
An Interview: The Macintosh
Design Team

The making of Macintosh
On October 14, 1983, the design team for Apple Computer Inc.'s new Macintosh computer met with BYTE Managing Editor

Phil Lemmons at the company's Cupertino, California, headquarters. In the dialogue that followed, Bill Atkinson, Steve Jobs,
Andy Hertzfeld, Larry Kenyon, Joanna Hoffman, Burrell Smith, Dave Egner, Chris Espinosa, Steve Capps, Jerry Manock,
Bruce Horn, and George Crowe discussed the evolution of their brainchild.

BYTE: How did the Macintosh pro-
ject begin?
Jobs: What turns on Andy and
Burrell and Chris and Bill and Larry
and everyone else here is building
something really inexpensive so that

everyone can afford it. It's not very
many years ago that most of us in this
room couldn't have afforded a $5000
computer. We realized that we could
build a supercheap computer that
would run Bill Atkinson's amazing

Quickdraw and have a mouse on it—
in essence, build a really cheap im-
plementation of Lisa's technology
that would use some of that software
technology. That's when the Macin-
tosh as we know it was started.

58 February 1984 c BYTE Publications Inc.

Bill Atkinson.

Hertzfeld: That was around January
of 1981.
Smith: We fooled around with some
other ideas for computer design, but
we realized that the 68000 was a chip
that had a future and had.. .
Jobs: Some decent software!
Smith: And had some horsepower
and enough growth potential so we
could build a machine that would live
and that Apple could rally around for
years to come. So we looked at what
the Lisa group was doing and knew
that the designers were onto some
really hot ideas. They have a lot of
very advanced things they want to do
with Lisa. Mac basically does one
thing at a time as opposed to doing
several things simultaneously. The
memory-management unit that's
critical for a Lisa application, for ex-
ample, becomes something we can
do without very nicely. Our real goal
was to design a great system with just
a bit map and based on a 68000 but
also a really cheap system. Could we
write incredibly great software that
wouldn't chew up megabytes of
memory? To do what used to take
megabytes in a very tiny machine?
Atkinson: It's not like we didn't want
a memory manager in it or didn't
want lots of memory or didn't want
hard disks. What we wanted was for
lots of people to be able to own these
things. We saw something beautiful
that we built and we said, "How can
we get this out to a lot of people?"
Espinosa: It doesn't matter how great
the computer is if nobody buys it.
Xerox proved that. The key thing
you've got to remember is that back
then, if you told anybody you could
build a computer using a 68000 with
anything under a hundred integrated
circuits, they would have said you
were crazy.
Kenyon: Most people have twice as
many chips just for central process-
ing unit support on the 68000. So
nobody had ever conceived that you
could build a cheap system.. .an
Apple II chip-count system with a
68000.
Atkinson: We want the most com-
puter that you can get for the least
dollars so that the most people can
have it. . . and then you can concen -

trate on making the world's best soft-
ware for it.
Espinosa: And you look at this
board, and every chip on there is
pretty expensive. There's not a lot of
jellybean TTL [transistor-transistor
logic] running around, not a lot of
little off-the-shelf chips. Everything
on there costs $4 to $9 apiece, and
that's expensive for a chip. But we've
got so few of them; instead of taking
up board space with a lot of stuff that
you just don't need and making it un-
reliable because you've got to have
connectors and you've got all these
problems with soldering. If you just
carefully pick what chips you want to
use and you've got somebody like
Burrell who's genius enough to put

the right ones together in the right
way and make them do things
they've never done before, then you
can come out with something that ' s
small and inexpensive and incredibly
powerful.
Smith: What gets me is that a lot of
programmers will have this long
laundry list of things they must have
before they will sit down and allow
fingers to touch the keyboard. I was
really lucky because these guys are
the best programmers I've ever seen
anywhere, not just with Apple. They
walk around between the Apple divi-
sions, contributing this amazing
graphic stuff to Lisa—and then help
out on the Mac, too. Everybody had
this common goal of making the Mac

February 1984 BYTE Publications Inc. 59

Andy Hertzfeld.

flexible and general-purpose because
we didn't know what we might want
to do five years from now. We knew
the kind of direction we were going,
so instead of building in a graphics
controller that takes 25 chips and
then trying to figure out some way
to soup up the architecture so that it
actually would work with it, we
relied a lot on the processor assem-
bly-language code in ROM [read-only
memory]. And it turns out that we
can make the whole system go faster
by eliminating a lot of the bus traffic
that normally slows the machine
down.
Jobs: We learned a lot on Lisa.
Atkinson: We're still learning a lot!
Jobs: If you read the Apple's first
brochure, the headline was "Simpli-
city is the Ultimate Sophistication."
What we meant by that was that
when you first attack a problem it
seems really simple because you
don't understand it. Then when you
start to really understand it, you
come up with these very complicated
solutions because it's really hairy.
Most people stop there. But a few
people keep burning the midnight oil
and finally understand the underly-
ing principles of the problem and
come up with an elegantly simple
solution for it. But very few people

go the distance to get there.
One of the things we really learned

with Lisa and from looking at what
Xerox had done at PARC [Palo Alto
Research Center] was that we could
construct elegant, simple systems
based on just a bit map... no char-
acter generators. . .and save tons of
chips if we had software fast enough
to paint characters on the screen,
given the processor. Apple was the
first company to figure out how to do
that with a microprocessor... and
really still is the only company that's
doing it with a microprocessor. That's
what Bill figured out how to do with
Quickdraw.

The real reason that we chose
originally to use the 68000 was so we
could pick up Quickdraw. Macintosh
uses the exact same graphic structure
and package, the exact same code, as
Lisa does. So, by paying a little more
for the microprocessor, not only were
we able to give the customer an in-
finitely more powerful chip than, say,
an 8-bit chip or one of Intel's baby
micros, but we were able to pick up
this amazing software, and that
allowed us to throw tons of chips out
of this thing. We didn't have to get
special custom text or graphics chips.
We just simplified the system down
to where it's just a bit map on the

screen, just Bill's amazing software
and Burrell's amazing hardware, then
in between that the other amazing
software that we have. We tried to do
that in every single way, with the disk
and with the 110... rather than slots.

When we first started off with
Apple I1, the variability—how you
customize your machine—was with
hardware; you plugged in a card.
And because we didn't have any idea
what these computers were going to
be used for, that variability was very
important. But now we have a much
greater understanding of what people
are using these products for. And the
customization really is mostly soft-
ware now. The way I customize my
machine to do what I want is by stick-
ing in a disk more than anything else.
Atkinson: We've already built in the
hardware that most people want.
Jobs: Right. Most of the options on
other computers are in Mac. So Andy
and Burrell really came up with an

I/O scheme that was serial. We don't
have slots. . . slots cost a lot of money,
they make the box much bigger, and
you need a much bigger power sup-
ply because you never know who's
going to plug in what. Do you realize
that in an IBM PC the video board,
just the black-and-white video plug-
in card, has got way more chips than
the entire Macintosh? Anyway, so the
Mac's got most of the stuff built in.
Rather than putting in serial ports
that operate at 9600 or 92,000 bits per
second, we paid more money and we
put in this super chip. We used the
Zilog SCC chip that Burrell picked
out, and Larry Kenyon and Andy
wrote the software to make this chip
sing. And it goes up to, what, 230
kilobits per second?
Smith: It can go up to a megabit per
second with external clock.
Jobs: And it does all the asyn-
chronous and tons of synchronous
protocols all inside the chip. So we've
got superhigh-horsepowered serial
ports.
Smith: The whole idea is that later on
we'll be able to have logical slots in-
stead of physical slots. We'll be able
to have multiple devices per port;
we'll use a port a lot like the way you
have slots in Apple II. But one of the
other advantages that Steve didn't

60 February 1984 BYTE Publications Inc.

mention is that you don't haveto
change the memory map of the com-
puter. Andy and Larry Kenyon
worked on the system and the driver
software and things like that. They
said, well, gee whiz, on the Apple ll
you keep having the rug sort of
changed on you; someone plugs in
a new card or, worse yet, on other
micros people are plugging in dif-
ferent software and different hard-
ware, and it's hard to keep track.
Atkinson: You get into incompatible
combinations; you just can't use this
card with that card.
Jobs : The other thing about the hard-
ware is that when Apple II was de-
signed, a microcomputer system cost
a lot of money to build. I mean, to get
a microprocessor and RAM [random-
access read/write memory] and ROM
might have cost $50, $60. You ob-
viously wanted to share that among
the peripherals, which is what the
Apple II did, what any slotted system
generally does. Now you can buy a
microprocessor and RAM and ROM
in a single-chip micro for about $4.
So giving each of the off-board
peripherals its own little micro-
processor system is adding $5
to the cost of the peripheral. And the
cost for providing them with the
bandwidth that's needed for most of
the peripherals that are not on this
board is very low. Add a $5 bill to the
peripheral, put a single-chip micro in
it, and then talk serially, rather than
have every single user pay an extra
few hundred dollars for the price of
the slots that may never get used.
Atkinson: One way to look at the
bandwidth thing is real simple: if
there are 128K bytes, that's an eighth
of a megabyte. There's 1 megabit in
the machine, so the worst transfer
you could think of, transferring the
entire contents of the machine, takes
one second. You transfer the entire
contents of the Mac through that
serial port in one second.
BYTE: What are the serial connec-
tors?
Jobs: There are two connectors,
DB9s.. .
Atkinson : They're tricky. They can
run anything from 300 baud on up;
you can use them as RS-232C or
RS-422A. Burrell Smith.

February 1984 c BYTE Publications Inc. 61

Jerry Manock.

Jobs : Are you familiar with RS-422A?
BYTE: Just that it's a high-speed
serial standard.
Smith: You can do point-to-point
communications at very high speeds
with Mac without having to add, for
example, a fancy transmitter/receiver
thing. We realize RS-232C is an im-
portant thing. It's sort of the industry
standard, and a lot of stuff talks that
way, but we wanted to allow some-
thing a little more whizzy. It turns
out that RS-232C was created before
the concept of a bidirectional pin was
invented, which hampers it with
things like not knowing the sex of
devices and terminals.... It gets con-
fused as to whether they're com-
puters or not. We wanted Mac to talk
to those devices. We wanted to pro-
vide for the future so that, for exam-
ple, if I ever get a spare moment, I

can go back into the lab and make
video digitizers and hard-disk inter-
faces and things like that. When we
want the bandwidth, it will be there
for the applications that we need to
support.
Jobs: Another thing is that you can
run RS-422A twisted pairs, which
means I can run these things for
several hundred meters. I can string
lines if I have a laboratory and a com-
puter on my desk, do whatever I
want to do. They aren't DB-25s. We've
been living with giant connectors
now for years but using only a few
of the pins. So, again, we tried to save
a little bit of space in the back
because the connector space we have
is limited. We tried to cut down the
cost to the customers again, and so,
for connecting to devices like printers
and modems, which we offer and

which are the most prominent, we
just supply the cables. We also will
supply cables from one of these
things to a variety of DB-25s...for
the modem version, the printer
version. . .
Atkinson: Lines 2 and 3 are switched
on a modem versus a printer, so you
just use a modem cable or a printer
cable.
BYTE: From a very early time you
knew that you wanted to take advan-
tage of Lisa's software technology,
and you also had the goal of making
that possible at low cost. When did
you have a consensus on exactly
what this hardware would have to be
to achieve that goal?
Smith: In 1981 we started looking at
the Lisa. I came up with a proposal
that said it ends up costing $14 more
to use a 68000 with 64K bytes of
memory than it does with 6809-based
machines, if you count power supply.
It turns out that it's actually easier to
interface memory to a 68000 than to
a 6809. So in January we started really
looking at the 68000 and the work
that Bill was doing.

In June of 1982 we finally decided
on what we thought was enough
video. It turns out that the original
machine had 384 by 256 pixels. We
chose that because we thought we
had a shot at squeezing the machine
down into 64K bytes, and we didn't
want to throw away a quarter of the
memory just for the screen.
Atkinson: The thing that drove us is
the 80 columns. In a word processor,
we really wanted the lines to break
on the screen at the same place they
break on the printer. There are two
kinds of word processors. There are
the ones where you just have a string
of characters and you see them how-
ever they wrap on the screen. Screen
wrap is a function of the screen, and
how characters wrap on the printer
is the printer's doing. Then there are
word processors where what you see
is what you get. You lay out a line
and you know it's going to break at
the same place on the printer as the
screen, so you can do columns and
tabs and a couple of columns of num-
bers. Then you have to have enough
pixels to generate a full printer line
across. We thought we could do it

6 2 February 1984 BYTE Publications Inc.

The Wizards behind the Macintosh
Bill Atkinson nearly had his Ph.D. in

neurochemistry before he admitted to
himself that his real love was computers.
He "got a quick E.E." and started his own
company. He was happily minding his
own business when his friend Jeff Raskin
asked him to come see what was happen-
ing at Apple, which was then six months
old. Bill wasn't really interested, but
airplane tickets showed up in the mail, so
he took a look. What he saw was "several
years reaching into the future" of anything
he could do where he was. He stayed to
write Apple's Pascal and later became Mr.
User Interface for Lisa before he moved over
to the Mac team.

Andy Hertzfeld says, "The Apple II
changed my life." The computer people at
Berkeley were a little narrow-minded about
letting a grad student really get into the
computer as Andy wanted to. So he spent
nearly all the money he had in the world
on an Apple II and had a computer he
could control completely. He decided the
Apple was more interesting than his classes
and began writing programs for magazines.
When Apple bought one of Andy's pro-
grams, Steve Jobs offered him a job, which
he took when he finished school. He
worked on silent-type printers and Apple
Ill demos until a shake-up in his part of
the company shook him loose. He looked
around and decided to go with Mac.

Larry Kenyon arrived at Apple from
Amdahl with a double degree in psychol-
ogy and computer science. He was work-
ing on Apple II/Apple III products when
the same shake-up that shook Andy loose
freed him, too. Andy asked Larry to join
the Mac crew because he was one of the
few people who understood the arcane art
of making the Apple II work with printer
peripherals, and anybody who can do that
has to be good. No one in the company

really believed that Mac was a product
when Larry joined the Mac team. It was
just a research effort, and there was some
risk involved—would you still have your
job in a few months?

Joanna Hoffman is still on leave from
her Ph.D. program in archaeology at the
University of Chicago. She has a back-
ground in anthropology, physics, and
linguistics. She came to Apple because of
Mac. After using her computer skills in the
field of archaeology for so long, she was
tired of looking at the past and turned to
the future. She was Mac's entire marketing
department for more than a year. She
wants to make Mac a tool that feels natural
for international users by making it speak
their languages.

Burrell Carver Smith encountered the
Homebrew Computer Club in 1975, got
hooked on microprocessors, and moved to
the Bay Area. Just riding around in a bor-
rowed truck one day, he saw Apple and
decided to drop in. The only job Apple had
available was in the service department,
repairing Apple IIs . He took the job and
fixed at least a thousand Apple II boards
and got involved in other projects before Jeff
Raskin and Bill Atkinson recruited him for
Mac. He talked the Lisa engineers out of
some chips and stuff and got a prototype
running over Christmas 1979. He was the
first full-time Mac person after Jeff Raskin.

Chris Espinosa says, "There was no
life before Apple." At 13 years old he could
be found cruising up and down the bus line
in his home town, spending a few hours
at each Byte Shop on the line until the
owner threw him out. He discovered the
way to keep from getting thrown out was
to write demo programs for the machines,
so he wrote for whatever was lying
around—Altairs, IMSAIs, or this weird

new machine called Apple I. His mom wor-
ried when he was offered a ride to the
Homebrew Computer Club meeting with
two scruffy characters named Jobs and Woz-
niak, but she gave in, and the rest is
history. Chris spent a Christmas vacation
debugging Apple's BASIC in exchange for
a whole row of 4K-byte RAM chips, which
he thought was a pretty good deal. He
worked part-time during college writing
BASIC programs and reference manuals
and signed on full-time when he gradu-
ated. He likes being in on the design
process-"If f the machine is designed right
in the first place, you don't have to write
a lot about it."

Jerrold C. Manock was a freelance
product-design consultant with a Stanford
education who finally joined Apple when
he saw that three-quarters of hisbilling
was to Apple anyway. He worked on the
Apple II, the Disk II, the Ill, and Lisa
before designing Mac. In Macintosh, he
says, "The outside matches the inside in
elegant simplicity."

Bruce Horn grew up at Xerox PARC,
much the same way Chris grew up at
Apple, and later attended Stanford. Bruce
started working at Xerox when he was 14
years old—he was one of the kids Xerox
brought in to test Smalltalk. Turns out he
was brighter than most and became a sys-
tems wizard who actually implemented
Smalltalk on a variety of different pro-
cessors. Bruce is all of 23 years old now,
but he spent seven years at Xerox PARC
and brought Apple that perspective.

George Crowe and David Egner
designed the analog board in the
Macintosh.

Steve Capps assisted Andy Hertzfeld
with the systems software.

with 384, and we tried it with real live
documents—and we couldn't do it.
You could do it with 512, but you
couldn't do it with 384.
Smith : The diagonal lines look better,
too; the jaggies are removed some-
what, and things like that. So, with
that, we said, OK, what's that going

to mean? And we ended up with
128K and. . .
Atkinson: 22K bytes on the screen,
and in a 64K-byte machine you
couldn't have afforded it. That drove
us to 16 RAM chips instead of 8.
Hertzfeld: By then, we knew we
were going with 128K bytes anyway,

to run the applications.
Jobs : I just thought I'd show this to
you. This is the IBM video board; it's
only video, nothing else. It's 69 inte-
grated circuits, more chips than an
entire Macintosh, and it basically
does nothing. And it doesn't even do
that very well.

February 1984 © BYTE Publications Inc. 63

Espinosa: Forty percent more chips
than the Mac.
Jobs: So that sort of gives you a feel-
ing. And again, that just has the
video on it. Macintosh, in addition to
having video that's far higher in res-
olution and far faster, has a 32-bit
microprocessor, 128K bytes of RAM,
64K bytes of ROM, two serial ports,
the mouse, the serial, keyboard, and
mouse interface, the incredible
sound, the clock calendar, the disk
controller.. .
Smith: We rolled the whole disk con-
troller into one chip.
Hertzfeld: And it has Lisa's graphics
and user-interface software built in-
to every board.
Jobs: Andy was sort of the software
technical leader behind the project,
from its inception. As Andy puts it,
software sometimes stands on its
head to get rid of a chip in the hard-
ware. And so, with a system as
powerful as this, we wanted to take
advantage of all the features, for in-
stance, in the serial chip and the disk
and stuff. We really wanted to be able
to have the serial ports reading while

the disk is spinning, while the mouse
is moving, while it's making sound.
You know, all with that single board.
BYTE: What were the roots of that
operating system?
Kenyon: When we started, of course,
we were looking at the work Lisa was
doing, and the Lisa group was rolling
its own operating system, and it just
didn't seem appropriate. We took the
graphics software, which was perfect
for our machine.
Capps: The Lisa's operating system
took a lot of the user interface. For the
window manager, even the memory
manager, we started with what Lisa
had.
Hertzfeld: It turns out that Quick-
draw is built on top of what Lisa
would call the intrasegment memory
manager. You relocate little objects.
We took that because Quickdraw re-
quired that support, and we sort of
turned it into our system-wide mem-
ory manager. Even the Lisa group
uses it only for the intra-application
memory manager. Someone men-
tioned a neat way to do a file system,
and we thought about it and said,

"Gee, that's a good way of doing it,"
and so we did. A lot of it was ex-
perience on the Apple II, knowing
what was sort of bad there—what we
wanted to do great here. That at least
was the conception of the asyn-
chronous I/O. I knew from the Apple
II that when you make a disk request
it waits there for a whole second, a
million microseconds, just waiting for
the disk to come up to speed. We
should be able to do other useful
work while that's happening. On the
Apple II if you want to make a beep,
the whole processor, the entirety of
the machine, is devoted to making a
beep. And when you've got all the
horsepower of the 68000 there, you
don't want to waste it all on making
sounds.
Atkinson: We still make a beep with
the processor.
Hertzfeld: But we time-slice the pro-
cessor such that you can be doing
other things. It happens on the inter-
rupt level instead of being dedicated.
Macintosh uses the processor for
everything, just like the Apple II
does. In terms of the disk, we have

64 February 198 4 BYTE Publication , Inc

the same disk-controller architecture
as the Apple II, but we are just a little
more sophisticated in how we use in-
terrupts. We give the time back to the
applications while the I/O is going
on.
BYTE: Can you say more about the
custom disk controller?
Smith: Sure. A long time ago we sort
of figured that everybody who was
doing designs at Apple with disks
loved what Woz [Steve Wozniak] had
done on the Apple II. I'll never forget,
the first time I looked at the Woz con-
troller I said, "OK. Well, this must be
the interface disk controller. Where's
the disk controller?" I never found
the disk controller. And we've just
been in love with the way that that's
done. It's used to modify group code.
One of the things we knew, though,
was that disks would be going faster
in the future. So we initially designed
this chip so the whole company
would be able to have an ultra-low
cost way of using Wozniak's disk
technology for every product. But we
knew that we weren't just going to be
going at 4 microseconds per bit, that

twice that would become an industry
standard . at least an Apple inter-
nal standard. So we built in a mode,
a high-speed mode, so that it can go
twice as fast.
Atkinson: While you're getting input
from the serial port at 19,200 bps, you
can be writing to the disk and not
missing a beat. It's not the buffer
that's doing that It's Larry Kenyon
Every 4 nibbles, you look to see if
there's something on the port,
because in one sector's time, 24 bytes
go by.
Jobs . After we reexamined every-
thing, including the disk format, we
said, "Do we want to go to MFM
[modified frequency modulation]?"
And the more we reexamined it,
what became clear was that the
original idea that we had for a disk
in 1978, which we are still using, is
great.
Atkinson : We get 400K bytes on this
thing, while most people get only
270.
Jobs: As an example, our scheme has
twice the margin of MFM. In other
words, when you're shipping a mil -

lion or two million computers a year,
which we intend to do, when people
are buying media from 10 different
sources and they expect to take disks
out that were recorded in Alaska in
really cold weather and stick them in-
to machines in Florida in a heat wave
and have them work, that margin is
really important. If you want to
equate that to reliability, we are
significantly more reliable than any
other disk system on the market,
while having higher capacity. So that
was the key decision, to stick with
the same encoding format and the
same scheme that we've used since
1978. So, while everyone else is run-
ning at roughly the same rates as Ap-
ple II, the IBM PC, and everything
else, we doubled it on Macintosh. We
set a new internal standard with the
3½-inch disk and this new single-
chip controller. And every new 32-bit
product at Apple will use that new
standard. The media, the sector
format on that media, the disk con-
troller, and the routines and every-
thing to drive them is a new Apple
32-bit standard that you'll see com-

66 February 1984 c BY TE Publication, Inc.

ing out in every future product that
we do in that family.
Smith: There were some voices
within the company that said, "Oh,
you guys ought to go with standard
formats and things like that" We
looked at doing that and it turns out
that it takes more chips to interface
to a standard floppy-disk controller,
and we have.. .
Jobs: Well, I can go get the IBM
floppy board. It looks to have about
45 to 50 chips on it.. .
Espinosa: I'll come and help you
carry it.
Jobs:... including an LSI [large-scale
integration] disk controller—far less
performance, far less capacity, far
higher cost.
Atkinson: And less reliability.
Jobs: Oh, far less reliability. Larry's
software senses the disk speed, and
Burrell's hardware can adjust to one
of four hundred speeds. So if it's
written on something that's a little
out of whack, we can just adjust right
down to the necessary speed and
read it. Everything on the Macintosh
board—the serial timing, the disk
timings, the microprocessor timings,
the video timings, the sound tim-
ings—comes from one crystal oscilla-
tor and is synchronized from one
source. And, again, it's better, of
course, technically to do it that way.
Everything works much better, but it
also saves parts, and we can offer this
thing cheaper to customers. And
most of this stuff customers will
never ever realize or care about any-
way. I mean, who cares how many
crystal oscillators you have? But you
do care about how big your computer
is. You do care about how much it
costs, and you do care about how
well it works.
Atkinson: If you ever drop your com-
puter you find out quickly how many
crystal oscillators you have.
BYTE: So with the variable speed in
the disk drives, I guess there's no
problem having two drives that are
3 percent different in speed.
Jobs: We read it and adjust it so that
the speed is accurate relative to that
crystal. That crystal on the board is
superaccurate. We can adjust the disk
drive relative to that superaccuracy.
Atkinson: You force all the disks to

go at exactly the same speed by hav-
ing the software constantly monitor-
ing the speed and saying, 'Ah, it's
running a little slow; jack it up a lit-
tle bit;' so that each disk doesn't have
to be adjusted at all. You switch disk
drives, and the new one will run at
exactly the same speed because you
force them all to.
Smith: It turns out that the speed
variations occur partly because you
plug in a new cassette that loads the
motor down in a different way and
also because of temperature varia-
tions that cause very long-term drifts
in the disk speed. Using a little bit of
the processor to fix that doesn't cost
us any performance at all on the sys-
tem.
BYTE: What about the display elec-
tronics?
Atkinson: Where is the display con-
troller?
Hertzfeld: It's hidden.
Jobs: If you bite into that IBM display
board, it'll totally flicker if you do it
at the wrong time. You've seen that,
right? Woz just came up with this
really brilliant way to do the Apple
II. He realized that memory was
about twice as fast as the micropro-
cessor needed it and twice as fast as
the video needed it. So he put the
microprocessor over here and he put
in essence the video over here, and
he put some multiplexers in the
middle. He shared the exact same
memory between the two in a way
such that this one thought it had all
the memory all the time and this one
thought it had all the memory all the
time, yet they shared the same mem-
ory! All this thing had to do was
write into certain memory locations
and, magically, it would appear on
the screen. The microprocessor never
even had to think about the screen.
All it did was look at memory loca-
tions.
Atkinson: And there was no way to
glitch the video because accesses
were mutually exclusive.
Jobs: Right. And so it turns out that,
try as we might, we have never been
able to find a better way to do it.
Atkinson: At the same time that the
processors have gotten faster, mem-
ory's gotten faster; the memory is still
twice as fast as the processor.

Jobs: And so, again, it gives you
greater performance, because you
don't have to write only at special
times and slow yourself down. It cuts
the chip count way down because
you don't need two banks of RAMs,
so the customer's not paving for these
extra chips, and it just makes a more
elegant product.
BYTE: How far does the similarity
extend between the Apple II video
and the Mac's video?
Smith: We have a three-part mem-
ory architecture on Mac. We have a
DMA window for sound, video, and
CPU. . . shared by three devices. Also,
what we do that is a little more
sophisticated than Apple II is return
memory cycles to the processor dur-
ing horizontal and vertical retrace.
And with the analog design we're
able to lengthen the horizontal
retrace interval, which gives us more
performance for graphics by making
more time available to the processor
from memory and giving the analog
electronics more time to retrace the
beam. On the Apple II, Woz sort of
designed this logic board and the
power supply was kind of added. On
Mac, we really designed the entire
system as a complete system from the
ground up, so we used different con-
straints. I would say there's not much
similarity. The great thing about Mac
as a product is that it really wasn't
designed as just this piece over there
and this piece over there and this
other piece... All of it was designed
in parallel, everybody knowing what
everyone else's job was.
BYTE: How did you decide on the
appearance of the machine?
Manock: Our goal in the beginning
was portability. We actually had this
cardboard model that looked amaz-
ingly like the Osborne. And that was
way before the Osborne came out. As
I said, portability was primary here,
and this version had an attached
keyboard that had a sort of rubber
boot around it that would fold up
and give you protection over the
screen. Steve really changed the em-
phasis of the product one day when
he said that we didn't want portabil-
ity to be the primary aspect of this,
but we did want it to take minimal
desk space. With that goal in mind,

68 Februarv 1984 BYTE. Publications Inc.

70 February 1984 0 BYTE Publications Inc.

we realized that the keyboard didn't
have to be exactly the width of the
computer.
Jobs: To use the earlier design you
had to have some sort of arrange-
ment to tilt it up. And what we
noticed was, well, fine, what if you
just lift the back up here like this?
Then, because you have all this space
underneath, you could put the
floppy disk underneath. So you
make a unit that's more vertical, has
a smaller footprint.
Atkinson: It has to be up enough so
your eyes can see it anyway; you
need the height.
Manock: Steve thought, too, I
think—in a gut reaction sort of way—
that everybody was going low profile
and wide, and we never have wanted
to be a "me, too " I think our vertical
format is correct when you think of
human factors.
Hoffman: Jerry, you might want to
turn the back around. We made it
truly international. I think it's one of
the few products aside from Lisa that
is completely usable anywhere you
care to take it.
Manock: Did you see the icons on
the back?
Hoffman: We started out with the
case and went from the outside in,
trying to make it more and more in-
ternational the more we thought
about it. And Jerry was just great as
soon as he realized that we really did
want to bring it to the whole world.
He had marvelous ideas on how to
eliminate every word of text, take
everything off the package so that we
don't have to be an American product
anywhere that we go.
Jobs: In Mac, there's no English on
the outside of the case. Everything's
iconic. And there 'is absolutely no
English in the ROM. It is universal in
nature. When the thing comes on it
puts a few icons on the screen. If
something goes wrong, it can't boot
or something, it puts a frowning Mac
on. If it's booting it puts a happy Mac
on. It loads all the languages, all the
country-specific stuff, off the disk.
So, because the keyboard is detach-
able and mapped anyway, to localize
Mac all you do is change the key-
board, manuals, and the disks.
Nothing in the box has to change.

And another real breakthrough is this
thing called Resources that Bruce
Horn invented.
Hertzfeld: The data is factored out
from the code. You know, most pro-
grams are a mixture of control logic
and just raw code.
Atkinson: The virtual-memory archi-
tecture on the data parts of the pro-
gram allows us to factor it out so that,
without rewriting a program at all,
without recompiling or relinking the
program, I can take a copy of Mac
Paint and in 15 minutes make a Ger-
man version.
Hertzfeld: Because all the text is kept
in a well-known, well-defined place.
Horn: Until December, people didn't
really know what the resource
manager was, because they really
hadn't had any contact with it,
besides me. I knew what I wanted
from it because I had to do Finder
and all that other stuff. Andy just
looked at it over time and figured out
what you could do with it. And I was
trying to say, well, this can do this
and this. ..It was really Andy having
the biggest view of the system saving

that this could really be a great thing
for a lot of stuff.
Hertzfeld: Another thing to ask
Bruce about is the Finder, which is
our most important application, the
first thing that comes up on the ma-
chine. That's the program with all the
little icons, the desktop manager, I
guess we're calling it. That 's Bruce's
conception and communication.

in Mac, there's no
English on the outside

of the case.
Everything's iconic.'

Hoffman: There are numerous
subtleties with this. Picture a
dialogue box, for example. A
dialogue box, when you put English
text in German, starts overflowing its
limits and starts looking very dif-
ferent. You have a button that says,
"Put this away." In German, that
takes a paragraph and overflows the
box. ...But Resources lets us change
not only the text but also the physical

look of those dialogue boxes, or any-
thing, through something called
Resource Editors.
Jobs: Otherwise, you'd have to get in-
to the source listing. You'd have to
change not only the languages, as
Joanna said, but also the geometries
of the dialogue boxes and make them
bigger. It would take you awhile; it's
not something that's impossible, but
it's something that never gets done.
And it's certainly something that you
have to be the originator of the pro-
gram to do. What we've done by pull-
ing all the language-specific stuff out,
through this beautiful mechanism
called Resources, is write these other
programs called Resource Editors. By
running a Resource Editor, you
could, if you knew German, simply
run a program on the program, get
in there—literally on the screen—and
just stretch the boxes bigger. You
could select a text and retype it in
German and move things around if
you wanted. You can examine every
icon, every dialogue box, every alert
box, every pull-down menu, every-
thing, without being a programmer,

72 February 1984 BYTE Publications Inc.

without getting the source code, and
very quickly, too, using the user in-
terface of the Macintosh.
Atkinson: Anything that XYZ soft-
ware company put together, even
though the company didn't think
about Taiwan, will run in Taiwan.
Jobs: But do we want it to run in
Taiwan?
BYTE: Are you going to market it ag-
gressively in Japan?
Jobs: Yes.
Hertzfeld: My favorite thing about
Resources, being selfish, is that the
same facilities that allow us to trans-
late English into 7, 10, 20, a million
different languages are the same
facilities we use to translate technish
to English in the first place.
Hoffman: The other component of
this is that it allows us to not just in-
troduce products that feel to the
native user like a native machine,
natural to them, but also that we can
start coming very close to making
simultaneous product introductions.
The software that is developed in the
U.S. can fly over there for them, for
the fragmented markets in Europe,
for example. Europe does not allow
for the same kind of development of
software houses as the U.S. because
the markets are all so fragmented you
can't amortize development of the
software over as large a user base. But
given that the Europeans now have
the capability of using a localized,
globalized software, if you will, their
market grows because each in-
dividual software developer in France
now can view the whole world as a
market. We feel that it will give an im-
petus to the development of software
developers, third parties, in Europe,
and in more fragmented markets as
well.
Smith: An international power sup-
ply, too, so the exact same unit basic-
ally can be used anywhere in the
world.
Egner: It doesn't care whether it's
50-Hz input.
Manock: Just one additional thing on
these: the icons on the back are from
the International Electrotechnical
Commission (IEC). We didn't invent
all these ourselves. . .wherever pos-
sible we used symbols that already
existed—for example, AC line power

—that are world standards. Where
we didn't have symbols that existed,
we used the IEC's closest symbol as
best we could and then added what
we thought made sense. For example,
we needed a symbol for a modem, so
we started with IEC's telephone sym-
bol. We tested them to make sure
there was good recognition. We'll
submit these new icons to the IEC to
have it suggest that they be the stan-
dards added to its encyclopedia of
symbols.
BYTE: What is this machine going to
make possible that other comparably
priced machines have not made pos-
sible? How will it change the per-
sonal computing scene?
Jobs: Right now, as you know, when
you use a word processor, it will do
two or three things. The first thing
Macintosh will do is make the exist-
ing types of applications an order of
magnitude easier and more ap-
proachable for people. Therefore the
available market for this machine is
going to be giant compared to the
available market for the people who
are willing to invest 40 to 100 hours
learning to use their computers.
That's the first thing.

The second thing is that there are
going to be new types of applications
available that could not be available
on the current generation of personal
computers—it is technically impos-
sible to do. The perfect example is
Paint. Paint is impossible to do on an
Apple II or an IBM PC or any of the
other first-generation products. You
can do a mockery of it, but you can't
really do it. And there are going to
be lots of applications like that.
You've seen Lisa Project. That, of
course, will be running on Mac. And
we don't even know the kinds of ap-
plications that are going to come out
in six months to a year. As an exam-
ple, we'll be able to laser-print output
from this thing by next June, and that
is pretty exciting to us. So, if we sell
these on a university campus, you'll
be able to take your disk into the li-
brary and get output off a laser
printer, which will be approaching
typeset quality. That's the kind of
stuff we're doing; you just can't do
that on a current-generation personal
computer.

And then the third thing is what
Burrell and Larry and Andy and the
other software people have done.
When we shipped the Apple II, we
fundamentally shipped about 2K
bytes of ROM with system code. The
IBM system's got 8K bytes, but it's
really kind of loose as a goose; it's
about 4K bytes by our standards of
code. Mac has 64K bytes of the tight-
est, most elegant code that this com-
pany's ever written. Most of the com-
puters now are basically shipping a
file system and a few drives, but
what's really interesting is that on top
of that, we've layered on memory
management and on top of this is
Quickdraw.
Jobs: Mac's a completely open ma-
chine—we've got a book called Inside
Macintosh that tells all the secrets of
it. But we're going to try to get a lit-
tle uniformity through the carrot
rather than the stick. And the carrot
is that there's a finite amount of RAM
in this machine, and we've done all
these things for you in ROM. Now,
you can do them yourself, there's
nothing that says you can't do them
yourself, but if you do, you've got to
write them, which is going to take
time and means you're going to be
slower to get to market; you've got to
chew up precious RAM space, and
the chances are pretty good that we
did a better job than you'll do. So
we're going to try through the carrot
to get a little bit of uniformity in the
user interface in some of the ways the
things are done.
Hertzfeld: See, we're really a 192K-
byte machine, and if the program-
mers want to throw away 64K, then
they're doing a dumb thing.
Jobs: We're a 192K-byte machine that
deep-freezes 64K.
Hertzfeld: Highly tuned, tested, de-
bugged, highly compact, very fast,
very high-quality consistent code.
BYTE: What are all the factors in this
that make it go so fast?
Hertzfeld: Sweat.
Jobs: Burrell, Andy, Larry, Bill—how
long did you work on Quickdraw?
Atkinson: Four years.
Hertzfeld: All of us care a lot about
performance. Surprisingly, that's
unusual. A lot of people don't care if
their system's. . .

74 February 1984 BYTE Publications Inc .

Atkinson: Like Quickdraw. I won't
even count the first runs in Pascal,
but the first runs in assembly lan-
guage were running 160K bytes,
before I added a lot of the new fea-
tures. It's now down to 24K bytes
with lots more stuff in it. Character-
drawing speed is one you look at for
drawing an arbitrary size character,
an arbitrary starting pixel clipped to
an arbitrary area. We were running,
when it was being developed on Lisa,
about 1000 characters per second the
first time. Well, I got that up to 4000.
Mac is running about 7000. That's
seven times 9600 baud. This is typical
of all of our software packages here.
You go through, get the best algo-
rithms first, get the stuff right. Then
crunch it down, make a first pass in
Pascal, get the algorithms right, find
the cleanest algorithms, find all the
corners, and make sure they're
tested. Then I translate it into loose
assembly language to get down into
assembly language and get it work-
ing. Then I'll go through and get all
the bugs out again, and I'll go
through and do fine register alloca -

tion to figure out what's the most im-
portant thing. This little baby, the
68000, has sixteen 32-bit registers sit-
ting there, and the way you get per-
formance out of that is to keep them
full. Keep the registers full of impor-
tant stuff all the time. That's the way
you make this processor sing. So you
go down and you do register alloca-

' Optimization without
measuring is wasted
time. Find out where

the application's really
spending time and go
whump on that code.'

tion, and then you don't stop. Then
you feed it back, you get your people
to use it.

Quickdraw was designed by "pull"
from applications rather than "push"
from the design team. You provide a
facility, watch the applications group
try to use it, understand where they
misunderstood something—maybe
you've got a bad model, you want to
make it simpler and cleaner—or

where they don't have enough per-
formance. And then you go back and
you measure, measure, measure,
measure. Optimization without mea-
suring is wasted time. Find out
where the application's really spend-
ing time and go whump on that
code. And any other cases they're
very seldom using, squeeze them
down in size, and stretch the other
ones. There's always a trade-off be-
tween size and speed. Stretch out the
common cases, let them be bigger
and much faster, and then keep the
generality by squeezing down the in-
frequent cases. So play your odds.
People draw characters in OR mode
a whole lot, and OR mode is about
twice as fast as the other modes, so
95 percent of all characters are drawn
in OR mode. Statistical measuring of
the use of the thing allows you to get
much more performance on your
average throughput than you can if
you don't go back and measure.

I think we all believe that system
software should be done in assembly
language at this stage of the game
because high-level languages can't

76 February 1984 © BYTE Publications Inc .

give you the performance and the
code density that you can get out of
assembly language.
BYTE: So far, it has seemed that with
all the systems that have mice, all
those that are on the market, you pay
a great price in terms of performance
to get ease of use.
Atkinson : You make a responsive
system; it isn't just draw some char-
acters out there. It's also, remember
where you put them because if the
guy touches on them you want to
light them up. There's a lot more guts
in that application.
Jobs : It's not just systems that have
mice. What's happening is there are
a whole bunch of things that go with
the mouse. It's not just hanging a
mouse on a first-generation personal
computer and using the same old,
fixed-pitch text and things like that,
just replacing four cursor keys. What
we've done here is take a quantum
leap, where, in addition to having the
mouse be the major pointing device,
we've gone to full proportionally
spaced fonts, totally software-painted
on the screen, any size, any shape.. .

totally new architecture for display-
ing things to the user.
Atkinson: But the responsiveness is
where the code goes.
Jobs: The responsiveness and the fact
that there isn't a mouse-based system
out yet that uses a 68000. We're ob-
viously using the power of the 68000
in addition to this code.
Smith: There are some tricks we
played in the hardware, too. For ex-
ample, we knew that the ROMs
would have real important things in
them. So we made the ROMs sort of
read-only cache memory, whereas
the RAM has to contend with video
and sound for access, so we cut that
down to the bare bones, but the code
that's in ROM, like Bill's graphics and
the other stuff, can run as fast as you
can run a 68000.
Jobs: If you look at the really great
applications, even on first-generation
personal computers, most of them
are written in assembly language—
Visicalc, 1-2-3—it's like if you're going
to sell a million of something, it pays
to handcraft it in assembly. If you 're
going to sell 10 of something, it prob -

ably doesn't. If we'd written this in
Pascal, we would have been able to
fit a fourth as much code in the ROM
or would have to have four times the
ROM, and you wouldn't have had
the performance. Because we're go-
ing to sell 10 million of these things
in the long run, it pays to super-
handcraft it; we only have to do it
once. Every time these ROMs are
burned, it doesn't cost us any more
engineering. . .it's all been done up
front.
Capps: Because we cared enough to
do it as well as we possibly could.
Jobs: We took a UK-byte Pascal pro-
gram running on a Lisa and we said
we want to do this in 2K and make
it faster. But we had that extra year
to do that. And we also had the
motivation, of course.
Atkinson: When you're writing as-
sembly, you know each instruction is
going to take 2 microseconds, it's go-
ing to take 4 bytes of memory. In
Pascal, you're removed from that, so
you don't concentrate on perfor-
mance as much. When I'm doingU/O
stuff in assembly language I look at

78 February 1984 BYTE Publications Inc .

.the theoretical maximum speed you
can run at. Why not do it as fast as
you can possibly do it? Especially
when you're doing disk I/O stuff.
How fast can you get into an inter-
rupt and out?
BYTE: Andy, let's talk about the ear-
ly days, after it had become
Macintosh.
Hertzfeld: I don't know, there's
something that makes a job a little
more fun to work on when the odds
are against you. And that's sort of
how it was in the early days. I was
maybe the fifth or sixth person to
come work on it. Steve took me over
to this little building separate from
everywhere else, where there were
these incredibly great people work-
ing on this little wire-wrap PC board.
All it could do when you turned it on
was write "hello" on the screen about
80 times. And everyone was in-
credibly excited to see it write "hello"
on the screen because it meant that
the central processing unit was there
and all that potential was there to be
mined. I spent my time mining that
potential.

The very first time we got an early
version of Quickdraw running, and
we got the mouse going—that's just
an incredible thrill. Or getting back
the first PC board—we all went out
for pizza on Friday night. We got the
boards in about four o'clock Friday
afternoon, and Steve said, "Well, if
you get these done before midnight,
we'll take you for pizza," and we
stayed there. . . not because we
wanted the pizza, but because we
wanted to see that board working.
And I think that none of our Mac PC
boards have ever had to have a wire
run to fix something, which is pretty
amazing. That's the attention to detail
that you just can't get people to do
for money. We do it for love.. .this is
the most important thing in our lives
... to make that great computer.

It's fun for me because I like oper-
ating on a systems program where I
can operate in an environment where
there's not that much support. In the
early days when I first started here,
the first thing I did was come in and
write all kinds of crazy demos,
stretching things around on the
screen and making balls bounce, and

one reason to do it was that I didn't
want to write the system code until
I was good at writing 68000 pro-
grams. So I just wanted to learn by
having fun, and the other reason is
that it gets people excited about it.
Just this raw hardware sitting there
doesn't do too much, but once you
start making this fun thing happen
and that fun thing happen, the ex-
citement starts getting generated. You
get to attract other good people, and
one by one we picked up on more
and more people. We were very, very
selective; it was very hard to find
people to work on Mac software,
because on one hand we had the
very high goals of doing this re-
search, Xerox PARC-like stuff with
uncommon, high technical stan-
dards. On the other hand, we had a
very inexpensive, limited-memory
machine. So all the Xerox PARC-type
guys who came and interviewed
said, "Oh, you don't have 2 mega-
bytes? Forget it, I don't want to work
on this thing." They're all used to
their Dorados. But gradually we
found great people like Larry and
Bruce who were turned on by the
dream, and they came and joined our
band, and I guess we reached critical
mass.
Atkinson: Most of the early people
were recruited from Apple.. . and we
have a pirate's flag that we sometimes
put on the roof. The idea is we're
pirates and we go around and try to
steal the best we can from anywhere
we can get it, and mostly that's been
from Lisa. A lot of it's been from Lisa,
but it's true in initially putting to-
gether the team, too; we try to get the
best people we can from anywhere in
the company.
Hertzfeld: One of the slogans Steve
came up with when we had a retreat
in January was "Let's be pirates," the
idea being that we were mavericks
out to blow people's minds and over-
turn standards, create new standards,
not do things like everyone else.
Atkinson: There was always the thrill
that this was going to be the one proj-
ect that was probably the most amaz-
ing thing you were going to be do-
ing in your life.
Hertzfeld: And the other slogan was
"The journey is the reward"■

80 February 1984 C BYTE Publications Inc.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15

