
Spike Manager enables the user to control many 
aspects of the instrunientatio~i and optimization 
process, including specifying which images are to be 
instrumented and optimized and which version of the 
application is to be executed when die original applica- 
tion is invoked. 

Transparent Application Substitution (TAS) is the 
transparency agent developed for the Spike system to 
execute a modified version of an application transpar- 
ently, without replacing the original images on disk. 
TAS was modeled after the transparency agent in the 
DIGITAL FX!32 but uses different mecha- 
nisms. When the user involzes the original application, 
the SOE uses TAS to load an instrumented or  opti- 
mized version. With TAS, tlie user does not need to d o  
anything special to execute tlie instrumented or  opti- 
mized version of an application. The user simply 
involzes die original application in the usual way (e.g., 
from a command prompt, from Windows Explorer, or 
indirectly through another application), and the 
instrumented or  optimized application runs in its 
place. TAS performs application substitution in two 
parts. First, TAS makes tlie Windows NT loader use a 
modified version of the main iniage and DLLs. 
Second, TAS makes it appear to the application that 
the original images were invoked. 

TAS uses debugging capabilities provided by the 
Windows NT operating system to  specify that when- 
ever the main iniage of an application is invoked, the 
modified version of that image should be executed 
instead. In each image, the table of imported DLLs is 
altered so that instead of loading the DLLs specified in 
the original image, each image loads its modified 
counterparts. Thus, when the user involzes an applica- 
tion, the Windows NT operating system loads the 
modified versions of the images contained in die appli- 
cation. Some applications load DLLs with explicit calls 
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to LoadLibrary. TAS intercepts those calls and instead 
loads the modified versions. 

The second part ofTAS makes the modified \lersion 
o f  the application appear to be the origj~ial version of 
the application. Applications ohen use tlie name of the 
main image to find other files. For example, if an 
instrumented image requests its full path name, TAS 
instead returns the full path name of the corresponding 
original image. To d o  this, TAS replaces certain calls to 
kerriel32.dll in the instrumented and optimized in~ages 
with calls to hook procedures. Each hook procedure 
determines tlie outconie the call ~vould Iiavc had for 
the original application and returns that result. 

Instrumentation 
Spike instruments an image by inserting counters into 
it. Using the results of these counters, tlie optimizer 
can determine the n ~ ~ n i b e r  of  times each basic block 
and control tlo\-\l edge in the image is esecuted. Spike 
uses a spanning-tree technique proposed by Knuth2j 
to reduce the number of counters required to fi~lly 
instrument an image. For example, in a11 if-then-else 
clause, counting the nu~nber  of times the if and then 
statements are executed is enough to  determine the 
number of times the else statement is executed. 
Register usage information is used to find free re,' ulsters 
for the instrumentation code, thereby reducing the 
number ofsa\les ancl restores necessary to free up reg- 
isters." Typically, instrunientation makes tlie code 30 
percent larger. As part of  the profile, Spike also cap- 
tures the last target of a jump or  procedure call tliat 
cannot be determined statically. 

Spike's profile information is persistent; s1iia11 
changes to an image d o  not invalidate die profile infor- 
mation collected for that image. Profile persistence is 
essential for applications that require a lengthy o r  
cun~bersome process to generate a profile, even when 
using low-cost methods like statistical sampling. For 
example, generating a good profile of a transaction 
processing system requires extensive staging of the sys- 
tem. Even when it is possible to  automate the genera- 
tion of  profiles, some ISVs find the extra build time 
unacceptable. With persistence, the user can collect a 
profile once and continue to  use it for successive builds 
of a program as small changes are made to it. Our  
experience with an ISV has slion~n that tlie speedup 
from Spike declines as tlie profile gets older, but using 
a two- or  three-week-old profile is acceptable. It is also 
possible to merge a profile generated by an older 
image with a profile generated by a newer image. 

When using an old profile, Spike must match LIP 
procedures in the current program with procedures in 
the profiled program. Spike discards profiles for proce- 
dures that have changed. Relying on a procedure 
name derived from debug information to d o  the 

matching is not practical in a production environment. 
Instead, Spike generates a signature based on  the flow 
graph of each procedure. Since signatures are not 
based on tlie code, small changes to a procedure will 
not  inval~date tlie profile. Signatures arc not unique, 
Iio\ve\rer, so  it can be difficult to niatcli nvo lists ofsig- 
natures u~hen tliere are differences. A minimum edit 
distance algorithmza is used to  find the best match 
between the list of signatures of the current program 
and the 11st of signatures of  the profiled program. 

Summary 

Many Windows NT-based applications are large, call- 
intensive programs, with loops tliat cross multiple pro- 
c e d ~ ~ r e s  and procedures that have cornplicnted control 
flow and many basic blocks. The Spike optimizatioli 
system uses code layout and hot-cold optimization to 
optimize call-intensive programs. Code la\lout places 
the frequently executed portions of the program 
together in Ineliior)r, thereby reducing instruction 
cachc ~iiiss and impro\~ing pcrforrriance LIP to 33 per- 
cent. Our  code layout algorithm rearranges basic 
blocks so that the fall-through path is the common 
path. The algorithm also splits each procedure into a 
frequently executed (hot)  part and nn infrequently 
esecuted (cold) part. The split procedures are placed 
so that freqi~ent (caller, callee) pairs are adjacent. 

The hot part of a procedure is tlie collection of the 
common paths through the procedure. These paths 
can be optimized at the expense of the cold paths by 
removing instructions that are required only if the cold 
paths are e sec~~ted .  Hot-cold optimization exploits this 
opportunity by performing opti~iiizations that remove 
partially dead code and replace uses of preser~led regis- 
ters with uses of scratch registers. Hot-cold optimiza- 
tion reduces the instruction path length through the 
call-intensive programs by 3 percent to 8 percent. 

Profile fcedbuck is rarely used because of the diffi- 
culty of  collecting, managing, and applying profile 
information. Spike provides a co~nplete system for 
profile feedback optimization that eliminates these 
problems. I t  is a practical system that is being actively 
used to optimize applicatioris for Alpha processors 
running the Windows NT operating system. 
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I 
Susanne M. B d e  
Simon C .  Steely, Jr. 

Analyzing Memory 
Access Patterns of 
Programs on Alpha- 
based Architectures 

The development of efficient algorithms on 
today's high-performance computers is far from 
straightforward. Applications need to take full 
advantage of the computer system's deep mem- 
ory hierarchy, and this implies that the user 
must know exactly how his or her implementa- 
tion is executed. The ability to understand or 
predict the execution path without looking 
at the machine code can be very difficult with 
today's compilers. By using the outputs from 
an experimental memory access profiling tool, 
the programmer can compare memory access 
patterns of different algorithms and gain insight 
into the algorithm's behavior, e.g., potential 
bottlenecks resulting from memory accesses. 
The use of this tool has helped improve the 
performance of an application based on sparse 
matrix-vector multiplications. 

The development of efficient algorithms on today's 
high-performance computers can be a challenge. One 
major issue in implementing high-performing algo- 
rithms is to take full advantage of the deep memory 
hierarchy. To better understand a program's perfor- 
mance, two things need to  be considered: computa- 
tional intensiveness and the amount of memory traffic 
involved. In addition to the latter, the pattern of the 
memory references is important because the success of 
hierarchy is attributed to locality of reference and 
reuse of data in the user's program. 

In this paper, we investigate the memory access pat- 
tern of Fortran programs. We begin by presenting an 
experimental Atom1 tool that analyzes how the pro- 
gram is executed. We developed the tool to help us 
~inderstand how different compiler sulitches impact 
the algorithm implemented and to determine if the 
algoritl~m is doing what it is intended to do. In addi- 
tion, our tool helps the process of translating an algo- 
rithm into an efficient implementation on a specific 
machine. The work presented in this paper focuses 
primarily o n  a better understanding of the behavior 
of technical applications. Related work for Basic 
Linear Algebra Subroutine implementations has been 
des~ribed.~ In most scientific programs, the data ele- 
ments are matrix-elements that are usually stored in two- 
dimensional (2-D) arrays (column-major in Fortran). 
Knowing the order of array referencing is important in 
determining the amount of memory traffic. 

In the final section of this paper, we present an 
example of a memory access pattern study and illus- 
trate how the use of our program analysis tool 
improved the considered algorithm's performance. 
Guidelines on how to use the tool are given as well as 
comments about conclusions to  be derived from the 
histograms generated. 

Memory Access Profiling Tool 

Our experimental tool generates a set of histograms 
for each reference in the program or in the subroutine 
under investigation. The first histogram measures 
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strides from the previous refcrence, the second liis- 
togram gives the stride from the second-to-last refer- 
cnce, and so on,  for a total of l\lAXEL histograms for 
each memory rcfcrcncc in the part of tlie program we 
investigate. By stride, \ve mean the distancc bctween 
two memory references (load o r  store). Wc chosc a 
W Y E L  of five for our case study, but L W E L  can be 
given any value. 

T\vo variants of this tool \Irere implcmcnted. 

1. The first version t a l a  all memory references into 
account in all histogr3nis. 

2. The second version takes into account jn the next 
histogram thosc J1iernory references wl~osc stride 
is more than 128 bytes. I t  does not consider in tlie 
( i  + 1) th  histogram ( i  = 1,. . . ,5) strides that are less 
than 128 bytes in the ith Iustogram. 

The second version of the tool has proven to be 
more useful in understanding the access pattcrns. It 
highlights memory accesses tliat are stridc onc for a 
while and then have a stride greater than 128 bytcs. 
The choice of 128 bytcs was arbitrary; the valuc can be 
changed. 

The follo\\ling bins are used in the histograms: 0-  
through 127-byte strides are accounted for separately. 
Strides greater than or equal to 128 bytes arc groupcd 
into the follo\\ling intcr\~als: [ I 2 8  through 2551, [256 
through 51 11, [512 througli 1,0231, 11,024 tl.~rougli 
2,0471, [2,048 tlirougl~ 4,0951, [4,096 through 
8,1911, [8,192 through 16,3831, [16,384 through 
32,7671, and [32,768 through infinity]. 

In the ncxt section, \ye present the output his- 
tograms obtained with the second version of this 
experimental tool for a Fortran loop. In  our casc stitd!; 
\ve chose to pcrform the histograms on a single array 
instead of all references in the program. This mctliod 
provided a clcarcr picture of the memory access pat- 
tern for each array in the piece of the program under 
consjderation. We present separate histograms for the 
loads and the storcs ofeach array in the memory traffic 
of tlie subrou t i~~e  \\/c investigated. 

Wlien looking at nienlorJr access patterns, it is 
important not to include load instructions that pcr- 
form prefetching. Even though prefetching adds to  
the memory traffic, its load instructions pollute the 
mcmory access pattern picture. 

Case Study 

In this section, we study and compare different ver- 
sions of  the code presented in Figure 1 usjng our 
experimental memory access profiling tool. Wc sho\v 
that the same code is not executed in tlie same \vay for 
different compiler switches. Often a developer has to 
dcl\te deeply into thc asse~nbler of the given loop to 
understand how and \\/lien the different instructions 

I Q( i )=O,  i = l ,  n  
2 d o k l = 1 , 4  
3 i n d e x  = ( k l - 1 )  * numrows 
4 do j = l , n  
5 pl=COLSTR(j ,k l )  
6 p2=COLSTR( j+l , k l  )-I 
7 p3= C s n i p l  
8 sumO=O. do 
9 suml=O.dO 
10 sum2=0. d0 
I 1  sum3=0. d0 
12 XI = P( index+ROWIDX(p l ,k l ) )  
13 x2 = P(index+ROWIDX(pl+l,kl)) 
14 x3 = P(index+ROWIDX(pl+2,kl)) 
15 x 4  = P(index+ROWIDX(pl+3,kl)) 
16 do k = p l ,  p3, 4  
17 sum0 = sum0 + AA(k,kl) * XI 
18 sum1 = sum1 + AA(k+l ,k l )  * x2  
19 sum2 = sum2 + AA(k+Z,kl) * x3  
20 sum3 = sum3 + AA(k+3,kl) * x4 
2 1 XI = P(index+ROWIDX(k+4,k1)) 
22 x2 = P(index+ROWIDX(k+5,kI))  
23 x3  = P(index+ROWIDX(k+6,kI))  
24 x4 = P(index+ROWIDX(k+?,kI))  
25 enddo 
26 do k = p3+1, p 2  
27 xl=P( index+ROWIDX(k,k l ) )  
28 sum0 = sum0 + A A ( k , k l ) * x l  
29 end do 
30 YTENP(j,kl)=sumO+suml+sum2tsum3 
31 enddo 
22 do i = 1, n, 4  
33 Q ( i )  = Q ( i )  + YTENP( i ,k l )  
W Q ( i + l )  = Q ( i + l )  t YTENP( i+ l ,k l )  
35 Q( i+Z )  = Q ( i + 2 )  + YTEMP(i+Z,kl) 
36 Q ( i + 3 )  = Q ( i + 3 )  + YTEMP(i+3,kl) 
37 enddo 
33 enddo 

where n = 14000,  
r e a l * 8  AA(511350,4),  YTEMP(n,4) 
r e a l * 8  Q ( n ) ,  P(n)  
i n t e g e r * 4  ROWIDX(511350,4), COLSTR(n,4) 

Figure 1 
Origin31 Loop 

are executed. The o ~ ~ t p u t  histograms fro111 our tool 
ease t h ~ t  proccss and give a clcar pict111.c of the refer- 
encc patterns. The loop presented in Fig111.c 1 imple- 
ments a sparse matrix-vector multiplication and is part 
of a larger application. Ninety-six pcrccnt of the appli- 
cation's execution time is spent in that loop. We ana- 
lyze the loop compiled with two different sets of 
compiler switches. To  illustrate tlie effective use of the 
tool, we present the enhanced performance results 
due t o  changes made based on the output histograms. 

From lines 5 and 6 in the loop sho\vn in Figure 1, 
\ve \vould expect the array COLS'ITR to be read stride 
one 100 percent of the time. Linc 30 of thc figure 
indicates tliat ).Ti?i\/IP is accessed stridc one through 
the \vholc,iloop. From lines 33 tllr0~1gI1 36, nze expect 
rfil[P's stridc to bc equal to one most of the time and 
equal to the number of columns in the array e\,cr!l 
time k l  is incrcmented. Q should be referenced 100 
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percent stride one for both the loads and the stores 
(lines 33 through 36). As illustrated in lines 12 
through 15, 21 through 24, and 27, ROWDX is 
expected to be accessed with a stride of one benveen 
the pl and p 2  bounds of the k loop. Even though it 
looks like the k loop is violating the array bounds of 
ROWDXin lines 21 through 24 for the last iteration of 
the loop, this is not the case. We expect array P t o  have 
nonadjacent memory references since we have deliber- 
ately chosen an algorithm that sacrifices tlus array's 
access patterns to improve the memory references of 
Q and AA. 

Original Code 
We investigate the memory access patterns achieved 
by the loop in Figure 1 when compiled with the fol- 
lowing switches: 

The - g 3  switch is needed to extract the addresses 
of the arrays fiom the symbol table. For more infor- 
mation on DIGITAL Fortran compiler switches, see 
Reference 3. 

From Figures 2 and 3, we see that array Qis accessed 
as we expected, 100 percent stride one for the loads 
and the stores. Since Q is accessed contiguously in 100 
percent of its memory references, we wvill not have any 
entries in the nest four histograms. As described in 

the previous section, we only record in the next his- 
togram the strides that are greater than 128 bytes in 
tlie current histogram. 

Figure 4 illustrates that COLSm is accessed 50 
percent stride zero and 50 percent stride one. This is 
unespected since lines 5 and 6 in Figure 1 suggest that 
this array mould be accessed stride one 100 percent of 
the time. The fact that we have entries only for the 
strides between the current and the previous loads 
indicates that the elements of COU77i'are accessed in a 
nearly contiguous way. A closer look at Figure 1 tells 
us that the compiler is loahng COLSiT twice. We 
expected thc compiler to do  only one load into a regis- 
ter and reuse the register. The \vork-around is to per- 
form a scalar replacement as described by Blickstein et 

We put p 2  = COLSTR(1,kl) -1 outside the j loop 
and substituted inside the j loop pl = COLSm(j,kl) 
with pl = p 2  + 1. Inside the j loop, p 2  remains the 
same. Eliminating the extra loads did not enhance per- 
formance, and a possible assumption is that the analy- 
sis done by the compiler concluded that no gain would 
result horn that optimization. 

Figures 5 and 6 show the strides for the loads and the 
strides for the stores for the array YX%kIP. One more 
time, the implementation is not being exccuted the 
way cve thought it would. In Figure 1, lines 33 through 
36 suggested that W P  would be referenced stride 
one through the \\!hole i loop as well as with a stride 

KEY: 

a 1 STEP AGO 1 4 STEPS AGO 

2 STEPS AGO 5 STEPS AGO 

1 3 STEPS AGO 

STRIDES IN BYTES 

Figure 2 
Strides for Array Qbetwern the Current Load and the Load One through Five Steps Ago 
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Figure 3 
Stritics for Array Q between the Current Store and the Store One through Five Steps Ago 
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Figure 4 
Strides Corhray COLS7R benveen the Currcnt Load and the Load One through Five Stcps Ago 
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equal to the number ofcolumns in the array \vJien k l  is 
incremented. By considering Figurc 5 along uith lines 
3 3  through 36  in Figure I ,  \ve conclude that )-E,\IPis 
unrolled by four in the kl-direction in t11c i loop. Thc 
fact that all strides benvcen thc currcnt load and the 
load t\vo loads back or three loads back or four loads 
back have a stride between 32I< and infinity is consis- 
tent with traversing a matrix along rows. Figure 6 
shocvs that the j loop is not unrollcd by four in  the 
k1 -direction, because all tlie loads of 1TI:MP are 100 
pcrcent stridc one. The compiler must split thc 121 loop 
into t\vo scparate loops, tlie first consists of tlic j loop 
and thc second consists of thc i loop. 'l'hc latter has 
bcen unrolled by four in tlie kl-direction tlicreby elim- 
inating tlie estra o~rerllead fi-om tlie k l  loop. 

Figure 7 shows that the matris i l i l  is acccsscd as \ire 
cspccted. strides arc not greater than 128 bytes 
or, in other \\lords, a maximum stridc of 16 elements. 
The t ict  that thcre is n o  stride otlicr than the one 
bctwcen the current load and thc prc\~ious load in the 
histograms sho.rvs that AA is refcrcnccd in a controlled 
\yay. In  this case, is accessed 39 pcrccnt of  its total 
loads in stride one and 2 3  percent in stridc two. 

From lines 12 tlirough 15, 17 through 20, and 21 
through 2 4  in Figure 1, \\re kno\\r that the arrays ~bl 

and ROW7DnY should ha\,e relativel!~ si~iiilnr belia\~iors. 
Only the four extra prefctches of ROK7Il.X'in lines 21 
through 24  for the last iteration in tlic,jloop diffcren- 

KEY: 

1 STEP AGO rn 4 STEPS AGO 

2 STEPS AGO 5 STEPS AGO 

3 STEPS AGO 

tiate the acccss pattcrns of  thc hvo arrays. Figure S 
confirms that assumption. RO WfDX is referenced \\litli 
co~ltrolled stridcs. Bccausc IZOW4DX' is accessed closc 
to contig~~ousl!~, wc nrill not have any entries in tlic 
nest four histograms. As described in  tlie previous scc- 
tion, \ve only record in the nest  histogram the strides 
that are greater than 128 bytes in the current his- 
togram. KOKYIIXis referenced 2 4  percent of its total 
loads in stridc onc and 34 percent in stride two. 

As illustrated in Figure 9 ,  array Pis  accessed exactly 
the way we expcctcd it. When desiglung this algorithni, 
we had to ~rlakc somc compromises. We decided to 
havc iu~d Qrcfcrcnced as closely as possible to stridc 
one, thus giving LIP tlic control of P's references. 

By esmiining tllcsc al-~-a!,s' acccss patterns, \ve can scc 
h o n ~  they are acccsscd and \\hether or not thc implc- 
mentation is doing tvl~at it is supposed to do.  If the loop 
in Figure 1 is used on a larger matrix [ n  = 75,000 and 
M(204427,12) has 15  million nonzero elements], thc 
execution tinic for the total application on  a singlc 
2 1  164 proccssor of an Alphaserver 8400 5/625 system 
is 1,970 scconds. The application esecutes 26  x 75  
(= 1,950) tinics the considered loop. When profiling 
thc progranl, \vc nicasurcd that tlie loop under investi - 
gation taltcs 9 6  pcl-ccnt of the total esecution time. It is 
therefore a fair assu~nption to say tliat an!' improvcmcnt 
in this building block \ \ , i l l  in ipro~~e the overall pcrfor- 
maice of the total program. 

STRIDES IN BYTES 

Figure 7 
Stridcs ti)r Array iZA bemeen the Current Ix)nd and rhc Ioad One through IZi\,c Stcps Ago 
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Figure 8 
Strides for Array ROWDXbenvecn the Current Load and the Load One  through Five Stcps Ago 
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Figure 9 
Strides for Array Pberween the Currcnt Load and the Load O n e  through Five Steps Ago 
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Modified Code 
In this section, we describe a new espcri~nent in \vhicl~ \ve 
~ ~ s e d  different compiler snitches ;u~d changed the original 
loop to tlle loop in Figure 10. Thc code clianb-. ~ t s  were 
based on the analysis hi the previous scction as \\~clI as 011 a 
more extended series of investigations. 

In this example, we used the follo\ving con~piler 
s\vi tches: 

Lines 3, 5, and 
mcnted the scalar 
Rlickstein et al.' to 

6 fiom Figure 10 she\\, that ure in~ple- 
replacement technique as described by 
avoid COLS7ll being loaded nvice. From 

Figurc 1 1, we see that array COLS?R is no\\: behaving as \I-e 
expect: 100 percent of the strides for the loads are stride one. 

In our tirst attempt to optimize the original loop, 
split the kl loop into t\vo loops in the samc \\!a!, thc coni- 
piler did as described UI idle previous scction. We then ha~id 
unrolled the Ymk fP  array in thc bl direction. Further 
analysis showed that a considerable gain could be made 
by removing the Y E M P  array and writing the results 
directly into Q. By replacing the zeroing out oftlie Qarray 

1 d o k l = l , 4  
2 index = ( k l - 1 )  * numrows 
3 p2=COLSTR(l, k l  )-I 
4 d o j = l , n  
5 pl=p2+1 
6 p2=COLSTR( j + l ,  k 1 ) - l  
7 p3= Csnip l  
8 sum0=0. d0 
9 sum1 =O. d0 
10 sum2=0. d0 
I I sum3=0. d0 
12 XI = P(index+ROWIDX(pl,kl)) 
13 x2 = P(index+ROWIDX(pl+l , k l ) )  
14 x3 = P(index+ROWIDX(pl+2,kl)) 
15 x4 = P(index+ROWIDX(pl+3,kl)) 
16 do k =  p l ,  p3, 4 
17 sum0 = sum0 + AA(k,kl) * XI 
18 sum1 = sum1 + AA( k+ l  ,kl  ) * x2 
19 sum2 = sum2 + AA(k+Z,kl) * x3 
20 sum3 = sum3 + AA(k+3,kl) * x4 
21 XI = P(index+ROWIDX( k+4,k1)) 
22 x2 = P(index+ROWIDX( k+5,k1)) 
23 x3 = P(index+ROWIDX(k+6,kI ) )  

24 x4 = P( i ndex+ROWIDX( k+7, k 1 ) )  
25 enddo 
26 do k = p3+1, p2 
27 xl=P(index+ROWIDX(k,kl)) 
28 sum0 = -sum0 + AA(k,k l ) *x l  
29 enddo 
30 i f ( k l . e q . 1 )  then 
31 Q (  j )  = sum0 + sum1 + sum2 + sum3 
32 e l s e  
33 Q (  j )  = Q (  j )  + sum0 + sum1 + sum2 + sum3 
24 endi f 
35 enddo 
36 enddo 

where n = 14000, 
reaL*8 AA(511350,4) 
reaL*8 Q(n),  P(n)  
i n t e g e r * 4  ROWIDX(511350,4), COLSTR(n,4) 

Figure 1 0  
Modif cd Loop 

(Figure 1,  line 1) \\.it+ an IF  statement (Figure 10, line 30), 
we fi~rtlier improved the performance of the loop. The last 
nvo changes wcrc possible because we decided that, for 
performance cnliancement issues, the serial version of the 
code \\!as going to be different from its parallel version. 

Figurcs 12 and 13 s l ~ o \ \ ~  that Q's load and store access 
pattern is 100 percent stride one as \ve espected it to be. 
For both ROW7DX and &i, we see a significant incrcasc in 
stride one refercnccs. Figure 14 shows that &i is now 
accessed 69 pcrccnt stridc onc instead of 39  percent. 
ROWDX's stridc onc increased to  52  percent from 2 4  
percent as illustrated in F i g ~ ~ r e  15.  These two arrays are 
the reason for  wing thc - u n r o 1 1 I switch. Without it, 
stride one for both arrays would stay approsimately the 
same as in the prc\rious study. The  pattern of accesses of 
array P in F i g ~ ~ r e  16 is siniilar t o  the prior pattern of 
accesses in Figure 9 as expected. 

To better understand the effects of the unrolling, we 
counted the number of second-level cache ~t~isses for 26 
calls to the loop, using nn Atom tool' that simulatcd a 
4-megabyte dircct-mappcd cache. By considering only these 
26  matrh-vector multiplications, \ye d o  not get a full picture 
of what is going on and how the dfferent arrays interact. 
Nevertheless, it gives us hints about \vhat caused the 
impro\rement in pcrformance. Use of the cache tool on the 
\!!hole application would increase the run time dra~natically 

T\venty-six calls to the original loop (Figure 1 )  have a 
total of 1,476,017,322 memot-!! references, of \\,hich 
77,638,624 arc cache misses. The modified loop (Figure 
lo ) ,  on the otlicr hand, has fewer references due to the hct  
that \\re eliminated an expensive array initializatior~ at each 
stcp a id  removcd thc tcmporxy array I'7Z3WP. The numbcr 
of cachc misses droppcd from 77,638,624 to 72,384,345 
or  a reduction in misses of 7 pcrcent. If \ifc compile the 
moditied loop \\ithout the - u  n r o 1 1 1 s\vitch, the numbcr 
of cache misses increases slightl)~. O n  the 21 164 Alpha 
microprocessor, all the misses are effectively performed in 
serial. Tlus means that for memory-bound codes like the 
loop we are currentl!~ investigating, execution time primar- 
ily depends on the number ofcache misses. 

The Iustograms illustrati~lg the access strides for the dif- 
ferent arrays helped us design a more suitable algorithm fbr 
our architecture. lI!. jncreasing the stride one refercnccs in 
the loads for the arrays AA and ROWDX, eli~ninating the 
extra references in C'OJLS7xand Q and improving thc stridcs 
for Q, we increased the pcrformmce of this application dra- 
matically. Counting thc number of cache misses gave us a 
better understanding as to \vhy the new access patterns 
achieve enhanced performance. I t  also helped us under- 
stand that not allocving the compiler to unroll the already 
hand-unrolled loops in the modified loop decreased the 
number of cache misses. The esecution time for this appli- 
cation 112 = 75,000 and m(204427,12) has 15 million 
nonzero clcmcnts] dccrcased from 1,970 seconds to 1,831 
seconds on a singlc 625-megahertz (MHz) 21 164 Alpha 
microprocessor of an AlphaScrlrer 8400 5/625 system. 
Tlus is an impro\lcment of 139 scconds or 8 percent. 
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Figure 11 
Strides for Array COJS7R benveen the Current Load and thc Load O n e  through Five Steps Ago 
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Conclusion 

T h e  case study sho\vs that, given the right program 
analysis tools, a program developer can take better 
advantage o f  his o r  her  computer  system. T h e  experi- 
mental tool w e  designed was very usefill in providing 
insight into the  algorithm's behavior. T h e  approach 
considered yields a n  improvement  in  performance of 
8 percent o n  a 6 2 5 - M H z  21 164 Alpha microproces- 
sor. This  is definitely a worthwhile exercise since a sub-  
stantial reduction in execution time was obtained 
using straightfor\vard and easy guidelines. 

T h e  data collected from a mernor!, Access p rof  ling 
tool helps the user understand a given program as well 
as its memory  access patterns. I t  is nn easier and faster 
\vay t o  gain insight h t o  a program than examining the  
listing and the assembler generated by t h e  compiler. 
Such a tool enables t h e  programmer t o  compare mem-  
ory  access patterns o f  different algorithms; therefore, 
it is very useful when optimizing codes. Probably its 
most  important  value is that  it  shows the  developer if 
his o r  her implementation is d o i n g  what  he o r  she 
thinks t h e  algorithm is do ing  and highlights potential 
bottlenecks resulting from memory  accesses. Opti  niiz- 
ing an application is an iterative process, ancl being able 
t o  use relativelv eas!f-to-use tools like Atom is a very 
important part o f  the process. T h e  major advantage o f  
the tool presented in this paper is that n o  source code 
is needed, so  it can be used t o  analvze the perR)rmuice 
o f  program esecutables. 
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OpenVMS Alpha 64-bit 
Very Large Memory 
Design 

The OpenVMS Alpha version 7.1 operating 
system provides memory management features 
that extend the 64-bit VLM capabilities intro- 
duced in version 7.0. The new OpenVMS Alpha 
APls and mechanisms allow 64-bit VLM applica- 
tions to map and access very large shared mem- 
ory objects (global sections). Design areas 
include shared memory objects without disk 
file backing storage (memory-resident global 
sections), shared page tables, and a new physi- 
cal memory and system fluid page reservation 
system. 

Database products and other applications impose hea\y 
demands on  physical memory. The newest version of 
DIGITAL'S OpenVMS Alpha operating system extends 
its very large memory (VLM) support and allows large 
caches to remain memory resident. OpenVlMS Alpha 
version 7.1 enables applications to take advantage of 
both 64-bit virtual addressing and very large memories 
consistent with the OpenVMS shared memory model. 
In this paper, we describe die new 64-bit VLiM capabili- 
ties designed for the OpenVMS Alpha version 7.1 oper- 
ating system. We explain application flexibility and the 
system management issues addressed in the design and 
discuss the performance improvements realized by 
64-bit VLM applications. 

Overview 

A VLM system is a computer with more than 4 giga- 
bytes (GB) of main memory. A flat, 64-bit address 
space is commonly used by VLM applications to 
address more than 4 GB of data. 

A VLM system allows large amounts of data to 
remain resident in main memory, thereby reducing 
the time required to access that data. For example, 
database cache designers implement large-scale caches 
on  VLM systems in an effort to improve the access 
times for database records. Similarly, VLM database 
applications support more server processes than ever 
before. The combination of large, in-memory caches 
and an increased number of server processes signifi- 
cantly reduces the overall time database clients wait to 
receive the data requested.' 

The OpenVMS Alpha version 7.0 operating system 
took the first steps in accommodating the virtual 
address space requirements of VLA4 applications by 
introducing 64-bit virtual addressing support. Prior to 
version 7.0, large applications-as well as die OpenVMS 
operating system itself-were beconling constrained by 
the limits imposed by a 32- bit address space. 

Although version 7.0 eased address space restric- 
tions, the existing OpenVMS physical memory man- 
agement model did not scale well enough to 
accommodate VLM systems. OpenVMS imposes spe- 
cific limits on  the amount of  physical memory a 
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process can occupy. As a result, applications lacked the 
ability to keep a very large object in physical memory. 
In systems on which the physical Inemor!/ is not  plen- 
tifill, the niechanisnis that limit per-process memory 
utilization serve to ensure fair-and-eclual 1 . cccss - - -  to a 
potentially scarce resource. Ho\vevel-, o n  systems rich 
with memory whose intent is to service applications 
creating VLM objects, the limitations placed on  per- 
process memory utilization inhibit the o\lerall perfor- 
mance of those applications. As a result, thc benefits of  
a VLM system may not be conipletely realizcd. 

Applications that require very large amounts of 
physical memory need additional VLM support. The 
goals of the OpenVMS Alpha VLIM project \\.ere the 
follo\\,ing: 

A~lasimize the operating system's 64- bit capabilities 

Take full advantage of the Alpha Arcliitecti~re 

Not require excessive application change 

Simpli@ the system management of a VLM system 

Allow for the creation ofVLM objects th,it exhibit 
the same basic characteristics, fro111 the program- 
mer's perspective, as other virtual niemorv objects 
created with the OpenVlMS system service pro- 
graniniing interface 

These goals became the foundation for the follo\v- 
ing VLlM teclinolog)~ iniplenlented i n  the OpenVMS 
Alpha version 7.1 operating system: 

Memory-resident global sections-shared memory 
objects that d o  not page to  disk 

Shared page tables-page tables mapped by multiple 
processes, ivhich in turn map to memory-resident 
global S ~ C ~ O J ~ S  

Tlie reserved memory registry-a memory reserva- 
tion system that supports memory-resident global 
sections and shared page tables 

The remainder of this paper describes the major 
design areas of VLM support for OpenVMS and dis- 
cusses the proble~ns addressed by the design team, the 
alternatives considered, and the benefits of thc cstcnded 
VLh4 support in OpenViMS Alpha version 7.1. 

Memory-resident Global Sections 

We designed menior)l-resident global sections to 
resol\lc thc scaling problems experienced by VLlM 
appl~cat~ons 017 OpenVMS. We focused our design o n  
the cxlstlng shared memory model, using the 64-bit 
addressing support. Our  project goals included simpli- 
fi'ing sptelii nianagement and harnessing the speed of 
the Alpha n~icroprocessor. Before describing memory- 
resident global sections, we provide a brief explanation 
of shared memory, process \\lorking sets, and a page 
fault handler. 

Global Sections 
An OpenVMS global section is a shared memory 
object. The memory \\iithin the global section is 
shared among different processes in the system. Once 
a process has created a global section, others may map 
to the section to share the data. Several types of global 
sections can be created and mapped bv calling 
OpenVbIS system services. 

Global Section Data Structures Internally, a global 
section consists of several basic data structures that are 
stored in system address space and are accessible to  all 
processes from kernel mode. When a global section is 
created, OpcnVMIS allocates and ~niualizes a set of 
these data structures. Tlie relationsh~p between the 
structures is illustrated in Figure 1. The sample global 
section is named ''SH1<0RJ7' and is 2,045 Alpha pages 
o r  1 6  megabytes (IMR) in size. Two processes have 
lnapped to the glob31 section by referr~ng to the global 

GLOBAL SECTION DESCRIPTOR 

HEADER 

I OTHER INFORMATION I 

I "SHROBJ" I 

GLOBAL SECTION TABLE ENTRY 

HEADER *Fd 
SIZE = 2,048 PAGES I 

REFCNT = 4,096 

--GG--l 
FILE BACKING STORAGE 
INFORMATION, ETC. 1 

KEY: 

GSTX GLOBAL SECTION TABLE INDEX 
GPTX GLOBAL PAGE TABLE INDEX 
GPTE GLOBAL PAGE TABLE ENTRY 

GLOBAL PAGE TABLE 

PAGE 0 

PAGE 1 

PAGE 2.047 

Figure 1 
Global Scctio~i Data  Str~rct~~res 

34 1)igit.d Tcch~licnl Journal Vol. 9 No. 4 1997 



section data structures in their process page table 
entries (PTEs). 

Process PTEs Mapping t o  Global Sections When a 
process maps to a global section, its process PTEs refer 
to global section pages in a one-to-one fashion. A page 
of physical memory is allocated when a process 
accesses a global section page for the first time. This 
results in both the process PTE and the global section 
page becoming valid. The page frame number (PFN) 
of the physical page allocated is stored in the process 
PTE. Figure 2 illilstrates two processes that have 
mapped to the global section where the first process 
has accessed the first page of the global section. 

When the second process accesses the same page as 
the first process, the same global section page is read 
from the global section data structures and stored in 
the process PTE of the second process. Thus the two 
processes map to the same physical page of memory. 

The operating system supports two types of global 
sections: a global section whose original contents are 
zero or a global section whose original contents are 
read from a file. The zeroed page option is referred to 
as demand zero. 

Backing Storage for Global Sections Global section 
pages require backing storage on disk so that more fre- 
quently referenced code or data pages can occupy 
physical memory. The paging of least recently used 
pages is typical of a virtual memory system. The back- 
ing storage for a global section can be the system page 
files, a file opened by OpenVMS, or a file opened by 
the application. A global section backed by system 
page files is referred to as a page-file-backed global sec- 
tion. A global section backed by a specified file is 
referred t o  as a file-backed global section. 

When a global section page is invalid in all process 
PTEs, the page is eligible to be written to  an on-disk 

backing storage file. The physical page rnay remain in 
memory on a list of modified or fiee pages. OpenVMS 
algorithms and system dynamics, however, determine 
which page is written to disk. 

Process Working Sets 
On OpenVMS, a process' valid memory is tracked 
within its working set lists. The working set of a 
process reflects the amount of physical memory a 
process is consuming at one particular point in time. 
Each valid working set list entry represents one page of 
virtual memory whose corresponding process PTE is 
valid. A process' worlzing set list includes global sec- 
tion pages, process private section pages, process pri- 
vate code pages, stack pages, and page table pages. 

A process' working set quota is limited to 512 MB 
and sets the upper limit on the number of pages that 
can be s\vapped to disk. The limit on working set 
quota matches the size of a swap 1/0 request.* The 
effects on swapping would have to be examined to 
increase working set quotas above 512 MB. 

Process worlzing set lists are kept in 32-bit system 
address space. When free memory is plentihl in the sys- 
tem, process \?iorlzing set lists can increase to an extended 
quota speci6ed in the system's account file for the user. 
The system parameter, WSMAX, specifies the madximum 
size to which a process working set can be estended. 
OpenVMS specifies an absolute maximum value of 4 GB 
for the WSMAX system parameter. An inverse relation- 
ship exists between the size specified for W S h W  and the 
number of resident processes OpenVMS can support, 
since both are maintained in the 32-bit addressable por- 
tion of system space. For example, specifying the maxi- 
mum value for W S W  sharply decreases the number of 
resident processes tliat can be specified. 

Should OpenVMS be required to support larger 
working sets in the future, the worlung set lists would 
have to be moved out of 32-bit system space. 

FIRST PROCESS PTEs GLOBAL PAGE TABLE 

VALID - PFN VALID - PFN 

INVALID - GPTX 

INVALID - GPTX +I-+ 

SECOND PROCESS PTEs 

7 
INVALID - GPTX 

KEY: 

GPTX GLOBAL PAGE TABLE INDEX 
GPTE GLOBAL PAGE TABLE ENTRY 

Figure 2 
Process and Global PTEs 
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Page Fault Handling for Global Section Pages 
The data within a global section may be heavily 
accessed by the many processes that are sharing the 
data. Therefore, the access titile to the global section 
pages may influence the overall performance of the 
application. 

Many hardware and sohvare factors can influence 
the speed at which a page within a global section is 
accessed by a process. The factors relevant to  this dis- 
cussion are the following: 

Is the process PTE valid or invalid? 

If the process PTE is invalid, is the global section 
page valid or invalid? 

If the global section page is invalid, is the page on 
the modified list, free page list, or on disk within the 
backing storage file? 

If the process PTE is invalid at the time the page is 
accessed, a translation invalid fault, or page fault, is 
generated by the hardware. The OpenVMS page fault 
handler determines the steps necessary to make the 
process PTE valid. 

If the global section page is valid, the PFN of the 
data is read from the global section data structures. 
This is called a global valid fault. This type of fault is 
corrected quickly because the data that handles this 
fault is readily accessible from the data structures in 
memory. 

Ifthe global section page is invalid, the data may still 
be within a physical page on the modified or free page 
list maintained by OpenVMS. To correct this type of 
fault, the PFN that holds the data must be removed 
from the modified or free page list, and the global sec- 
tion page must be made valid. Then the fault can be 
handled as if it were a global valid fault. 

If the page is on disk within the backing storage file, 
an l/O operation must be performed to read the data 
from the disk into memory before tlie global section 
page and process PTE can be made valid. This is the 
slowest type ofglobal page fault, because perfor~ning a 
read 1 /0  operation is much slower than manipulating 
data structures in memory. 

For an application to experience the most efficient 
access to its shared pages, its process PTEs should be 
kept valid. An application may use system services to 
lock pages in the working set or in memory, but typi- 
cally the approach taken by applications to reduce 
page fault overhead is to increase the user account's 
worlung set quota. This approach does not work when 
the size of the global section data exceeds the size of 
the working set quota limit of 512 MB. 

Database Caches as File-backed Global Sections 
Quick access to a database application's shared mem- 
ory is critical for an application to handle transactions 
quickly. 

Global sections implement shared memory on 
OpenVMS, so that many database processes can share 
the cached database records. Since global sections 
must have baclting storage on disk, database caches are 
either backed by the system's page files or by a file cre- 
ated by the database application. 

For best performance, the database application 
should keep all its global section pages valid in the 
process PTEs to avoid page fault and I/O overhead. 
Database processes write modified buffers from the 
cache to the database files 011 an as-needed basis. 
Therefore, the baclting storage file required by 
OpenVMS is redundant storage. 

Very Large Global Sections 
The OpenVMS VLM project focused on VLM data- 
base cache design. An additional goal was to design 
the VLM features so that other types of VLM applica- 
tions could benefit as well. 

Consider a database cache that is 6 GB in size. 
Global sections of this magnitude are supported on 
OpenVMS Alpha \vitli 64-bit addressing support. If 
the system page files are not used, the application must 
create and open a 6-GB file to be used as backing stor- 
age for the global section. 

With the maximum quota of 512 MB for a process 
cvorlting set and with tlie maximum of a 4-GB workng 
set size, no process could keep the entire 6-GB data- 
base cache valid in its working set at once. When an 
OpenVMS global section is used to implement the 
database cache, page faults are inevitable. Page fault 
activity severely impacts the performance of the VLM 
database cache by causing unnecessary 1/0 to and 
from the disk while managing these pages. 

Since all global sections are pageable, a 6-GB file 
needs to be created for backing storage purposes. In 
the ideal case, the backing storage file is never used. 
The baclting storage file is act~~ally redundant with the 
database files tl~emselves. 

VLM Design Areas 
The VLM design team targeted very large global sec- 
tions (4 GB or larger) to share data among many 
processes. Furthermore, we assumed that the global 
section's contents would consist of zeroed memory 
instead of originating from a file. The team explored 
whether this focus \\/as too narrow. We were con- 
cerned that implementing just one type ofVLM global 
section would preclude support for certain types of 
VLM applications. 

We considered that VLM applications might use 
very large amounts of memory whose contents origi- 
nate from a data file. One type of read-only data from 
a file contains program instructions (or code). Code 
sections are currently not pushing the limits of 32-bit 
address space. Another type of read-only data from a 
file contains scientific data to be analyzed by the VLM 
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application. To accommodate very large read-only 
data of this type, a large zeroed global section can be 
created, the data from the file can be read into mem- 
ory, 2nd then the data can be processed in memory. 

Ifwritablc pagcs are initially read from a file instead 
of zeroed, the data will most likely need to be \vritten 
back to the original file. In this case, the file can be 
used as the backing storage for the data. This type of 
VLM global section is supported 011 OpenVMS Alpha 
as a file-backed global section. The operating system's 
algorithm for working set page replacement keeps the 
most recently accessed pages in memory. Working set 
quotas greater than 512 M B  and \vorking set sizes 
greater than 4 GR help tl%s type of VLM application 
scale to  higher memory sizes. 

We also considered very large demand-zero private 
pages, "malloc" or "heap" memory. system page 
files are the baclung storage for dernand-zero private 
pages. Currently, processes can have a page file quota 
as large ,IS 32 GR. A VLM application, however, may 
not want these private data pages to be written to a 
page fi lc since the pages are used in a similar fashion as 
in-memory caches. Larger working set quotas also 
Iielp this type of  VLh4 application accommodate ever- 
increasing nieniory sizes. 

Backing Storage Issues 
For many years, database cachc designers and database 
pcrformance esperts had requested that the 
OpenVlMS operating system support niemor!i with no 
backing storage files. The backing storage \\!as not 
only redundant but also wasteful of disk space. Tlie 
waste issue is made worse as the sizes of the database 
caches approach the 4-GB range. As a result, the 
OpenVMS Alpha \rLM design had to  allow for non- 
file- backcd global sections. 

The support of64-bit addressing a id  VI,M has always 
been viewed as a two-phased approach, so that function- 
ality could be delivered in a timely fashion.WpcnV~MS 
Alpha version 7.0 provided the essentials of 64-bit 
addressing support. The VLM support \\,as \ie\ved as an 
extension to the memory malagenlent model and was 
deferred to O p e n W S  Alpha version 7.1. 

Working Set List Issues. Entries in the process work- 
ing set list are not required for pages that can ncvcr be 
writtcn to a backing storage file. The fundamental con- 
cept of the OpenVMS working set algorithms is to sup- 
port the paging ofdata from memory to disk and back 
into memory when it is needed again. Since the focus 
of the VLiM dcsign was on memory that \vould not be 
backed by disk storage, the VLM design team realized 
that these pages, although valid in the process PTEs, 
did not need to be in the process' \\forking set list. 

VLM Programming Interface 
The OpenVMS Alpha VLM design provjdes a new pro- 
gramming interface for VLM applications to create, 

map to, and delete demand-zero, memory-resident 
global sections. Tlie existing programming interfaces 
did not easily accommodate tlie new VLlM features. 

To  justif\l a nc\v pl-ogra~nrning interface, \rie looked 
at the applications that would be callilig t l ~ e  new system 
service routines. T o  address more than 4 GB of mem- 
ory in the flat OpenVMS 64-bit address space, a 32-bit 
application must be rcconlpiled to use 64-bit pointers 
and often requires source code changes as \veil. 
Database applications were already modi@ing their 
source code to use 64-bit pointers and to scale their 
algorithms to handle VLM systems.Therefore, calling 
a new set of systeni service routines \\,as considered 
acceptable to  the programmers of VLIM applications. 

Options for Memory-resident Global Sections 
To initialize a very large niemor\i-resident global sec- 
tion mapped by several processes, the overhead of 
hardware faults, allocating zeroed pages, setting 
process PTEs valid, and setting global section pages 
valid is eliminated by preallocating the physical pages 
for the memory-resident global section. Preallocation 
is performed by the reserved memory registry, and is 
discussed later in this paper. Here we talk about 
options for how the reserved memory is used. 

T\vo options, ALLOC and FLUID, are available 
for creating a denland-zero, memory-resident global 
section. 

ALLOC Option The ALLOC option uses preallocated, 
zeroed pages of memory for the global section. When 
the ALLOC option is used, pages are set aside during 
system start-up specifically for the memory-resident 
global section. Preallocation of contiguous groups of 
pages is discussed in the section Reserving Memory 
during System Start-up. Preallocated memory-resident 
global sections are fastcr to initialize than memory- 
resident global sections that LISC the FLUID option. 

Kun-time performance is improved by using the 
Alpha Architecture's granularity hint, a mechanisni we 
disci~ss later in this paper. T o  use the ALLOC option, 
the system must be rebooted for large ranges of physi- 
cally contiguous memory to be allocated. 

FLUID Option The FLUID option allows pages not 
yet accessed \vithin the global section to remain fluid 
within the system. This is also referred to as the fiult 
option because the page fault algorithm is used to allo- 
cate tlie pages. When the FLUID (or  fault) option 
is used, processes or the systenl can use the physical 
pages until they are acccsscd within tlie memory- 
resident global section. The pages remain \vithin the 
system's fluid memor!! until they are needed. This type 
of memorjr-rcsident global section is more flexible 
than one that uses the AL1,OC option. If an applica- 
tion that uses a memorll-resident global section is run 
on  a system that cannot be rebooted due to system 
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availability concerns, it can stdl use the FLUID option. 
The system will not allow this application to run unless 
enough pages of memory are available in the system 
for the memory-resident global section. 

The system service internals code checks the 
reserved memory registrv to determine the range of 
pages preallocated for the memory-resident global 
section or to determine if thc FLUID option will be 
used. Therefore the decision to usc the ALLOC or the 
FLUID option is not made \vithin thc system services 
routine interface. The system manager can determine 
which option is used by specifying preferences in the 
reserved rnclnory registry. An application can be 
switched from using the ALLOC option to using the 
FLUID option without requiring a system reboot. 

Design lnternals 
The jl~ternals ofthe design choices underscore the mod- 
ularity of the shared memory model using global sec- 
tions. A new global section type was easily added to  the 
OpenVMS system. Those aspects of memory-resident 
global sections that are identical to pageable dobal sec- 
tions required no code modifications to support. 

To support mernory-resident global sections, the 
MRES and ALLOC flags were added to  the existing 
global section data structures. The MRES flag indi- 
cates that the global section is memory resident, and 
the ALLOC flag jndicates that contiguous pages were 
preallocated for the global section. 

The file-backing storage information within global 
section data structures is set to zero for memory- 
resident global sections to indicate that no backing 
storage file is used. Other than the new flags and the 
lack of backing storage file information, a dernand- 
zero, memory-resident global section looks to 
OpenVMS Alpha nlemory management h e  a demand- 
zero, file-backed global section. Figure 3 sho~vs the 
updates to the global section data structures. 

One important difference with memory-resident 
global sections is that once a global section page 
becomes valid, it remains valid for the life of the global 
section. Global section pages by definition can never 
become invalid for a memory-resident global section. 

When a process maps to a memory-resident global 
section, thc process PTE can be either valid for the 
ALLOC option or invalid for the FLUlD option. 
When the ALLOC option is used, no page faulting 
occurs for the global section pages. 

When a process first accesses an invalid memory- 
resident global section page, a page fault occurs just as 
with traditional file-backed global sections. Because 
the same data structures are present, the page fault 
code initially executes the code for a dernand-zero, 
file-backed global section page. A zeroed page is allo- 
cated and placed in the global section data structures, 
and the process PTE is set valid. 

The working set list manipulation steps are skipped 
when the LURES flag is encountered in the global sec- 
tion data structures. Because these global section 
pages arc not placed in the process working set list, 
they are not considered in its page-replacement algo- 
ritlu~l. As such, the OpenVMS Alpha working set 
n~anipulation code paths remained unchanged. 

System Management and Memory-resident Global 
Sections 
When a mernor~f-resident global section is used 
instead of a traditional, pageable global scction for a 
database cache, there is no longer any wasted page file 
storage required by OpenVMS to back up the global 
section. 

The other system management issue alleviated by 
the implementation of rnemory-resident global sec- 
tions concerns working set sizes and quotas. Whcn a 
file-backed global section is used for the database 
cache, the database processes require elevatcd working 
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set quotas to accommodate the size of the database 
cache. This is n o  longer a concern because memory- 
resident global section pages are not placed into the 
process working set list. 

With the use of memory-resident global sections, 
system managers may reduce the value for the 
WSMAX system parameter such that more processes 
call remain resident within the system. Recall that a 
process working set list is in 32-bit system address 
space, which is limited to  2 GB. 

Shared Page Tables 

VLM applications typically consume large amounts of 
physical memory in an attempt to minimize disk 1 / 0  
and enhance overall application performance. As the 
physical memory requirements of  VLM applications 
increase, the following second-order effects are 
observed due to the overhead ofmapping to very Large 
global sections: 

Noticeably long application start-up and shut- 
down times 

Additional need for physical memory as the num- 
ber of  concurrent sharers of  a large global section 
increases 

Unanticipated exhaustion of the working set quota 
and page file quota 

A reduction in the number of processes resident in 
memory, resulting in increased process swapping 

The first two effects are related to page table map- 
ping overhead and size. The second nvo effects, as 
they relate to page table quota accounting, were also 
resolved by a shared page tables implementation. The  
following sections address the first t\vo issues since 
they uniquely pertain to the page table overhead. 

Application Start-up and Shut-down Times 
Users of  VLM applications can observe long applica- 
tion start-up and shut-down times as a result of  creat- 
ing and deleting very large amounts of  virtual 
memory. A single process mapping to  a very large 
virtual memory object does not impact overall system 
performance. However, a great number of processes 
that simultaneously map to  a very large virtual mern- 
ory object have a noticeable impact on  the system's 
responsiveness. The primary cause of  the performance 
degradation is the accelerated contention for internal 
operating system locks. This observation has been 
witnessed on OpenVMS systems and on DIGITAL 
UNIX systems (prior to the addition ofVLM support.) 

O n  OpenViMS, the memory management spinlock 
(a synchronization mechanism) serializes access to priv- 
ileged, memor)l-management data structures. We have 
observed increased spinlock contention as the result 
of hundreds of  processes simultaneously mapping to 

large global sections. Similar lock contention and sys- 
tem unresponsiveness occur when multiple processes 
attempt to delete their address space simultaneously. 

Additional Need for Physical Memory 
For pages of virtual memory to be valid and resident, 
the page table pages that map the data pages must also 
be valid and resident. If the page table pages are not  in 
memory, successfill address translation cannot occur. 

Consider an 8-GB, memory-resident global section 
o n  an OpenVMS Alpha system (with an 8-kilobyte page 
size and 8-byte PTE size). Each process that maps the 
entire 8-GB, memory-rcsident global sectlon requires 
8 MB for the assoc~ated page tablc structurcs. If 100 
processes are mapping die memory-resident global sec- 
tion, an additional 800 MB of physical memory must be 
available to accommodate all processes' page table 
structures. This hr ther  requires that working set list 
sizes, process page file quotas, and system page files be 
large enough to  accommodate the page tables. 

When 100 processes are mapping to the saliie 
memory-resident global section, the same PTE data is 
replicated into the page tables of the 100 processes. 
If  each process could share the page table data, only 
8 MB of  physical memory would be required to map 
an 8-GB, mernor~l-resident global section; 792 MB of  
physical memory would be available for other system 
purposes. 

Figure 4 shows the amount of memory used for 
process page tables mapping global sections ranging in 
size from 2 to 8 GB. Note that as the number of 
processes that map an 8-GB global section exceeds 
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1,000, the amount of memory used by process page 
tables is larger than the global section itself. 

Shared Memory Models 
We sought a solution to sharing process page tables 
that would alleviate the performance problems and 
nicn1ory utilization overhead yet stay '~\iitliin the 
shared memory framework provided by the operating 
system and the architecture. Two shared memory 
models are implemented on OpenVMS, shared system 
address space and global sections. 

The OpenVMS operating system supports XI address 
space layout that includes a shared system address 
space, page table space, and private process address 
space. Shared system address space is created by plac- 
ing the physical address of the shared system space 
page tables into evcry process' top-level page table. 
Thus, every process has the same lower-level page 
tables in its virtual-to-physical address translation 
path. In turn, the same operating system code and 
data are found i l l  all processes' address spaces at the 
same virtual address ranges. A similar means could be 
used to create a shared page table space that is used to 
map one or more memory-resident global sections. 

An alternative for sharing the page tables is to create 
a global section that describes the page table structure. 
The operating system could maintain the association 
benveen the memory-resident global section and the 
global section for its shared page table pages. The 
shared page table global section could be mapped at 
tlie upper levels of the table structure such that each 
process that maps to it has the same lower-level page 
tables in its virtual-to-physical address translation 
path. This in turn \vould cause the data to be mapped 
by all the proccsses. 

Figure 5 providcs a concept~~al representation of the 
shared memory model. Figure 6 estends the shared 
memory model by demonstrating that the page tables 
become a part of the shared memory object. 

The benefits and drawbaclts of botli sharing models 
are highlighted in Table 1 and Table 2. 

Model Chosen for Sharing Page Tables 
After examining the existing memory-sharing models 
on OpenVlMS and taking careful note of the composi- 
tion and characteristics of shared page tables, t l ~ c  design 
team chose to implement shared page tables as a global 
section. In addition to the benefits listed in Table 2, the 
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Shared  memory Objects Using Shared Page Tables 

Table 1 
Shared Page Table Space-Benefits and Drawbacks 

Benefits Drawbacks 

Shared page table space begins at the same 
virtual address for all processes. 

The virtual address space is reserved for every process. 
Processes not using shared page tables are penalized 
by a loss in available address space. 
Shared page table space is at least 8 GB in size, 
regardless of whether the entire space is used. 
A significant amount of  new code would need t o  be 
added t o  the kernel since shared system space is man- 
aged separately from process address space. 

Table 2 
Global Sections for Paae Tables-Benefits and Drawbacks 

Benefits Drawbacks 

The same virtual addresses can be used by all Shared page tables are mapped at different virtual 
processes, but this is not required. addresses per process unless additional steps are taken. 
The amount of  virtual address space mapped by shared 
page tables is determined by application need. 
Shared page tables are available only t o  those processes 
that need them. 
Shared page tables allow for significant reuse of existing 
global section data structures and process address space 
management code. 
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design team noticcd that shared page table pages bear 
great resemblance to the memory-resident pages they 
map. Specifically, for a data or  code page to be valid and 
resident, its page table page must also be valid and resi- 
dent. The ability to reuse a significant amount of the 
global section management code reduced the debug- 
ging and testing phases of the project. 

In  the initial implenientation, shared page table 
global sections map to  memory-resident global sec- 
tions only. This decision was made becausc the design 
focused on the demands ofVLM applications that use 
n1emor)i-resident global sections. Should significant 
demand exist, the implementatio~i can be expanded to 
allow the mapping of  pageable global sections. 

Shared page tables can never map process private data. 
The design team had to ensure that the shared page table 
implementation kept process private data from entering 
a virtual address range mapped by a shared page table 
page. If tlus were to happen, it would compromise the 
security of data access between processes. 

Shared Page Tables Design 
The goals for the design ofshared page tables included 
the following: 

w lZeducc the time rcquired for multiple users to map 
the same memor)r-resident global section 

Reduce the physical memory cost of maintaining 
private page tables for multiple mappers of the same 
memory-resident global section 

w D o  not require the use of  a backing storage file for 
shared page table pages 

w Elinlinate the working set list accounting for these 
page table pages 

w Implement a design that allows upper levels of the 
page table hierarchy to be shared at a later time 

Figure 6 demonstrates the shared page table global 
section model. The dark gray portion of the figure 
highlights the level of sharing supplied in OpenVMS 
Alpha version 7.1. The light gray portion highlights 
possiblc levels of sharing alloured by creating a shared 
page table global section consisting of upper-level 
page table pages. 

Modifications to Global Section Data Structure Table 2 
noted as a benefit the ability to  reuse existing data 
structures and code. Minor modifications were 
exacted to the global scction data structures so that 
they could be used to  represent a shared page table 
global section. A new flag, SHARED-PTS, was added 
to the global section data structures. Coupled with 
this change was the requirement that a lnernory- 
resident global section and its shared page table global 
section be uniquely linked together. The correspon- 
dence benveeli the two sets of global sections is man- 
aged by the operatiug system and is used to locate the 
data structures for one global section when the struc- 
tures for the other global section are in hand. Figure 7 
highlights the changes tnade to the data structures. 

Creating Shared Page Tables To create a memory- 
resident global section, an application calls a system 
scrvice routine. N o  flags or cstra arguments are 
required to enable the creation of an associated shared 
page table global section. 

The design team also providcd a means to disable 
the creation of the shared page tables in the event that 
a user might find shared page tables to be undesirable. 
T o  disable the creation of  shared page tables, the 
reserved memory registry entry associated wit11 the 
memory-resident global section can specie that page 
tables are not to  be used. Within the system service 
routine that creatcs a memory-resident global section, 
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the reserved memory registry is examined for an entry 
associated with the named global section. If an entry 
exists and it specifies shared page tables, shared page 
tables are created. If the entry does not specih shared 
page tables, shared page tables are not created. 

I f n o  entry exists for the global section at all, shared 
page tables are created. Thus, shared page tables are 
created by default if n o  action is talzen to disable their 
creation. We believed that most applications ~ l o u l d  
benefit from shared page tables and thus should be 
created transparently by default. 

Once the decision is made to create shared page 
tables for the global section, the system service routine 
allocates a set of global section data structures for the 
shared page table global section. These structures are 
initialized in the same manner as their memory- 
resident counterparts, and in many cases the fields in 
both sets of structures contain identical data. 

Note that o n  current Alpha platforms, there is one 
shared page table page for every 1,024 global section 
pages or  S MB. (The number of  shared page table 
pages is rounded up to  accommodate global sections 
that are not even multiples of 8 MB in size.) 

Shared PTEs represent the data within a shared page 
table global section and are initialized by the operating 
system. Since page table pages are not accessible 
through page table spacei until the process maps to 
the data, the initialization of the shared page table 
pages presented some design issues. To initialize the 
shared page table pages, they must be mapped, yet 
they are not mapped at the time that the global section 
is created. 

A simple solution to the problem was chosen. Each 
shared page table page is temporarily mapped to a sys- 
tem space virtual page solely for the purposes of initial- 
izing the shared PTEs. Temporarily mapping each 
page allo\vs the shared page table global section to  be 
fi~lly initialized at the time it is created. 

An interesting alternative for initializing the pages 
would have been to  set the upper-level PTEs invalid, 
referencing the shared page table global section. The 
page fault handler could initialize a shared page table 
page when a process accesses a global section page, 
thus referencing an invalid page table page. The  
shared page table page could then be initialized 
through its mapping in page table space. Once the 
page is initialized and made valid, other processes 
referencing the same data \vould incur a global valid 
fault for the shared page tabJe page. This design was 
rejected due to  the additional overhead of faulting 
during execution of the application, especially when 
the ALLOC option is used for the memory-resident 
global section. 

Mapping to a Shared Page Table Global Section Map- 
ping to a memory-resident global section that has 
shared page tables presented new challenges and con- 

straints on  the mapping criteria normally imposed by 
the virtual address space creation routines. The map- 
ping service routines require more stringent mapping 
criteria when mapping to  a memory-resident global 
section that has shared page tables. These require- 
ments serve two purposes: 

1 .  Prevent process private data from being mapped 
onto shared page tables. If part of a shared page 
table page is unused because the memory-resident 
global section is not an even multiple of  S MB, the 
process would normally be allowed to create private 
data there. 

2. Accomn~odate the virtual addressing alignments 
required when mapping page tables into a process' 
address space. 

For applications that cannot bc changed to confor111 
to these mapping restrictions, a memory-resident 
global section with shared page tables can be mapped 
using the process' private page tables. This capability is 
also usefi~l \\/hen the memor!r-resident global section is 
mapped read-only. This mapping cannot share page 
tables \vidi a writable mapping because the access pro- 
tection is stored within the shared PTEs. 

Shared Page Table Virtual Regions The virtual regon 
support added in OpenVh4S Alpha version 7.0 \t7as 
extended to  aid in prohibiting process private pages 
from being mapped by PTEs within shared page 
tables. Virtual regions are lightweight objects a 
process can use to reserve portions of its process 
virtual address space. Reserving address space prevents 
other threads in the process from creating address 
space in the reserved area, unless they specify the 
handle of that reserved area to  the address space cre- 
ation routines. 

To  control which portion of  the address space 
is mapped with shared page tables, the shared page 
table attribute was added to virtual regions. T o  map a 
memory-resident global section with shared page 
tables, the user must supply the mapping routine with 
the name of  the appropriate global section and the 
region handle of a shared page table virtual region. 

There are two constraints on the size and alignment 
of shared page table virtual regions. 

1. The size of a shared page table virtual region must 
be an even multiple ofbytes mapped by a page table 
page. For an 8-IU3 page system, the size of  any 
sharcd page table virtual region is an even multiple 
of 8 MB. 

2. The caller can spec@ a particular starting virtual 
address for a virtual region. For shared page table 
virtual regions, the starting virtual address must be 
aligned to  an 8-MB boundary. If the operating 
system chooses the virtual address for the region, it 
ensures the virtual address is properly aligned. 
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If either the size o r  the alignment recluirernent for a 
shared page tablc v i r t~~a l  region is not met, the service 
fails to create thc region. 

The size and alignment constraints placed on shared 
pagc table virtual regions kccp page table pages from 
spanning two different \.irtual regions. This allo~vs the 
operating system to restrict proccss private mappings 
in shared pagc tablc regions and shared page table 
mappings in other regions by checlting the shared 
page table's attribute of the region bcfore starting the 
mapping operation. 

Mapping within Shared Page Table Regions The address 
space mapped within a shared pagc table \rirtual region 
also must be page tablc pagc aligned. This ensures that 
mappings to multiplc ~~iemory-resident global sec- 
tions that have ~lnique sets of  shared pagc tables d o  
not encroach upon each othcr. 

The map Icngtli is thc only argument to thc map- 
ping system scrvice routines that need not bc an even 
multiple of  bytes mapped by a pagc tablc page. This 
is allowed because it is possible for thc sizc of  the 
niemory-rcsident global scction to not be an even 
multiple of bytes niappcd by a page table page. A 
memory-resident global section that fits this length 
description will have a portion of  its last shared page 
table page unuscd. 

The Reserved Memory Registry 

O~CIIVLMS Alplin VLLM support provides a plijrsical 
memory rcser\~atio~i system ttiat can be esploitcd by 
VLM applications. The main purposc of this system is 
to provide portions of  the systeni's physical memory 
to multiple consumers. When ncccssar!; a consumer 
can reser\,e a quantity of  physical addrcsscs in an 
attempt to make the most cfficicnt t~sc  of system com- 
ponents, namely thc translation buffer. More efficient 
use of the CPU and its peripheral coniponents leads to 
incrcascd application pcrformancc. 

Alpha Granularity Hint Regions 
A translation buffer (TB) is '1 CPU component tliat 
caches recent virtual-to-ph!lsicaI address translations 
of valid pages. Thc TH is a small amount of\.er\l fist 
memory and therefore i5 only capablc ofcaching a lim- 
ited ~ x ~ m b e r  of translations. Each entry in the TB rcp- 
resents a singlc succcssfi~l \lirt~~al-to-physical address 
translation. TB cntrics arc p~lrgcd either when a 
request is made by sofhvare o r  when the TR is f i l l 1  and 
a more recent translation needs to be cached. 

The Alpha Architecture coupled with software can 
help make more effectivc use of the TB by allowing 
several contiguous pages (groups of 8,64, or  5 12) to 
act as a single huge pagc. This single huge page is 
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called a granularity hint region and is composed of  
contiguous virtual and physical pages whose respective 
first pages are esactly aligned according to tlie number 
ofpages in the region. When the conditions for a gran- 
ularity hint region prevail, thc singlc huge page is 
allowed to  consume a single TB cntry instead of  sev- 
eral. Minimizing the number ofcntries consumed for 
co~itiguous pages greatly reduccs turnover \vitliin tlie 
TB, leading to higher chances of a TH hit. Increasing 
the likelihood of a TR hit in turn rnini~iiizes the nuni- 
ber of virtual-to-physical translations perforrncd by 
the CPU." 

Since memory-resident global scctions are nonpage- 
able, mappings to memorj!-residcnt global sections 
greatly benefit by exploiting gran~~larity hint regions. 
Unfortunately, there is no  guarantee that a contiguous 
set of  pfiysical pages (let alone pagcs that mcet the 
alignment critcria) can be located oncc the system is 
initialized and ready for steady-state operations. 

Limiting Physical Memory 
One  technique to locate a contiguous set of PFNs on 
OpenVMS (previously used o n  Alpha and VAX plat- 
forms) is to limit the actual numbcr of  physical pages 
uscd by the operating systeni. This is acco~iiplislied by 
setting the PHYSICAL-MEIVORY ~!~stcni  parameter 
to a value smaller than the actual ;Imoilnt of physical 
memory available in thc systcni. The systcrn is then 
rebooted, and the PFNs that represent higher physical 
addresses than tliat spccifed by the paramcter are allo- 
cated by the application. 

This technique \\forks \~rcll tbr a singlc application 
that wishes to allocate or  use a rangc of PFNs not ~lsed 
by the operating system. Unfortunately, it suffers from 
the follo\\ing problen~s: 

I t  requires the application to detcrminc tlic frst  
page not used by the operating systcni. 

I t  requires a process running this application to be 
liiglily privileged since thc opcrating systcrn does 
not check \vhich PFNs arc being ~nappcd. 

Since tlie operating systcrn docs not arbitratc acccss 
to the isolated physical addresscs, only onc appllcd- 
tion can safely use them. 

The Alpha Architecture allocvs for i~nplerncntations 
to support discontiguous physical mcmory or  phys- 
ical memory holes. This mcans that thcrc is 110 

guarantee tliat the isolated physical addresscs arc 
successi\lely adjacent. 

The PFNs above the limit set are not managed by 
the operating system (physical memory data struc- 
tures d o  not describe these PFNs). Tlierefore, tlie 
pages above the limit cannot be recl'iimed by tlie 
operating systeni once tlie application is finished 
using them unless the system is rebooted. 



The Reserved Memory Solution 
The OpenVMS reserved memory registry was created 
to provide contiguous physical memory for the pur- 
poses of further improving the performance of VLM 
applications. The reserved memory registry allows the 
system manager to specify multiple memory reserva- 
tions based on the needs of various VLM applications. 

The reserved memory registry has the ability to 
reserve a preallocated set of PFNs. This allows a set of 
contiguous pages to  be preallocated with the appro- 
priate alignment to  allow an Alpha granularity hint 
region to be created with the pages. I t  can also reserve 
physical memory that is not  preallocated. Effectively, 
the application creating such a reservation can allocate 
the pages as required. The reservation ensures that the 
system is tuned to  exclude these pages. 

The reserved memory registry can specify a reserva- 
tion consisting of  prezeroed PFNs. I t  can also specify 
that a reservation account for any associated page 
tables. The  reservation system allows the system man- 
ager to  free a reservation when the corresponding 
consumer n o  longer needs that physical memory. 

The memory reserved by the reserved memory reg- 
istry is communicated to OpenVMS system tuning 
facilities such that the deduction jn fluid memory is 
noted when computing system parameters that rely on 
the amount ofphysical memory in the system. 

SYSMAN User Interface The OpenVMS Alpha 
SYSbLAN utility supports the RESERVED-MEIVORY 
command for nianipulating entries in the reserved 
memory registry. A unique character string is specified 
as the entry's handle when the entry is added, rnodi- 
fied, or  removed. A size in megabytes is specified for 
each entry added. 

Each reserved memory registry entry can have the 
following options: preallocated PFNs (ALLOC), zeroed 
PFNs, and an allotment for page tables. VLM applica- 
tions enter their unique requirements for reserved 
memory. For memory-resident global sections, zeroed 
PFNs and page tables are usually specified. 

Reserving Memory during System Start-up To ensure 
that the contiguous pages can be allocated and that 
run-time physical memory allocation routines c a i  be 
used, reserved memory allocations occur soon after 
the operating system's physical memory data struc- 
tures have been initialized. 

The reserved memory registry data file is read t o  
begin die reservation process. Information about each 
entry is stored in a data structure. Multiple entries 
result in multiple structures being l i ~ h e d  together in a 
descending-order linlced list. The list is intentionally 
ordered in this manner, so that the largest reservations 
are honored first and contiguous memory is not frag- 
mented with smdler requests. 

For entries \vith the ALLOC characteristic, an 
attempt is made to locate pages that will satisfy the 
largest granularity hint region that fits within the 
request. For example, reservation requests that are 
larger than 4 MB result in the first page allocated to be 
aligned to meet the requirements o f a  512-page gran- 
ularity hint region. 

The system's fluid page counter is reduced to 
account for the amount of reserved memory specified 
in each entry. Thls counter tracks the number of phys- 
ical pages that call be reclaimed from processes o r  the 
system through paging and swapping. Another system- 
defined value, minimum fluid page count, is calculated 
during system initialization and represents the 
absolute minimum number of fluid pages the system 
needs to function. Deductions from the fluid page 
count are always checked against the minimum fluid 
page count to prevent the system from becoming 
starved for pages. 

Running AUTOGEN, the OpenVMS system tuning 
utility, after modifying the reserved memory registry 
allows for proper initialization of the fluid page 
counter, the minimum fluid page count, and other sps- 
tem parameters, thereby accommodating the change 
in reserved memory. AUTOGEN considers entries in 
the reserved memory registry before selecting values 
for system parameters that are based on the system's 
memory size. Failing to retune the system can lead to 
unbootable system configurations as well as poorly 
tuned systems. 

Page Tables Characteristic The page table reserved 
memory registry characteristic specifies that the 
reserved memory allotment for a particular entry 
should include enough pages for its page table 
requirements. The  reserved memory registry reserves 
enough memory to account for lower-level page table 
pages, although the overall design can accommodate 
allotments for page tables at any level. 

The page table characteristic can be omitted if 
shared page tables are not desired for a particular 
memory-resident global section o r  if the reserved 
memory will be used for another purpose. For exam- 
ple, a privileged application such as a driver could call 
the kernel-mode reserved memory registry routines 
directly to use its reservation from the registry. In this 
case, page tables are already provided by the operating 
system since the reserved pages hvill be mapped in 
shared system address space. 

Using Reserved Memory Entries are used and 
returned to the reserved memory registry using a set 
of kernel-mode routines. These routines can be called 
by applications running in kernel mode such as the 
system service routines that create memory-resident 
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global sections. For a11 application to create a memory- 
resident global section and use reserved memory, the 
global section name must exactly match the name of 
the reserved memory registry entry. 

Afier the system service routine has obtained the 
reserved memory for the memor)l-resident global sec- 
tion, it calls a reserved memory registry routine again 
for the associated shared page table global section. If 
page tables were not specified for the entry, the system 
service routine does ~ i o t  create a shared page table 
global section. 

A side benefit of using the ALLOC option for the 
memor!~-resident global section is that the shared page 
tables can be mapped into page table space using gran- 
ularity hint regions as well. 

Returning Reserved Memory The memory used by 
a memory-resident global section and its associated 
shared page table global section is returned to the 
reserved memory registry (by calling a kernel-mode 
routine) when tlie global section is deleted. Reserved 
memory is only returned when a memory-resident 
global section has no more outstanding references. 
Preallocated pages are not returned to the system's 
fi-ee page list. 

Freeing Reserved Memory Preallocated resenled mem- 
ory that is unused or partially used can be freed to the 
system's free page list and added to the system's fluid 
page count. Reserved fluid memory is returned to the 
system's fluid page count only. 

Once an entry's reserved memory has been freed, 
subsequent attempts to use reserved memory witli the 
same name may be able to use only the FLUID option, 
because a preallocated set of pages is no  longer set 
aside for the memory-resident global section. (If the 
system's fluid page count is large enough to accom- 
modate the request, it will be honored.) 

The ability to Free unused or partially used reserved 
memory registry entries adds flexibility to the manage- 
ment of the system. If applications need more mem- 
ory, the registry can still be run with the FLUID 
option until the system can be rebooted with a larger 
amount ofreserved memory. A pool ofreservcd mem- 
ory can be freed at system start-up so that multiple 
applications can use memory-resident global sections 
to a limit specjfied by the system manager jn the 
reserved memory registry. 

Reserved Memory Registry and Other Applications 
Other OpenVMS system components and applications 
may also be able to take advantage of the reserved 
memory registry. 

Applications that relied upon modifications to the 
PHYSICAL-MEMORY system parameter as a lneans 

of gaining exclusive access to physical memory can 
enter kernel mode and call the reserved memory reg- 
istry kernel-mode routines directly as an alternative. 
Once a contiguous range of PFNs is obtained, the 
application can map tlie pages as before. 

Using and returning reserved memory registry 
entries requires lcernel-mode access. This is not viewed 
as a problem because applications using the former 
method (of modifying the PHYSICALMEMORY 
system parameter) were already privileged. Using the 
reserved memory registry solves the problems associ- 
ated with the previous approach and requires few code 
changes. 

Performance Results 

In a paper describing the 64-bit option for the Oracle7 
lielational Database System,' the author underscores 
the benefits realized on a VLM system running the 
DIGITAL UNIX operating system. The test results 
described in that paper highlight the benefits of being 
able to cache large amounts of data instead of resort- 
ing to  disk I/O. Although the OpenVMS design team 
was not able to execute similar kinds of product tests, 
we expected to realize similar performance improve- 
ments for die following reasons: 

More of a VLM application's hot data is kept resi- 
dent instead of paging between memory and sec- 
ondary storage. 

Application start-up and shut-down times are sig- 
nificantly reduced since the page table structures 
for the large shared memory object are also shared. 
The result is t l~at  many fe\vcr page tables need to be 
managed and manipulated per process. 

Reducing die amount of PTE manipulations results 
in reduced lock contention when hundreds of 
processes map the large shared memory object. 

As an alternative to product testing, the design team 
devised experiments that simulate the simultaneous 
start-up ofmany database server processes. The exper- 
iments were specifically designed to measure the 
scaling effects of a VLM system during application 
start-up, not during steady-state operation. 

We performed two basic tests. In the first, we used a 
7.5-GB, memory-resident global section to measure 
the time required for an increasing number of server 
processes to start up. All server processes mapped to 
the same memory-resident global section using shared 
page tables. The results shown in Figure 8 indicate 
that the system easily accommodated 300 processes. 
Higher numbers of processes run simultaneously 
caused increasingly large amounts of system stress due 
to the paging of other process data. 
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Figure 8 
Server Start-up Time versus Proccss Count 

In another test, we used 300 processes to measure 
the time required t o  map a memory-resident global 
section with and without shared page tables. In this 
test, the size ofglobal section was varied. Note that the 
average time required to start up the server processes 
rises at nearly a constant rate when not using shared 
page tables. When the global section sizes were 5 GB 
and greater, the side effect of paging activity caused 
the start-up times to  rise more sharply as shown in 
Figure 9. 

'The same was not true when using shared page 
tables. The time req~~ired to map the increasing sec- 
tion sizes remained constant at just under three sec- 
onds. The same experiment on an Alphaserver 8400 
system with 28 GB of memory showed identical con- 
stant start-up times as the size of the memory-resident 
global section was increased to 27 GB. 
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Figure 9 
Scrvcr Start-up Timc 011 an 8-GB System 

Conclusion 

The OpenVMS Alpha VLM support available in ver- 
sion 7.1 is a natural extension t o  the 64-bit virtual 
addressing support included in version 7.0. The 64-bit 
virtual addressing support removed the 4-GB virtual 
address space limit and allowed applications to  make 
the most of the address space provided by Alpha sys- 
tems. The VLM support e~iables database products or 
other applications that make significant demands on 
physical memory t o  make the most of large memory 
systems by allowing large caches to remain memory 
resident. The programming support provided as part 
of the VLM enhancements enables applications to take 
advantage of both 64-bit virtual addressing and very 
large memories in a modular fashion consistent with 
the OpenVMS shared memory model. This combina- 
tion enables applications to realize the full power of 
Alpha VLM systems. 

The Oracle7 Relational Database LManagement 
System for OpenVMS Alpha was modified by Oracle 
Corporation to exploit the VLM support described in 
this paper. The combination of memory-resident 
global sections, shared page tables, and the reserved 
memory registry has not only improved application 
start-up and run-time performance, but it has also 
simplified the management of OpenVMS Alpha VLM 
systems. 
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PowerStorm 4DT A High- 
performance Graphics 
Software Architecture 

The PowerStorm 4DT series of graphics devices 
established DIGITAL as the OpenGL performance 
leader for mid-range workstations, both on the 
DIGITAL UNIX and the Windows NT operating 
systems. Achieving this level of success required 
combining the speed of the Alpha microprocessor 
with the development of an advanced graphics 
subsystem architecture focused on exceptional 
software performance. The PowerStorm 4DT 
series of graphics adapters uses a modified 
direct-rendering technology and the Alpha CPU 
to perform geometry and lighting calculations. 

The PowerStorrn 4D40T, 4D50T, and 4D60T mid- 
range graphlcs adapters from DIGITAL have exceeded 
the performance of all OpenGL graphics de\ '  x e s  cost- 
ing as much as $25,000. In addition, these products 
achieved twice the price/performance ratio of com- 
peting systems at the time they were announced. 

The PowerStorm 4DT series of mid-range graphics 
devices was developed in 1996 to replace the com- 
pany's ZLX series. In its search for a vendor to replace 
the graphics hardware, DIGITAL found Intergraph 
Systems Corporation. This company had been design- 
ing three-dimensional (3-D) graphics boards for a 
few years and was then on  its second-generation 
chip design. The schedule, cost, and performance of 
Intergraph's ne\v design matched our project's target 
goals. Intergraph was building software for the 
Windows NT operating system on its Intel processor- 
based workstations, but was not doing any work for 
the UNIX operating system or  the Alpha platform. 

The goals of the PowerStorm 4 D T  project were to 
develop a mid-range graphics product powered by the 
Alpha microprocessor that would lead the i n d ~ ~ s t r y  in 
performance and price/perforniance. 

This paper describes the competitive environment 
in the graphics industry at the conception of the 
PowerStorrn 4DT project. I t  discusses our design deci- 
sions concerning the graphics subsystem architecture 
and performance strategy. The paper concludes with a 
performance summary and comparison in the industry. 

Competitive Analysis 

Overall performance of today's mid-range workstations 
is markedly better than that of just two years ago. T h s  
improvement is largely due to the dramatic increases in 
CPU speeds, both in the number of instructions exe- 
cuted per clock cycle and the number ofclock cycles per 
second. Without trivializing the efforts of the CPU 
architects, such year-over-year increases in CPU perfor- 
mance halie become the trend of the last decade, espe- 
cially with the Alpha microprocessor. 
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More  astounding is the central role that the graphics 
component  o f  the workstation is playing in defining 
tlic o\~erall performance o f  the \vorkstation. IVc are in 
the age o f  visual computing. Whether  o r  no t  an appli- 
cation r e q ~ ~ i r e s  3 - D  graphics, even t h e  most  primitive 
applications ofien rely o n  a graphical user interface 
(GUI) .  As such, the  graphical components  o f  today's 
system-levcl benchmarks now carry significant weight. 

Adore iniportantly, a prospecti\~e buyer often loolts 
a t  results from standard graphics benchmarks as a gen- 
eral indication o f  a machine's overall performance. 112 
tlie computer-aided desig~~/computer-aided manu- 
facturing (CAD/CAM) market,  a customer typically 
buys a worltstation t o  run  a set o f  applications that has 
a large 3-D component .  Performance is measured by 
ho\v fast a \\~orkstation can create and manipulate 3-13 
objects. For  the 111ost part,  this performance is deter- 
mined wholly by tlie graphics subsystem. T h e  hard-  
\\fare conlponents o f  the  graphics subs!~stem, ho\veve~-, 
vary from vendor t o  vendor and may o r  may n o t  
include tlie CPU.  

Performance Metrics 
Simply stated, the  primary goal o f  the l'o\\~erStorrn 
4 D T  graphics device series was t o  provide the  fastest 
rnid-range O p e n G L  graphics performance while offer- 
ing the best price/performance ratio. O p e n G L  is the 
industry-standard 3 - D  graphics application program- 
ming  interface (MI)  and  associated library that  p ro-  
vides a p la t fo rm- i~ ldepende~i t  interface for  rendering 
3 - D  graphics.' 

Quantifjiing performance can be an elusive goal. 
Product managers in o u r  bVorltstation Graphics Group  
chose two metrics t o  compare the performance o f  the 
l'o\\~erStorm 4 D T  adapter t o  o u r  co~npet i tors '  prod-  
ucts. T h e  first metric was perfonndnce o n  the indus t ry  
standard O p e n G L  Viewvperf benchmark, C o n c e p t ~ ~ a l  
Dcsign and Rendering Software (CDRS).' This bench- 
mark was chosen for its uni\lersal acceptance in the 
CAD/CAM and process control markets. When  buyers 
compare graphics perfor~iiance of  two systems running 
OpenGL, thc Vie\vperf scores are a m o n g  the first 
m c a s ~ ~ r c m e n t s  they seek. T h e  second measurement 
was performance o n  the l'ro/ENGINEER application 
from Parametric Technology Corporation (PTC) .  

T h e  CDRS benchmark, as shown in Figure 1, .vclas 
established by the  O p e n G L  Performance Charactei-i- 
zation ( O P C )  organization as one  o f  several Vien~per f  
viewsets. I t  emulates the  variety o f  operations a usel. 
typically executes \vlien r ~ i n n i n g  a <:AD/CAM applica- 
tion. Specifically, this benchmarlt uses a series o f  tests 
that  rotate a 3 - D  model o n  the  screen in a variety o f  
modes,  including wireframe vectors, smooth-shaded 
facets, texturing, and transparency. Performance is 
rncasured by liowr~ many frames per second can be 
generated. Higher  frame rates equate  t o  faster and 
smoother  rotations o f  the  model. Each test carries a 

Figure 1 
CDlG Viewpe~-f Renchmark of OpenGL Performance 

weight determined t o  roughly correspond t o  how 
important that operation is in a rcal-world CAD/CAM 
package. T h e  test results are geometrically averaged t o  
produce a coniposite score. This  single number  is a 
representation o f  tlie g~-aphics performance o f  any 
given systein. 

Although standard benchmarks are good  perfor- 
mance indicators, they cannot  substitute for actual 
performance o n  a n  application. To ensure that  the  
l'o\verStor~n 411T adapter realized exceptional real- 
world performance, the  second metric chosen was the 
CAD/CAii/l industry's rnarket share leader, the  Pro/ 
ENGINEER application. PTC provides the industry 
\vith a set o f  playback files called trail files. As shown in 
Figure 2, each file contains a recording o f  a session in 
\vhich a user has created and rotated a 3 - D  part.  T h e  
recordings typically have large wireframe and smooth-  
shading components  and little o r  n o  texture niapping. 
Performance is measured by h o w  quickly a system can 
play back trail file. 'The C1)IIS benchmark stresses 
onl!~ the graphics subs)atcni, bu t  the Pro/ENGINEElI 
trail file stresses the C P U  and the memory  subsystem 
as \\Jell. 

Graphics Hardware Standards 
In 1996, Silicoil Graphics Inc. (SGI)  captured the 
mid-range graphics ulorltstation niarltet \\jith its 
Indigo2 Maximum IiMPACT graphics subsystem pow- 
crcd by the  LMIPS lXlOOOO microprocessor. DIGITAL, 
Sun ~Microsystel~ns, and International Dusiness Maclunes 
(IRh/I) Corporation had yet t o  produce a product with 
the perforniancc SGI offered; instead, they competed 
in tlie low t o  lo~wicr mid-range graphics arena. 
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Figure 2 
Screen Capture from the Pro/ENGINEER Trail File Used to Stress the PowerStorm 4DT Series 

Hewlett-Packard was notably absent from either 
bracket due to its lack ofa  mid-range workstation with 
OpenGL graphics capability. Mid-range workstations 
can be loosely classified as costing from $15,000 to 
$40,000. Graphics performance in this price range dif- 
fers, sometimes dramatically, from vendor to vendor. 

Considering only raw graphics hardware perfor- 
mance, a vendor had to offer a certain level ofperfor- 
rnance to be competitive with SGI. By 1996 standards, 
a competitive device needed to be capable of achieving 
the following: 

w 1 million Gouraud-shaded, 25-pixel, Z-buffered 
triangles per second 

w 2 million flat-shaded, antialiased, 10-pixel vectors 
per second 

Trilinear, miprnapped, texture f i l l  rates of 30 mega- 
pixels per second 

w 24-bit deep color buffer 

4-bit overlay buffer 

w 4-MB dedicated or unified texture memory 

w Dedicated hardware support for double buffering 
and Z-buffering 

w Screen resolution of 1,280 by 1,024 pixels at 72 hertz 

In 1996, the PowerStorm 4D60T, the most 
advanced graphics adapter in the new series, was capa- 
ble of the following: 

w 1.1 million Gouraud-shaded, 25- to  50-pixel, 
2-buffered triangles per second 

2.5 million flat-shaded, antialiased, 10-pixel vectors 
per second 

w Trilinear, mipmapped, texture fill rates of greater 
than 30 megapixels per second 

w 32-bit deep color buffer 

w 8- bit overlay buffer 

w 0- to 64-MI3 dedicated texture memory 

w Dedicated hardware support for double buffering 
(including overlay planes) and Z-buffering 

w Screen resolution up to 1,600 by 1,200 pixels at 76 
hertz 
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I t  is important to understand that these are hard- 
ware maximums. Tlie interesting work is not in 
achieving these rates under the best of conditions, but 
in aclieving these rates under most conditions. T o  
reiterate, building liard\\lare that can theoretically per- 
form well and building a system that performs well in 
benchmark applications are two distinctly different 
goals. The latter requires the former, but the former in 
no way guarantees the latter. 

Different viewpoints on the best way to  provide the 
highest level of performance have divided the industry 
into several camps. Workstation vendors must decide 
which approach best exploits the conlpetitive advan- 
tages of their systems. In  the mid-range workstation 
market, our graphics philosophy is decidedly dfferent 
from that of our conlpetitors. For the most part, 
DIGITi% is alone in its choice o fa  CPU-based, direct- 
rendering graphics architecture. 

I n  the next section, we discuss the various graphics 
design architectures in the industry, focusing o n  the 
design of the PowerStorm series and comparing it 
\\~itll SGI's approach. 

Graphics Subsystem Architectures 

The two essential choices for graphics subsystem design 
are deciding between indirect and direct rendering and 
choosing whether the CPU or an application-specific 
integrated circuit (ASIC) performs the geometry and 
lighting calculations. In tlis section, we discuss the 
advantages and disadvantages of both rendering 
schemes and calculation devices and explore designers' 
decisions for graphics subsystenl architectures. 

By order of occurrence, 3 -D graplics can be divided 
into three stages: (1) transferal of OpenGLAPI calls to 
tlie rendering library, (2) geometry and lighting, and 
(3 )  rasterization. In the next section, we compare 
direct and indirect image rendering. 

Direct Versus Indirect Rendering 
Before the popularization of the Windows NT operat- 
ing system and the personal computer, almost all 
graphics workstations used the X Window System or  
a closely related derivative. The typical X Window 
System implementation is a standard client-server 
model."n application that draws to the screen 
requests the X server to manage the graplics hardware 
on its behalf. 

The graphics M I ,  either Xlib for two-dimensional 
(2-D)  applications or  OpenGL for 3-D, was the h n c -  
tional breaking point. Traditionally, client applications 
would make graphics API calls to d o  drawing or  
another graphics-related operation. These calls would 
be encoded and buffered on the client side. At some 
point, either explicitly by the client or implicitly by tlie 
API library, the encoded and buffered requests would 
be flushed to the X server. These commands would 

then be sent to the X server over a transport such as 
the Transmission Control Protocol/Internet Protocol 
(TCP/IP), a local UNIX domain socket, or local 
shared memory. 

When the requests arrived at the X server, it \\~ould 
decode and execute them in order. Many requests 
~ r o u l d  then require the generation of commands to be 
sent to the hardware. T h s  client-server model was 
named indirect rendering because of the indirect way 
in which clients interacted with the graphics hardware. 

Direct rendering is a newer method often employed 
in the design of high-end graphics  system^.^.^ In this 
scheme, the client OpenGL library is responsible for all 
or  most 3-D rendering. Instead of sending commands 
to  the X server, the client itself processes the com- 
mands. Tlie client also generates hardware command 
buffers and often communicates directly with the 
graphics hardware. In this rendering scheme, the X 
server's role is greatly diminished for 3 - D  OpenGL 
requests but remains the same for 2 - D  Xlib requests. 

The designers chose to support direct rendering for 
the PowerStorm 4DT adapter. Direct rendering offers 
considerably better performance than indirect render- 
ing. Note, however, direct rendering does not pre- 
clude indirect rendering. All devices that support 
direct rendering under the X Window System also 
support indirect rendering. 

In the following subsections, we discuss the advan- 
tages and disadvantages of direct and indirect render- 
ing. We also explain the impetus for making the 
PowerStorm 4DT adapter the first graphics device 
from DIGITAL capable of direct rendering. 

lndirect Rendering One advantage of indirect ren- 
dering that should never be underestimated is its proven 
track record. This techno log)^ is widely accepted and 
understood. I t  offers network transparency, whch 
nieans a client and server need not reside on the same 
nlachine. A client can redirect its graphics to any 
macline running an X server as long as the two 
machines are connected on a TCP/IP network. Tlus 
model worked well until faster CPUs and graplics 
devices were developed. The protocol encode, copy, 
and decode overhead associated with sending requests 
to the server became a bottleneck. 

The increased use of display lists provided an inter- 
mediate solution to this probleni. Display lists are a 
group ofOpenGL commalids that can be sent to the X 
server once and executed multiple times by referenc- 
ing the display list ID instead of sending all the data 
each time. Display lists dramatically reduced commu- 
nication overhead and returned graphics to the point 
at which communication to die X server \+/as no longer 
the bottleneck. 

Unfortunately, display lists had significant disadvan- 
tages. Once defined, they could not be modified. T o  
achieve perforlnance using indirect rendering, almost 
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all OpenGL commands had to be collected into dis- 
play lists. This caused resource problems because 
display lists could be quite large and had to be stored 
in the X server until explicitly deleted by the client. 
Probably the greatest disadvantage was that display 
lists were generally awkward for application programs 
to use. Application programmers prefer the more 
straightforward method of immediate-mode pro- 
gramming by which commands are called individually. 
For these reasons, indirect rendering proved to be 
insufficient, even with the advent of display lists. 

Direct Rendering The PowerStorm 4DT project 
team was committed to designing a product with lead- 
ership performance for both the display-list-mode and 
immediate-mode rendering. The designers realized 
early that they would have to adopt direct rendering to 
address the performance problems with immediate- 
mode indirect rendering. 

As mentioned earlier, the philosophy behind classi- 
cal drect  rendering is that each client handles all 
OpenGL processing, creates a buffer of hardware 
commands for the device, and then sends the com- 
mands to the device without any X server interaction. 
This model has several drawbacks. First, access to the 
graphics hardware is difficult to  synchronize between 
clients and the X server. Second, windows and their 
properties such as position and size have to be main- 
tained by the clients, which also requires a complex 
sylichronization design. SGI used this model for its 
IMPACT series of graphics devices. 

The PowerStorm 4DT designers took a more con- 
servative approach, based largely on the same model. 
One fundamental difference is that each client gener- 
ates hardware command buffers in shared memory. 
The client then sends requests to the X server telling it 
where to locate the hardware commands. The X server 
sets up the I~ardware to deal with window position and 
size and then initiates a b e c t  memory access (DMA) of 
the hardware command buffer to the graphics device. 
Essentially, the X server becomes an arbitrator of hard- 
ware buffers. This approach worked quite well, because 
the X server was the logical place for synchronization to 
occur and it already maintained window properties. We 
were able to have all the performance benefits ofclassi- 
cal direct rendering without the pitfalls. 

One implication of direct rendering is that the client 
and the server have to be on the same physical machine. 
When first evaluating direct rendering, designers were 
curious to determine how ofien our customers used 
tlis configuration; that is, did most users perform their 
work and display their graphics on the same computer? 
Our surveys showed that more than 95 percent of 
users did display their graphics locally. The remaining 
5 percent rarely cared about performance. Today, this 
may seem obvious; two years ago, it could not be 
assumed. 

Direct rendering offered a huge performance 
improvement to nearly all our customers. The perfor- 
mance gains were two to four times the performance 
of indirect rendering. 

Direct-rendering 2-D Most graphics device imple- 
mentations use direct rendering only for OpenGL, 
because indirect rendering of immediate-mode 
OpenGL is protocol rich. As mentioned previously, 
the transferal of this protocol to the X server can be 
quite expensive. One interesting aspect of our design 
is its support for direct rendering of2-D ,Nib calls. 

Other graphics vendors consider 2-D performance 
important only for 2-D benchmarks. These bench- 
marks, which largely stress the graphics hardware's 
ability to draw 2-D primitives quickly, can generate a 
lot of work for the hardware with relatively few 
requests. Unlike 3-D, these requests do  not need 
much geometry processing before they can be sent to 
the hardware. This means that very little protocol is 
needed to saturate the hardware. As long as the proto- 
col generation does not produce a bottleneck, indirect 
rendering performs as well as direct rendering. In 
addition, given that OpenGL benchmarks like CDKS 
have almost no 2 -D component, it seems reasonable 
to  conclude that inbrect-rendered 2-D should suffice. 

Benchmarks ofien are not sufficiently representative 
of real applications, especially when they isolate 2-D 
and 3-D operations. CAD/CAM applications typically 
have a substantial 2 -D GUI, which interacts closely 
with the 3-D components of the application. A bench- 
mark that exercises both 2-D and 3-D by emulat i~~g a 
user session on an application will provide results that 
more accurately reflect the performance witnessed by 
an end user. These benchmarks simply measure how 
long it takes to complete a session, so both 3-D and 
2-D performance impact the overall score. 

Our  research showed that with a highly optimized 
OpenGL implementation, in many cases it was n o  
longer the 3-D components that slowed down a 
benchmark, but the 2-D components. Further exam- 
ination revealed that it was the same protocol bottle- 
neck evident with indirect-rendered OpenGL. 
Applications were generating relatively small drawing 
operations with many drawing attribute changes 
intermixed, such as draw line, change color, draw 
line, change color, and so forth. This type of request 
stream tends to generate tremendous amounts of 
protocol, unlike 2-D benchmarks that rarely change 
drawing attributes. 

Accordingly, 2-D direct rendering presented itself as 
the logical solution. With the direct-rendering infra- 
structure and design already in place, developers sim- 
ply needed to extend it for 2-D/Xlib. This required 
the development of two additional libraries: the 
Vectored X library and the Direct X library (unrelated 
to  Microsoft's DirectX API). 
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The Vectored X library replaced the preexisting Xlib. 
I t  allows devices that support direct rendering to vector, 
or  redirect, Xlib hnction calls to direct-rendering rou- 
tines instead ofgenerating the X protocol and sending it 
to the X server. If a graphics device docs not support 
direct rendering, it defaults to the generic protocol- 
generating routines. I t  is important to understand that 
this is a de\~icc-independent library responsible only tor 
vectoring Nib calls to die appropriate library. 

The Direct X library, on  the other hand, is a dcvicc- 
dependent library. It contains all the vectored fi~nctions 
that the Vectored X library calls when the device sup- 
ports direct rendcring. This library operates in much 
the same way as the direct-rendering OpenGL, library. 
I t  processes the requests and places graphics hard\varc 
commands in a shared memory buffer. The X server 
later sends the buffer to the graphics device by DMA. 

The entire hnctionality of die X library is not  implc- 
mented through d rec t  rendering for several reasons. In 
many cases, a shared resource resides in thc scrvcr (c.g., 
the X server performs all pismap rendering). 111 other 
cases, the hardware is not drectly addressable by thc 
clicnt (e.g., the X server handles all Frame bufkr reads). 
Often the client does not have access to  all \vindo\\~ 
information that the server majntains (e.g., the X server 
handles all window-to-window copies). Fort~~nately, 
these operations arc either not fiequentl\l i~sed,  not 
expected to be fast, or easily saturate the hard\vare. 

Further details of the Vectored X library and Direct 
X library arc beyond tlie scope of this papcr. The con- 
cept ofdirect-rendered 2-D, however, is sound. It has 
helped DIGITAL outperform other vendors on many 
application benchmarks that \\/ere largely focused on 
OpenGL but had significant 2 -D components. Our  
2-D direct-rendering technology has also enhanced 
2-D performance and response time for the many 
thousands of exclusively 2-D applications for the 
X Window System. 

Geometry and Lighting 
The geometry and lighting phase can be performed by 
the host CPU or  by a specialized, high-speed ASIC, 
\vhich is typically located on  the graphics device. 
Regardless of  where these calculations cake place, the 
general idea is that the user's vertices are transformcd 
and lit, then fed to the rasterizer. Since the rastcrizer is 
on the graphics dcvice, choosing the host t o  d o  the 
geometry and lighting implies that the transformcd 
and lit vertices are then sent across the bus to the ras- 
terizer. The use of a specialized ASIC implies that the 
user's vertices are sent across tlie bus, transformed and 
lit by tlie custom ASIC, and then fed directly to the 
rasterizer. The information transferred across the bus 
is obviouslv different, but in terms of amount of  data 
per vertex, it is approximatel!l the same. Tlicrcforc, 
bus bandwidth does not  become a deciding factor for 
either design. 

Host CPU Geometry and Lighting Trad i t iona l ly ,  
DIGITAL has chosen the host CPU to  perform thc 
gcometry and lighting calculations. The l'o\\.erStorm 
project designers chose this approach because of the 
Alpha microprocessor's exceptional floating-point 
speed, and because almost all 3-D calculations invol\:e 
floating-point values. At the time this project \\.as con- 
ccivcd, thc only general-purpose, \videly available 
processor capable of  feeding more than 1 million 
transformed and lit vertices per second to  tlie hard- 
\\,'Ire was the Alpha CPU. An additional bcnetit of 
having the Alpha CPU d o  the work was an  overall cost 
reduction of the graphics device. Custom ASlCs are 
espensive to develop and rnanufacturc. 

Another important and rclated advantage is that our 
sohz~are becomes proportionally filstcr as clocli spccds 
rise on a\,nilable Alpha microprocessors. This results 
in a near linear perforrnancc incrcasc \ \ , i t l io~~t  any 
additional engineering cost. For csamplc, usins thc 
same sohvare, a 500-megahertz (IMHz) Alpha micro- 
processor is ablc to produce 25  perccnt morc vcrticcs 
per second than a 400-MHz Alpha micropl-occssor. 
Bccause of this, dcvelopers can \vrite optiniizcd Alpha 
codc oucc and reuse it for successive gcncrations of 
Alpha CPUs, reaping performance impro\.cments \\,ith 
virtually no fi~rther invested effort. 

I t  is obvious that rendering can proceed no hster 
than vcrticcs can be generated. If thc OpenGL library 
can transform and light only 750,000 vertices pcr sec- 
ond, and  the graphics dcvice can rasterize 1 million, 
the effective rendering rate will bc 750,000. In this 
example, the OpenGL geometry and lighting sohvare 
stages are tlie bottleneck. Ho\\~ever, if the numbcrs 
\ \ l c ~ - ~  reversed, and the .hard\vare c o ~ ~ l d  only rasterize 
750,000 vertices \vhile the OpcnGL sohvarc pro\~ided 
1 millio~i, the rasterization hard~\~arc  \\,auld become 
thc bottleneck. 

Thus fir, haire discussed two potential hottlc- 
necks: the OpenGL implementation itself and tlic ras- 
terization liard\vare. The third and potentiall!, most 
da~iiaging bottleneck may be the clicnt's ability to feed 
vcrticcs to thc OpenGL library. I t  should be clear that 
tliis is the top level ofvertcs processing. The OpcnGL 
library can render n o  faster than thc rate at \vIiich the 
client application feeds it ~cr t iccs .  Consequently, thc 
rastcrizcr can render primitives no hstcr than thc 
OpenGL library can produce them. Thus, a bottlcncck 
in generuting vertices for the OpenGL library will slo\\, 
the cntire pipeline. Ideally, we would like each Icvcl to 
be ablc to produce at least as many verticcs as thc 
lo\vcr Ic\~cIs can coIisiIIne. 

Clearly, the perforlnancc of the application, in tcrlns 
of  handing vertices to thc OpenGL library, is a f t~nc- 
tion of CPU speed. :This is o~i l !~  an  i s s ~ ~ c  fix applica- 
tions that have large computation o\,crhcad bcforc 
rcndcring. Currently, almost a11 graphics bcnchniarks 
h;i\,e littlc or  no computation o\re~-hcad in getting vcr- 
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tices to the OpcnGL library. Most attributes are pre- 
computed, since they are trying to measure only the 
graphics performance and throughput. For the most 
part, this holds true for the traditional CAD/ChV 
packages. Ho\vevcr, some emerging scientific visual- 
ization applications as well as some high-end CAD 
applications require significant compute cycles to gen- 
erate the vertices sent to the OpenGL library. For 
these applications, only the DIGITAL Alpha CPU- 
based \vorltstations can produce the vertices fast 
enough for interactive ratcs. 

There are some potential disadvantages to tlus 
design. Namely, die CPU is responsible for both die 
application's and the graphics library's computations. If 
the application and d ~ c  OpenGL implementation must 
contend for compute cycles, overall performance will 
suffer. Analysis ofapplications revealed that typical 3-D 
and 2-D graphics applications d o  internal calculations 
follo\\,ed by rendering. 0111y under rare circumstances 
d o  die nvo processes mix with a substantial ratio. If the 
applications should start mixing their orvn processing 
needs wid1 those of the OpenGL library, the notion of 
host-based geometry \vould need to be revisited. 

Another potential disadvantage is the rate at \\~hich 
Alpha CPU performance increases versus the rate at 
Ivhich the rasterizer chip's performance increases. The 
emerging generation of graphics devices is capable of 
rastcrizing more than 4 ~iiillion triangles per second. I t  
is unkno\\~n \vhether f i~ture generations of the Alpha 
Cl'U will be able to feed the faster grapliics hardrvare. 

ASIC-based Geometry and Lighting Performing gconi- 
en31 and lighting calculations ~ 4 t h  a custom ASIC on the 
graplics device is often referred to  as OpenGL in hard- 
ware because most of the OpenGL pipeline resides in the 
ASIC. The OpenGL library is limited to handing the API 
calls to die hard\vare. SGI has adopted die ASIC-based 
approach for many generations of \vorkstations and 
graphics devices. 111 this section, we discuss why d i s  
method uiorlts for diem and its potential shortcomings. 

SGI ~vorkstations use either the R4400 or the KlOOOO 
CPU developed by MIPS Teclmologies. Although these 
CPUs have good integer performance, tlieir floating- 
point performance cannot generate the number of ver- 
tices that the Alpha Cl'U can. As a consequence, SGI has 
to use the custom-graphics ASIC approach. One advan- 
tage to the custoni ASIC is die decoupling of graphics 
from the CPU. Sincc each can operate aspnclironously, 
die application has full use of the CPU. 

Typically, custom geometry ASICs, also kno\vn 
as geometry engines, perform better than a general- 
purpose CI'U for several reasons. First, the custom 
ASIC must perform only a \\lell-understood and lim- 
ited set of calculations. This allo\vs tlie ASIC designers 
to optimize their chip for these specific calculations, 
releasing them from the burden and complexit\r of 
general-purpose Cl'U design. 

Second, the graphics engine and the rasterizer can 
be tightly coupled; in fact, they can be located on  the 
same chip. This allows for better pipelining and 
reduced comniunication latencies between tlie two 
components. Even if the geometry engine and raster- 
izer are located on different chips, \vhich is not at all 
uncomn~on,  a much stronger coupling exists benveen 
tlie geometry engine and the rasterizer than does 
between the host CPU and rasterizer. 

Third, geometry engines can yield high perfor- 
mance when executing certain display lists. The use of 
a display list allows an object to be quicltly re-rendered 
from a different \rienr by changing the orientation of 
tlie vie\ver and recxecuting the stored geometry. If the 
display list can fit within the geometry engine's cache, 
it can be executed locally without having to rcsend the 
display list across the bus for each execution. This 
helps alleviate the transportation overhead in getting 
the display list data over the bus to the graphics device. 
I t  is unclear ho\v often this redly happens since rasteri- 
zation is typically the bottleneck. If the display list is 
filled uritli ruany small area primitives, ho~vever, its use 
can result in noticeable performance gains. Geometry 
engines often have a limited amount of cache. If an 
application's display list exceeds the amount of cache 
memory, performance degrades significantly, often to 
below die performance attainable \vithout a geometry 
accelerator. Our  researcli sho\\a that display list sizes 
used by applications increase every year; therefore, 
cache size must increase at the same rate to maintain 
display list pertbrmancc ad\~antages. 

The primary disadvantage of using custom ASICs to 
perform the geometry and lighting calculations is tlie 
expense associated ivith their design and manufacture. 
In addition, a certain risk is in~lolved rvith their devel- 
opment: hardware bugs can seriously impact a prod- 
uct's viability. Fixing the bugs causes tlie schedule to 
slip and the cost to rise. Hardware bugs disco\~ered by 
customers can be devastating. With host-based geonl- 
etry, a sohvare fix in tlle OpenGL library can easily be 
incorporated and distributed to customers. 

A sometimes unrecognized disadvantage of dedi- 
cated geometry engines is that they are bound to fixed 
clock ratcs, with little room for scalability. Although 
this is true ofmost CPU designs, CPU vendors can jus- 
ti@ the engineering effort required to move to a faster 
technology, because of competitive pressures and the 
larger volume of host CPU chips. 

Ras teriza tion 
Duri~ig  the rasterization phase, primitives are shaded, 
blended, textured, and Z-buffered. In the early years 
of raster-based computer graphics, rasterization was 
done  sing sofnvare. As computer graphics became 
more prevalent, graphics performance became an 
issue. Because rasterization is highly con~putational 
and requires many accesses to fi-arne buffer memory, 
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it quickly became the performance bottleneck. 
Specialized hardware was needed to accelerate the 
rasterization part of graphics. Fortunately, hardware 
acceleration of rasterization is well understood and is 
now the de facto standard. Today, nearly evcry graph- 
ics device has rasterization hardware. Even low-priced 
commodity products have advanced raster capabilities 
such as texture mapping and antialiasing. 

In the next section, we relate our strategy for 
obtaining optimal graphics software performance 
from an Alpha processor-based system. 

Performance Strategy 

The goals of the PowerStorm 4DT program \Irere 
largely oriented toward performance. Our strategy 
consisted of having a generic code path and then tun- 
ing performance where necessary using Alpha assem- 
bly and integrated C code. 

Performance Architecture 
The designers optimized the software performance 
of the Powerstorm 4DT series within the framework 
of a flexible performance architecture. This architec- 
ture provided complete hnctionality throughout the 
performance-tuning process, as well as the flexibility 
to enhance the performance of selected, performance- 
sensitive code paths. 

In  this context, code paths refer to the vertex- 
handling routines that conduct each vertex through 
the geometry, lighting, and output stages. Whereas 
most OpenGL API calls simply modify state condi- 
tions, these vertex routines perform the majority of 
computation. T h s  makes them the most likely choices 
for optimization. 

The Generic Path A solid, all-purpose code base 
written in C and named the generic path offers full 
coverage of all OpenGL code paths. The generic path 
incurs a significant performance penalty because its 
universal capabilities require that it test for and handle 
every possible combinatio~l of state conditions. In fact, 
~ ~ n d e r  certain conditions, the generic path is incapable 
of driving the hardware at greater than 33 percent of 
its maximum rendering rate. The generic path assumes 
responsibility for the rare circumstances that are not 
deemed performance-sensitive and thus not worthy 
of optimization. It also acts as a safety net when high- 
performance paths realize mid-stride that thcy are not 
equipped to handle new, unanticipated conditions. 

Multicompiled Speed of Light (SOL) Paths H i g h  - 
performance SOL paths provide greatly increased per- 
formance where such performance is necessary. Under 
prescribed conditions, SOL paths replace the generic 
path, yielding equivalent hnctionality with perfor- 
mance many times that of the generic path. SOL paths 
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were written for the combinations of state conditions 
exercised most frequently by the target applications 
and benchmarks. 

The developers responsible for performance tuning 
designed two classes of SOL paths. First, they gener- 
ated a large number of SOL patlls by compiling a C 
code template multiple times. Whereas the generic 
path is composed ofseveral routines, each correspond- 
ing to  a single stage of the pipeline, a multicompiled 
SOL path integrates these stages into a monolithic 
routine. Each compilation turns on and off a different 
subset of state conditions, resulting in integrated paths 
for every combination of the available conditions. This 
~nulticompilation of integrated SOL paths yields the 
following benefits: 

The C compiler is allowed a broader overview of 
the code and can more wisely schedule instructions. 
In contrast, the generic path is composed of several 
individual stages. These relatively short routines do  
not provide the C compiler with enough space or 
enough scope to  make informed and effective, 
instruction-ordering decisions. Multicompiling the 
various stages into a series of monolithic, integrated 
routines relieves each of these problems. 

The multicompilation assumes a fixed set of condi- 
tions for each generated path. This eliminates the 
need for run-time testing of these conditions dur- 
ing each cxecution of the path. Instead, such test- 
ing is necessary only when state conditions change. 
Validation, as this testing is called, determines 
which new path to employ, based on the new state 
conditions. With the great number and complexity 
of state conditions influencing this decision, valida- 
tion can be an expensive process. Performing vali- 
dation only in responsc to state changes, rather 
than for every vcrtes, results in significant perfor- 
mance gains. 

The SOL path coverage at least doubles every time 
that support for a new state condition is added to 
the template. Each new condition increases the 
number ofcombinations ofconditions being multi- 
compiled into SOL paths by a factor of two or 
more. An adverse side effect of this strategy is that 
the compile time and resulting library size will 
increase at the same rate as the SOL path coverage. 

Assembly Language SOL Paths Hand-coded Alpha 
assembly language paths constitute the other class of 
high-performance SOL paths. These paths, designed 
specifically for extremely performance-sensitive con&- 
tions, require much more time and attention to pro- 
duce. Taking advantage of the many features of the 
Alpha nlicroprocessor transforms assembly language 
coding from a science into an art form.6 The Alpha 
assembly coders kept the following issues foremost in 
their minds: 



The 21164 and subsequent Alpha microprocessors 
are capable of quad-issuing instructions, which 
means that as many as four instructions can be initi- 
ated during each cycle. The combination ofinstruc- 
tions that may be issued, however, depends on the 
computational pipelines and other resources 
employed by each instruction. Coders must care- 
hlly order instructions to  gain the maximum bene- 
fit from the multiple-issue capability. 

As a consequence of the above restrictions, inte- 
ger and floating-point operations must be sched- 
uled in parallel. With few exceptions, only two 
floating-point and two integer instructions can 
be issued per cycle. Efficiency in this case requires 
not only local instruction-order tweaking but also 
global changes at the algorithmic level. Integer 
and floating-point operations must be balanced 
throughout each assembly routine. If a particular 
computation can be easily performed using either 
integer math or floating-point math, the choice is 
made according to which pipeline has more free 
cycles to use. 

Register supply is another factor that affects the 
design of an assembly language routine. Although 
the Alpha microprocessor has a generous number 
of registers (32 integer and 32 floating-point), they 
are still considered a scarce resource. The coder 
must organize the routine such that some calcula- 
tions complete early, freeing registers for reuse by 
subsequent calculations. 

The crucial performance aspect of assembly coding 
is transporting the data where and when it is 
needed. The latency of loading data from main 
memory or even from cache into a register can eas- 
ily become any routine's bottleneck. To  minimize 
such latencies, load instructions must be issued well 
in advance of a register's use; otherwise, the 
pipeline will stall until the data is available. In an 
ideal architecture with an infinite quantity of regis- 
ters, all loads could be performed well in advance. 
Unfortunately, due to  the scarce amount of free 
registers, the number of cycles available between 
loading a register and its use is frequently limited. 

Each of these assembly language programming con- 
siderations requires intense attention but yields 
unmatched performance. 

Performance Tuning 
After reviewing benchmark comparisolis and recom- 
mendations from independent software vendors, we 
determined which areas required performance improve- 
ment. We approached performance tuning from two 
directions: either by increasing SOL path coverage or 
improving the existing SOL code. 

Increasing SOL path coverage was the more straiglit- 
forward but the more time-consuming approach. If an 
SOL path did not exist for a specific condition, a new 
one would have to be written. Addng a new option to 
the multicompilation template required a significant 
effort in some cases. Implementing a new assembly 
language SOL path always required significant effort. 

Improving the performance of an existing SOL 
path required an iterative process of profiling and 
recoding. We employed the DIGITAL Continuous 
Profiling Infrastructure (DCPI) tools to analyze and 
profile the performance of our code.' DCPI indicated 
where bottlenecks occurred and whether they were 
due to data cache misses, instruction slotting, or 
branch misprediction. This information provided the 
basis for obtaining the maxin~um performance from 
every line of code. 

Development of 3-D Graphics on Windows NT 

At the start of the PowerStorm 4DT project, the 
Windows NT operating system uJas an emerging tech- 
nology. The DIGITAL UNIX platform held the larger 
workstation market share, while Windows NT 
accounted for only a small percentage of customers. 
For that reason, designers targeted performance for 
applications running on DIGITAL UNIX and devel- 
oped 3-D code entirely under that operating system. 

Nevertheless, we recognized the potential gains of 
developing 3-D graphics for the Windows NT system. 
O ~ l e  of the company's goals was to be among the first 
vendors to provide accelerated OpenGL hardware and 
software for Windows NT. 

With a concerted effort and a few compromises, the 
team developed the PowerStorm 4DT into the fastest 
OpenGL device for Windows NT, a title that was held 
for more than 18 months. To  achieve this capability, 
the designers made the following key decisions: 

To write code that was portable between the 
DIGITAL UNIX and Windows NT systems. 

To dedicate two people to the integration of the 
DIGITAL UNIX-based code into the Windows NT 
environment. Most OpenGL code was operating- 
system independent, but supporting infrastructure 
needed to be developed for Windows NT. 

To use Intergraph's preexisting 2-D code and to 
avoid writing our own. Intergraph provided us with 
a stable 2-D code base for Windows NT. This code 
base had room for optimization, but further opti- 
mization of the 3-D code took precedence. 

To ship the graphics drivers for DIGITAL UNIX 
first, and the graphics drivers for Windows NT 
three months later. In t h s  way, we allowed the 
DIGITAL UNIX development phase to advance 
unimpeded by the efforts to port Windows NT. 
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Results and Conclusion 

In August of 1996, the PowerStorm 4D60T graphics 
adapter Mias best in its price category with a CDRS per- 
formance number of 49.01 using a 500-h4Hz Alpha 
processor. I t  yielded a new price/performance record 
of $321 per frame per second. At the same time, SGI 
attained a CDRS number of only 48.63 on a system 
costing nearly three times as much. 

Figure 3 shows the relative performance of the 
Po\verStorm 4D60T for four of the major Viewperf 
benchmarlts. The viewsets are based on  the follou~ing 
applications: CDRS, a computer-aided industrial design 
package from PTC; Data Explorer (DX), a scientific 
ilisualization package froni IUM; DesigiRevie\\~ (DlIV), 
a model review package from Intergraph; Advanced 
Visualizer, a 3-D animation system from Alias/ 
Wavefront (APVadvs). 

The PowerStorm 4D60T mid-rangc graphics adapter 
easily outperformed die Indigo2 Hi41 lMPACT system 
froni SGI by a \vide margin and even surpasscd SGI's 
more expensive graphics card, tlie Indigo2 Maxi- 
mum IlMl'ACT, by a factor of morc than 2 : l  in pricc/ 
performance on these benchmxks. Figure 4 sho\\s 
that the Po\\,erStorm 4D6OT nras tlie performance 
leader in three of the four benchmarks. SGI has yet to 
produce a graphics product in this price range that 
outperforms the PowerStorrn 4D6OT. 

Acknowledgments 

Tlic authors \\/auld likc to acltno\\dcdge thc many 
other engineers \\~Iio made the l'o\\ferStorrn 4DT proj- 
cct a successful one, including A/Ionty Brandcnburg, 
Shill-Tang Cheng, Bill Clifford, John Ford, Chris 
IGiiker, Jim Rees, SIILIIILI~ Shen, Sliree Sridlinran, 

CDRS 

KEY 

I POWERSTORM 4D60T 

SGI MAXIMUM IMPACT 

SGI HIGH IMPACT 

DRV 

Figure 3 
Price/Performance Co~nparison of  Graphics Adnptcrs on  Vic\vperf Gcnchniarks 

" 
CDRS DX DRV AWADVS 

KEY 

I SGI MAXIMUM IMPACT 

SGI HIGH IMPACT 
POWERSTORM 4D60T 

Figure 4 
Performance of Graphics Adapters on  Viewpcrf Benchmarlis 

58 111g1td '?cchnical Journa l  Vol.9 No .  4 1997 



Bruce Stockwell, and Mark Yeagcr. \Vc would also like 
to thank the  Graphics Quality Assurance G r o u p  and 
the Workstation Application Benchmarking G r o u p  for 
their unending patience and cooperation. 

References 

1. M. Segal and I<. Akeley, 73e OperzGL Graphics System: A 
Specijzcation (Mountain View, Calif.: Silicon Graphics, 
Inc., 1995). 

2. The OpenGL Performance Characterization Project, 
http://w\w.specbench .org/gpc/opc.stauc. 

3. R. Scheifler and J .  Gettys, X \.U/lndozo Sjatem (Boston: 
Digital Press, 1992). 

4. H. Gajewska, M. Manasse, and J .  ILIcCormack, "Why X 
Is Not Our Ideal Windo\\! System," Softuwre Practice 
a~id Eh"perieuce (October 1990). 

5. M. Kilgard, "Dl  1: A High-Performance, Protocol- 
Optional, Transport-Optional Window System with 
X11 Compatibility and Semantics," n e  Ninth Annual 
X Technical Conference, Boston, [Mass. ( 1995). 

6. R. Sites and R. Witek, Alpha AXP Architecture Rejer- 
ence ~Vfanz~al(Boston: Digital Press, 1995). 

7. J. Anderson et d., "Continuous Profiling: Where Have All 
the Cycles Gone?" The 16th ~ C I ~ ~ S J J ~ I ? / I O A I L ~ ~ ?  or7 Opernt- 
wzg Sys/enisPnncq~les, St.  mal lo, France (1997): 1-14. 

General References 

J.  Folep, A. van Dam, S. Feiner, and J .  Hughes, Computer 
Grnphics Principles a n d  Practice (Reading, Mass.: Addison- 
Wesley, 1993). 

LM. Woo, J. Neider, and T. Davis, OpenGL Progr.ainming 
Grride (Reading, Mass.: Addison-Wesley, 1997). 

Biographies 

Benjamin N. Lipchak 
Benjamin Lipchak joined DIGITAL in 1995 to develop 
software for the PowerStorm 4 D T  graphics adapter and 
later developed 3-D sohvarc for thc Po\verStor~n 4D30T 
project. A senior sohvarc engineer in the Workstation 
Graphics Group, he is currently leading the sohvare effort 
ofa  new graphics project. Benjamin received R.S. (highest 
honors) and M.S. degrees in computcr science from 
Worcester I'olyteclinic Institute. He is the recipient of the 
Salisbury Award in Computer Science. 

Thomas Frisinger 
Tom Frisinger was a scnior s o h a r e  engineer in thc 
Workstation Graphics Group at DIGITAL for three )!cars. 
During that time, he contributed to nearly all aspects of the 
Po~lerStorni 4DT project. As a member of the core soft- 
ware engineering team, he helped develop software for the 
4D40T, 4DSOT, and 4D60T graphics adapters as well as 
the 4D30T and 4D51T models. H e  was also part of the 
core software design team for the 4D31T graphics acceler- 
ator. Tom is currently doing research and development in 
PC graphics for AT1 Research, Inc. 

Karen L. Bircsak 
As one of the developers of the Powerstorm 4DT graphics 
adapter, Karen Bircsak designed and implemented 
enhancements to the X library and contributed to other 
sofnvare development areas. A principal software engineer 
in the Workstations Graphics Group, Karen is currently 
working on supporting new graphics hardware. Prior to  
joining DIGITAL in 1995, she held sofhvare engineering 
positions at Concurrent Compi~ter Corporation and Data 
General Corporation. She earned a B.S. in computer sci- 
ence and engineering from the University of Pennsylvania 
in 1984 and an 1M.S. in computer science from Boston 
University in 1990. 

Digital Technical Journal 



Keith L. Comeford 
Keith Corneford is a principal software engineer in the 
Workstation Graphics Development Group. Hc is currently 
worlung on the next generation of graphics cards and accel- 
erators for DIGITAL. Keith was thc project leader for the 
Windows NT drivers for tile PowerStorn~ 4D40T/50T/60T 
graqhics cards. In previous project work, Keith contributed 
s~gn~ficantly t o  the GKS and PHIGS implementations in a 
variety of capacities from developer to  project leader for 
more than10 years. Keith joined DIGITAL in 1983 after 
receiving a B.S. in computer science from Worcester 
Polytechnic Institute. 

Michael I. Rosenblum 
Mike Rosenblum is a consulting software engineer at 
DIGITAL and the technical director for the Workstations 
Business Segment Graphics Group. H e  was the project 
leader and architect of the Powerstorm 4DT series and 
implemented some ofits 2-D DDX code. Currently, he is 
managing two graphics projects and consulting to the 
company on graphics-related issues, Mike joined DIGITAL 
in 198 1, to work on the terminal driver in the VMS 
Engineering G r o ~ ~ p .  Later he helped design the company's 
first workstations. H e  has a B.S. in computer scicnce from 
Worcester Polytechnic Institute and is a member of the 
ACM. 

60 Digital Technical Journal Vol. 9 No. 4 1997 



m 
Robert J. Walsh 

DART: Fast Application- 
level Networking via 
Data-copy Avoidance 

The goal of DART is to effectively deliver high- 
bandwidth performance to the application, 
without a change to the operating system call 
semantics. The DART project was started soon 
after the first DART switch was completed, and 
also soon after line-rate communication over 
DART was achieved. In looking forward to giga- 
bit class networks as the next hurdle to conquer, 
we foresaw a need for an integrated hardware- 
software project that addressed fundamental 
memory bandwidth bottleneck issues through 
a system-level perspective. 

0 1997 IEEE. Reprinted, with permission, from IEEENetwork, 
July/August 1997, pages 28-38. 

The Ethernet supported large 100-node networks in 
1976.' By 1985,lO Mb/s Ethernet had been available 
for a while, even for PCs. However, high-performance 
hardware and software lagged, due to system bottle- 
necks above the physical layer. The premier implemen- 
tations for UNIX were achieving only 800 kb/s (8 %of  
10 Mb/s) in benchmark scenarios on common system 
platforms of the day2 

:The deployment of 100 Mb/s fiber distributed data 
interface (FDDI) provided an order of magnitude 
bandwidth increase in the link speed around 1987. 
However, the end system could not saturate the link 
on generally available machines and operating systems 
until 1993," when Transmission Control Protocol 
(TCP) improvements and a CPU capable of 400 mil- 
lion operations per second became available:' Once 
again, high-performance hardware and sohvare 
lagged the potential provided by the physical layer. 

The current tecl~nological approach is switching. 
Gigabit-class links and adapters, such as 622 Mb/s 
asynchronous transfer mode (ATM), are becoming 
available. Since ATM links are dedicated point-to- 
point connections, the use of 622 Mb/s in switch-to- 
switch links and at the periphery implies that one 
ought to be able to move data at gigabit rates. 

Switched capacity promises a lot to servers; how- 
ever, mainstream systems are not currently capable of 
effectively using the bandwidth. The DART project 
attempts to avoid the Ethernet and FDDI scenarios 
where end-system performance lags physical-layer 
potential. 

One of the early goals was to go beyond simple 
benchmark scenarios where line rate communication 
connects a phony bit source to  a phony bit sink, with 
the CPU saturated. The context for the work was to 
connect two applications at high speed, leaving CPU 

TThc TCP improvements includcd a small architectural update, 
the window scaling extension, to abstractly support the advertisc- 
ment of more than 64 kbytcs of receive buffering. The rest of the 
impro\wnents derived from implementation efforts to  increase 
the actual buffering allocated to advertised TCP windows, and to 
improve the segmentation of the TCP byte stream into packets. 

Digital Technical Journal Vol. 9 No. 4 1997 61 



resources available to  execute the applications. 111 the 
past, the CPU had been saturated in Ethernet and 
FDDI quests for line rate communication. 

Layering 

The moti\~ation for DART arises from the specific Iay- 
cring and abstraction used in BSD-dcr~ved UNIX sys- 
tems, but the context is sufficiently general that the 
problem and solution have wide applicability. Since 
various layers within system software will be refer- 
enced repeatedlv, we introduce them using Figure 1. 

The ~ppl icnt ion generates and consumes data. I t  
tells the operating system which data to communicate 
when, by iislng read and write syste~ii calls. 

The  socket iayermoves data between the operating 
system and the application. I t  also synchronizes the 
application with the  nenvorking protocols based on  
data and buffer availability. 

The transportprotocol layer provides a connection 
to the remote pecr. In the case ofTCP, the connection 
is a reliable byte stream. TCP takes on tlie responsibil- 
ity of retrans~n~tting lost or corrupted data, and of 
ignoring reception of  retransmitted data that was pre- 
viously received. 

The network protocol layer provides an abstract 
address and path to  the remote host. I t  hides the vari- 
ous hardware-specific addresses used by the various 
media in existence. In the case of  IP, fragmentation 
allows messages to traverse med~a  which have different 
frame sizcs. 

A conventional driver layer moves data between thc 
network and the system. I t  uses buffers and data struc- 
tures whose representation percolates throughout all 
the operating system networking layers. 

The DART Concept 

DART increases network throughput and decreases 
system overheads, while preserving current system call 
semantics. The core approach is data copy avoidance, 
to better utilize memory bandwidth. 

APPLICATION 

I 
SOCKET 

TRANSPORT PROTOCOL 
OPERATING (TCP, UDP) 
SYSTEM 

NETWORK PROTOCOL 

DRIVER 

Figure 1 
Software Layering 

Memory bandwidth is a scarce resource that must 
not be squandered. In  DIGITAL'S transition from 
MIPS processor systems to Apha  processor systems, 
CPU performance increased more rapidly than main 
memory bandwidth. I t  took approximately 340 ps  to  
move 4500 bytes on  the MIPS-based DECstation 
5000/200, and approxinlatelp 200 ps  on the Apha-  
based DEC 3000/500. I n  the same time, the fised 
pcr-packet costs were reduced by a fiqctol- of three or 
more. (General tl-ends are also stated in Reference 4 . )  

One  breakdown of nehvorki~ig costs is reported in 
Reference 5.  The variable per-byte costs reported 
there are all associated with memory bandwidth, 
which is improving slowvly. The fixed per-packet costs 
in the driver, protocol, and operating system overhead 
are all generally associated with the CPU, which is 
i~nproving rapidly. Thus, we focus on the per-byte 
memory bandwidth issues as those most needing 
architectural improvement. 

A traditional system follows the nenvorking subsys- 
tem model implemented within the BSD releases of  
UNIX, shown in Figure 2 .  An application uses the 
CPU to create data ( l) ,  the socket portion of  the sys- 
tem call interface copies the data into operating system 
buffers ( 2  and 3), the nehvork transport protocol 
checksu~ns the data for error detection purposes (4) ,  
and the device driver uses programmed input/output 
(I/O) or  direct memory access (DMA) to  move the 
data to  the network (5). Graphs showing the domi- 
nant costs of checksumming and kernel buffer copies 
are presented in Reference 6. 

These five memory operations are a profligate waste 
of memory bandwidth. A system with a 300 Mbyte/s 
memory system would achieve at most 300*8/5 = 

480  Mb/s 1 /0  rates. The  system would be saturated. 
The DART model is shown in Figure 3. The DART 

model is that data is created ( 1 )  and sent (2). Two 
memory operations make efficient use o f the  memory 
bandwidth. 

Figure 2 
BSD Copy-based Architecture 

Figure 3 
DART Zero-copy Architect~~re 
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Squandering of memory bandwidth is avoided. A 
system with a 300-Mbyte/s memory system would 
encounter the larger bound of  300*8/2 = 1200 M b/s 
for 1 / 0  rates. Resources are available for the applica- 
tion even when running at line rate! 

To  support the DART concept, we need a spstem 
perspective that integrates the hardware and software 
changes implied by the DART model. Hardware is 
responsible for checksumming instead of sofmlare. 
Hardware is solely responsible for data movement, 
instead of redundant actions by both hardware and 
sohvare. These hardware changes are bounded and 
generic. 

Operating system software retains the application 
interface and general coding of  the BSD UNIX imple- 
mentation. Extensive changes are unnecessary, since 
the f o c ~ ~ s  is the core lines that represent data move- 
ment consumption of memory bandwidth. Extensive 
changes are also undesirable, since there is a large base 
of software written to the current properties of the 
BSD networking subsystem. 

The DART Hardware 

The first implementation of  the DART concept is a 
high-performance 622-Mb/s ATM network adapter 
for the PC1 bus called DART. DART'S design reflects 
an awareness of  the interactions of  the colnponents of 
the system in which it is placed. The PC1 bus, main 
memory, cache, and system sofnvare can all be used 
efficiently. 

Store-and-Forward Buffering and DMA 
DART is an adapter that connects a gigabjt-class net- 
work to a gigabit-class 1 / 0  bus, and is appropriate for 
systems with gigabit-class memory systems. DART is 
focused on  the server market where a slight increase in 
adapter cost can be acceptable if the spstem perfor- 
mance is significantly improved, since main memory 
and other costs dominate the cost of the DART 
adapter. 

DART alleviates main memory bottlenecks through 
a store-and-forward design, as shown in Figure 4. 
Traditional networking software subsystems and appli- 
cations perform at least five memory operations to cre- 
ate, copy, checksum, and communicate data. DART's 
exposed bzflering allows data to be created and com- 
municated with just two main memory operations. 

" ~ h c  1200-iMb/s figure 111cludes thc cost of  lh~ving the application 
\vrirc the data to  memory. Some Incmory bnnd\vidtli might be 
c o n s ~ ~ m e d  to  fi l l  the CPU's cache in order to cxesute the applica- 
tion and operating system. In this scenario, if non-network band. 
\vidth is grcarer rhan 300*8 - 2"lOOO = 400  iMb/s, data 
producuon would be rhc bottlclleck and thc ncnvork would 
run at less than line ratc. This is beneficial; thc bottleneck has 
been moved to  the appl~cation. 

The adapter memory is a resource that can be better 
utilized by esposing it to the operating system, and 
better performance results as well. T h s  is similar to the 
exposure of the CPU-internal mechanism in the CISC- 
N S C  (complex to reduced instruction set) transition. 

DART confains a number ofJl?atures fo make the 
store-andTfortoard design eflectiue. DART's bus mas- 
ter and receiver summarize network transport proto- 
col checksums for software. DART's bus master 
provides byte-level scatter-gather data movement to 
support communication out  of application buffers, 
not just operating system buffers. DART provides 
packet headers for sofhvare to parse so  that software 
can direct the bus master to  place received data jn the 
application's buffers when the application desires, 
without operating system copy overhead. 

Buffering Design An ATM segmentation and reassem- 
bly (SAR) chip accesses virtual circuit state for each 
cell, and operates on 48-byte cell payloads. The pay- 
load naturally corresponds to a burst-mode operation, 
leading to the use of synchronous dynamic DRAM 
(SDRAM) to buffer cells. The circuit state is generally 
smaller and randomly accessed, leading to the use of 
static R M 4  (SRAM) for control information. Dividing 
the data storage architecture into two parts allows the 
interface designs to be tailored to the characteristics of 
the data type in question. 

The DART prototype uses 16 Mbytes of  SDRAM 
for the data memory. The prototype uses 1 Mbyte of  
S W  for the control memory. The SDRAM supports 
hardware-generated transmissions, aggregation of 
data for efficient PC1 and host memory interactions; 
and buffering for received data ~ ~ n t i l  the application 
indicates the proper destination for it. The SRAM con- 
tains the SAR intermediate state; with a large number 
of  virtual circuits and ATM's interleaving of packet 
contents, there js too much state to  be recorded on- 
chip at this time. 

Packet Summarization for Software The receiver parses 
the cells for the various packets which are interleaved 
on  the network connection, and reassembles the cells 
into pacltets. Once all the cells composing a packet 
have been received, a packet descriptor is prepended 
to the packet. The descriptor contains length, circuit 
number, checksum, and all other information that the 
driver may need to parse and process the packet. 

Upon packet reassembly, a hardware-initiated DMA 
operation moves software-configured amounts of 
descriptor and packet contents to host memory. When 

'Some adaptcrs segment (or reassemble) from host mcniory, 
leading to  48-byte payload transactions with host memory. 
TI-ansaction size should be a n  integral multiple of rhe cache 
block size, and should be aligned, in order ro avoid wasting 
sysreln bandwidth. 
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Figure 4 
DART Block Diagram 

properly configured, the hardware provides the net- 
work and transport headers, allowing software to 
determine where to place the packet data. Sohvare 
data copies are avoided by allowing software to initiate 
a DMA operation to move the data to its final application- 
desired location, rather than to some expedient, but 
inefficient, operating system buffer. 

Receive Buffering DART'S store-and-forward receive 
buffers are divided into two classes. The per-circuit 
class guarantees each circuit forward progress. Each 
circuit is individually allocated some buffers in which 
to store cells. No  other circuit can prevent data from 
passing through such buffers. The shared class is pref- 
erentially used, and avoids resource fragmentation 
problems. Any circuit can consume a shared buffer for 
an incoming cell. 

Since software specifies when and where to store 
packet data, adapter buffers are recycled when soh- 
ware decides to d o  so, and not independently by hard- 
ware. Part of a packet may be stored in application 
buffers at one time, and other parts of the same packet 
may be stored in application buffers at later times. 
Hardware cannot assume a one-to-one correspon- 
dence between receive D M  and complete packet 
consumption. 

Flow control occurs in the socket layer based on 
transmit buffer availability, in the transport layer based 
on remote receive buffer availability, in the driver 
based on adapter resource availability, and in the ATM 
layer based on cell buffer availability within the net- 
work. Credt-based flow-control protocols for ATM 
are based on the source of a cell stream on a link 
decreasing a counter (quota) when a cell is sent, and 
increasing a counter when a credit is received.' The 
decrement represents buffer consumption at the next 
hop. The credit advertises buffer availability to the 
source; the nest hop has forwarded a cell and thus 
freed a buffer! 

'~orwardm~ the ceU is required for (per-circuit) buffers ofwhich 
the m s m i t t e r  on  the link was made aware during Link initialization. 
The receiver on the link can generate credits immediately for (shared) 
buffers hdden from d ~ e  transmitter during Link ulitiahmtion. 

With FLOWrnaster, the credit is conveyed across the 
link to the source of the cell stream by overlaying the 
virtual path identifier (VPI) field with the circuit to 
credit. This is a nonstandard optional use of the ATM 
cell header. Quantum Flow Control is a credit-based 
flow-control protocol for ATM that batches the credts 
into cells instead of overlaying the \TI field. 

Since credit-based flow-control is based on buffer 
availability, credits advertising free buffers can poten- 
tially be held up by software actions. The shared class 
allows immediate credit advertisement, and best 
enables line rate communication. The per-circuit class 
involves software packet processing in the credit 
advertisement latency. To advertise a credit for a cir- 
cuit whose per-circuit quota is exhausted, either the 
circuit must recycle an adapter-buffered packet, or any 
circuit must recycle a shared-class, adapter-buffered 
packet. 

A minimal memory that constantly ran out of per- 
circuit buffers and flow-controlled the source would 
exhibit poor performance. DART uses a large data 
memory. Advertising (shared) buffers via credits keeps 
the data flowing through the overall network and sys- 
tems wid1 lljgll performance. 

Transmit Buffering S o h a r e  performs all transmit 
buffer management. Software creates a free buffer list 
of its own design, allocates buffers from the list to hold 
packet data, and recycles buffers after observing packet 
completion events. Software makes the trade-off 
between large efficient buffers which may be incom- 
pletely filled, and small buffers which waste less stor- 
age but incur increased allocation, free, DMA 
specification, and transmit description overheads. 

Peer- to-Peer UO 
DART avoids system resource consumption in server 
designs by supporting peer-to-peer T/O. A traditional 
server would consume PC1 bus and main memory 
bandwidth twice by using main memory as the store- 
and-forward resource between nvo 1/0 devices, as 
shown in Figure 5. The PC1 bus is consumed during 
steps 2 and 5. The main memory is consumed during 
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Figure 5 
Traditional Servcr Architecture 

steps 3 and 4. 011 some systems, 1/0 operations com- 
pete for cache cycles during steps 3 and 4,  whether 
the cache is external to or internal to the CPU. Such 
resource conslimption can cause the CPU to stall even 
though the CPU will never examine such data. 

DART allows a single PC1 bus transaction to move 
the data, as shown in Figure 6. This also avoids any 
main memory bandwidth consumption when a bridge 
isolates the PC1 1 /0  bus from the main system bus. 
The cache is not consumed with nuisance coherence 
loads for data the CPU will never examine, and the 
CPU does not have to contend with 1 / 0  for cache or 
main memory cycles. 

For peer-to-peer 1/0  over DART, the CPU is only 
involved in initiating packet transmission. This is a rel- 
atively small burden, since only a little bit of control 
information needs to be computed and communi- 
cated to the adapter. 

To enable efficient peer-to-peer I/O, DART 
includes a bus slave as well as a bus master. m e  bus 
slave makes the internal resources of the adapter visi- 
ble on the PC1 bus through DART'S PC1 configuration 
space base address registers. Therefore, on the PC1 
bus, the data memory looks like a linear contiguous 
region of memory, just as main memory does. The bus 
slave supports both read and write operations for these 
typically internal resources. 

PC1 BUS 

CPU. CACHE, 
MEMORY 

Figure 6 
DART Servcr Architecture 

110 
CONTROLLER 

DART provides efficient handling of small packets. 
Typically, describing a number of small packets for 
transmission is onerous for software, limiting the peak 
packet rate. DART'S transmitter can automatically 
subdivide a large amount of data into small packets, 
eliminating a lot of per-packet overhead. This feature 
is appropriate for a video server, whose software can- 
not possibly fill the network pipe if it must operate on 
8-cell packets. 

PC1 Interface 
DART supports both 64- and 32-bit variants of the 
PCI bus. The network interface and DART memories 
provide prodigious bandwidth. To  fully take advan- 
tage of them, a 64-bit PC1 bus is recommended, but 
DART will also operate on a 32-bit PC1 bus. 

DART 

Bus Reads and Writes The DART architecture sup- 
ports memory write-and-invalidate hints to the bridge 
between the system bus and the PC1 1 / 0  bus. Such a 
hint informs the bridge that the 1 / 0  device is only 
writing complete cache blocks. There is no need for 
read-modify-write operations on main memory cache 
blocks in such circumstances. 

Write operations within a system are generally 
buffered. A path from the origin of the write to the 
final destination can be viewed as a sequence of seg- 
ments. As data flows tlirough each segment, each 
recipient accepts data with the pron~ise of completing 
the operation, allowing each source to free resources 
and proceed to new operations. Thus, write paths are 
generally not performance-limiting as long as there is 
sufficient buffering to accept burst operations. In the 
DART context, the bridge between the system bus and 
the PC1 1/0 bus accepts DART'S writes and provides 
buffering for high throughput. 

However, read operations are more problematic. 
When memory locations are shared between CPUs, 
caches may or may not be kept coherent by hardware. 
Here, the memory locations are shared between the CPU 
aid 1/0 device, and there is no coherence support. Each 
DART read suffers a round-trip time through the bridge 
to access the maim memory. DART addresses this latency 
tlvough large read transactions (up to 5 12 bytes). 

As an example, consider a simplified 64-bit bus 
where 540 Mb/s of data are written in 64-byte bursts, 
reads suffer 15 stall cycles until the data starts to 
stream, and writes require a stall cycle for the target 
to  recognize its address. Address and data are time- 
multiplexed at 33  MHz. Then writes consume 540 * 
(1 + 1 + 8)/ 8 = 675 Mb/s of bus bandwidth. Reads 
have 33  * 8 * 8 - 675 = 1437 Mb/s of bus band- 
width into which they must fit. Thus, the minimum 
burst length Lreq~~ired is 540 * (1  + 15 + L) = L 5 1437. 
The burst must be at least 9 cycles, 72 bytes, in the 
ideal case. DART'S large read burst size compensates 
for overheads Like large read latencies. 

BRIDGE 
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Importance of Bus Slave Interface Tlie bus master inter- 
face is appropriate for software-generated transmis- 
sions. A packet created by an application in main 
memory can be moved via DMA to the network. 

The bus slave interface is appropriate for hardware- 
generated transmissions. Another I/O device wl~icli is 
designed to always be bus master, like a disk interface, 
can move data directly to tlie DART \iritliout interme- 
diate staging in a memory. Peer-to-peer I/O, ho\vever, 
was a by-product ofother concerns. 

Data transfer within TCP is based on a stream of  
large data packets flowing in one direction, and a 
stream of small acknowledgments flowing in the 
opposite direction. Traffic analysis studies ofien find a 
mix of  smaller and larger packets. One  of the early 
concerns for the DART project was to make transport 
protocol generation of ackno\vledgn~ents inespensive 
by avoiding DMA. A small packet, constructed entirely 
by tlie CPU anyway, could be moved to the 1 /0  
device instead of to main memory. This is fiindanirn- 
tally a short sequence of  svrite operations that could 
easily be buffered, allowing the CPU to proceed in par- 
allel on  other work. 

L)IMA from an application buffer to a device inter- 
face is generally specified t o  hardware by stating tlie 
physical addresses of the application buffer in main 
memory. D I M  requires a guarantee that the data is at 
the specified locations. If the virtual memory system 
were to migrate the data to d s k  and recycle the physi- 
cal memory for some other use, the parallel DMA 
activity would move the wrong data. Therefore, DMA 
operations are s~irrounded by page lock and unlock 
calls to tlie virtual memory system, to inform it that 
certain memory locations should not be migrated. 

Additional concerns tliat led to incorporation of tlie 
bus slave interface were related to the cost of page 
locking, and the cost of acquiring and releasing DMA 
resources (e.g., in the bridge). An ackno\vledgment 
might be constructed in nonpaged kernel memory, 
but a small application packet would likely be con- 
structed in application memorv s~lbject to paging. 
Even ifpage locks were cached for temporal locality, it 
might be cheaper to simply move the data via pro- 
grammed I/O. 

The break-even point benveen LIMA and pro- 
grammed 1 / 0  is system-dependent, but can be niea- 
sured at boot time in order to learn an appropriate 
threshold to use for such a decision. Deniands on the 
main memory system from its various clients will 
change over time, and a single measurement is only 
optimal for tlie sample's conditions. The suggestion 
here is to enable a quick judgment in the s o h a r e .  Tlie 
intent is to make large gains and avoid egregious per- 
formance errors. We suspect that fine-tuning the deci- 
sion is less important, and requires the collection of 
excessive information during the normal operation of 
tlie system: 

Interrupt Strategy As noted above, on-chip access 
rates for the CPU increase more quickly than off-chip 
access rates. Interrupt processing and context switching 
are hndamentally off-chip actions; new register values 
niust be loaded into the CPU, and the cache niust be 
primed with data. Thus, die general system trend is that 
interrupt processing and context switching improve 
more slowly than ra\v processing perfornilu~ce. 

DART provides a programmable interrupt holdoff 
mechanism. By delaying interrupts, events can be 
batched to reduce various system overheads. If the 
batching mechanism were not present, an interrupt per 
packet would swamp system software at  gig a b' ~t rates. 

Since the interrupt delay interval is programmable, 
software may use adaptive algorithms to decrease 
interrupt latency ifthe system is idle, or  to increase the 
amount of batching if the system is busy. The delay 
timer starts decrenienting as soon as it is written. 
Typically, the timer will be written at the end of  the 
interrupt service routine. 

Interrupts can be divided into nvo classes by 
sohvare. Each class has its own delay interval, in 
case sohvare assigns distinct importance o r  latency 
requirements to the classes. 

The Dart Software 

DART provides increased performance with the same 
system calls, and with the existing system call seman- 
tics. The only change is to the underlying implementa- 
tion of  the existing system call semantics. 

Unmodij?edexisting applications can consume giga- 
bit network bandwidth. The application can assist the 
system sohvare by using large contiguous data buffers, 
but it is not required. System software can specify byte- 
level scatter/gather operations to the DART adapter in 
order to access arbitrary application buffers. 

Changes to the system software are confined to a 
few locations above the driver layer, and are generic. 
Successive hgh-bandnlidth adapters fbr other media 
can be supported by just writing drivers; no  changes 
\\/ill  be needed above the driver layer. The shared set of 
upper-layer software changes are only needed to take 
ma~in ium advantage o fa  DART-style adapter; a tradi- 
tional copy-based implementation is supported by the 
hardware. 

'Given the parallel. nature o f  the environnlenr (other 1/0, cache 
opcrarions, and ~nultiprocessor CPUs), s sofnware system could 
only csrilnarc non-DART niemory loads. Queued DMA opernrio~is 
[nay srarr larer than expectcd, o r  finish before rhc~r completion has 
been noricecl. CPU cache activity is dependent on  rlic program 
csccuti~ig .lr that molnenr; hie-tuning is problcmaric. Thc focus o f  
L)AI<T has becn h e  large gains, like a \ :o~d~ng cop~cs, or ~lllowing 
cirhcr L>MA or programmed 1/0 to be used. The focus has been 
on thc structure ofthe sysrem. 

Digir.11 'lkchnical Journal Vol. 9 No. 4 1997 



We developed a prototype UNIX driver to test the 
upper-layer changes, and executed a modified kernel 
against a user-level behavioral model of a DART-style 
adapter. The code was subjected to constant back- 
ground testing on a workstation relied on for daily use. 
The prototype driver supports buffer descriptors refer- 
encing either kernel buffers or adapter buffers. The 
implementation effort to support kernel-buffered 
packets was minimal, and enables multiple protocol 
families to be layered above the driver. 

The sofhvare changes modifi the existing upper- 
level software, rather than bypassing it via a collapsed 
socket, transport, network, and driver implementa- 
tion. The current UNIX networking subsystem pro- 
vides a rich set of features that needs t o  be completely 
supported for backward compatibility. 

Transmit Overview 
A comparison of traditional transmission with DART 
transmission is shown in Table 1. For a traditional 
adapter, the system call layer copies application data to 
operating system buffers. With a DART adapter, the 
data is copied to die adapter. Uiomove is the copy 
hnction typically used within UNIX. The DART 
mechanism is to use an indirect function call through a 
pointer, rather than a direct function call to an address 
specified by the compiler's linker. High-performance 
copy functions are associated with the device driver. 
The driver's copy function is free to use DMA or pro- 
grammed I/O, depending on the length of the copy. 

For a traditional adapter, softcvare wastes machine 
resources computing checksums. With a DART 
adapter, the checksum is computed by hardware as the 
data flows into the adapter. The adapter can patch the 
checksum into the packet header. The adapter can also 
move checksum summaries back to host memory so 
that they are available for retransmission algorithms. 

For a traditional adapter, the driver instigates addi- 
tional memory references to copy the data to the 
adapter for transmission. With a DART adapter, the 
data is already on the adapter, ready to be sent! Much 
of the data copy avoidance work is throughput-related. 
In this instance, we also create the potential for a 
latency advantage for the DART model, since the data 
copy overlapped work in the system call, transport, net- 
work, and dnver layers of the operating system. 

Table 1 
Transmit Overview 

Receive Overview 
In many ways, the receive path for networking is usu- 
ally considered more complicated than the transmit 
path, since the various demultiplexing and lookup 
steps are based on fields that historically have been 
considered too large to use simple table indexing oper- 
ations. Also, the receive path requires a rendezvous 
behveen the transport protocol and the application (to 
unblock the application process upon data arrival). So 
it should come as a pleasant surprise that the DART- 
style changes for packet reception can be as simple and 
localized as two conditionals in the soclcet layer and 
one in the network transport layer. 

Table 2 is a comparison of traditional receive pro- 
cessing with DART receive processing. It  is almost 
identical to  the packet transmission comparison. The 
distinction is which portion of the DART adapter 
computes the checksum on behalf of the sofhare  
(receiver instead of DMA engine). 

Interrupts 
Transmit completion interrupts do  not need to be 
eagerly processed. Software can piggyback processing 
to reclaim transmit buffers upon depletion of transmit 
buffer resources, upon unrelated packet reception 
events (e.g., User Datagram Protocol, UDP), and 
upon related packet reception events (e.g., TCP 
aclinowledgment). The transmit completion events 
can be masked, or the hardware interrupt holdoff 
mechanism can be used to  give them a longer latency. 

Receive interrupts are batched to reduce overheads. 
Short packets are hlly contained in the initial paclcet 
summary wluch would be deposited in a lcernel buffer. 
Adapter buffers for short packets can be recycled 
immediately by system sofhvare. Long packets are not 
fully contained in the initial packet summary provided 
s o h a r e  for parsing and dispatch. The summary is 
noticed during one interrupt, and scatter/gather 1 /0  
completion into application buffers is noticed during 
another interrupt if performed asynchronously. 

The side-effect of the decision to create a store-and- 
forward adapter is that a received packet is related to 
two interrupts. The intent is not to burden a systeni 
and cause mi~ltiple interrupts per packet. The distinc- 
tion between relation and causality is important. 

When the system is under load, there is a steady 
stream ofpackets, and thus a steady stream of batched 

Traditional DART 

System call layer Uiomove user buffer to  kernel buffer *Uiomove user buffer to adapter buffer 
Protocol layer For all buffers for all bytes, update checksum For all buffers, update checksum 
Driver layer Programmed I10 or DMA Data is already on the adapter! 
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Table 2 
Receive Overview 

Traditional DART 

Driver layer Programmed I10 or DMA Data stays on adapter! 
Protocol layer For all buffers for all bytes, update checksum Use checksum computed by receiver 

hardware as packet was reassembled 
System call layer Uiornove kernel buffer t o  user buffer Uiomove adapter buffer to  user buffer 

interrupts. If 3 Mbytes were transferred using a burst 
of l-kbyte packets, there would be 3000 packets. 
Batching 20 packets/interrupt, there would be 150 
interrupts to report packet arrivals. The first interrupt 
is just for packet arrival events, to allow header parsing. 
The intent is for the next 149 interrupts to report 20 
new arrivals and the DMA completion for 20 previous 
arrivals. A final interrupt would take care of the final 
D I M  requests. In this case, the additional interrupt 
load for a DART adapter is minor: one interrupt for 
3000 packets. The interrupt load is not doubled (even 
if one chooses to move received data asynchronously). 

Store-and-forward latency is incurred because of 
the memory write and read on the adapter (to store 
data from the network and to later move it to the 
application's buffers). DART adapter memory oper- 
ates at a high rate, over 4 Gb/s, to minimize this. Due 
to the intervening software decision concerning where 
to place DART data for large packets, the data may be 
placed at its initial location in host memory later than 
for a traditional adapter which fills kernel buffers. 
However, store-and-forward reduces main memory 
bandwidth consumption, and quickly places the data 
at its Jnnl location within the application buffers in 
host memory. The correct metric is latency to data 
availability to the application, not data latency to first 
reaching t l ~ e  system bus. 

CSR Operations 
Control and status registers (CSRs) are used within 
hardware implementations to allow software to con- 
trol the action of hardware, and for hardware to pre- 
sent information to sofhvare. For example, a CSRcan 
inform a device of the device's address on a bus. In this 
case, the CSR's definition is generic in the context of 
the bus definition. Alternatively, a CSR can be used to 
initialize a state machine within the hardware imple- 
mentation. In that case, the CSR's definition is specific 
to that version of the device. 

CSRreads are very expensive. Generally, a single CSK 
read is required for DART interrupt processing, and 
that CSR is placed in the PC1 clock domain of DART in 
order to avoid operation retries on the PC1 bus. 

Most packet processing information is written to 
host memory by the adapter for quick and easy CPU 
access. For example, packet summaries are placed in 

one or more arrays in host memory, and sohvare can 
use an ownership bit in each array element to termi- 
nate processing ofsuch an array. 

CSK writes are buffered; nevertheless, the11 can be 
minimized. The packet sum~naries in host memory are 
managed with a single-producer, single-consumer 
model. When the consumer and producer indices into 
an array are equal, the array is empty. When hardware's 
producer index is greater, there are entries to be 
processed by software. (Redundant information in 
array element ownership bits means that sofiware does 
not actually need to read the DART adapter to perform 
the producer-consumer comparison.) When the hard- 
ware's producer index reaches the sofnvare's consumer 
index minus one, the array is hUp utilized. When soft- 
ware has processed a number of packet summaries, the 
hardware can be informed that they can be recycled by 
a single write of the consumer index to the adapter. 

The DMA engine processes a list of "copy t h s  from 
here to there" commands. By supporting a list of 
operations instead of a single operation, software can 
quickly queue an operation and move along to its next 
action without a lot of overhead. The copy commands 
reside in an array within host memory, with a software- 
specified base and a software-specified length. 

DMA commands also follow the producer-consumer 
model. However, since instructions are only read by 
DART, there are no ocvnership-bit optimizations. To 
compensate for this, sohvare can allocate a large array 
and cache a pessimistic value for the hardware's con- 
sumer index in order to avoid CSR reads. Alternatively, 
the DMA engine could periodically be given instruc- 
tions to DMA such information to host memory. 

A typical DART interrupt involves one CSR read and 
three CSR writes, yielding an efficient interface. One 
read determines interrupt cause. One write informs the 
D I M  en,he of new copy commands for newly received 
data. Another write informs the DMA engine that the 
CPU processed a number of the packet summaries 
DART placed in main memory. A tlurd write initializes 
the interrupt delay register to batch future events. 

Occasionally, an interrupt also involves an extra CSR 
read. The read discovers a large number of commands 
processed by the DMA engine, allowing software to 
recycle entries in the command queue and thereby 
issue more commands. 

68 Digital Technical Journal Vol. 9 No. 4 1997 



Driver 
The driver classifies received packets, and decides 
whether to continue to use adapter buffers for them, 
or to copy the data into kernel buffers. For the proto- 
type, adapter-buffered packets are: 

Long enough to contain maximal-length IP and 
transport protocol headers. 

H Version 4 IP packets (buffering assumptions perco- 
late throughout the layers of the system, so a proto- 
col family must be updated and tested to  support 
adapter-buffered packets). 

H TCP or UDP protocol packets. Other protocols lay- 
ered over IP do  not use adapter buffers, to make the 
scope of the effort manageable by handling just the 
common case. 

The operating system uses a single mbuf to  describe 
a single set of contiguous bytes in a buffer which may 
be within or external to the mbufstructure. Mbufs can 
be placed in lists to form packets from a number of 
noncontiguous buffers. 

Received adapter-buffered packets are two mbufs 
long. The first mbufcontains the initial contents ofthe 
packet DMAed into memory by the adapter, that is the 
protocol headers and summary information from the 
adapter. 

The second mbuf refers to the packet in adapter 
memory. For ATM, the received packet is stored in a 
linked list of buffers on the adapter. Programmed 1 /0  
access to the buffers requires sofiware to traverse the 
links, but this would not be done in practice since the 
CPU read path to the 1/0 device is unbuffered and 
high-latency. The DART DMA hardware would be 
used, and it would traverse the links as-needed. The 
DIMA hardware allows the s o b a r e  to pretend the 
packet is contiguous. 

Fields of the second mbuf are used in specific ways. 
The length of the second mbuf does not contain the 
jnitial portion of the packet copied into the first mbuf, 
even though the adapter memory buffers the entire 
packet. The initial portion is replicated, but only the 
copy local to  the CPU is accessed. The pointers of the 
second mbuf point to bogus virtual addresses, even 
though the adapter looks like an extension of main 
memory. This speeds software debugging by trapping 
inefficient accesses to the adapter. Adjusting the 
length and pointer fields is still allowed in order to 
drop data from the front or back of the mbuf. The 
m-ext fields record the location and amount of 
adapter buffering used to hold the packet. Thcy also 
point to  a driver-specific buffer reclamation routine. 

For TCP, or for UDP packets with nonzero check- 
sums, the driver makes incremental modifications to  
the DART receive hardware's checksum. The hard- 
ware computes the 1's complement checksum over all 
the cell payloads except for the final ATM trailer bytes. 

As a result, the driver modifies the hardware checksum 
to account for: 

H Contributions made by IP options 

Construction of tlie pseudo-header which is not 
transmitted on the network 

The transport layer checksum, \;vhich was zero 
when the checksum was computed but may be 
nonzero on the network 

To transmit a packet, the transport and network lay- 
ers operate on protocol headers in main memory. The 
driver moves the headers to the adapter as part of 
transmitting a packet whose encapsulated data is in 
adapter buffers. 

The ifnet structure is the interface benveen the pro- 
tocol layers and the driver. I t  contains, for example, 
fields expressing the maximum packet size on the 
directly connected nenvork, the network-layer address 
of the interface, and hnction pointers used to enter 
the driver. 

We add an (* i f_ uiomove)() field to be associated 
with buffers as described below. It  represents a driver 
entry to copy data to or from the adapter. We also add 
an (*zf_ xmtbzlfn1loc)O field to be used within the 
mbuf allocation loop of the transmit portion of the 
socket layer. This allows the socket layer to give prece- 
dence to  allocating (large) adapter buffers over main 
memory buffers. 

The driver always retains some transmit adapter 
buffers for its own use. When the system is busy, there 
will be TCP packets consuming adapter buffers. The 
packets are associated with the socket send queue. 
There will also be packets on the interface send queue, 
which may or may not use adapter buffers. If the first 
item on the interface queue uses just kernel buffers, 
then the driver must have reserved adapter buffers in 
order to  complete the transmission and avoid transmit 
deadlock. At least one packet of adapter buffering 
must be reserved for the driver output routine. 

UDP 
UDP motivates many of the changes without getting 
involved in the complexity of retransmission and relia- 
bility. Many of these changes are generic to UDP and 
TCP: augmenting the buffer and interface descrip- 
tions, discovering the availability of efficient buffers 
for a connection, and allocating and filling the etxcient 
buffers. 

One portion of the mbuf is the stnictpkthdr, which 
is used only in the first mbuf ofa packet. It summarizes 
interesting information about the packet, like its total 
length. 

We add a protocolSum field to  the pkthdr of the 
mbuf so that the driver can communicate the received 
transport-layer checksum to the upper layers. The 
transport-layer checksum is not ignored, as it would 
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be if checksums were negotiated away or cavalierly 
disregarded. The checksum is verified by the trans- 
port layer as usual, but without accessing all the bytes 
of the packet. The protocolSum field is valid if an 
rM_PROTOCOL-SUM bit is set in the mbuf m-flags field. 

Another portion of the mbuf is the stmct m-ext, 
which is used to describe data buffers external to  the 
mbuf structure. We add an (*uiomove- f )O field so 
that the driver can communicate a buffer- or driver- 
specific copy routine to the socket layer. Soclzet layer 
usage of the standard pre-existing uiomove routine 
assumes that the received data is in the address space 
and should be moved by CPU byte-copying. The indi- 
rection allows the data to be moved by programmed 
1/0 or DMA. The uiomove-f field is valid if an 
LM-UIOMOVE bit is set in the mbuf m-flags field. 
Parameters to the uiomove-f function are an mbuf, an 
offset into the packet at which to start copying bytes, a 
number of bytes to copy, and the standard uio struc- 
ture that describes where the application wants the 
data. 

The UDP input routine performs protocol process- 
ing on received UDP packets. Before the pseudo- 
header is constructed for checksum verification, the 
M-PROTOCOL-SUM bit is tested in order to  skip 
CPU-based checksumming. 

i f  (m->m-flags & M-PROTOCOL-SUM) C 
N E T I O ~ C O U N T ( r c h ~ h w ~ s u m ) ;  
assert(m->m-f lags & M-PKTHDR); 
i f  (ui->ui-sum != m->mgkthdr .protocolSum) C 

NETIO-COUNT(rch-hw-sum-bad); 
goto badsum; 

1 
got0  ok; 

1 

Error processing can be based on packets reformat- 
ted into kernel buffers. The UDP output routine per- 
forms protocol processing on transmitted UDP 
packets. 

Checksum overhead avoid'mce is similar to the receive 
path; but instead of testing the M-PROTOCOL-SUM 
bit, the mbuf checksum field is assumed to be valid for 
all transmit mbufs referencing adapter buffers (they 
have the M-UIOMOVE bit set). We assume that no 
adapter which saves the operating system the effort of 
data copying \\/auld forget to save the operating sys- 
tem the effort of checksumming. It does not make 
sensc to eliminate some, but not all, of the per-byte 
overhead o p e r ~ t '  lons. 

For UDP transmission, software recycles (adapter) 
buffering after the packet has been transmitted. 

Changes like checksum avoidance are based on 
adding a conditional to the existing code paths. For a 
DART adapter, the test and branch penalty are small 
relative to the gain. For large external buffers, there 
are one or two M-PROTOCOL SUM tests per 
packet, depending on packet length and buffer size. 
This could be viewed as a constant-time overhead. 

The gain is avoiding the linear-time access of each byte 
within each packet. 

For a traditional adapter, the test and branch repre- 
sent overhead for each packet. The cost of the added 
conditionals occurs in the context of a large code base 
between the system call interface and the driver, and 
that networking code provides a rich feature set 
through the use of conditionals. If the added condi- 
tionals are viewed as significant, consider the approach 
of generating two binary files from a single source 
module. To avoid penalizing systems populated solely 
wit11 traditional adapters, opcratblg system software 
config~~ration procedures can choose not to incorpo- 
rate the DART-conditionalized version of the code. A 
DA.RT adapter installed at a later date would still oper- 
ate under such a software configuration, but would not 
reach its peak performance until the sohvare is recon- 
figured to use the DART-conditionalized version. 

TCP 
The TCP input routine performs protocol processing 
on received TCP packets. Before the pseudo-header is 
constructed for checksum verification, the M-PRO- 
TOCOL-SUM bit is tested in order to skip CPU-based 
checksumming. The only differences with the UDP 
input processing change are the names of the TCP 
header structure and TCP header checksum field. 

All the adapter resources represented by the second 
mbuf of a received packet are consumed until the final 
reference to the packet is frced. If large packets are 
exchanged and the application is doing small reads, 
not until the final read is any storage reclaimed. This 
space consumption is represented on the socket 
receive queue, and therefore affects the advertised 
TCP windo\v. 

The TCP output routine performs protocol pro- 
cessing on transmitted TCP packets. The check sun^ 
overhead avoidance is similar to that done for UDP. 
Checksum computations for transport-layer retrans- 
missions are simplified by the association of checksum 
contributions with mbufs, rather than an association 
of checksums with packets. The association with 
buffers instead of packets also simplifies handling of 
packets using a mix of kernel and adapter buffers. 

For TCP transmission, sofhvare recycles (adapter) 
buffering after the packet has been acknowledged by 
the remote end of the connection. Between transmis- 
sion and acknowledgment, the data is held on the 
socket's send queue. Previously, the socket code 
copied data from one mbuf into anotlicr whenever 
both mbufs' contents fit into one, trading increased 
CPU load for space efficiency. For DART adapters, the 
copy decision is cut short. 

We add a bytessummed field to the mbuf so that 
when a packet is transmitted or retransmitted by the 
transport layer, code can double-check that all the data 
the checksum is supposed to cover is still present in the 
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buffer. For example, a TCP aclu~owledgment ofpart  of 
an original packet generally leads to the sender delet- 
ing its copy of  the acknowledged data retransmitting 
the rest. The software implementation handles the 
generality of acknowledgments which are not com- 
plete transmit mbufs, the unit covered by the 
protocolSum field. A retransmission must not send a 
packet with an improper transport-layer checksum, 
even if it means using an algorithm linear in the num- 
ber of bytes remaining in the buffer to  recompute the 
checksum. 

The transmitter's socket layer buffers data in seg- 
ments convenient for both the network-layer protocol 
and the driver. Checksum contributions remembered 
for retransmission are recorded at a similar level of 
granularity. The transmitter is liberal in what the 
receiver can acknowledge; the receiver's implementa- 
tion affects efficiency, but not correctness. 

Socket Data Movement 
The copy from the network buffers to  the application 
data space occurs in the soreceive routine, which uses 
information left in the mbuf by the device driver. The 
call(s) to uiomove become conditionalized as follows: 

i f  (m->m-f lags & N-UIONOVE) C 
asser t  (m->m-f lags 8 N-EXT); 
e r r o r  = (*m->m-ext.uiomove-f)(m, moff, Len, uio); 

) e l s e  
e r r o r  = uiomove(mtod(m, caddr-t) + moff, Len, uio); 

The reverse copy in sosmd is similar. 
The standard uiomo\ie function makes the opti- 

mistic assumption that the addresses of user buffers 
provided by the application are valid. If addresses are 
not valid, a trap occurs and situation-specific code is 
called. 

To  support drivers that use programmed 1 / 0  
movements with the application's buffer, an additional 
code point is added to the error processing so that an 
EFAULT error is returned to the application. 

Note that the changes are generic, and can be used 
with existing devices. The uiomove-f function can per- 
form both copies to kernel buffers and protocol check- 
summing for transmission over tradtional adapters. 

In the transmit portion of the  socket layer, the appli- 
cation data is moved to kernel buffers or  to adapter 
buffers by sosend. In order to take advantage of DART 
adapters, sosend needs to Iwow: 

That the protocol layers between the socket and 
driver support DART-style buffering 

That the driver supports DART-style buffering 

In  general, formatting data efficiently for transmis- 
sion can require knowing the amount ofheaders that 
will be prepended by the various layers below the 
socket layer, so device alignment restrictions can be 
met. Due to protocol options and to the variety of 

media in existence, the amount prepended may vary 
from socket to socket. Given a socket, we introduced a 
function that computes: 

A function pointer for allocating adapter-based 
buffers 

A function pointer for moving data from user 
buffers to  adapter buffers 

The number of bytes required to prepend all headers 

To  simplifi the prototype implementation effort, 
the hnct ion disallows the use of adapter buffers for IP 
multicast packets. 

When allocating adapter buffers, sosend uses the 
zf_xmtbufnlloc entry to allocate adapter buffers. Each 
time it does so, it passes a maximum number of bytes 
of buffering that attempts to  allocate a buffer for the 
entire (remaining portion of the) packet. The driver 
indicates the actual amount of buffering allocated; 
sosend loops until all the necessary buffering is allo- 
cated. The driver may decline to  allocate an adapter 
buffer if the requested amount of buffering is small. At 
that time the driver can best decide if CPU-based byte 
copying from user buffers to kernel buffers, and also 
copying kernel buffers to  the adapter, is preferable to 
programmed 1 / 0  or DMA from user buffers. 

Once an adapter buffer allocation fails, n o  further 
allocations are attempted within a segment that will be 
passed to the lower layers. This ensures that drivers will 
see, at worst, an (internal) mbuf containing headers, 
one or  many adapter buffers containing data, and 
potentially one or  many kernel buffers containing the 
rest of the packet. This simplifies the driver, and 
ensures that alignment restrictions are met without 
shuffling data around on the adapter. I t  also simplifies 
transport-layer checksum co~nputation algorithms. 

There is an unusual boundary case in which a long 
segment of transmit data may not immediately be 
copied to adapter buffers, even though the driver 
would prefer t o  d o  so. If the driver has many free 
transmit adapter buffers when the socket code starts to  
prepare a segment, it may not have any free buffers 
when the segment nears completion. This is because 
the socket layer runs at a lower interrupt priority level 
than the device driver, and buffers are allocated indi- 
vidually. A device interrupt can lead to  servicing the 
device output queue, consuming adapter buffers in 
order to  transmit traditional kernel-buffered packets. 
&ther than block and wait for transmit adapter buffer 
availability, the prototype software uses kernel buffers. 

Both the socket and network protocol (TCP) layers 
contain segmentation algorithms. In the socket layer, 
the segmentation process is confused with the (cluster 
mbuf) buffer choice decision procedure. As part of 
eliminating that confusion, we introduce an if_buJrn 
field to the ifnet structure. 
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If the socket layer creates segments longer than the 
device frame size, cxcess work occurs in the lo\ver lay- 
ers (e.g., TCP segmentation or  IP fragmentation). If 
die socket layer creates segments shorter than the 
device frame size, the system foregoes large packet 
efficiencies. A large S-kbyte write that leads to eight 1- 
kbyte cluster mbufs being individually processed by 
the lower layers might benefit from overlapped 1 / 0  of 
the first segment with computation o f the  last, but the 
CPU would be wasted for a benefit that is only rele- 
vant when a large number ofsuch poorly chosen seg- 
ments are constructed. Such a write could go  out as a 
single packet over an ATM network. 

Socket Buffering and Flow Control 
A n ~ ~ m  ber of papers have commented on thc requirc- 
merit for a reasonable amount of socket buffering to 
enable applications t o  "fill the pipe" with a "band- 
width times delay" amount of data.' Delay includes 
the link distance, device interrupt latency, software 
processing, and 1 /0  queuing delays. It also includes 
interrupt delays that aggregate events for efficient soft- 
ware processing. 

The requirement for sufficient socket buffering is a 
lesson learned over and over again. Tradtional solu- 
tions include marginal increases in systemwide 
defaults, and application niodification to request more 
buffering than the default. Facilities like rsh imply that 
anything can become a network application, unbe- 
hiownst to the application author; so changes to 
applications are a poor solution. Also, applications are 
insulated fi-om the network by the network protocol 
and soclzet abstractions; n o  application should need to  
h iow die buffering requirements for high throughput 
for the media du j o ~ ~ r .  

We introduce an (*zfsockbzifl(j entry that allows 
the driver to increase socket buffering. When local 
nenvorlc-layer addresses are bound to socket connec- 
tions, an interface is associated with the coruiection, and 
the driver is allowed to adjust tlie socket buffer quota. 

For TCP server connections, the server may not be 
restricting incoming connections to a particular inter- 
face. Overriding the default buffering value must be 
done on the soclcct created when the incorning S1W 
arrives, not  on the placeholder server socket. The 
buffer allocation needs to be determined as soon as 
possible, because tlie initial SlIh1 packet also triggers 
the determination of the proper window scaling \ralue. 

UDP does not queue packets 01 the socket send 
queue. Although calls to  Lsockbuf from the soclzet 
layer are independent of the protocol, the buffer quota 
only affects the maximum UDP packet size sent, not 
the number of UDI' packets tliat can be in flight at the 
same time. The socltet is not charged for UDP packets 
queued on  the driver output queue or  UDS packets in 
t l ~ c  hardware transmit queues. 

The adapter buffcr resources are distinct from main 
memory ~ n b u f  and cluster resources. The socket data 
structure and support routines support consumption 
and quota numbers for adapter buffer~ng that are dis- 
tinct from the current main memory consumption 
and quota numbers. For example, a connection re- 
directed from a DART adapter to  a traditional adapter 
is quickly flow-controlled in the socket layer as a result. 
The large adapter buffer allocation does not cnablc it 
to hog nialn memory buffers and adverselv affect 
otlier connections. 

IP 

The prototype software contains conditionals to 
enable or  disable the use of adapter buffers for mes- 
sages undergoing IS fragmentation. This only affects 
UDP, since die socket layer segments appropriately for 
the TCS and driver layers. Sohvare computes the 
amount of header space for the first fragment, and also 
the amount of header space for the follo~iing fi-ag- 
nients (which will not contain transport protocol 
headers). This information is used during the socket 
layer's movement of application data to kernel or 
adapter buffers. UDS and IS receive thc segments as a 
single message; the IS fragmentation code uses the 
fragment boundaries precomputed in the socltet layer. 

IP reassembly of received adapter-buffered packets 
was implemented in the prototype code to keep up 
with a transmitter using adapter buffers for IP frag- 
mentation. The driver adjusts the hardware-computed 
checlzsum to ignore the co~ltribution to the hardware 
sun1 caused by the successive IS fragment headers, 
whlch are not presented to the transport layer. 

Resource Exhaustion 
The hardware provides a scalable data memory. The 
memory holds received data until the application 
accepts it, and transmits data until the acknon~ledg- 
nient arri\les. The prototype provides 16 Mbytes, 
which was considered a significant quantity after 
examining networlz subsysteni buffering at centralized 
servers for several large "campus" sitcs. 

When adapter memory is scarce, it should be allo- 
cated to connectio~is whose current data tlon~s are 
high-bandwidth flows. Low-bandwidth connections, 
connections blocked by a closed remote window, and 
connections over extremely loss-prone paths will not 
be significantly impacted by the copying overhead 
associated with tlie use of kernel buffers. 

Data Relocation 
Reformatting data from adapter buffers to  kernel 
buffers allows existing code to be ignorant of adaptcr- 
buffered data. Socket-based TCP communication can 
use adapter buffers for high throughput, and other 
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protocol environments can siniultaneously use the 
familiar kernel buffers. DART support can be phased 
in by protecting legacy code with a conditional reloca- 
tion call before entering or queuing data to the legacy 
code. Cache f i l l  operations should be targeted to main 
memory, not adapter memory, for best performance in 
legacy code. 

Relocation is also appropriate for error handling 
and other rarely executed code paths. For example, 
a multi-homed host may lose TCP connectivity 
through the first-hop router associated with a DART 
link, and be forced to send packets over another link. 
The new communication path could use any network 
interface, DART or  other\\iise. The  software needs 
to  be able to  handle the scenario where the new 
adapter, or  some system resource, has a constraint 
preventing it from transmitting packets located in 
DART memory. 

We selected a lazy evaluation solution which 
assumes that data sent over an old route will be deliv- 
ered and acknowledged. An eager solution would 
incur a large burst of  data relocation when the new 
route takes precedence, with the disadvantages that 
the work would be wasted for data which is aclcnowl- 
edged, and the burst of activity consumes resources 
and incurs increased latency for other activities. 

For TCP connections marked as using adapter 
buffers, a driver entry through (*if_ pktok)O allows 
the driver to comment on each outgoing packet. This 
implies that the driver also comments on  TCP retrans- 
mission pacltets. The driver has a chance to double- 
check constraints and trigger data relocation, if 
necessary. Drivers not supporting Kpktok always trig- 
ger data relocation, and also lead to unmarking the 
TCP connection. 

Comparison to Other Methods 
Traditional adapters contain minimal onboard meni- 
ory and hide their buffering from die CPU. Unable to 
manage a traditional adapter's buffers, a copy of data 
must be ltept in host memory until it is acknowledged 
in case it needs to be retransmitted. 

We felt copy-on-write approaches to using a tradi- 
tional adapter would be inadequate due  to book- 
keeping overheads experienced by other projects. 
Also, the application may commonly reuse the same 
application buffer before the transport protocol 
semantics allow. For an unmodified application, this 
would lead to  blocking the application, or  incurring 
both copy-on-write and data copy overhcads. All 
applications are nenvorlt-based when one considers 
networked file systems and pipes to  remote program 
invocations; architecturcs that require applications to  
be recoded t o  interact with page mapping schemes 
(e.g., are inadequate. Another objection is that 
copy-on-write focuses on  packet transmission, ignor- 
ing packet reception. 

When a write is performed by an application using 
DART, the application blocks only long enough to  
buffer the data, as for a traditional adapter. The copy 
of tlie application's data on  DART enables retransmis- 
sion for reliable communication. The application is 
free to immediately dirty its write buffer, and n o  per- 
formance impact is associated with that action. 

Van Jacobson's WITLES paper design uses the CPU 
to copy data to and from the adapter via programmed 
I/O.' Reading the adapter is an expensive operation, and 
in practice would provide worse receive performance 
than even a traditional adapter. The Medusa design is a 
WITLES variant that uses programmed 1/0 transrnis- 
sion and addresses the receive penalty with system block- 
move resources for receptio~i. '~ The Afterburner design 
used the same approach, achieving 200 M ~ / s . ~  The 
WITLES approach keeps the packet in adapter memory 
until it is copied to the application buffer. 

To minimize resource consumption, the checksum 
and copy loop are combined. This means that the TCP 
acknowledgn~ent is deferred until the application con- 
sumes the data, which might be much later than nec- 
essary. Applications read data at a rate of their own 
choosing. Care must be talten that this deferral does 
not lead to TCP messages t o  tlie data source that cause 
unnecessary data retransmission. 

Unlike WITLES, DART supports DMA to and from 
the adapter. Sohvare can use DMA where appropriate, 
intelligently balancing the costs of programmed 1/0 
and DMA. 

Since DART provides the IP  checksum with the 
packet, the TCP acknowledgment can be sent as soon 
as the packet is reassembled and reported to the CPU. 
The ach~owledgment contents and transmission time 
are traditional BSD UNIX; it states that the data has 
been received, and the offered \vindo\v reflects buffer 
consumption ~lnti l  the application receives the data at 
its leisure. 

Adapters have been built that offload protocol pro- 
ccssing.' However, the cost of TCP processing is low, 
and such an architecture introduces message-passing 
overheads that counterbalance the offloaded protocol 
processing efficiencies. CPU execution rates are scal- 
ing well. The issue to address is the main memory 
bandwidth bottleneck. Also, it is expensive and diffi- 
cult to create, maintain, and augment the firmware for 
such an adapter. The firmware is tied to a single 
adapter, and replicates work done within tlie operating 
system that can be shared by a number ofadapters. 

DART provides assist via checksuniming methods. 
It does not attempt to offload network- or protocol- 
layer processing. 

Performance 

The simulation environment used to  debug and test 
the chip design was also used to extract performance 

Digital Technical Jour~ial Vol. 9 No. 4 1997 73 



information. The chip model used to fabricate the part 
is connected to a PC1 bus simulation, some generic 
bus master devices, and some generic bus slave 
devices. The simulation environment is connected to 
and controlled by a TCL-based environment. 

Within the TCL environment, die hardware design- 
ers wrote a device driver. With this driver, DART 
copied packets from host memory, looped packets on 
an external interface, reported packet summaries, and 
copied packets into host memory. Both 64- and 32-bit 
PC1 buses \\/ere exercised. Target read latency of host 
memory was incorporated into the simulation (the 
data presented in Figure 7 is based on a 16-cycle 
latency). Credit-based flow-control operations were 
enabled since they consume additional control mem- 
ory bandwidth, and therefore represent worst-case- 
scenario operation, Similarly, a large number of virtual 
circuits were used to loop data, to  prevent the use of 
on-chip, cached circuit state. 

Because the TCL driver was written by hardware 
designers, and they were focused on designing and 
testing the chip, performance numbers extracted from 
their work suffer from a lot of CSK accesses. A real 
driver would reduce the CSR operations and have 
increased batching of interrupts and other actions. 

CSR reads are costly, since they involve a round-trip 
time within the chip which crosses clock boundaries, 
in addition to tlie round-trip time between t l ~ e  CPU 
and the pins on the devjce. Crossing cloclc boundaries 
means that there are internal first-in first-out (FIFO) 
delays involved to deal with synchronization and 
meta-stability issues. To  meet PC1 latency specifica- 
tions, the bus master is told to  retry such operations, 
freeing the PC1 bus for other use during the internal 
round-trip time. CSR writes are efficient, since they 
are buffered throughout the levels of the system. 

The dip in Figure 7 is near the 512-byte burst size 
used to read from host memory. Packet transmissions 
no longer fit in a single DMA burst, and incur tlie extra 
cost of an  additional short fetch. This incurs additional 
overhead cycles to place the address on the bus and for 
the target to start to respond with the first bytes. 

For each sinlulation \\re extract numerous detailed 
statistics. Table 3 contains a few for 32-cell packets 
(1536 bytes) on a 32-bit PC1 bus. These particular fig- 
ures are for the TCL driver, and include time intervals 
to initialize the adapter, to transmit before the first 
packets are received, and to receive after the last packet 
was transmitted. 

DART 4 OR MORE VC, BIDIRECTIONAL, 
FLOW-CONTROLLED PERFORMANCE 

0 10 20 30 40 50 60 70 
PACKET LENGTH IN CELLS 

KEY: 
+ PERCENT OF LlNE RATE (64-BIT BUS) 
-C- PERCENT OF LlNE RATE (32-BIT BUS) 

Figure 7 
DART Performance 
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Table 3 
Examples of Additional Statistics 

Control memory idle 79% 
Data memory idle 48 % 
PC1 busy (frame or irdy asserted) 75% 
PC1 transferring data (irdy and trdy asserted) 60% 
CSR operations share of bus operations 41 % 

Future Work 

Due to the large amount of onboard buffering, we d o  
not expect DART to encounter resource exhaustion 
issues. However, some work will be appropriate to 
determine the best solution should buffering require- 
ments exceed the electrical capabilities of  the high- 
speed SAR-SDRAM interface. Is it efficient to move 
unaclu~owledged data off the adapter so that new 
transmit data can be moved from user space to the 
adapter in the socket layer? Is it efficient to block in the 
socket layer, waiting for adapter buffers to be freed by 
a future, o r  arrived but  unprocessed, acknowledg- 
ment? Is it efficient to use conventional kernel buffers 
to transmit when the space allocated to DART-style 
transmissions is exhausted? 

DART structures the system sofnvare so  that the  
operating system does not examine the application's 
data, which should be private to the application any- 
way. This separation of control operations (on head- 
ers) from data operations (primarily movement) is a 
common theme in embedded system design for 
bridges and routers. DART provides a generic struc- 
ture that enables high-performance networking in a 
variety ofsystems. 

With features like peer-to-peer I/O, one can con- 
ceive of  a system with multiple gigabit links, where the 
bottlenecks have shifted from the system sofnvare to 
the application o r  service. We think DART-style 
adapters will enable and accomplish the delivery of 
high-bandwidth service to the application. 
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Recent DIGITAL 
U.S. Patents 

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied by the 
U.S. Patent and Trademark Office are reproduced as they appear on the original published patent. 

Robert T. Faranda and Notebook personal computer 
Bradford G. Chapin 

Hamid R.  Soleirnani, Brian Doyle, and Hot carrier-hard gate oxides by nitrogen implantation 
Ara Pldipossian before gate oxidation 

Richard I. Mellitz and Michael V. Dowd Continuous motion electrical circuit intercomect test 
method and apparatus 

Henry S. Yang, Donald L. Post, and 
Wen-Yi Huang 

Pldippe Klein, David W. Maruska, and 
Kevin W. Ludlam 

Auto~natic nenvork speed adapter 

Method and apparatus for testing Iligh speed busses 
using gray-code data 

David B. Loniet Method for performing private lock management 

hcky S. Palmer and Larry G. Palmer Video teleconferencing for networked workstations 

Robert R. ICzndo and Paul L. Godn  Adapter for interconnecting single-ended and differen- 
tial SCSI buses to prevent 'busy' or 'wired-or' glitches 
From being passed from one bus to the other 

Janos Farkas, Rahul Jairath, Matt Stell, 
and Sing-1Mo Tzeng 

A d  K. Jain, John H. Edmondson, and 
Peter J. Bannon 

Dale R. Donchin 

 method of using additives with silica-based slurries to 
enhance selectivity in metal Ch4P 

Method for increasing system bandwidth tluough an 
on-chip address lock register 

Pattern recognition device 

Steven M. Jenness Object oricnted computer arclutecture using directory 
objects 

5,615,382 Vincent G. Gavin, Michael J .  Seaman, 
Neal A. Crook, and Bipin Mistry 

Data transfer system for buffering and selectively 
manipulating the size of data blocks being transferred 
between a processor and a system bus of a computer 
system 

David B. Krakauer, Kaizad Mistry, 
Steven Butler, and Hamid Partovi 

Self-referencing modulation circuit for CMOS 
integrated circuit electrostatic discharge protection 
clamps 

Flow control with smooth limit setting for multiple 
virtual circuits 

Cuneyt M. Ozveren, H d a m  G. Murray, Jr., 
Gregory M. Waters, and Robert J. Simcoe 

Rqm Sudama, David M. Griffin, 
Brad Johnson, Dester Sealy, 
James Shclhamer, and O~ilen H. Tallrnan 

Method for providing a sccurity facility for a network 
ofmanagement servers utilizing a database of trust 
relations to verifjl mutual trust relations between 
management servers 

Simon C.  Steely, Jr., David J. Sager, and 
David B. Fite, Jr. 

Memory reference tagging 

Robert L. Travis, Jr., Andrew P. Wilson, Method and apparatus for object-oriented invocation 
Neal F. Jacobson, and Michael J. Renzullo of a server application by a client application 
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Michael J .  Barnaby and James W. Brissette Programmable memory controller for power and 
noise reduction 

Local area nenvork with server and virtual circuits Bruce E. Mann, DarreU J .  Duffi, 
Anthony G .  Lauck, and 
William D .  Su-ecker 

Three dimensional document representation using 
strands 

Peter Lucas and Jeffrey A. Senn 

Larry G .  Palmer and R~clql S.  Palmer Audio/video storage and retrieval for multimedia work- 
stations by interleaving audio and video data in data file 

H o e  T. Cho,  ~Ma\v Z. Jau, and 
W. H u g h  Durdan 

Apparatus and method for adapting a computer 
system to different architectures 

Clock architecture for synchronous system bus which 
regulates and adjusts clock skew 

David M .  Fcnwiclt, Daniel Wissell, 
Richard Watson, and Denis Foley 

Bcvin R. Brett 

Gilbert M .  VVolrich, Timothy C .  Fischer, 
and John A. I<o\valeslu, Jr. 

Using sorting to  d o  rnatchup in smart recompilation 

Floating point unit data path alignment 

Joseph H. Brown and Dilip I<. Bhavsar Arclutecture for system-wide standardzed intra-module 
and inter-module fault testing 

Michael C .  Adler, Steven 0. Hobbs, and 
Paul G .  Lowney 

Sofnvarc mechanism for accurately h a n d h g  
exceptions generated by instructions scheduled 
speculatively due t o  branch elimination 

William R.  Hamburgen, John S. Fitch, 
and Norman P. Jouppi 

Nitin D. Godiwala, I h r t  M .  Thaller, 
Jeffrey A. Metzger, and Barry '4. Masltas 

High po\vered die with bus bars 

Fault management scheme for a cache memory 

Wayne M. Cardoza, Jeffrey M.  Diewald, 
Jeffrey E. Nelson, Steven D .  DiPirro, 
James R .  Goddard, Wendell B. Fisher, Jr., 
Anne E. McElearney, and Richard Sayde 

Method and apparatus for testing software on  a 
computer nenvorl< 

Peter J .  Bannon, Ruben W. Castelino, 
and Chandrasekllara Somanatl~an 

Autonomous pipeline reconfiguration for continuous 
error correction for fills from tertiary cache or  memory 

David A. Orbits, Icenneth D. Abramson, 
and H. Bruce Butts, Jr. 

Enhanced cache operation with remapping of pages 
for optimizing data relocation from addresses causing 
cache misses 

Rodney Gamache, S t ~ ~ a r t  Farnham, 
Michael Har\rep, William A. L i n g ,  
IOthleen Morse, and Michael Llhler 

Cont rohng  requests for access t o  resources made by 
multiple processors over a shared bus 

James B. Save Method and apparatus for generating and implementing 
smooth schedules for forwarding data flows across ceU- 
based switches 

Michael Ben-Nun, Simoni Ben-mchael,  
Simcha Perl, and lhdangode I<. 
Rarnakrishnan 

Local memory buffers management for an ATM 
adapter implementing c r e d t  based flow control 

William B. Gist and Joscpll P. Coyle Semiconductor process, power supply voltage and tem- 
perature compensated integrated system bus termination 

Michael C .  Adler, Steven 0 .  Hobbs,  and 
Paul G .  Lowney 

Software mechanism for accurately h a n d n g  exceptions 
generated by speculatively scheduled instructions 

Icadangode I<. Ramakrishnan and 
Prabuddha Biswas 

Disk cache management techniques using non-volatile 
storage 

Scott G.  Robinson, Richard L. Sites, and 
&chard T. Witek 

System and method for preserving instruction state 
atomicity for translated program 

William F. McCarthy, Colin E. Brench, 
and Daniel M .  SIIO\V 

Enclosure for electronic modules 

Digital Technical Journal \701.9 No .  4 1 9 9 7  77 



Robert C. Frarne and Mark J. Foster 

Stephen R. Van Doren, Denis J. Foley, 
and Maurice B. Steinman 

Michael J. Seaman 

Janles 0. Pazaris and &chard P. Evans 

Larry L. Biro, Joel J .  Grodstein, 
Jeng-Wei Pan, and Nicholas L. 
Rethman 

Nicholas Ilyadis and Richard Graham 

Martin Ed\vard Gries~lier, Parayath 
Gopal Krishnakumar, and David Benson 

Richard Lee Sites 

5,650,997 Henry Sho-Che Yang, Anthony G. Lauck, 
Kadangode K. Ramakrishnan, and 
W i a m  R. Hawe 

5,65 1,111 William M. McKeenian and 
August G. Reinig 

5,652,615 Stewart Frederick Bryant and 
S.haheedur Reza Haque 

5,652,837 Nicholas Allen Warchol and 
Chester Pa.vvlowski 

5,652,861 David T. Mayo, David W. Harnvell, and 
Hansel A. Collins 

5,652,869 Mark A. Herdeg, James A. Wooldridge, 
Scott G. Robinson, Ronald F. Brender, 
and Michael V. Iles 

5,652,889 Richard Lee Sites 

5,654,653 Joseph P. Coyle and Willian~ B. Gist 

5,657,239 Joel J. Grodstein, Nicholas L. Rethman, 
and Jeng-Wei Pan 

5,657,426 Keith Waters and Thomas IM. Levergood 

5,657,456 William B. Gist and Joseph P. Coyle 

5,657,471 Richard Lary, Robert Willard, 
Catharime van Ingen, David Tluel, 
William Watson, Barry Rubinson, and 
VereU Boaen 

5,657,480 Neal F. Jacobson 
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Apparatus and method for accessing SMRAM in a com- 
puter based upon a processor employing system manage 
ment mode 

Turbotable: apparatus for directing address and 
commands between multiple consumers on a node 
coupled to a pipelined system bus 

Apparatus for message filtering in a network using 
domain class 

Low inductance electrical resistor terminator package 

Static timing verification in the presence of logically 
false paths 

Inter-module interconnect for sin~ultaneous use with 
distributed LAN repeaters and stations 

Apparatus and method for maintai~ling forwarding 
information in a bridge or router using multiple free 
queues having associated free space sizes 

Translating, executing, and re-translating a computer 
program for finding and translating program code at 
unknown program addresses 

Method and apparatus for use in a network of the 
ethernet type, to improve fairness by controlling 
collision backoff times in the event of channel capture 

Method and apparatus for producing a software test 
system using complementary code to resolve external 
dependencies 

Precision broadcast of composite programs including 
secondary program content such as advertisements 

Mechanism for screening commands issued over a 
commu~lications bus for selective execution by a 
processor 

System for interleaving memory niodules and bailts 

System for executing and debugging multiple codes in a 
multi-architecture environment using jacketing means 
for jacketing the cross-domain calls 

Alternate execution and interpretation of computer pro- 
gram having code at unknown locations due to transfer 
instructions having computed destination addresses 

Reduced system bus receiver setup time by latching 
unamplified bus voltage 

Timing verification using synchronizers and timing 
constraints 

 method and apparatus for producing audio-visual 
synthetic speech 

Semiconductor process power supply voltage and 
temperature compensated integrated system bus 
driver rise and fall time 

Dual addressing arrangement for a comniunications 
interface architecture 

Method of recording, playback, and re-execution of 
of concurrently running application program operational 
commands using global time stamps 



Mike Freeman, Stuart Keith Morgan, 
and Mike Romm 

Paul M. Goodwin, David A. Tatosian, 
and Donald Smelser 

Modular coupler arrangement for use in a building wiring 
distribution system 

Memory stream buffer with variable-size prefetch 
depending on memory interleaving configuration 

Clark E.  Lubbers, Susan G. Elkington, 
and Richard F. Lary 

Slip list data structure enhancements 

Dennis Joseph Murphy and 
Robert Neil Faiman, Jr. 

Interface for symbol table construction in a multi- 
language optimizing compiler 

Alexander Stein and William Grundmann Topology independent system for state element conversion 

Frank Samuel Caccavale Phase-space surface representation of server computer 
performance in a computer nenvork 

Edward S. Lowry Data processing system having a data structure with a 
single, simple primitive 

System for reconfiguring addresses of SCSI devices via 
a device address bus independent of the SCSI bus 

Mark F. Arnberg, William K. Miller, 
Frank M. Nenieth, and 
Dwayne H .  Swanson 

5,666,415 Charles William Kaufman 

5,666,519 Pcter C. Hayden 

Method and apparatus for cryptographic authentication 

Method and apparatus for detecting and executing 
cross-domain calls in a computer system 

David M. Fenwick, Denis J. Foley, 
Stephen R. Van Doren, David W. HarnveU, 
Elbert Bloom, and Ricky C. Hetherington 

Distributed data bus sequencing for a system bus with 
separate address and data bus protocols 

Rajendra K. Jain, K. K. Ramakrishnan, 
and Dat-Ming Chiu 

Avoiding congestion system for reducing traffic load on 
selected end systems which utilizing above tlieir allocated 
fair shares to optimize throughput at intermediate node 

5,671,225 Donald F. Hooper, Dave M. Tongel, and 
Michael B. Evans 

5,671,406 Clark E. Lubbers and Susan G. Elkington 

Distributed interactive multimedia service system 

Data structure enhancements for in-place sorting of a 
singly linked list 

Method and apparatus for interconnecting network 
devices in a networking hub 

5,675,735 Shawn Gallagher, James Scott Hiscock, 
Dahai Ding, Scott D'Edwine Laivrence 

5,675,742 Rajendra K. Jain, K. K. Rarnakrishnan, 
and Dah-Mng Chiu 

System for setting congestion avoidance flag at 
intermediate node to reduce rates of transmission 
on selected end systems which utilizing above their 
allocated fair shares 

5,675,763 Jeffrey Clifford Mogul Cache memory system and method for selectively 
removing stale aliased entries 

5,675,800 MJendell Burns Fisher, Jr, and 
Richard Sayde 

5,678,045 Jiirgen Bettels 

Metliod and apparatus for remotely booting a 
computer system 

Method and apparatus for multiscript access to entries 
in a directory 

5,680,544 John Edmondson and Scott Taylor 

5,680,584 Mark A. Herdeg and Michael V. Iles 

Method for testing an on-chip cache for repair 

Simulator system for code execution and debugging 
within a multi-architecture environment 

5,680,644 David J. Sager Low delay means of comniunicating between systems 
on different clocl<s 

Method and device for monitoring, manipulating, and 
viewing systeni inforniation 

5,682,489 Jeffrey R. Harrow and Fred P. Messhiger 

5,682,551 Chester Walenty Pawlowski, Nicholas 
M e n  Warchol, David Gerard Conroy, 
and R. Stephen Polzin 

System for checking the acceptance of 1/0 request to 
an interface using sohvare visible instruction which 
pro\ides a status signal and performs operations in 
response thereto 

5,684,946 James P. Ellis, Mike Kantronritz, and 
Will Sherwood 

Apparatus and method for improving the efficiency 
and quality of k~nctional verification 
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System for generating error signal to  indicate mismatch 
in comn~ands and preventing processing data associated 
with the received con~mands \\hen mismatch command 
has been determined 

Se~niconductor proccss, po\ver supply and temperature 
compensated system bus integrated interface arcllitec- 
tilre with precision receiver 

Memory systcm and method for selective multi-level 
caching using a cache level code 

Configurable digital signal interface using field 
programmable gate array to  reformat data 

Uninterruptible po\ver supply \vith fault tolerance in 
a high \ioltage environment 

Rounding adder for floating point processor 

Method and apparatus for automatic gap closing in 
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Using pre-analysis and a 2-state optimistic ~nodcl  to  
reduce computation in transistor circuit simulation 
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gram number field and program number register contents 
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an asic device 
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systcm 

Board mourlting systcm \\it11 selfguidu~g interengagenlent 

LOMT skew remote absolute delay regulator chip 

 method and apparatus for parallel execution of  c o n -  
puter programs using information providing for recon 
struction of  a logical sequential program 

Concurrency and recovery for index trees \vith nodal 
updates using rn~~lt iple  atomic actions 

 method of rule execution in an expert system using 
equivalence classes to  group database objects 

~Metliod for encoding delta values 

Traffic shaping system for as!!nchronous transfer 
mode ncn\~orks 




	Front cover
	Contents
	Editor's Introduction
	Optimizing Alpha Executables on Windows NT with Spike
	Analyzing Memory Access Patterns of Programs on Alpha-based Architectures
	OpenVMS Alpha 64-bit Very Large Memory Design
	PowerStorm 4DT: A High-performance Graphics Software Architecture
	DART: Fast Application-level Networking via Data-copy Avoidance
	Recent DIGITAL U.S. Patents
	Back cover

